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Abstract

In social network analysis, the observed data is usually some social behavior,
such as the formation of groups, rather than explicit network structure. Zhao and
Weko (2017) proposed a model-based approach called the hub model to infer implicit
networks from grouped observations. The hub model assumes independence between
groups, which sometimes is not valid in practice. In this article, we generalize the
idea of the hub model into the case of time-varying grouped observations. As in the
hub model, we assume that the group at each time point is gathered by one leader.
Unlike in the hub model, the group leaders are not sampled independently but follow
a Markov chain, and other members in adjacent groups are also correlated.

An expectation-maximization (EM) algorithm is developed for this model, and a
polynomial-time algorithm is proposed for the E-step. The performance of the new
model is evaluated under different simulation settings. We apply this model to a data
set of the Kibale Chimpanzee Project.
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1 Introduction

A network is a data structure consisting of nodes (vertices) connected by links (edges). A

network with n nodes can be represented by an n × n adjacency matrix A = [Aij], where

Aij > 0 if there is an edge between nodes i and j, and Aij = 0 otherwise. A network A can

be weighted where Aij measures the link strength between node i and j.

Increasing attention has been drawn to network analysis by a number of fields such

as social sciences, physics, computer science, biology, and statistics (see Getoor and Diehl

(2005); Goldenberg et al. (2010); Newman (2010); Zhao (2017) for reviews of this area).

In many cases, social networks of humans or animals are implicit, and sometimes they

are even conceptual. The raw data that can be observed is usually social behavior. For

example, we may not directly observe “friendships” between individuals. On the contrary,

what we may see is some social behavior. For example, two people called each other more

than twice a week on average, or two dolphins frequently co-occurred (Bejder et al., 1998).

From the so-called social network perspective (Moreno, 1934), social behavior is generally

presumed to be governed by latent social networks.

In this article, we focus on a special type of social behavior – grouping behavior. In such

data, individuals that appear together form a group. A data set consisting of such groups

is referred to as grouped data by Zhao and Weko (2017). To better explain the structure

of grouped data, we need some notation. For a set of n individuals, V = {v1, ..., vn}, we

observe T subsets V 1, ..., V T at times 1, ..., T , called groups. As in Zhao and Weko (2017),

each observed subset V t can be represented as an n length row vector Gt where

Gt
i =







1 if vi ∈ V t,

0 otherwise.

For simplicity, we will slightly abuse the notation: we will also call the indicator vector Gt

as a group from now on. The goal of this paper is to infer the adjacency matrix A with

the groups being observed.

Wasserman and Faust (1994) introduced such a data set, which is shown in Table 1.

By the use of the notation above, G2
2 = 1 since Drew attended Party 2, but G3

2 = 0 since

Drew did not attend Party 3.
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Table 1: Dataset for six children and three birthday parties, Adapted from Wasserman and Faust

(1994).

Party Allison Drew Eliot Keith Ross Sarah

1 1 0 0 0 1 1

2 0 1 1 0 1 1

3 1 0 1 1 1 0

As another example, Zhao and Weko (2017) treated the characters of a novel appearing

in the same paragraph as a group and use the inferred network structure to interpret the

relationships between characters.

Existing methods for network inference from grouped data are mainly ad-hoc approaches

from the social sciences literature. A simple technique is to count the number of times that

a pair of nodes appears in the same group. This measure has different names from different

places, e.g., the co-citation matrix in Section 6.4 of Newman (2010) or the sociomatrix

in Section 8.4 of Wasserman and Faust (1994). Zhao and Weko (2017) refers to this

measure as the co-occurrence matrix. Half weight index (Cairns and Schwager, 1987) is an

alternative approach which uses the conditional frequencies of co-occurrences as estimates.

A common difficulty of such methods is that they provide no statistical model to connect

these descriptive statistics with the latent network.

Zhao and Weko (2017) recently proposed a model-based approach for grouped obser-

vations. In the so-called hub model, groups at different time points are assumed to form

independently and there is a central node called hub or group leader in each group, who

gathers other members into the group. For example, the hub is the child who hosted the

party in the example above.

A crucial assumption made in Zhao and Weko (2017) is the independence between

groups. In some cases, this assumption is reasonable if each group forms spontaneously.

The assumption can also be approximately satisfied if researchers collect grouped data with

sufficiently long time intervals between observations (see Bejder et al. (1998) for discussion).

However, the independence assumption may not be valid in other situations. In most
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practical cases, the grouped observations are time-varying in nature. For example, in the

study of animal behavior, researchers may observe the behavior of animals on an hourly

or daily basis. In Section 5, we will analyze such a data set consisting of groups of wild chim-

panzees studied by the Kibale Chimpanzee Project (https://kibalechimpanzees.wordpress.com/).

It is inappropriate to assume that every group is independent with the previous group. A

more plausible point of view is that the group at a particular time is a transformation of

the previous one. That is, some new members may join the group and some may leave,

but the group maintains a certain level of stability. Also, we focus on the case of only one

group being observed at a time point in this article.

We generalize the idea of the hub model to the above time-varying setting. We will call

the new model as the time-varying hub model or the time-varying model in short. This

new model allows for dependency between group leaders as well as between others group

members. We will explain both assumptions of dependency in the next two paragraph,

respectively.

As in the classical hub model, we assume that there is one leader for each group. But

leaders are not sampled independently in the time-varying model, but follow a Markov

chain. That is, the probability of the current leader being a certain node depends on the

leader in the previous group.

For other group members, we consider the following two cases to make the model flexible

enough. If the current leader is inside the previous group, then we treat this group as a

transformation of the previous one, as mentioned above. If the new leader is outside the

previous group (e.g., some event could happen and thus completely break the previous

group), then we treat this group as the start of a new segment. In this case, the leader

will select the group members as in the classical hub model, i.e., independently on whether

they are members of the previous group.

As will be seen in Section 3, the time-varying hub model can be viewed as a generaliza-

tion of the hidden Markov model (HMM) when the group leaders are latent. An efficient

algorithm is thus developed for model fitting.

Finally, we discuss some related work. First, the time-varying hub model is fundamen-

tally different from many existing models for dynamic networks, such as the preferential
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attachment model (Barabási and Albert, 1999), discrete/continuous time Markov models

(Snijders, 2001; Hanneke and Xing, 2007), etc. In these works, the observed data are the

snapshots of the network at different time points. In this article, the unknown parameters

are a single latent network, and the observations are groups with time-varying structure.

Second, there are recent studies on estimating latent networks or related latent struc-

tures in the dynamic setting, but from data structures different from groups. Guo et al.

(2015) proposed a Bayesian model to infer latent relationships between people from a spe-

cial type of data – the evolution of people’s language over time. Robinson and Priebe

(2013) proposed a latent process model for dynamic relational network data. Such a data

set consists of binary interactions at different times. Blundell et al. (2012) developed a

nonparametric Bayesian approach for estimating latent communities from a similar type

of data. The grouped data we consider in this article is more complicated than binary

interactions in the sense that unlike a linked pair, the links within a group consisting of

more than two members are unknown.

2 Model

2.1 The classical hub model

We briefly state the generating mechanism of the classical hub model proposed by Zhao

and Weko (2017). The hub model assumes one leader for each group. The leader of Gt is

denoted by zt.

Under the hub model, each group Gt is independently generated by the following two

steps.

1. The group leader is sampled from a multinomial distribution with parameter ρ =

(ρ1, ..., ρn), i.e., P(z
t = i) = ρi, with

∑

i ρi = 1.

2. The group leader, vi, will choose to include vj in the group with probability Aij, i.e.,

P(Gt
j = 1|St

i = 1) = Aij.
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2.2 Generating mechanism of the time-varying hub model

The hub model assumes that all the groups are generated independently across time. In

practice, it is more natural to model the groups as time-varying observations.

We first explain the idea of the generating mechanism of time-varying groups and then

give the formal definition. We generalize the idea of the hub model into the time-varying

setting. Specifically, we keep assuming that there is only one leader zt at each time who

brought the group together, but the group at time t depends on previous group, which is

different from the classical hub model.

At time t = 1, the group is generated from the classical hub model. For t = 2, ..., T , the

group leader zt can remain the same as the previous leader or change to a new one. We

assume that the leader zt will remain as zt−1 with a higher probability than the probability

of changing to any other node.

If the new leader is outside the previous group, then the current group is considered as

the start of a new segment and is generated by the classical hub model. It is worth noting

that technically, the generation of the new group however still depends on the previous

group. This will become more clear after we introduce the likelihood function. For the case

that the new leader is inside the previous group – that is, if the leader remains unchanged,

or the leader changes but is still a member of the previous group – we propose the following

In-and-Out procedure. For any node vj being in the previous group, it will remain in Gt

with a probability higher than Azt,j – the probability in the classical hub model. On the

contrary, for any node vk not being in the previous group, it will enter Gt with a probability

lower than Azt,k. Intuitively, this In-and-Out procedure assumes that when a group forms,

it will maintain a certain level of stability.

We now give the formal definition of the generating mechanism as follows.

• Step 1: (Classical hub model.) When t = 1, Gt is generated by the following two

sub-steps.

1) The leader is sampled from a multinomial distribution with parameter ρ =

(ρ1, ..., ρn), i.e.,

P(zt = i) = ρi
∆
=

exp(ui)
∑n

k=1 exp(uk)
.
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2) The leader vi will choose to include vj in the group with probability Aij, i.e.,

P(G
(t)
j = 1|zt = i) = Aij, where Aii ≡ 1, and

Aij = Aji
∆
=

exp(θij)

1 + exp(θij)
. (2.1)

• Step 2: (Leader change.) For t = 2, ..., T ,

P(zt = i|zt−1) =
exp(ui + αI(zt−1 = i))

∑n

k=1 exp(uk + αI(zt−1 = k))
.

• Step 3: (In-and-Out procedure.) For t = 2, ..., T , given vi being the leader, Gt is

generated by the following mechanism.

If vi is not within Gt−1, then it will include each vj in the group with probability Aij,

otherwise, see below:

1) If Gt−1
j = 1, vi will include vj in the group with probability

Bij = Bji
∆
=

exp(θij + β)

1 + exp(θij + β)
. (2.2)

2) If Gt−1
j = 0, vi will include vj in the group with probability

Cij = Cji
∆
=

exp(θij + γ)

1 + exp(θij + γ)
. (2.3)

Remark

1. In the definition above, ρi’s are re-parameterized as a exponential form and so are

Aij’s. This is for the convenience of optimization since log-likelihood is convex under

this parametrization.

2. The parameters (u1, ..., un) are non-identifiable under this parametrization since (u1+

δ, ..., un + δ) gives the same likelihood. We will discuss the solution to this problem

in Section 3 after introducing the algorithm.

3. We will not enforce α > 0, β > 0 and γ < 0 in the model fitting. On the contrary,

we will test these assumptions for the data example in Section 5.
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2.3 Likelihood

For notational convenience, the leader in group Gt can also be indicated by an n length

vector, St, where

St
i =







1 if zt = i,

0 otherwise.

Only one element of St is allowed to be 1.

Clearly, {z1, ..., zT} is a Markov chain according to the generating mechanism. Let

Φij = P(zt = i|zt−1 = j) be the transition probability, and Φ = [Φij ]n×n.

For the clarity of notation, we now give the vector/matrix form of the other parameters.

Define z = (z1, ..., zT ), u = (u1, ..., un) and ρ = (ρ1, ..., ρn). Define θ = [θij]1≤i≤n,1≤j≤n,

A = [Aij ]1≤i≤n,1≤j≤n, B = [Bij ]1≤i≤n,1≤j≤n, and C = [Cij]1≤i≤n,1≤j≤n. We assume θ, A, B

and C to be symmetric in the article, in order to avoid any issues of identifiability (see the

discussion in Zhao and Weko (2017)). And define G and S as T × n matrices, with Gt and

St being their rows, respectively. We summarize notation in Table 2.

We now give the joint log-likelihood of S and G for the model defined in the previous

sub-section:

logP(S,G|α, β, γ, θ, u)

=
n
∑

i=1

S1
i log ρi +

T
∑

t=2

n
∑

i=1

n
∑

j=1

St
iS

t−1
j log Φij

+
n
∑

i=1

n
∑

j=1

{

S1
i G

1
j logAij + S1

i (1−G1
j) log(1− Aij)

}

+
T
∑

t=2

n
∑

i=1

n
∑

j=1

{

St
i (1−Gt−1

i )Gt
j logAij + St

i (1−Gt−1
i )(1−Gt

j) log(1− Aij)
}

+
T
∑

t=2

n
∑

i=1

n
∑

j=1

{

St
iG

t−1
i Gt−1

j Gt
j logBij + St

iG
t−1
i Gt−1

j (1−Gt
j) log(1−Bij)

}

+
T
∑

t=2

n
∑

i=1

n
∑

j=1

{

St
iG

t−1
i (1−Gt−1

j )Gt
j logCij + St

iG
t−1
i (1−Gt−1

j )(1−Gt
j) log(1− Cij)

}

.

(2.4)

Note that α, β, γ, θ and u are essentially the parameters of this model and ρ, Φ, A, B and

C are the functions of them. Despite its length, equation (2.4) has a clear structure. The
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Table 2: Summary of Notation

Notation Remark

Parameter ρi Probability of vi being the leader of G1

ui ρi =
exp(ui)∑n

k=1
exp(uk)

α Adjustment factor for remaining leaders

Φij Φij = P(zt = i|zt−1 = j)

Aij Probability of vj being inside the group

when vi is the leader in a newly formed group

θij θij = log
Aij

1−Aij

β Adjustment factor for nodes being inside the previous group

Bij Adjusted probability of vj being inside the group

when inside the previous group

γ Adjustment factor for nodes being outside the previous group

Cij Adjusted probability of vj being inside the group

when outside the previous group

Data Gt Group at time t

zt Leader at time t

St Indicator of the leader at time t, with only one element being 1

Index n Size of the network

T Number of groups (sample size)
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1st line gives the log-likelihood of S. The 2nd line gives the log-likelihood of G1 given S1.

The 3rd line gives the log-likelihood of Gt given that the current leader zt is outside the

previous group Gt−1. The 4th and 5th lines give the log-likelihood of Gt given that zt is

inside Gt−1, based on the In-and-Out procedure.

Equivalently to (2.4), we can write the likelihood as a product of conditional probabil-

ities:

P(S,G) = P(S1)P(G1|S1)
T
∏

t=2

P(St|St−1)
T
∏

t=2

P(Gt|St, Gt−1).

This factorization can be represented by a Bayesian network in Figure 1, where a node

represents a variable and a directed arc is drawn from node X to node Y if Y is conditioned

on X in the factorization. The reader may refer to Jordan et al. (1999) for a comprehensive

introduction to Bayesian networks. This Bayesian network is not to be confused with the

latent network A – the former is a representation of the dependency structure between

variables while the latter reflects the relations between the group members.

Furthermore, the group leaders z1, ..., zT are assumed to be latent (and so are S1, ..., ST )

since in many applications only the groups themselves are observable.

Latent S1 S2 S3
· · · ST

G1 G2 G3
· · · GTObserved

Figure 1: A Bayesian network representing the time-varying hub model. Nodes with dark

colors indicate the observed variables.

3 Model fitting

In this section, we propose an algorithm to find the maximum likelihood estimators (MLEs)

for α, β, γ, u and θ. With S being the latent variables, an expectation-maximization (EM)
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algorithm will be used for this problem. The EM algorithm maximizes the marginal like-

lihood of the observed data, which is G in our case, by iteratively applying an E-step and

an M-step.

Let αold, βold, γold, uold and θold be the estimates at the current iteration. In the E-step,

we calculate the conditional expectation of the complete log-likelihood given G under the

current estimate. That is,

Q
∆
= Q(α, β, γ, u, θ|αold, βold, γold, uold, θold) = Eαold,βold,γold,uold,θold [logP(S,G)|G] .

In the M-step, we maximize this conditional expectation with respect to the unknown

parameters. That is,

(αnew, βnew, γnew, unew, θnew) = argmax
α,β,γ,u,θ

Q(α, β, γ, u, θ|αold, βold, γold, uold, θold).

It has been proved by Wu (1983) that the EM algorithm converges to a local maximizer

of the marginal likelihood. The reader can refer to McLachlan and Krishnan (2008) for a

comprehensive introduction to this algorithm. We now give details of the two steps in our

context.

3.1 E-step

Since the complete log-likelihood logP(S,G) is a linear function of St
i (t = 1, ..., T ; i =

1, ..., n) and St
iS

t−1
j (t = 2, ..., T ; i = 1, ..., n; j = 1, ..., n), the computation of its conditional

expectation is equivalent to calculating P(St
i = 1|G) and P(St

i = 1, St−1
j = 1|G). From now

on, all the conditional probabilities are defined under the current estimates.

A brute-force calculation of these probabilities, such as

P(St
i = 1|G) = P(zt = i|G) =

∑

z1 · · ·
∑

zt−1

∑

zt+1 · · ·
∑

zt P(z
1, ..., zt−1, zt = i, zt+1, ..., zT , G)

P(G)
,

is infeasible since the numerator involves a sum of nT−1 terms. This is becauseG1, ..., GT are

not independent according to our model. An efficient algorithm is needed for all practical

purposes.

From Figure 1, it can be seen that the time-varying hub model is similar to the hidden

Markov model (HMM). A polynomial-time algorithm for this model, called the forward-

backward algorithm, was developed for computing the conditional probabilities. See Smyth

et al. (1997); Ghahramani (2001) for tutorials on HMMs and this algorithm.
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In the HMM, the observed variable at time t only depends on the corresponding hidden

state. But in our model, Gt depends on both the current leader zt and the previous group

Gt−1. We develop a new forward-backward algorithm for our model, which which has more

steps than the classical algorithm but is also polynomial-time. We describe the algorithm

here and leave the detailed derivation and justification to the Appendix.

Define a = [ati], b = [bti] and c = [cti] as T × n matrices. These matrices are computed

by the following recursive procedures.

a1i = P(z1 = i, G1) (i = 1, ..., n).

ati =
n
∑

k=1

at−1
k ΦikP(G

t|zt = i, Gt−1) (t = 2, ..., T ; i = 1, ..., n).

bTi = 1 (i = 1, ..., n).

bti =
n
∑

k=1

bt+1
k ΦkiP(G

t+1|zt+1 = k,Gt) (t = T − 1, ..., 1; i = 1, ..., n).

cTi = P(GT |zT = i, GT−1) (i = 1, ..., n).

cti =
n
∑

k=1

ct+1
k ΦkiP(G

t|zt = i, Gt−1) (t = T − 1, ..., 2; i = 1, ..., n).

With these quantities,

P(St
i = 1|G) =

atib
t
i

∑

k a
t
kb

t
k

(t = 2, ..., T ; i = 1, ..., n).

P(St
i = 1, St−1

j = 1|G) =
at−1
j Φijc

t
i

∑

kl a
t−1
l Φklctk

(t = 2, ..., T ; i = 1, ..., n; j = 1, ..., n).

The complexity of this algorithm is O(Tn2).

Note that the first row of c is undefined but is also unused. Also note that the elements

of a, b and c will quickly vanish as the recursions progress. Therefore, we renormalize each

row to sum to one at each step. One can easily check that this normalization will not affect

the conditional probabilities. Finally, it is worth emphasizing that this algorithm gives the

exact values of the conditional probabilities in a fixed number of steps – that is, it is not

an approximate or iterative method.
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3.2 M-step

The M-step is somewhat routine compared with the E-step. First, it is clear that {α, u}

and {β, γ, θ} can be handled separately.

We apply the coordinate ascent method (see Boyd and Vandenberghe (2004) for a

comprehensive introduction) to iteratively update α and u, as well as β, γ and θ. Since the

complete log-likelihood is concave and so is Q, coordinate ascent can guarantee a global

maximizer.

At each step, we optimize the log-likelihood over parameter one by one with others

being fixed. The procedure is repeated until convergence. At each step, we use the standard

Newton-Raphson method to solve each individual optimization problem. Specifically, for a

parameter φ (here φ can represent α, β, γ, ui or θij (i < j) ), the estimate at (m + 1)-th

iteration is updated by the following formula given its estimate at m-th iteration:

φ̂m+1 = φ̂m −

(

∂2Q

∂φ2

∣

∣

∣

∣

φ=φ̂m

)−1(

∂Q

∂φ

∣

∣

∣

∣

φ=φ̂m

)

.

The calculation of these derivatives is straightforward but tedious, so we will provide the

details in the Appendix. We set θ̂ii ≡ ∞ since by definition Aii ≡ 1.

As remarked in Section 2.2, the model is not identifiable with respect to u. A standard

solution to this problem is to set some ui ≡ 0. But it does not work for our case. This is

because for small data sets, some ρ̂i estimated by the EM algorithm may be zero implying

that vi never became the leader. Furthermore, these zero ρi cannot be predetermined

since the leaders are unobserved. We observe that without constraint on ui, the algorithm

converges to different û with different initial values, but the corresponding ρ̂ will be the

same. Therefore, identifiability is not the real issue for model fitting.

Finally, it is obvious that the algorithm for the time-varying hub model with known

leaders is the same as the M-step with Q being replaced by the original complete log-

likelihood.

3.3 Initial value

As many optimization algorithms, the EM algorithm cannot guarantee to find the global

maximizer. Ideally, one should use multiple random initial values and find the best solution
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by comparing the marginal likelihoods P(G) under the corresponding estimates.

In principle, P(G) can be computed by
∑

k a
t
kb

t
k as shown in Section 3.1. But the

marginal likelihood vanishes quickly even for a moderate T . Note that we cannot renor-

malize a and b for the purpose of computing P(G).

We use half weight index (Dice, 1945; Cairns and Schwager, 1987) as the initial value

of A, which is defined by

Hij =
2
∑

t G
t
iG

t
j

∑

t G
t
i +
∑

t G
t
j

.

This measure estimates the conditional probability that two nodes co-occur given that one

of them is observed, which is a reasonable initial guess of the strength of links. Furthermore,

we use zero as the initial values of α, β and γ, and use
∑

t G
t
i/T as the initial value of ρi.

4 Simulation studies

In all simulation studies, we fix the size of the network to be n = 50 and set β = 3

and γ = −1. We generate ui as independently and identically distributed variables with

N(0, 2) and ρi = ui/
∑

k uk. And θij (i < j) are generated independently with N(−2, 1).

We generate θij in this way to control the average link density of the network (≈ 0.12),

which is more realistic than a symmetric setting, i.e., θij ∼ N(0, 1). For clarification, we

will not use the prior information on u and θ in our estimating procedure. That is, we still

treat u and θ as unknown fixed parameters in the algorithm. We generate them as random

variables for the whole purpose of adding more variations to the parameter setup in our

study.

We consider three levels of α = log((n−1)/2), log(n−1), log(2(n−1)), which correspond

to that a leader from the previous group remains unchanged in the current group with

probability 1/3, 1/2, 2/3 on average, respectively. For each α we try five different sample

sizes, T = 1000, 1500, 2000, 2500, 3000.

Table 3-5 show the average root of mean squared errors (RMSEs) for A, ρ, α, β and γ

over 100 replicates. For each simulation, we compare three different methods, the classical

hub model without time-varying structure (HM), the time-varying hub model (TVHM)

and the time-varying hub model with known leaders (KTVHM). Note that the classical
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Table 3: RMSE for A, ρ, α, β, γ. HM: Hub Model; TVHM: Time-varying Hub Model;

KTVHM: Known leader Time-varying Hub Model.

n = 50, α = log((n− 1)/2)

RMSE for A RMSE for ρ

T HM TVHM KTVHM HM TVHM KTVHM

1000 0.1243 0.1037 0.0712 0.0085 0.0069 0.0049

1500 0.1011 0.0837 0.0573 0.0073 0.0058 0.0039

2000 0.0871 0.0705 0.0493 0.0067 0.0051 0.0034

2500 0.0772 0.0620 0.0439 0.0062 0.0045 0.0030

3000 0.0697 0.0557 0.0399 0.0059 0.0040 0.0028

RMSE for α RMSE for β RMSE for γ

T HM TVHM KTVHM HM TVHM KTVHM HM TVHM KTVHM

1000 - 0.0776 0.0745 - 0.0601 0.0470 - 0.0337 0.0327

1500 - 0.0584 0.0516 - 0.0406 0.0326 - 0.0265 0.0250

2000 - 0.0541 0.0442 - 0.0321 0.0287 - 0.0221 0.0200

2500 - 0.0482 0.0395 - 0.0267 0.0229 - 0.0201 0.0181

3000 - 0.0452 0.0381 - 0.0219 0.0201 - 0.0166 0.0155

hub model does not contain α, β and γ so we only list the RMSEs of A and ρ for it.

From the tables, our first observation is simply that the RMSEs decrease as sample

sizes increase, which is consistent with common sense in statistics.

Secondly, the RMSEs for all the parameters increase as α increases. This phenomenon

can be interpreted as follows. With a larger value of α, the correlation between adjacent

groups becomes stronger and hence the effective sample size becomes smaller. The ratio of

the sample size to the number of parameters decreases with α, which makes the inference

more difficult.

Moreover, the discrepancy between the time-varying hub model estimates and the cor-

responding hub model estimates becomes larger as α increase. This is because the behavior

of the time-varying model deviates more from the classical hub model as α increases.

Finally, the estimates from the time-varying hub model with known leaders in general
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Table 4: RMSE for A, ρ, α, β, γ. HM: Hub Model; TVHM: Time-varying Hub Model;

KTVHM: Known leader Time-varying Hub Model.

n = 50, α = log(n− 1)

RMSE for A RMSE for ρ

T HM TVHM KTVHM HM TVHM KTVHM

1000 0.1397 0.1091 0.0793 0.0099 0.0073 0.0055

1500 0.1144 0.0870 0.0631 0.0088 0.0060 0.0044

2000 0.0995 0.0733 0.0539 0.0082 0.0052 0.0038

2500 0.0896 0.0646 0.0479 0.0079 0.0047 0.0034

3000 0.0826 0.0587 0.0437 0.0076 0.0043 0.0031

RMSE for α RMSE for β RMSE for γ

T HM TVHM KTVHM HM TVHM KTVHM HM TVHM KTVHM

1000 - 0.0856 0.0864 - 0.0598 0.0651 - 0.0371 0.0373

1500 - 0.0654 0.0640 - 0.0480 0.0439 - 0.0297 0.0279

2000 - 0.0535 0.0518 - 0.0335 0.0297 - 0.0242 0.0237

2500 - 0.0499 0.0450 - 0.0293 0.0253 - 0.0220 0.0213

3000 - 0.0466 0.0417 - 0.0272 0.0229 - 0.0194 0.0184
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Table 5: RMSE for A, ρ, α, β, γ. HM: Hub Model; TVHM: Time-varying Hub Model;

KTVHM: Known leader Time-varying Hub Model.

n = 50, α = log(2(n− 1))

RMSE for A RMSE for ρ

T HM TVHM KTVHM HM TVHM KTVHM

1000 0.1631 0.1225 0.0945 0.0124 0.0081 0.0068

1500 0.1366 0.0956 0.0730 0.0113 0.0067 0.0055

2000 0.1199 0.0813 0.0617 0.0106 0.0060 0.0048

2500 0.1087 0.0712 0.0541 0.0102 0.0054 0.0043

3000 0.1015 0.0636 0.0491 0.0099 0.0049 0.0039

RMSE for α RMSE for β RMSE for γ

T HM TVHM KTVHM HM TVHM KTVHM HM TVHM KTVHM

1000 - 0.1382 0.1092 - 0.0845 0.1059 - 0.0400 0.0460

1500 - 0.0871 0.0783 - 0.0655 0.0659 - 0.0321 0.0343

2000 - 0.0679 0.0648 - 0.0556 0.0540 - 0.0247 0.0256

2500 - 0.0586 0.0536 - 0.0452 0.0422 - 0.0217 0.0225

3000 - 0.0504 0.0471 - 0.0382 0.0359 - 0.0193 0.0193
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outperform the estimates from the other models because the model is correctly specified

and has the most information. When α = log(2(n − 1)), the average RMSEs of β̂ and γ̂

by the time-varying model with known leaders are slightly higher than the estimates by

the time-varying model without known leaders when T is small. This unusual phenomenon

requires further investigation. But the discrepancy is very small relative to the magnitude of

the true parameters. This phenomenon may be due to the bias of β̂ and γ̂: The parameters

θij are asymmetric, i.e., θij ∼ N(−2, 1). The relatively small link density of the graph will

cause that a number of pairs vi and vj never co-occur in any groups, even though the true

link strength is non-zero. But we have to estimate Aij with Âij = 0 and θij with θ̂ij = −∞

in this case. This also introduces bias on the estimations of β and γ.

5 Data example

In this section, we study a data set of groups formed by chimpanzees. This data set is

compiled from the research results of the Kibale Chimpanzee Project, which is a long-term

field study of the behavior, ecology, and physiology of wild chimpanzees

(https://kibalechimpanzees.wordpress.com/).

We focus on grouping behavior in our analysis. We analyze the grouped data collected

from January 1, 2009 to June 30, 2009 (Kibale Chimpanzee Project, 2011). The group

identification was taken at 1pm daily during this time period. If there is no group observed

at 1pm for a given day, it is not included in the data. Only one group is observed at 1pm

in 75.29% of the remaining days over this period of six months. In the other days, multiple

groups (usually two) are observed at 1pm. For these cases, we keep the group which has

the most overlap with the previous group in our analysis. We use the Jaccard index to

measure the overlap between two groups Gt−1 and Gt,

J(Gt−1, Gt) =

∑n

j=1 G
t−1
j Gt

j
∑n

j=1[n− (1−Gt−1
j )(1−Gt

j)]
,

where the numerator is the size of the intersection of two groups and the denominator is the

size of their union. One may refer to Liben-Nowell and Kleinberg (2007) for an introduction

to this measure.
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Moreover, five chimpanzees never appear in any group and thus are removed. After the

preprocessing, the data set contains 170 groups on 40 chimpanzees.

Figure 2 illustrates the data set by grayscale with rows representing the groups over

time and columns representing the chimpanzees. Black indicates Gt
i = 1 at location (t, i)

while white indicates Gt
i = 0. The pattern in Figure 2 clearly demonstrates the existence

of dependency between groups.

Figure 2 also shows the inferred grouped leaders indicated in red and the inferred

segments separated by blue lines. By the inferred grouped leader for Gt, we mean that the

chimpanzee with the highest posterior probability being the leader given Gt. We can see

from the figure that the leaders remain a certain level of stability, which is consistent with

the estimates of α (= 1.7291). Also, recall that by our definition, a new segment starts if

the current leader is not within the previous group. From Figure 2, the inferred segments

are coincident with the visualization of the data set.

Figure 3 shows the result of estimated adjacency matrices by the classical hub model and

the time-varying hub model, respectively. As in the previous figure, darker color indicates

higher value of Âij. The red blocks indicate clusters of chimpanzees in a biological sense.

The first cluster consists of 12 adult males and each of the rest nine clusters consists of an

adult female and its children. From the estimates from both the classical hub model and the

time-varying hub model, there are strong connections within these biological clusters. This

suggests in this community of the chimpanzees, adult males usually do activities together

but females usually stay with their children.

The graph density (= 0.2286) of the estimated network by the classical hub model

is larger than the corresponding value (= 0.1973) of the time-varying hub model. This

fact is consistent with the estimated values of the adjustment factors, β̂ = 2.5703 and

γ̂ = −0.1922. The magnitude of β̂ is larger than the magnitude of γ̂, which suggests that

individuals have a stronger tendency to join a group than leave a group. In other words,

the groups may start with small size and grow larger over time. This phenomenon can be

visualized in Figure 2. But the classical hub model does not take this time-varying effect

into account and thus has to give a denser estimate of the adjacency matrix.

The significance of α, β and γ is tested by the parametric bootstrap method (Efron and
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Tibshirani, 1994). This method was applied to HMMs and showed a good performance

(Visser et al., 2000). We generate 5000 independent data sets from the fitted time-varying

hub model and compute the MLEs for each simulated data set. Figure 4 shows the his-

tograms of the MLEs for α, β and γ. The 95% bootstrap confidence intervals for α, β and

γ are (1.2177, 1.9774), (2.0710, 2.8944) and (-0.5208, 0.0410), respectively, which shows

that the effects of α and β are significant while γ is not at the significance level of 0.05.

This further supports the remark in the previous paragraph – chimpanzees have a stronger

tendency to join a group than leave a group in this data set.

6 Summary and discussion

In this article, we generalize the idea of the hub model and propose a novel model for time-

varying grouped data. This new model allows for dependency between groups. Specifically,

the group leaders follow a Markov chain, and a group is either a transformation of the pre-

vious group or a new start, depending on whether the current leader is within the previous

group. An EM algorithm is applied to this model with a polynomial-time algorithm being

developed for the E-step.

The time-varying hub model can be further extended in the following directions which

we will explore for future study. First, a group may contain zero or multiple hubs. Second,

multiple groups may exist at the same time (some of these groups may be unobserved). It

is worth mentioning that these generalizations will significantly increase model complexity.

Therefore, the total number of possible leader needs to be limited. A method by the author

and a collaborator (Weko and Zhao, 2017) was proposed to reduce this upper bound. More

test-based and penalization methods are under development.

Furthermore, we also plan to investigate the theoretical properties of the proposed

model. When the size of the network is being fixed and the number of observed groups

goes to infinity, the theoretical properties of the MLE may be studied via a standard theory

of the Markov Chain. The case that the size of the network also goes to infinity is more

intriguing but more complicated since the number of parameters diverges.

20



Acknowledgements

This research was supported by NSF Grant DMS 1513004. We thank Dr. Richard Wrang-

ham for sharing the research results of the Kibale Chimpanzee Project. And we thank

Dr. Charles Weko for compiling the results from the chimpanzee project and preparing the

data set.

A Forward-backward algorithm in the E-steps

We derive the forward-backward algorithm for the time-varying hub model introduced

in Section 3.1. Before proceeding, we state two propositions of Bayesian networks. These

results (or the equivalent forms) can be found in a standard textbook or tutorial on Bayesian

networks, for example, Jordan et al. (1999). Here we follow Ghahramani (2001).

Proposition A.1. Each node is conditionally independent from its non-descendents given

its parents. Here the node X is a parent of another node Y if there is a directed arc from

X to Y and if so, Y is a child of X. The descendents of a node are its children, children’s

children, etc.

Proposition A.2. Two disjoint sets of nodes A and B are conditionally independent given

another set C, if on every undirected path between a node in A and a node in B, there is a

node X in C which is not a child of both the previous and following nodes in the path.

Define Gs:t as a collection of groups from time s to time t.

Let ati = P(zt = i, G1:t). Then

ati =
n
∑

k=1

P(zt = i, zt−1 = k,G1:t−1, Gt)

=
n
∑

k=1

P(zt−1 = k,G1:t−1)P(zt = i|zt−1 = k,G1:t−1)P(Gt|zt = i, zt−1 = k,G1:t−1)

=
n
∑

k=1

at−1
k ΦikP(G

t|zt = i, Gt−1).

The last equation holds by Proposition A.1.
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Similarly, let bti = P(Gt+1:T |zt = i, Gt). Then

bti =
n
∑

k=1

P(zt+1 = k,Gt+1, Gt+2:T |zt = i, Gt)

=
n
∑

k=1

P(Gt+2:T |zt+1 = k,Gt+1, zt = i, Gt)P(zt+1 = k|zt = i, Gt)P(Gt+1|zt+1 = k, zt = i, Gt)

=
n
∑

k=1

bt+1
k ΦkiP(G

t+1|zt+1 = k,Gt).

In the last equation, P(Gt+2:T |zt+1 = k,Gt+1, zt = i, Gt) holds by Proposition A.2. This is

because a path from {Gt+2:T} to {zt, Gt} must pass zt+1 or Gt+1. If it only passes one of

these two variables, then we can take that variable as X in Proposition A.2. If it passes

both, then take zt+1 as X. The rest part of the last equation holds by A.1.

The computation of a and b is essentially the same as in the classical forward-backward

algorithm for the HMMwith minor modifications. Different from the HMM, the dependence

between the current and the previous groups requires another quantity c.

Let cti = P(Gt:T |zt = i, Gt−1).

cti =
n
∑

k=1

P(zt+1 = k,Gt+1:T , Gt|zt = i, Gt−1)

=
n
∑

k=1

P(Gt+1:T |zt+1 = k,Gt, zt = i, Gt−1)P(zt+1 = k|zt = i, Gt−1)P(Gt|zt+1 = k, zt = i, Gt−1)

=
n
∑

k=1

ct+1
k ΦkiP(G

t|zt = i, Gt−1).

The last equation can be justified by a similar argument as before.

Since

P(zt = i, G1:T )

=P(zt = i, G1:t)P(Gt+1:T |zt = i, G1:t)

=P(zt = i, G1:t)P(Gt+1:T |zt = i, Gt),

P(St
i = 1|G) =

atib
t
i

∑

k a
t
kb

t
k

.
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Similarly,

P(zt = i, zt−1 = j, G1:T )

=P(zt−1 = j, G1:t−1)P(zt = i|zt−1 = j, G1:t−1)P(Gt:T |zt = i, zt−1 = j, G1:t−1)

=at−1
j ΦijP(G

t:T |zt = i, Gt−1),

which implies

P(St
i = 1, St−1

j = 1|G) =
at−1
j Φijc

t
i

∑

kl a
t−1
l Φklctk

.

B Derivatives of Q

We give the first and second derivatives of Q with respect to α, β, γ, ui and θij , which are

used in the coordinate ascent method introduced in Section 3.2.

Define,

Rt
i = P(St

i = 1|G),

Vij =
T
∑

t=2

P(St
i = 1, St−1

j = 1|G),

D1
ij = R1

iG
1
j +

T
∑

t=2

Rt
i(1−Gt−1

i )Gt
j,

D2
ij = R1

i (1−G1
j) +

T
∑

t=2

Rt
i(1−Gt−1

i )(1−Gt
j),

D3
ij =

T
∑

t=2

Rt
iG

t−1
i Gt−1

j Gt
j,

D4
ij =

T
∑

t=2

Rt
iG

t−1
i Gt−1

j (1−Gt
j),

D5
ij =

T
∑

t=2

Rt
iG

t−1
i (1−Gt−1

j )Gt
j,

D6
ij =

T
∑

t=2

Rt
iG

t−1
i (1−Gt−1

j )(1−Gt
j).
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Therefore,

Q =
n
∑

i=1

R1
i

[

ui − log

{

n
∑

k=1

exp(uk)

}]

+
n
∑

i=1

Vii

[

ui + α− log

{

n
∑

k=1

exp(uk + αI(k = i))

}]

+
n
∑

i=1

∑

j 6=i

Vij

[

ui − log

{

n
∑

k=1

exp(uk + αI(k = j))

}]

+
∑

ij

[

D1
ij log

eθij

1 + eθij
+D2

ij log
1

1 + eθij

+D3
ij log

eθij+β

1 + eθij+β
+D4

ij log
1

1 + eθij+β

+ D5
ij log

eθij+γ

1 + eθij+γ
+D6

ij log
1

1 + eθij+γ

]

.
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The first and second order derivatives are given as follows,

∂Q

∂α
=

n
∑

i=1

Vii +
n
∑

j=1

[

n
∑

i=1

Vij

]

[

−
exp(uj + α)

∑n

k=1 exp(uk + αI(k = j))

]

,

∂2Q

∂α2
=

n
∑

j=1

[

n
∑

i=1

Vij

]

[

−
exp(uj + α)

∑n

k=1 exp(uk + αI(k = j))− exp(uj + α) exp(uj + α)

(
∑n

k=1 exp(uk + αI(k = j)))2

]

,

∂Q

∂ur

=R1
r +

[

n
∑

i=1

R1
i

]

[

−
exp(ur)

∑n

k=1 exp(uk)

]

,

∂2Q

∂u2
r

=

[

n
∑

i=1

R1
i

]

[

−
exp(ur)

∑n

k=1 exp(uk)− exp(ur) exp(ur)

(
∑n

k=1 exp(uk))2

]

+
n
∑

j=1

[

n
∑

i=1

Vij

]

[

−
exp(ur + αI(r = j))

∑n

k=1 exp(uk + αI(k = j))− (exp(ur + αI(r = j)))2

(
∑n

k=1 exp(uk + αI(k = j)))2

]

+
n
∑

j=1

Vrj +
n
∑

j=1

[

n
∑

i=1

Bij

]

[

−
exp(ur + αI(r = j))

∑n

k=1 exp(uk + αI(k = j))

]

,

∂Q

∂β
=
∑

i 6=j

D3
ij − (D3

ij +D4
ij)

eθij+β

1 + eθij+β
,

∂2Q

∂β2
=−

∑

i 6=j

(D3
ij +D4

ij)
eθij+β

(1 + eθij+β)2
,

∂Q

∂γ
=
∑

i 6=j

D5
ij − (D5

ij +D6
ij)

eθij+γ

1 + eθij+γ
,

∂2Q

∂γ2
=−

∑

i 6=j

(D5
ij +D6

ij)
eθij+γ

(1 + eθij+γ)2
,

∂Q

∂θij
=(D1

ij +D1
ji)− (D1

ij +D1
ji +D2

ij +D2
ji)

eθij

1 + eθij

+ (D3
ij +D3

ji)− (D3
ij +D3

ji +D4
ij +D4

ji)
eθij+β

1 + eθij+β

+ (D5
ij +D5

ji)− (D5
ij +D5

ji +D6
ij +D6

ji)
eθij+γ

1 + eθij+γ
,

∂2Q

∂θ2ij
=− (D1

ij +D1
ji +D2

ij +D2
ji)

eθij

(1 + eθij)2

− (D3
ij +D3

ji +D4
ij +D4

ji)
eθij+β

(1 + eθij+β)2

− (D5
ij +D5

ji +D6
ij +D6

ji)
eθij+γ

(1 + eθij+γ)2
.
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Figure 2: Grayscale plot for the chimpanzee data. The 170 rows represent the chimpanzees

and the 40 columns represent the groups over time. Black indicates the presence of the

group membership. Red indicates the inferred group leaders. The blue lines separate the

inferred segments. 29



(a) HM (b) TVHM

Figure 3: Grayscale plot for the estimated adjacency matrices from the chimpanzee data

by the classical and the time-varying hub model. The rows and the columns represent the

40 chimpanzees. Darker colors indicate stronger relationships. The red blocks indicate the

biological clusters of chimpanzees.
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Figure 4: Histograms of estimates from parametric bootstrap samples. Red lines indicate

the estimated values from the original data set.
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