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One lemma used in the proof of Theorem 2

We say an n×n matrix Vn = (vij) belongs to a matrix class Ln(m,M) if Vn is a symmetric

nonnegative matrix satisfying

vii =
n∑

j=1;j 6=i

vij; M ≥ vij = vji ≥ m > 0, i 6= j.

Yan et al. (2015) proposed a simple matrix Sn = diag(1/v11, . . . , 1/vnn) to approximate

the inverse of Vn and obtained the upper bounds on approximation errors below.

Lemma 1. If Vn ∈ Ln(m,M), then for n ≥ 3, the following holds:

‖Wn := V −1n − Sn‖ ≤
M(nM + (n− 2)m)

2m3(n− 2)(n− 1)2
+

1

2m(n− 1)2
+

1

mn(n− 1)
,

where ‖A‖ = maxi,j |aij| denotes a matrix norm for a general matrix A = (aij).

Calculation of equation (2)

The variance of
∑

i cid̃
2
i can be divided into two parts:

V ar(
∑
i

cid̃
2
i ) = Cov(

∑
i

cid̃
2
i ,
∑
j

cj d̃
2
j) =

∑
i

c2iV ar(d̃
2
i ) + 2

∑
1≤i<j≤n

cicjCov(d̃2i , d̃
2
j). (1)

We will calculate the first part:

V ar(d̃2i ) = Cov((
n∑

α=1

ãiα)2, (
n∑
ζ=1

ãiζ)
2) = Cov(

n∑
α=1

n∑
β=1

ãiαãiβ,

n∑
ζ=1

n∑
η=1

ãiζ ãiη).

Note that the random variables ãij for 1 ≤ i < j ≤ n are mutually independent. There are

only two cases for which Cov(ãiαãiβ, ãiζ ãiη) is not equal to zero: (1) α = β = ζ = η 6= i;
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(2) α = ζ, β = η or α = η, β = ζ. By calculation, we have

V ar(d̃2i ) = 2v2ii +
∑
j 6=i

uij. (2)

The second part of (1) can be calculated as follows.

Cov(d̃2i , d̃
2
j) = Cov((

n∑
α=1

ãiα)2, (
n∑
ζ=1

ãjζ)
2) = Cov(

n∑
α=1

n∑
β=1

ãiαãiβ,
n∑
ζ=1

n∑
η=1

ãjζ ãjη).

In the above, the only case for Cov(ãiαãiβ, ãjζ ãjη) not equal to 0, is α = β = j and

ζ = η = i. Then

Cov(d̃2i , d̃
2
j) = E(d̃4ij)− (E(d̃2ij))

2 = uij. (3)

Combing (2) and (3) into (1), it yields equation (2).
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