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This supplement contains the proofs of Lemma A.1 and Lemma A.2 stated in the Appendix of [3].

Lemma A.1. Let ‖X‖∞ = maxkl |Xkl| and |e− c| =
∑n

i=1
I(ei 6= ci). Then

P(max
e

‖X(e)‖∞ ≥ ǫ) ≤ 2Kn+2 exp

(

−
1

8C
ǫ2µn

)

, (1)

for ǫ < 3C, where C = max{xuxvPab}.

P( max
|e−c|≤m

‖X(e)−X(c)‖∞ ≥ ǫ) ≤ 2

(

n

m

)

Km+2 exp

(

−
3

8
ǫµn

)

, (2)

for ǫ ≥ 6Cm/n.

P( max
|e−c|≤m

‖X(e)−X(c)‖∞ ≥ ǫ) ≤ 2

(

n

m

)

Km+2 exp
(

−
n

16mC
ǫ2µn

)

, (3)

for ǫ < 6Cm/n.

Proof. This lemma is similar to Lemma 1.1 of [1], but since the proof in [1] contains some relatively
minor errors, we give a full proof here for completeness. First note that in order to prove (1), it is
sufficient to show

P(|Xkl(e)| ≥ ǫ|c,θ) ≤ 2 exp

(

−
1

8C
ǫ2µn

)

, (4)

where

Xkl(e) =
1

µn

[Okl(e)− E(Okl(e)|c,θ)] ,

Okl(e) =

n
∑

i=1

AiiI(ei = k, ej = l) + 2

n
∑

i<j

AijI(ei = k, ej = l) .
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The proof relies on Bernstein’s inequality (see e.g., [2]): If Yi are independent, |Yi| ≤ M,EYi =
0, SI =

∑I
i=1

Yi, then

P(|SI | ≥ w) ≤ 2 exp

(

−
w2/2

Var(SI) +Bw/3

)

. (5)

Note that conditioning on c,θ, Aij are independent and |Aij | ≤ 1. Let B = 2, and then (5) becomes

P(|µnXkl(e)| ≥ w|c,θ) ≤ 2 exp

(

−
w2/2

Var(Okl|c,θ) + 2w/3

)

. (6)

In order to compare two terms in the denominator, we need to evaluate Var(Okl|c,θ):

Var(Aij |c,θ) = ρnθiθjPcicj − (ρnθiθjPcicj)
2 ≤ ρnC ,

Var(Okl|c,θ) ≤ (n+ 4(n− 1)n/2)ρnC ≤ 2n2ρnC .

Let w = ǫµn = ǫn2ρn, for ǫ < 3C,

P(|Xkl(e)| ≥ ǫ|c,θ) ≤ 2 exp

(

−
w2/2

Var(Okl|c,θ) + 2w/3

)

≤ 2 exp

(

−
ǫ2n4ρ2n
8n2ρnC

)

= 2exp

(

−
1

8C
ǫ2µn

)

.

We now prove (2) and (3). If em+1 = cm+1, ..., en = cn,

Okl(e)−Okl(c) =

m
∑

i=1

(AiiI(ei = k, ei = l)−AiiI(ci = k, ci = l))

+ 2

m
∑

i<j

(AijI(ei = k, ej = l)−AijI(ci = k, cj = l))

+ 2
m
∑

i=1

n
∑

j=m+1

(AijI(ei = k, ej = l)−AijI(ci = k, cj = l)) .

var(Okl(e)−Okl(c)|c,θ) ≤[m+ 4(m(m− 1)/2 +m(n−m))]ρnC ≤ 4mnρnC .

We again apply (5). For |e− c| ≤ m, ǫ ≥ 6Cm/n,

P(|Xkl(e)−Xkl(c)| ≥ ǫ|c,θ) ≤ 2 exp

(

−
(ǫn2ρn)

2/2

4mnρnC + 2ǫn2ρn/3

)

≤ 2 exp

(

−
3

8
ǫµn

)

.

For ǫ < 6Cm/n,

P(|Xkl(e)−Xkl(c)| ≥ ǫ|c,θ) ≤ 2 exp

(

−
(ǫn2ρn)

2/2

4mnρnC + 2ǫn2ρn/3

)

≤ 2 exp
(

−
n

16mC
ǫ2µn

)

.
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Lemma A.2. Let g, P , S be K ×K matrices with nonnegative entries. Assume that
a) P and g are symmetric;
b) P does not have two identical columns;
c) there exists at least one nonzero entry in each column of S;
d) for 1 ≤ k, l, a, b ≤ K, gkl = Pab whenever SkaSlb > 0.
Then S is a diagonal matrix or a row/column permutation of a diagonal matrix.

Proof. The proof is similar to Lemma 3.2 [1].

1) If there exists a permutation of the rows and columns of S such that its diagonals are all positive
after permutation, i.e., Sbb > 0 for b = 1, ...,K. If S is not diagnonal, there exists k 6= a such that
Ska > 0. For b = 1, ...,K,

SkaSbb > 0 ⇒ gkb = Pab,

SkkSbb > 0 ⇒ gkb = Pkb,

⇒ Pab = Pkb.

This contradicts with b).

2) If there does not exist such a permutation, then we can always permute row and columns of S,
such that for some m ≥ 1, Sij = 0 for 1 ≤ i, j ≤ m, and Sbb > 0 for b = m+ 1, ...,K. By c), there
exists Skii > 0 for i = 1, ...,m and some ki ∈ {m+ 1, ...,K}. Then

SkiiSk11 > 0 ⇒ gkik1 = Pi1 = P1i, for i = 1, ...,m.

SkiiSk1k1 > 0 ⇒ gkik1 = Pik1 = Pk1i, for i = 1, ...,m.

⇒ P1i = Pk1i, for i = 1, ...,m. (7)

Sk11Sbb > 0 ⇒ gk1b = P1b, for b = m+ 1, ...,K.

Sk1k1Sbb > 0 ⇒ gk1b = Pk1b, for b = m+ 1, ...,K.

⇒ P1b = Pk1b, for b = m+ 1, ...,K. (8)

(7) and (8) contradict with b).
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