Supplementary Material for "Asymptotics of score test in the generalized β-model for networks"

By Ting Yan and Yunpeng Zhao

One lemma used in the proof of Theorem 2

We say an $n \times n$ matrix $V_{n}=\left(v_{i j}\right)$ belongs to a matrix class $\mathcal{L}_{n}(m, M)$ if V_{n} is a symmetric nonnegative matrix satisfying

$$
v_{i i}=\sum_{j=1 ; j \neq i}^{n} v_{i j} ; \quad M \geq v_{i j}=v_{j i} \geq m>0, \quad i \neq j
$$

Yan et al. (2015) proposed a simple matrix $S_{n}=\operatorname{diag}\left(1 / v_{11}, \ldots, 1 / v_{n n}\right)$ to approximate the inverse of V_{n} and obtained the upper bounds on approximation errors below.

Lemma 1. If $V_{n} \in \mathcal{L}_{n}(m, M)$, then for $n \geq 3$, the following holds:

$$
\left\|W_{n}:=V_{n}^{-1}-S_{n}\right\| \leq \frac{M(n M+(n-2) m)}{2 m^{3}(n-2)(n-1)^{2}}+\frac{1}{2 m(n-1)^{2}}+\frac{1}{m n(n-1)}
$$

where $\|A\|=\max _{i, j}\left|a_{i j}\right|$ denotes a matrix norm for a general matrix $A=\left(a_{i j}\right)$.

Calculation of equation (2)

The variance of $\sum_{i} c_{i} \tilde{d}_{i}^{2}$ can be divided into two parts:

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{i} c_{i} \tilde{d}_{i}^{2}\right)=\operatorname{Cov}\left(\sum_{i} c_{i} \tilde{d}_{i}^{2}, \sum_{j} c_{j} \tilde{d}_{j}^{2}\right)=\sum_{i} c_{i}^{2} \operatorname{Var}\left(\tilde{d}_{i}^{2}\right)+2 \sum_{1 \leq i<j \leq n} c_{i} c_{j} \operatorname{Cov}\left(\tilde{d}_{i}^{2}, \tilde{d}_{j}^{2}\right) . \tag{1}
\end{equation*}
$$

We will calculate the first part:

$$
\operatorname{Var}\left(\tilde{d}_{i}^{2}\right)=\operatorname{Cov}\left(\left(\sum_{\alpha=1}^{n} \tilde{a}_{i \alpha}\right)^{2},\left(\sum_{\zeta=1}^{n} \tilde{a}_{i \zeta}\right)^{2}\right)=\operatorname{Cov}\left(\sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} \tilde{a}_{i \alpha} \tilde{a}_{i \beta}, \sum_{\zeta=1}^{n} \sum_{\eta=1}^{n} \tilde{a}_{i \zeta} \tilde{a}_{i \eta}\right) .
$$

Note that the random variables $\tilde{a}_{i j}$ for $1 \leq i<j \leq n$ are mutually independent. There are only two cases for which $\operatorname{Cov}\left(\tilde{a}_{i \alpha} \tilde{a}_{i \beta}, \tilde{a}_{i \zeta} \tilde{a}_{i \eta}\right)$ is not equal to zero: (1) $\alpha=\beta=\zeta=\eta \neq i$;
(2) $\alpha=\zeta, \beta=\eta$ or $\alpha=\eta, \beta=\zeta$. By calculation, we have

$$
\begin{equation*}
\operatorname{Var}\left(\tilde{d}_{i}^{2}\right)=2 v_{i i}^{2}+\sum_{j \neq i} u_{i j} . \tag{2}
\end{equation*}
$$

The second part of (1) can be calculated as follows.

$$
\operatorname{Cov}\left(\tilde{d}_{i}^{2}, \tilde{d}_{j}^{2}\right)=\operatorname{Cov}\left(\left(\sum_{\alpha=1}^{n} \tilde{a}_{i \alpha}\right)^{2},\left(\sum_{\zeta=1}^{n} \tilde{a}_{j \zeta}\right)^{2}\right)=\operatorname{Cov}\left(\sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} \tilde{a}_{i \alpha} \tilde{a}_{i \beta}, \sum_{\zeta=1}^{n} \sum_{\eta=1}^{n} \tilde{a}_{j \zeta} \tilde{a}_{j \eta}\right)
$$

In the above, the only case for $\operatorname{Cov}\left(\tilde{a}_{i \alpha} \tilde{a}_{i \beta}, \tilde{a}_{j \zeta} \tilde{a}_{j \eta}\right)$ not equal to 0 , is $\alpha=\beta=j$ and $\zeta=\eta=i$. Then

$$
\begin{equation*}
\operatorname{Cov}\left(\tilde{d}_{i}^{2}, \tilde{d}_{j}^{2}\right)=E\left(\tilde{d}_{i j}^{4}\right)-\left(E\left(\tilde{d}_{i j}^{2}\right)\right)^{2}=u_{i j} \tag{3}
\end{equation*}
$$

Combing (2) and (3) into (1), it yields equation (2).

References

Yan T., Zhao Y., and Qin H. (2015). Asymptotic normality in the maximum entropy models on graphs with an increasing number of parameters. J. Multivariate Anal. 133, 61-76.

