Supplement to "Consistency of community detection in networks under degree-corrected stochastic block models"

Yunpeng Zhao ${ }^{1}$, Elizaveta Levina ${ }^{2}$, and Ji Zhu ${ }^{2}$
${ }^{1}$ Department of Statistics, George Mason University, Fairfax, VA 22030
${ }^{2}$ Department of Statistics, University of Michigan, Ann Arbor, MI 48109

This supplement contains the proofs of Lemma A. 1 and Lemma A. 2 stated in the Appendix of [3].
Lemma A.1. Let $\|X\|_{\infty}=\max _{k l}\left|X_{k l}\right|$ and $|\boldsymbol{e}-\boldsymbol{c}|=\sum_{i=1}^{n} I\left(e_{i} \neq c_{i}\right)$. Then

$$
\begin{equation*}
\mathbb{P}\left(\max _{e}\|X(e)\|_{\infty} \geq \epsilon\right) \leq 2 K^{n+2} \exp \left(-\frac{1}{8 C} \epsilon^{2} \mu_{n}\right), \tag{1}
\end{equation*}
$$

for $\epsilon<3 C$, where $C=\max \left\{x_{u} x_{v} P_{a b}\right\}$.

$$
\begin{equation*}
\mathbb{P}\left(\max _{|e-c| \leq m}\|X(\boldsymbol{e})-X(\boldsymbol{c})\|_{\infty} \geq \epsilon\right) \leq 2\binom{n}{m} K^{m+2} \exp \left(-\frac{3}{8} \epsilon \mu_{n}\right), \tag{2}
\end{equation*}
$$

for $\epsilon \geq 6 \mathrm{Cm} / \mathrm{n}$.

$$
\begin{equation*}
\mathbb{P}\left(\max _{|e-c| \leq m}\|X(\boldsymbol{e})-X(\boldsymbol{c})\|_{\infty} \geq \epsilon\right) \leq 2\binom{n}{m} K^{m+2} \exp \left(-\frac{n}{16 m C} \epsilon^{2} \mu_{n}\right) \tag{3}
\end{equation*}
$$

for $\epsilon<6 C m / n$.

Proof. This lemma is similar to Lemma 1.1 of [1], but since the proof in [1] contains some relatively minor errors, we give a full proof here for completeness. First note that in order to prove (1), it is sufficient to show

$$
\begin{equation*}
\mathbb{P}\left(\left|X_{k l}(\boldsymbol{e})\right| \geq \epsilon \mid \boldsymbol{c}, \boldsymbol{\theta}\right) \leq 2 \exp \left(-\frac{1}{8 C} \epsilon^{2} \mu_{n}\right), \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
X_{k l}(\boldsymbol{e}) & =\frac{1}{\mu_{n}}\left[O_{k l}(\boldsymbol{e})-\mathbb{E}\left(O_{k l}(\boldsymbol{e}) \mid \boldsymbol{c}, \boldsymbol{\theta}\right)\right], \\
O_{k l}(\boldsymbol{e}) & =\sum_{i=1}^{n} A_{i i} I\left(e_{i}=k, e_{j}=l\right)+2 \sum_{i<j}^{n} A_{i j} I\left(e_{i}=k, e_{j}=l\right) .
\end{aligned}
$$

The proof relies on Bernstein's inequality (see e.g., [2]): If Y_{i} are independent, $\left|Y_{i}\right| \leq M, E Y_{i}=$ $0, S_{I}=\sum_{i=1}^{I} Y_{i}$, then

$$
\begin{equation*}
\mathbb{P}\left(\left|S_{I}\right| \geq w\right) \leq 2 \exp \left(-\frac{w^{2} / 2}{\operatorname{Var}\left(S_{I}\right)+B w / 3}\right) \tag{5}
\end{equation*}
$$

Note that conditioning on $\boldsymbol{c}, \boldsymbol{\theta}, A_{i j}$ are independent and $\left|A_{i j}\right| \leq 1$. Let $B=2$, and then (5) becomes

$$
\begin{equation*}
\mathbb{P}\left(\left|\mu_{n} X_{k l}(\boldsymbol{e})\right| \geq w \mid \boldsymbol{c}, \boldsymbol{\theta}\right) \leq 2 \exp \left(-\frac{w^{2} / 2}{\operatorname{Var}\left(O_{k l} \mid \boldsymbol{c}, \boldsymbol{\theta}\right)+2 w / 3}\right) \tag{6}
\end{equation*}
$$

In order to compare two terms in the denominator, we need to evaluate $\operatorname{Var}\left(O_{k l} \mid \boldsymbol{c}, \boldsymbol{\theta}\right)$:

$$
\begin{aligned}
\operatorname{Var}\left(A_{i j} \mid \boldsymbol{c}, \boldsymbol{\theta}\right) & =\rho_{n} \theta_{i} \theta_{j} P_{c_{i} c_{j}}-\left(\rho_{n} \theta_{i} \theta_{j} P_{c_{i} c_{j}}\right)^{2} \leq \rho_{n} C \\
\operatorname{Var}\left(O_{k l} \mid \boldsymbol{c}, \boldsymbol{\theta}\right) & \leq(n+4(n-1) n / 2) \rho_{n} C \leq 2 n^{2} \rho_{n} C
\end{aligned}
$$

Let $w=\epsilon \mu_{n}=\epsilon n^{2} \rho_{n}$, for $\epsilon<3 C$,

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{k l}(\boldsymbol{e})\right| \geq \epsilon \mid \boldsymbol{c}, \boldsymbol{\theta}\right) & \leq 2 \exp \left(-\frac{w^{2} / 2}{\operatorname{Var}\left(O_{k l} \mid \boldsymbol{c}, \boldsymbol{\theta}\right)+2 w / 3}\right) \\
& \leq 2 \exp \left(-\frac{\epsilon^{2} n^{4} \rho_{n}^{2}}{8 n^{2} \rho_{n} C}\right)=2 \exp \left(-\frac{1}{8 C} \epsilon^{2} \mu_{n}\right)
\end{aligned}
$$

We now prove (2) and (3). If $e_{m+1}=c_{m+1}, \ldots, e_{n}=c_{n}$,

$$
\begin{aligned}
O_{k l}(\boldsymbol{e})-O_{k l}(\boldsymbol{c})= & \sum_{i=1}^{m}\left(A_{i i} I\left(e_{i}=k, e_{i}=l\right)-A_{i i} I\left(c_{i}=k, c_{i}=l\right)\right) \\
& +2 \sum_{i<j}^{m}\left(A_{i j} I\left(e_{i}=k, e_{j}=l\right)-A_{i j} I\left(c_{i}=k, c_{j}=l\right)\right) \\
& +2 \sum_{i=1}^{m} \sum_{j=m+1}^{n}\left(A_{i j} I\left(e_{i}=k, e_{j}=l\right)-A_{i j} I\left(c_{i}=k, c_{j}=l\right)\right) \\
\operatorname{var}\left(O_{k l}(\boldsymbol{e})-O_{k l}(\boldsymbol{c}) \mid \boldsymbol{c}, \boldsymbol{\theta}\right) \leq & {[m+4(m(m-1) / 2+m(n-m))] \rho_{n} C \leq 4 m n \rho_{n} C }
\end{aligned}
$$

We again apply (5). For $|\boldsymbol{e}-\boldsymbol{c}| \leq m, \epsilon \geq 6 C m / n$,

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{k l}(\boldsymbol{e})-X_{k l}(\boldsymbol{c})\right| \geq \epsilon \mid \boldsymbol{c}, \boldsymbol{\theta}\right) & \leq 2 \exp \left(-\frac{\left(\epsilon n^{2} \rho_{n}\right)^{2} / 2}{4 m n \rho_{n} C+2 \epsilon n^{2} \rho_{n} / 3}\right) \\
& \leq 2 \exp \left(-\frac{3}{8} \epsilon \mu_{n}\right)
\end{aligned}
$$

For $\epsilon<6 C m / n$,

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{k l}(\boldsymbol{e})-X_{k l}(\boldsymbol{c})\right| \geq \epsilon \mid \boldsymbol{c}, \boldsymbol{\theta}\right) & \leq 2 \exp \left(-\frac{\left(\epsilon n^{2} \rho_{n}\right)^{2} / 2}{4 m n \rho_{n} C+2 \epsilon n^{2} \rho_{n} / 3}\right) \\
& \leq 2 \exp \left(-\frac{n}{16 m C} \epsilon^{2} \mu_{n}\right)
\end{aligned}
$$

Lemma A.2. Let g, P, S be $K \times K$ matrices with nonnegative entries. Assume that
a) P and g are symmetric;
b) P does not have two identical columns;
c) there exists at least one nonzero entry in each column of S;
d) for $1 \leq k, l, a, b \leq K, g_{k l}=P_{a b}$ whenever $S_{k a} S_{l b}>0$.

Then S is a diagonal matrix or a row/column permutation of a diagonal matrix.

Proof. The proof is similar to Lemma 3.2 [1].

1) If there exists a permutation of the rows and columns of S such that its diagonals are all positive after permutation, i.e., $S_{b b}>0$ for $b=1, \ldots, K$. If S is not diagnonal, there exists $k \neq a$ such that $S_{k a}>0$. For $b=1, \ldots, K$,

$$
\begin{aligned}
S_{k a} S_{b b}>0 & \Rightarrow g_{k b}=P_{a b} \\
S_{k k} S_{b b}>0 & \Rightarrow g_{k b}=P_{k b}, \\
& \Rightarrow P_{a b}=P_{k b} .
\end{aligned}
$$

This contradicts with b).
2) If there does not exist such a permutation, then we can always permute row and columns of S, such that for some $m \geq 1, S_{i j}=0$ for $1 \leq i, j \leq m$, and $S_{b b}>0$ for $b=m+1, \ldots, K$. By c), there exists $S_{k_{i} i}>0$ for $i=1, \ldots, m$ and some $k_{i} \in\{m+1, \ldots, K\}$. Then

$$
\begin{align*}
S_{k_{i} i} S_{k_{1} 1}>0 & \Rightarrow g_{k_{i} k_{1}}=P_{i 1}=P_{1 i}, \text { for } i=1, \ldots, m \\
S_{k_{i} i} S_{k_{1} k_{1}}>0 & \Rightarrow g_{k_{i} k_{1}}=P_{i k_{1}}=P_{k_{1}}, \text { for } i=1, \ldots, m \\
& \Rightarrow P_{1 i}=P_{k_{1} i}, \text { for } i=1, \ldots, m \tag{7}\\
S_{k_{1} 1} S_{b b}>0 & \Rightarrow g_{k_{1} b}=P_{1 b}, \text { for } b=m+1, \ldots, K . \\
S_{k_{1} k_{1}} S_{b b}>0 & \Rightarrow g_{k_{1} b}=P_{k_{1} b}, \text { for } b=m+1, \ldots, K . \\
& \Rightarrow P_{1 b}=P_{k_{1} b}, \text { for } b=m+1, \ldots, K . \tag{8}
\end{align*}
$$

(7) and (8) contradict with b).

References

[1] P. J. Bickel and A. Chen. A nonparametric view of network models and Newman-Girvan and other modularities. Proc. Natl. Acad. Sci. USA, 106:21068-21073, 2009.
[2] G. R. Shorack and J. A. Wellner. Empirical Processes with Applications to Statistics. Wiley, New York, 1986.
[3] Y. Zhao, E. Levina, and J. Zhu. Consistency of community detection in networks under degreecorrected stochastic block models. Annals of Statistics, 2012. arxiv.org/1110.3854.

