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Network Inference From Grouped Observations

Using Hub Models

YUNPENG ZHAO1 AND CHARLES WEKO2

George Mason University1 and United States Army2

Abstract: In medical research, economics, and the social sciences data frequently2

appear as subsets of a set of objects. Over the past century a number of descriptive3

statistics have been developed to infer network structure from such data. However,4

these measures lack a generating mechanism that links the inferred network struc-5

ture to the observed groups. To address this issue, we propose a model-based6

approach called the Hub Model which assumes that every observed group has a7

leader and that the leader has brought together the other members of the group.8

The performance of Hub Models is demonstrated by simulation studies. We apply9

this model to the characters in a famous 18th century Chinese novel.10

Key words and phrases: Social network analysis, affiliation network, expectation-11

maximization algorithm, half weight index, Dream of the Red Chamber.12
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1 INTRODUCTION13

A network can be denoted by N = (V,E), where V = {v1, v2, ..., vn} is the set14

of n nodes, and E is the set of edges between nodes. In this article, we focus15

on symmetric weighted networks represented by an n× n adjacency matrix,16

A, where the element Aij measures the relationship strength between nodes17

vi and vj.18

Traditionally, statistical network analysis focuses on modeling observed19

network structure (e.g., highway systems or electrical transmission grids). In20

this situation, nodes are well defined and the physical links between nodes is21

observable (Hiller and Lieberman, 2001; Newman, 2011). However, in some22

fields of research (e.g., the social sciences) network structure is not explicit.23

In these fields, the observable data are groups of individuals and a model is24

presumed to produce the groups. The fundamental task is to estimate model25

parameters from such data.26

Wasserman and Faust (1994) introduce inference of relationships with the27

example of children attending birthday parties. In their example, the children28

act as nodes in the network and the birthday parties represent subsets of29

children.30

In this paper, a collection of nodes observed in the same sample is called31
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a group and a dataset is called grouped data. In Wasserman and Faust’s32

example, each party defines a group and the set of all parties is the grouped33

data. Two individuals are said to co-occur if they appear in the same group.34

One common technique used to estimate an adjacency matrix from grouped35

data is to count the number of times that a pair of nodes appears in the same36

group (Zachary, 1977; Freeman et al., 1989; Wasserman and Faust, 1994; Ko-37

laczyk, 2009; Brent et al., 2011). Frequently, a threshold is applied to this38

count to create an unweighted adjacency matrix; however, Choudhury et al.39

(2010) show that the characteristics of networks inferred by this technique40

are sensitive to the threshold. We adopt a generalized version of the inter-41

citation frequency (Kolaczyk, 2009) which measures the number of times a42

pair of nodes is observed to co-occur in the dataset. We refer to this measure43

as the co-occurrence matrix.44

An alternative technique, called the half weight index (Cairns and Schwa-45

ger, 1987), estimates an adjacency matrix by the frequency that two nodes46

co-occur given that one of them is observed. This addresses a shortcoming47

of the co-occurrence matrix in which nodes that appear rarely can be es-48

timated to have a weak relationship even though the relationship is quite49

strong (Voelkl et al., 2011).50

The co-occurrence matrix and half weight index both have probabilistic51
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interpretations. The co-occurrence matrix estimates the probability that52

two nodes will be observed together. The half weight index estimates the53

probability that two nodes will be observed together given that one of them54

is observed. However, these are not equivalent to the probability of an active55

relationship between nodes. In fact, neither of these techniques describe the56

process which leads to the generation of the observed groups. It is unclear57

how these descriptive statistics relate to the grouped data in these methods.58

We propose a model-based approach for grouped data generation which59

we refer to as the Hub Model because each observed group is assumed to be60

brought together by a hub node (see Figure 1).61

The Hub Model is fundamentally different from classical network mod-62

els such as the stochastic blockmodel and its variants (Holland et al., 1983;63

Airoldi et al., 2008), the exponential random graph models (Frank and Strauss,64

1986; Robins et al., 2007), the latent space model and its variants (Hoff et al.,65

2002; Handcock et al., 2007), among others (see Goldenberg et al. (2010) for66

a comprehensive review). These models focus on modeling the statistical67

behavior of the network, that is, they treat the network as the observed68

data. By contrast, the Hub Model treats the network as latent governing the69

grouping behavior of a population. Our task is to estimate the latent network70

(i.e., the adjacency matrix) from the observed group data. In this article,71
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Figure 1: The generating mechanism of the Hub Model is demonstrated on
a group of 10 nodes. In the observed sample, nodes v1, . . . , v6 are members
of the group while nodes v7, . . . , v10 are not members of the group. The
observed group is the result of the hub node, v1, bringing together nodes
v2, . . . , v6.

we treat the adjacency matrix as fixed parameters and make no structural72

assumption about it. If there were a priori information about the latent73

network, such as that it follows the stochastic blockmodel or the exponential74

random graph model, then one could take a Bayesian approach and use this75

model as a prior. For more discussion, refer to Section 7.76

The Hub Model belongs to the family of finite mixture models which77

has been applied in many different situations including text classification78
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(Carreira-Perpinan and Renals, 2000), topic models (Anandkumar et al.,79

2015), fingerprint identification (Vretos et al., 2012), and product recom-80

mendation (Colace et al., 2015).81

Hub Models have the advantage that relationship strength is both math-82

ematically well defined and practical to researchers. In the Hub Model, Aij,83

is defined as the probability that node vi will include node vj when vi is the84

hub node of a group. The formal definition of the Hub Model will be given85

in Section 3.86

As an introduction to Hub Models, consider the hypothetical relationships87

in Figure 2a. In this example there is a pair of nodes, v1 and v2, which never88

directly pair to each other; however, they have an 80% chance of interacting89

with five nodes. That is, Aij = 0.8 for all i ≤ 2 and j ≥ 3 while Aij =90

0 otherwise. In Figure 2b, the co-occurrence matrix mistakenly assigns a91

relatively strong relationship to nodes v1 and v2 because they often co-occur.92

In Figure 2c, the half weight index arrives at a similar conclusion. In both93

Figures 2b and 2c, the non-existent relationship between nodes v1 and v2 is94

estimated to be stronger than all other relationships. By contrast, the Hub95

Model in Figure 2d clearly captures the relationships of the population.96

To the best of our knowledge, there have been limited attempts to apply97

model-based approaches to these data. Rabbat et al. (2008) provide an98
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application for telecommunication networks. They modeled group formation99

as a random walk from a source node to a terminal node. This model assumed100

a distinctly different process of group formation from Hub Models. The nodes101

along the path were subjected to an unknown permutation to account for the102

lack of order information. Treating permutations as missing data, Rabbat et103

al. employed a Monte Carlo EM algorithm based on importance sampling104

to estimate the parameters of the model.105
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Figure 2: Comparison of Estimation Techniques

In the following sections we present a formal description of the grouped106

data structure, review existing techniques, and define Hub Models. Then we107

address Hub Model identifiability and provide a theorem that proves that a108

symmetric adjacency matrix is a sufficient condition for identifiability. We109

propose an EM algorithm to solve the maximum likelihood estimator of the110

Hub Model. We then evaluate the model performance by simulation studies.111

We apply the Hub Model to infer the relationships among the characters of112
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the 18th century Chinese novel, Dream of the Red Chamber. We close with113

a discussion of how the size of the population impacts model efficiency and114

ways to incorporate network structure assumptions to simplify the model.115

2 GROUPED DATA116

2.1 Data Structure117

For a population of n individuals, V = {v1, . . . , vn}, we observe T subsets118

of the global population, {V (t)|V (t) ⊆ V, t = 1, ..., T}. Each observed subset119

can be coded as an n length row vector G(t) where:120

G
(t)
i =


1 if vi ∈ V (t)

0 if vi /∈ V (t)

The full set of observations is denoted by a T ×n matrix, G. The tth row121

of G is G(t).122

2.2 Existing Methods123

Inferring relationships from grouped data relies on descriptive statistics which124

count the number of times that two nodes are observed together. We focus on125
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2.2 Existing Methods

two popular techniques which estimate probabilities of individual behavior.126

A simple measure of grouped data is the co-occurrence matrix. Versions127

of this technique appear throughout the literature under many names and128

notations including: capacity matrix (Zachary, 1977), sociomatrix (Wasser-129

man and Faust, 1994), inter-citation frequency (Kolaczyk, 2009), cocitation130

matrix (Newman, 2011), and strength (Brent et al., 2011).131

A co-occurrence matrix, O, is an n× n symmetric matrix, defined by:132

O =
G′G

T
, (2.1)

which estimates the frequency that the nodes vi and vj are observed in133

the same group.134

One shortcoming of the co-occurrence matrix is that it estimates the135

probability that two nodes will be observed to co-occur in a given observation.136

That is, if two nodes have a strong relationship, but appear in the dataset137

infrequently, the co-occurrence matrix will estimate a low probability that138

the two nodes will be observed to co-occur.139

As an example, consider four nodes v1, . . . , v4 and the grouped data repre-140

sented in Table 1. For this dataset, both O1,2 = 2
5

and O3,4 = 2
5
. However,141

notice that every time node v3 is present node v4 is also present. A researcher142
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2.2 Existing Methods

Node
Event v1 v2 v3 v4

1 1 0 0 0
2 1 1 0 0
3 1 1 0 0
4 1 0 1 1
5 0 1 1 1

Table 1: Notional Grouped Data

may conclude that there is some aspect of the relationship between nodes v3143

and v4 which has been understated.144

As an alternative, the half weight index estimates the probability that145

two nodes will be observed to co-occur given that one of them is observed146

(Cairns and Schwager, 1987).147

The half weight index has been introduced in a number of equivalent148

forms (Dice, 1945). Computationally, the most direct form is:149

Hij =
2
∑

tG
(t)
i G

(t)
j∑

tG
(t)
i +

∑
tG

(t)
j

. (2.2)

Returning to the example in Table 1, we can see that H1,2 = 4
7

while150

H3,4 = 4
4
. Therefore, the half weight index infers a different network than151

the co-occurrence matrix.152
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3 HUB MODELS153

3.1 Generating Mechanism154

Hub Models (HM) assume that each group is a star subgraph on the global155

population. The hub node connecting the observed group is represented by156

an n length row vector, S(t), where157

S
(t)
i =


1 if vi the hub node of sample t,

0 otherwise.

There is one and only one element of S(t) that is equal to 1.158

Each group is independently generated by a two step process.159

1. The hub node is drawn from a multinomial distribution with parameter160

ρ = (ρ1, ..., ρn), i.e., ρi = P(S
(t)
i = 1). The following constraint applies:161

162 ∑
i

ρi = 1. (3.3)

2. The hub node, vi, chooses to include vj in the group with probability163

Aij, i.e., Aij = P(G
(t)
j = 1|S(t)

i = 1).164

In most practical applications, the hub node of each group is unknown.165

This article focuses on this case. We refer to the model where leaders are166
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3.2 Likelihood of the Hub Model

known as the Known Hub Model (KHM).167

Since the co-occurrence matrix and half weight index produce a symmetric168

adjacency matrix, we assume the Hub Model adjacency matrix is symmetric.169

The symmetry condition will be shown to ensure the identifiability of the Hub170

Model when group leaders are unobserved (Supplemental Material S1.2).171

Further, we assume that the hub node will always include itself in the172

group, i.e. Aii = 1 for all i.173

This generating mechanism implies that each observed group is indepen-174

dent of every other observed group. In particular, G(t) is not a transformation175

of G(t−1) and the order in which groups are observed contains no information176

about the relationships between group members. Researchers often collect177

data in such a way to ensure this property (Bejder et al., 1998).178

3.2 Likelihood of the Hub Model179

Under the HM, the probability of an observation has the form of a finite180

mixture model with n components:181

P(G(t)|A, ρ) =
n∑
i=1

ρiG
(t)
i

∏
j

A
G

(t)
j

ij (1− Aij)1−G(t)
j . (3.4)

By taking the log of the product of individual observed groups, the log182

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



3.2 Likelihood of the Hub Model

likelihood function for the full set of observations is:183

L(G|A, ρ) =
∑
t

log
[ n∑
i=1

ρiG
(t)
i

∏
j

A
G

(t)
j

ij (1− Aij)1−G(t)
j

]
. (3.5)

Solving the MLE of HM is an optimization problem with the equality184

constraints
∑

i ρi = 1, and Aij = Aji for all i and j. From (3.5), we denote185

the log likelihood function as L(G|A, ρ). This gives the following Lagrange186

function:187

Λ(G|A, ρ) = L(G|A, ρ)− λo[(
∑
i

ρi)− 1]−
∑
i<j

λij(Aij − Aji). (3.6)

The log likelihood does not have a closed-form solution for the MLE.188

Instead we will derive estimating equations which can be incorporated into189

an Expectation Maximization algorithm. Before doing so we investigate the190

identifiability of the Hub Model.191

A basic requirement for any model is identifiability. For Hub Models, this

means for any two sets of parameters {A, ρ} and {A∗, ρ∗}:

P(G = g|A, ρ) = P(G = g|A∗, ρ∗) ∀g =⇒ A = A∗, ρ = ρ∗. (3.7)

The generating mechanism for Hub Models is equivalent to a finite mix-192
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3.2 Likelihood of the Hub Model

ture model of multivariate Bernoulli random variables. In general, such a193

model is not identifiable (Teicher, 1961). This shortcoming does not prevent194

such models from being useful in many applications. For example, when195

dealing with classification problems where the researcher only has to identify196

which component density an observation came from, this type of mixture can197

be effectively used (Carreira-Perpinan and Renals, 2000). In such a situation,198

the individual parameters of the multivariate Bernoulli random variables are199

not of interest. However, the issue of identifiability presents a challenge in200

our application because we are specifically interested in the individual pa-201

rameters of the adjacency matrix.202

If no constraint is put on the adjacency matrix, the model is unidentifi-203

able. The following theorem establishes a sufficient condition for identifiabil-204

ity. See Supplemental Material S1 for more details.205

Theorem 1. Let A and A∗ be symmetric adjacency matrices with Aii =206

A∗ii = 1 for all i, Aij < 1 and A∗ij < 1 for all i 6= j. If P(g|A, ρ) = P(g|A∗, ρ∗)207

for all g, then {A, ρ} = {A∗, ρ∗}.208

It is worth noticing that even though symmetry of the adjacency matrix209

is a natural assumption, it is only a sufficient condition for identifiability ac-210

cording to Theorem 1. For future work, we will explore other assumptions to211
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3.3 Estimating Equations

ensure identifiability and ultimately find a necessary and sufficient condition.212

3.3 Estimating Equations213

In Supplemental Materials S2, we derive (3.8) and (3.9) which are estimating214

equations that the MLE must satisfy. The maximum likelihood estimator of215

HM does not have a closed-form solution for the parameters because the right216

hand side of the estimating equations includes the estimated parameters.217

Next we will show that solving these equations iteratively is equivalent to an218

EM algorithm. The details of the EM algorithm will be given in the next219

section.220

Âxy =

∑
tG

(t)
y P(Sx = 1|G(t)) +

∑
tG

(t)
x P(Sy = 1|G(t))∑

t

[
P(Sx = 1|G(t)) + P(Sy = 1|G(t))

] . (3.8)

ρ̂x =

∑T
t=1 P(S

(t)
x = 1|G(t))

T
. (3.9)

4 EM ALGORITHM221

The estimating equations shown above depend on the probability P(S
(t)
x =222

1|G(t)). This implies an algorithm updating {Â, ρ̂} and P(S
(t)
x = 1|G(t)) iter-223

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



atively, which can be fitted into the general framework of an EM algorithm.224

The key technique of any EM algorithm is to formulate a complete data225

model then solve the model as if some data is observed and other data is226

missing. In this case, the Known Hub Model serves as the complete data227

model, G is the observed data, and S is the missing data. Each iteration of228

the EM algorithm consists of an expectation step followed by a maximization229

step (McLachlan and Krishnan, 2008).230

E-Step231

Since the log likelihood function of the complete data model is linear in

the unobserved data, the E-Step (on the (m+ 1)th iteration) simply requires

calculating the current conditional expectation of S
(t)
i given the observed

data (see McLachlan and Krishnan (2008) for detailed explanation).

E[S(t)
x |G(t)] = P(S(t)

x = 1|G(t))

=
ρxG

(t)
x

∏
j A

G
(t)
j

xj (1− Axj)1−G(t)
j∑n

i=1 ρiG
(t)
i

∏
j A

G
(t)
j

ij (1− Aij)1−G(t)
j

(4.10)

M-Step232

The M-Step replaces P(S
(t)
x = 1|G(t)) on the right hand side of (3.8) and233
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(3.9) with E[S
(t)
x |G(t)] from (4.10).234

Algorithm235

Algorithm 1 illustrates the details of the Hub Model.236

Several standard techniques are used to improve the performance of the237

EM algorithm. Firstly, we run the EM algorithm 10 times with different238

staring points and choose the solution with the highest likelihood. Secondly,239

we limit the number of iterations applied to a starting point. This second240

treatment is based in part on the observation that when this algorithm has241

a bad starting point, it will take a very long time to converge and the point242

that it converges to is not close to the maximum. As a final step, we treat243

any Âxy ≤ 10−4 as Âxy = 0. We apply this finishing step to remove clutter244

from the returned solutions.245

5 SIMULATION246

In order to perform simulations, we generate parameters {A, ρ} using the247

following techniques.248

For ρ, we select n random numbers, Xi, uniformly and divide each random249
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Data: G
Result: Â, ρ̂
Initialize:
L(G|Â) = −∞
for rep=1 to 10 do

Initialize:
Â

(0)
ij = unif(0, 1) ∀{i, j}

Xi = unif(0, 1) ∀i
ρ̂

(0)
i = Xi∑

kXk

∆L(G|A(0)) = 104

counter=1
while |∆L(G|A(m+1))

L(G|A(m))
| > 10−4and counter < 100 do

E-Step
Update P(S

(t)
k = 1|G(t)) by Equation 4.10

M-Step
Update A(m+1) by Equation S2.10
Update ρ(m+1) by Equation S2.13

∆L(G|A(m+1)) = L(G|A(m+1))− L(G|A(m))
counter=counter+1

end

if L(G|A(m+1)) > L(G|Â) then

if Âij ≤ 10−4 then

Âij = 0
else

Âij = A
(m+1)
ij

end

end

end

Algorithm 1: Expectation Maximization Algorithm for the Hub Model

number by the sum of all Xi’s. That is, ρi = Xi∑
iXi

.250

We use a two step process to generate the adjacency matrix. First, we251

create a symmetric unweighted undirected random graph on n nodes using252
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the configuration model (Jackson, 2010) with a power law degree distribution253

P(k) ∝ k−η, where k is the possible value of the node degree. We assume a254

power law degree distribution because it is commonly believed that many real255

world social networks have this property Newman (2011). In all simulation256

studies, we choose η = 2, because many networks are reported to have power257

between 2 and 3 and a power of 2 generates the most dense networks, which is258

a more challenging setup. We refer to this unweighted graph as the structure259

of the network.260

Each edge in the graph is then assigned a relationship strength with a261

beta distribution,262

Aij =


Beta(α, β) if there is an edge between vi and vj

0 otherwise

We simply let Aji = Aij to ensure symmetry. We set α = 1 and β = 4 in the263

beta distribution so that the average relationship strength is less than 0.5,264

which we believe is realistic.265

In Tables 2 and 3, we consider five different network sizes n = 10, 20, 50, 100, 150.266

For the first two cases, we set the minimum node degree to be 1 in the power267

law distribution. And for the last three cases, we set the minimum degree to268
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be 5 in order to make sure the networks are not too sparse. For each size, we269

generate 100 sets of parameters (A, ρ) using the setup described above. For270

each (A, ρ), we generate a dataset with T groups. Each average and standard271

deviation are calculated over this 100 datasets. We use 9 different values of272

T = 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000.273

We first measure the ability of the estimated adjacency matrix Â to cor-274

rectly identify the structure. To do this we define true positives and true275

negatives as follows:276

TP =
∑
i<j

1(Aij>0)1(Âij>10−4),

TN =
∑
i<j

1(Aij=0)1(Âij≤10−4).

Here, vi and vj are considered to have no relationship if the estimated277

link strength is below 10−4. False positives and false negatives are calculated278

similarly. We use the Matthews correlation coefficient (MCC) to measure279

the identification of the structure because it is a binary classification measure280

that accounts for situations where the number of ones is significantly different281

than the number of zeros (Liu et al., 2015). Based on our setup, our simulated282

structures will have many more zeros than ones.283
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For the non-zero elements Aij, we further evaluate the difference between284

the numerical values of Aij and Âij by calculating the mean absolute error285

(MAE) of non-zero Aij,286

MAE(A) =

∑
i<j |Âij − Aij|1(Aij>0)∑

i<j 1(Aij>0)

.

We also report the average run time and the average number of iterations287

for the EM algorithm when the simulation is run on an Intel Pentium CPU288

G2030 at 3.00 GHz with 4.00GB of RAM.289

The first observation from Tables 2 and 3 is that for a fixed value of n290

the average error of both the MCC and the MAE decline as the number of291

observations increases. By contrast, for a fixed number of observations, the292

average error increases as the number of nodes increases.293

The standard deviation of estimates generally improves once the number294

of observations exceeds the number of parameters in the model. For example,295

with 100 nodes there are roughly 10,000 parameters to estimate, thus samples296

of only 2,000 or 5,000 observations demonstrate high standard deviations.297

Finally, average run time generally increases as the number of obser-298
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vations increases and the number of nodes increases. An important factor299

affecting the run time is the number of iterations the EM algorithm performs300

before converging. In Table 2 the number of iterations declines as observa-301

tions increase until it appears to approach a minimum number of iterations.302

Table 3 provides further insight as the number of iterations generally in-303

creases until the number of observations is roughly equal to the number of304

parameters in the model after which the iterations declines. Up to that point,305

the algorithm quickly converges to an adjacency matrix which is sparser than306

the true adjacency matrix due to the insufficient sample size. The implica-307

tion of these declining iterations is that run time is not strictly a function308

of the size of the dataset, but the relationship between the number of nodes309

and the number of observations.310
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n = 10
Avg StDev Avg StDev Avg Run Avg

Obs MCC MCC MAE(A) MAE(A) Time (sec) Iterations
100 0.8010 0.0977 0.0533 0.0219 0.0472 20.258
200 0.8929 0.0903 0.0349 0.0128 0.0431 16.670
500 0.9487 0.0530 0.0212 0.0071 0.0411 13.618
1000 0.9770 0.0364 0.0147 0.0047 0.0369 12.011
2000 0.9865 0.0279 0.0102 0.0030 0.0353 10.613
5000 0.9984 0.0115 0.0067 0.0019 0.0298 9.604
10000 0.9988 0.0086 0.0045 0.0014 0.0295 9.416
20000 0.9994 0.0060 0.0035 0.0009 0.0305 9.327
50000 1 0 0.0020 0.0006 0.0316 9.210

n = 20
100 0.6727 0.0972 0.0833 0.0210 0.1005 21.007
200 0.7984 0.0756 0.0599 0.0154 0.0992 19.961
500 0.8781 0.0576 0.0340 0.0079 0.1039 17.793
1000 0.9147 0.0594 0.0225 0.0056 0.1131 15.418
2000 0.9360 0.0612 0.0150 0.0033 0.1473 13.803
5000 0.9734 0.0367 0.0099 0.0024 0.1653 11.571
10000 0.9842 0.0393 0.0069 0.0019 0.1806 10.662
20000 0.9937 0.0187 0.0048 0.0013 0.2052 10.260
50000 0.9989 0.0070 0.0031 0.0006 0.2320 9.888

Table 2: Average and Standard Deviation of Mean Absolute Error as Obser-
vations Increase
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n = 50
Avg StDev Avg StDev Avg Run Avg

Obs MCC MCC MAE(A) MAE(A) Time (sec) Iterations
100 0.3454 0.0503 0.1680 0.0139 0.2272 5.261
200 0.3987 0.0622 0.1368 0.0081 0.9216 16.237
500 0.5815 0.0668 0.0936 0.0085 2.7233 36.148
1000 0.8499 0.0302 0.0526 0.0049 2.6903 38.222
2000 0.9013 0.0176 0.0345 0.0030 2.3761 24.713
5000 0.9127 0.0193 0.0212 0.0017 2.8953 17.802
10000 0.9074 0.0259 0.0145 0.0012 5.1788 15.343
20000 0.9080 0.0327 0.0104 0.0008 7.1548 13.932
50000 0.9142 0.0383 0.0065 0.0006 12.190 12.866

n = 100
100 0.2620 0.0352 0.1955 0.0096 0.2058 2.040
200 0.3187 0.0346 0.1756 0.0109 0.2922 2.533
500 0.3495 0.0519 0.1359 0.0070 1.8683 9.151
1000 0.3857 0.0498 0.1109 0.0074 6.9431 25.852
2000 0.5343 0.1055 0.0748 0.0100 14.6644 44.035
5000 0.8236 0.1469 0.0351 0.0080 17.5031 34.544
10000 0.9128 0.0826 0.0219 0.0028 19.4031 23.370
20000 0.9355 0.0579 0.0148 0.0015 22.4366 17.494
50000 0.9484 0.0282 0.0092 0.0006 33.8123 13.905

n = 150
100 0.2247 0.0366 0.1994 0.0105 0.3373 1.536
200 0.2674 0.0316 0.1909 0.0081 0.3705 1.547
500 0.2965 0.0431 0.1632 0.0091 0.8822 2.623
1000 0.2625 0.0600 0.1363 0.0067 7.4969 11.65
2000 0.2354 0.0628 0.1247 0.0089 42.4597 47.525
5000 0.2700 0.1402 0.1075 0.0144 98.8080 75.973
10000 0.4276 0.2247 0.0822 0.0252 150.6061 72.416
20000 0.6025 0.2601 0.0532 0.0280 184.3534 60.144
50000 0.7602 0.2441 0.0275 0.0230 217.9005 41.975

Table 3: Average and Standard Deviation of Mean Absolute Error as Obser-
vations Increase (continued)
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6 DATA ANALYSIS311

In this section, we perform data analysis on the 18th century Chinese novel,312

Dream of the Red Chamber. The observed groups in this dataset do not nec-313

essarily conform to the Hub Model assumption. However, we will show that314

even without this assumption being explicitly valid, important information315

about the relationships can be estimated.316

The Supplemental Materials S3 include two additional data sets estimat-317

ing co-sponsorship of legislation in the Senate of the 110th United States318

Congress and the dispersion of plant species across North America.319

As noted by Kolaczyk (2009), a significant challenge with estimating the320

parameters of implicit networks is that for a real world dataset there is usually321

no way to verify the extent to which the estimate matches reality. That322

is, there is no so-called “ground truth” or “golden standard” to compare323

the estimated results against. Therefore, it is useful to analyze data about324

which there is some qualitative knowledge of the relationships between nodes.325

To this end, we construct a dataset of characters from Dream of the Red326

Chamber. Since novels contain a qualitative social structure that is familiar to327

readers, the results of quantitative analysis can be compared to this standard.328

This novel is chosen for two reasons. Firstly, the relationships between329
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the characters are subtle and complex. Secondly, the novel has been carefully330

studied by scholars. Therefore, the story presents a challenge to the task of331

estimating relationships and there is a body of knowledge to compare the332

estimates against.333

Traditionally datasets are built from novels by carefully reading the text334

and identifying dyadic interactions between characters based on criteria es-335

tablished by the researchers, e.g., characters A and B have a conversation336

(MacCarron and Kenna, 2013). This method may construct high quality337

datasets; however, in order to identify interactions, it requires readers who338

can read the novel and have time to build the datasets. Since Dream of the339

Red Chamber is written in classical Chinese and the English translation runs340

over 2,600 pages, directly generating the dataset would be excessively time341

consuming.342

Therefore, we built the dataset using text mining and define a group343

as characters who co-occur in the same paragraph. Paragraphs with no344

characters named in them are ignored. For a complete description of the345

text mining protocol, see Supplemental Materials S5.346

We analyze the relationships of 29 important characters. The character347

names presented here are based on the original pinyin pronunciations and the348

David Hawkes translation (Hawkes, 1974). A Chinese version of the novel349
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was used for text-mining. The complete novel contains 120 chapters, but we350

focus on the first 80 because it is commonly believed that the last 40 chapters351

are written by a different author and may not reflect the original themes of352

the novel (Hsueh-Chin, 2016). The resulting dataset has 1,389 observations353

of groups containing at least one of the 29 characters.354

In Figure 3, the adjacency matrix is represented as an n × n grid where355

the ith × jth cell represents the relationship between nodes vi and vj. The356

relationship strength is represented by the cell’s color. Nodes with weak357

relationships have light cells while nodes with strong relationships have dark358

cells. Cells representing relationships of intermediate strength are shaded359

along the gray scale.360

This visualization demonstrates another difference in the performance of361

the techniques. The co-occurrence matrix estimates all relationships as being362

very weak and it is difficult to differentiate strong relationships from the363

absence of a relationship. The half-weight index presents a much stronger364

set of relationships but there is evidence of relationships which have been365

imputed transitively. In general, HM returns a much sparser network where366

relationship strengths demonstrate higher contrast. This tendency towards367

sparsity is discussed in more detail in the Supplemental Materials S4.2.368
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(a) Co-Occurrence (b) Half Weight Index (c) Hub Model

Figure 3: Comparison of Results for Dream of the Red Chamber

The EM algorithm of HM provides very stable solutions. By selecting369

multiple starting points, we find that the adjacency matrix (Figure 3c) is370

repeatedly returned as the most likely parameter of the observed data.371

The Hub Model parameter’s standard deviation was estimated using the372

bootstrap technique. In general, the standard deviation was low. This was373

particularly true for ρ̂ where the maximum standard deviation was 0.0173.374

Table 4 presents the standard deviation of the estimated adjacency matrix375

at different percentiles.

Percentile Max 95 % 75 % Med 25 % 5 % Min
StDev 0.2696 0.1025 0.0374 0.0100 0.0000 0.0000 0.0000

Table 4: Percentiles of Standard Deviation in Â estimated by HM for Dream
of the Red Chamber

376

One of the main themes of Dream of the Red Chamber is the love story377
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surrounding the protagonist Jia Baoyu (1st character in Figure 3c) and two378

potential fiances, the sickly Lin Daiyu (2nd character) and the “ideal” Xue379

Baochai (3rd character). Although Jia Baoyu shares a special bond with380

Lin Daiyu and has no significant emotional connection to Xue Baochai, he381

is ultimately tricked into marrying Xue Baochai (Hsueh-Chin, 2016). In382

Table 5, we present the relationships between these two girls and the other383

characters as estimated by the co-occurrence matrix, half weight index, and384

HM.385

From the novel, Lin Daiyu is a sensitive girl who prefers to be alone. By386

contrast, Xue Baochai is a social and calculating girl. She is extremely good387

at interpersonal communication especially with the protagonist’s mother388

(Lady Wang) and grandmother (Grandmother Jia) (Hsueh-Chin, 2016). These389

different personalities are clearly represented by the HM estimator while the390

other estimators do not identify this difference.391
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Co-Occurrence Matrix (O) Half Weight Index (H) Hub (Â)
Lin Xue Lin Xue Lin Xue

Daiyu Baochai Daiyu Baochai Daiyu Baochai
Jia Baoyu 0.1728 0.1274 0.4563 0.3587 0.3113 0.2258
Lin Daiyu 1.0000 0.1109 1.0000 0.4866 1.0000 0.4072

Xue Baochai 0.1109 1.0000 0.4866 1.0000 0.4072 1.0000
Jia Yuanchun 0.0072 0.0050 0.0531 0.0449 0.0156 0.0228
Jia Tanchun 0.0439 0.0533 0.2490 0.3482 0.0915 0.4848

Shi Xiangyun 0.0590 0.0490 0.3273 0.3119 0.2194 0.2365
Miaoyu 0.0072 0.0036 0.0552 0.0337 0.0597 0

Jia Yingchun 0.0252 0.0274 0.1667 0.2141 0 0.2846
Jia Xichun 0.0187 0.0202 0.1313 0.1692 0.0102 0.2461

Wang Xifeng 0.0497 0.0526 0.1840 0.2131 0.0317 0.0697
Jia Qiaojie 0.0022 0.0022 0.0170 0.0208 0 0.0348

Li Wan 0.0367 0.0482 0.2086 0.3160 0.0580 0.3384
Qin Keqing 0.0007 0.0007 0.0052 0.0062 0 0

Grandmother Jia 0.0655 0.0648 0.2725 0.2985 0.1925 0.2820
Jia She 0.0065 0.0043 0.0449 0.0357 0 0

Jia Zheng 0.0122 0.0144 0.0701 0.0952 0.0143 0.0174
Jia Lian 0.0072 0.0036 0.0423 0.0245 0.0002 0.0073

Xiangling 0.0180 0.0252 0.1185 0.1961 0.0741 0.2344
Ping’er 0.0122 0.0209 0.0668 0.1306 0.0016 0.1643

Xue Pan 0.0043 0.0101 0.0292 0.0809 0 0
Granny Liu 0.0072 0.0050 0.0493 0.0411 0.0101 0.0113
Lady Wang 0.0490 0.0590 0.2248 0.3037 0.0224 0.2065
Aunt Xue 0.0302 0.0396 0.1806 0.2750 0.0479 0.1657
Hua Xiren 0.0403 0.0389 0.1938 0.2105 0.0283 0.1469
Qingwen 0.0166 0.0115 0.1020 0.0829 0.0155 0.0886
Yuanyang 0.0086 0.0101 0.0556 0.0763 0 0.0430
Mingyan 0.0007 0.0007 0.0053 0.0064 0 0
Zijuan 0.0317 0.0108 0.2184 0.0888 0.1775 0.0376

Concubine Zhao 0.0050 0.0058 0.0361 0.0495 0 0.0338

Table 5: Relationships of Lin Daiyu and Xue Baochai to other characters in
Dream of the Red Chamber
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7 CONCLUSION392

To the best of our knowledge, Hub Models introduce an innovative approach393

to the task of implicit network inference. By defining a model-based gener-394

ating mechanism to link the latent network to observed grouped data and395

applying an EM algorithm, we are able to estimate the network using this396

model.397

Not only are the estimators easy to calculate in a reasonable amount of398

time, but they have a practical interpretation. The parameter ρi measures399

the probability that node vi will form a group. Aij measures the probability400

that a member of the population will be included in a group formed by node401

vi.402

The Hub Models compare favorably against existing techniques. Since403

the co-occurrence matrix and half weight index lack a generating mechanism404

to connect them to the observed grouped data, these measures often cannot405

detect important features of a network. By applying the Hub Model to the406

18th century Chinese novel Dream of the Red Chamber, we demonstrate that407

the HM is able to detect important features in the relationships between408

nodes in complex situations.409

By the standards of statistical network analysis, the size of the adjacency410
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matrices presented in this paper are small. An important question is how411

the Hub Model would perform with 10,000 or even 1,000,000 nodes. While412

it is computationally feasible to apply the Hub Model to populations of this413

size, there is a practical challenge of collecting enough observations to have414

sufficient statistical power.415

We observe that how “small” or “large” a dataset is depends on the rela-416

tionship between the number of nodes and the number of observed groups. In417

principle, if there are n nodes, the Hub Model must estimate n2 parameters.418

If the number of observations is less than the number of nodes, multiple sets419

of parameters have the same likelihood and parameter estimation is unstable.420

In general, it is only when the number of observations exceeds the square of421

the number of nodes, that we have stable estimates.422

This means that to estimate the Hub Model parameters of a population423

with hundreds of thousands of nodes, we would expect to have tens of billions424

of observations. Therefore, applying Hub Models directly to text or even a425

recommender system would be impractical.426

In order to make the Hub Model useful for such large populations, some427

technique must be applied to reduce the number of parameters in the model.428

In this paper, we have placed no restrictions on the adjacency matrix. How-429

ever, there are a number of restrictions which could be applied to enable us430
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to handle populations with “small” datasets.431

One major way is to make an assumption about the structure of the432

underlying network. For example, one might assume that the latent network433

is itself the result of a block model or exponential random graph model. Such434

an approach would create a hierarchical model for group formation.435

A second way that assumptions about the structure of the underlying436

network could be applied is to change the dimensions of the adjacency matrix.437

In doing this, researchers may limit the number of nodes which can act as438

leaders or treat some nodes as having the same behavior.439

The Hub Model can be potentially useful to model the term-document440

matrix in text mining. Such a matrix describes the frequency of terms that441

occur in a collection of documents, which is similar to the format of group442

data. So far many text mining techniques are based on a co-occurrence443

matrix created from the term-document matrix. The Hub Model may provide444

more meaningful estimates of the relations between terms.445

Supplementary Materials446

The supplemental materials contain additional details regarding the proof447

of Theorem 1, calculation of the estimating equations 3.8 and 3.9. Addition-448

ally, we provide data analysis for co-sponsorship of the 110th Congress and449
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a dataset of North American flora. We conclude with a discussion of iden-450

tifiability, self-sparsity, and the protocol for text mining Dream of the Red451

Chamber.452
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