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We show that the scaled score test statistic under a simple null in the generalized β-model
for undirected networks asymptotically follows standard normal distribution when the
number of network vertices goes to infinity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Pairwise relationships among a set of objects (e.g., friendships between individuals, citations between papers) can be
conveniently represented in a network. Many statistical models have been developed to describe the generationmechanism
of networks (see Bhattacharyya and Bickel, 2015; Goldenberg et al., 2010; Matias and Robin, 2014 for recent review), with
applications in biology, computer science, social sciences and many other areas. Meanwhile, the non-standard structure
of network data poses new challenge for statistical inference since typically, only one realized network is available
(Fienberg, 2012).

The degrees of network vertices are one of the most important network statistics and provide important insights to
understand more complex network structures such as the ‘‘small-world phenomenon’’ in Chung and Lu (2002) and some
refined network statistics (e.g., ‘‘alternating k-star statistic’’) developed by Snijders et al. (2006). One natural approach for
modeling the degrees is to put them as sufficient statistics for exponential family distributions on graphs according to the
Koopman–Pitman–Darmois theorem (Koopman, 1936; Pitman, 1936; Darmois, 1935) or the principle of maximum entropy.
Chatterjee et al. (2011) coined this model as β-model and proved the uniform consistency of the maximum likelihood
estimator (MLE); Yan and Xu (2013) established its asymptotic normality. Hillar and Wibisono (2013) generalized the
β-model to weighted edges and also proved that the MLE is uniformly consistent.

In this note we further establish the asymptotic normality of one of the score test statistics under the generalized
β-model for the finite discrete weighted edges, i.e., (2n)−1/2(T −n)

D
→ N(0, 1) as n goes to infinity, where T is the score test
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statistic under a simple null and n is the number of vertices of the network. In this model, each vertex is assigned with one
parameter to measure its strength to participate in network connection. As n increases, the number of parameter diverges.
It makes the asymptotic inference nonstandard. To the best of our knowledge, this is the first asymptotic result for the score
test with a diverging number of parameters in network models as n the number of vertices of the network goes to infinity.
A key step in the proof is that we use the approximate inverse of the Fisher information matrix in Yan and Xu (2013) to
obtain the approximately explicit expression for T . Another technical step is to construct a dependency graph to obtain the
asymptotic distribution for the weighted quadratic sum of the centered degrees.

The rest of the paper is organized as follows. In Section 2, we lay out the main result, i.e., the asymptotic distribution of
our score test statistic in the generalized β-model. Simulation studies are provided in Section 3. Section 4 concludes with
some discussion and future work. All proofs are given in Appendix A.

2. Main results

Consider an undirected graph Gn on n vertices labeled by 1, . . . , n with no self-loops. Let aij be the weight of edge (i, j)
taking q discrete values from the set Ω = {0, . . . , q − 1}, where q is assumed to be fixed. The β-model is only involved
with the binary edges (i.e., q = 2). Here, we consider a generalized β-model for finite discrete weighted edges proposed
by Hillar andWibisono (2013). Rinaldo et al. (2013) defined a different version of generalized β-model by assuming that aij
comes from n Bernoulli trials, which we did not consider here. Define the degree of vertex i by di =


j≠i aij and the degree

sequence of Gn by d = (d1, . . . , dn)T . The probability density function of Gn under the generalized β-model is

pβ(Gn) = exp

β⊤d − z(β)


, (1)

where z(β) is the normalizing constant. The parameters β1, . . . , βn measure the strength of each vertex participating in
network connection. It can be obtained from (1) that the edges aijs for all 1 ≤ i < j ≤ n are mutually independent with the
probability:

P(aij = a) =
ea(βi+βj)

q−1
k=0

ek(βi+βj)

, a = 0, 1, . . . , q − 1.

When q = 2, it reduces to the β-model.
In general, only one realization of a random network is observed. Based on a single observed network, the log-likelihood

function is ℓ(β) = β⊤d − z(β). The solution to ∇z(β) = d is the MLE of β and Eβ(d) = ∇z(β) by the property of
exponential family (Brown, 1986)]. For convenience, wewill suppress the subscript β hereafter. Let Vn = (vij)i,j=1,...,n be the
Fisher information matrix of the parameters β1, . . . , βn, which is also the covariance matrix of d. By Yan et al. (2015), we
have

vij =


0≤k<l≤q−1

(k − l)2e(k+l)(βi+βj)

q−1
a=0

ea(βi+βj)

2 , j ≠ i, vii =


j≠i

vij.

Vn is the diagonally dominant matrix with nonnegative entries. Let U(β) be the score function of the log-likelihood ℓ(β):

U(β) =
∂ℓ(β)

∂β
= d − E(d),

and define

Tn(β) = U⊤(β)[Vn(β)]−1U(β).

Then Tn(β0) is the score test statistic under the simple null: H0 : β = β0. We will investigate the asymptotic distribution
of Tn(β) for a general β as n goes to infinity. We use the notations Tn, Vn,U instead of Tn(β), Vn(β),U(β) hereafter for
convenience.

The dimensions of U and Vn will increase with n, which makes the study of the asymptotic distribution of Tn difficult.
In order to obtain the asymptotic distribution of Tn, we need to handle the inverse of Vn with a large dimension. Since
V−1
n does not have a closed form, we use its approximation Sn = diag(1/v11, . . . , 1/vnn) proposed by Yan et al. (2015),

whose approximate error is given in Proposition 1 of their paper. As a result, Tn is divided into the sum of two parts:
the quadratic sum


i(di − E(di))2/vii and a remainder. Therefore, the object is to derive the asymptotic distribution of

i(di − E(di))2/vii and bound the remainder. For any fixed k, the vector ((di1 − E(di1))/v
1/2
i1,i1

, . . . , (dik − E(dik))/v
1/2
ik,ik

) is
asymptotically independent standard normal as shown in Proposition 2 of Yan et al. (2015). In order to obtain the asymptotic
distribution of


i(di−E(di))2/vii, we consider amore generalweighted quadratic sum


i ci(di−E(di))2. Let ãij = aij−E(aij)

be the centered random variable of aij and define ãii = 0 for all i = 1, . . . , n. By noting that Var(d) = Vn, the expectation
and variance of this sum are given below, the calculation of which is given in the supplementary material (see Appendix B).
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Property 1. (1) E[


i ci(di − E(di))2] =


i civii.
(2) Let uij = Var(ãij)2. Then

Var


i

ci(di − E(di))2


=


i

c2i (2v
2
ii +


j≠i

uij) + 2

i<j

cicjuij. (2)

The central limit theorem for the weighted quadratic sum


i ci(di − E(di))2 is stated below, whose proof is given in
Appendix A.1 by constructing a dependency graph.

Theorem 1. Assume that ρ1 ≤ ci ≤ ρ2 for all i = 1, . . . , n, and v∗ ≤ vij ≤ v∗∗ for all i ≠ j, andmini,j ui,j ≥ u∗. If the following
holds:

ρ6
2v∗∗/ρ

5
1v

5/2
∗

= o(n1/2), u∗/v∗ = o(n), (3)

then theweighted sum


i ci(di−E(di))2 is asymptotically normally distributedwithmean


i civii and variance


i c
2
i (


j≠i uij+

2v2
ii) + 2


1≤i<j≤n cicjuij.

Remark 1. Ouadah et al. (2015) introduce the degree mean square statistic 1
n


i(di − E(di))2 under the heterogeneous

Erdős–Rényi model, which assumes that all edges are independent Bernoulli random variables with their respective suc-
cessful probabilities. By taking ci = 1, it immediately follows from Theorem 1 that the central limit theorem for the degree
mean square statistic holds.

If v∗ ≤ vij ≤ v∗∗ and u∗∗/v
2
∗

= o(n) with uij ≤ u∗∗ for all i ≠ j, then 1/v∗∗ ≤ (n − 1)/vii ≤ 1/v∗ and

lim
n→∞

1
2n


i

1
v2
ii
(2v2

ii +


j≠i

uij) + 2

i≠j

uij

viivjj


= 1.

Taking ρ1 = 1/v∗∗ and ρ2 = 1/v∗ and ci = (n − 1)/vii in Theorem 1, it follows that

Corollary 1. If v6
∗∗

/v
17/2
∗ = o(n1/2) and u∗∗/v

2
∗

= o(n), then {
n

i=1[di − E(di)]2/vii − n}/(2n)1/2 converges in distribution to
the standard normal distribution.

Let Qn := 2maxi |βi|. By Yan et al. (2015) (see inequalities [3] and [4] in their paper), the variance vij of aij satisfies:

1
2(1 + eQn)

≤ vij ≤
q2

2
, 1 ≤ i ≠ j ≤ n. (4)

Since maxi,j aij ≤ q − 1, u∗∗ is bounded by a constant. Applying Corollary 1, we have:

Corollary 2. If e17Qn/2 = o(n1/2), then {


i[di − E(di)]2/vii − n}/(2n)1/2 converges in distribution to the standard normal
distribution.

The central limit theorem for the score test statistic is stated as follows.

Theorem 2. If e17Qn/2 = o(n1/2), then the score test statistic Tn is asymptotically normally distributed in the sense that

Tn − n
√
2n

D
→ N(0, 1), as n → ∞. (5)

3. Simulations

In this section,wewill evaluate the asymptotic result in Theorem2 throughnumerical simulations. The quantile–quantile
(QQ) plots of (Tn −n)/(2n)1/2 are shown in Fig. 1. Following Yan and Xu (2013), the parameter settings in simulation studies
are listed as follows. Let βi = iM/n and qth count of the possible values for edges be 3 for simplicity; A variety of M and n
are chosen:M = 0, log(log n), (log n)1/2, log n, and n = 100, 200, 1000.

The QQ plots in Fig. 1 are based on 10,000 repetitions for each scenario. The horizontal and vertical axes are the empirical
and theoretical quantiles, respectively. The gray lines correspond to y = x. The QQ plots for n = 200 are similar to those for
n = 100 and not shown here to save space.We also do not show the pictures forM = 0which are similar toM = log(log n).
In Fig. 1,whenM = log(log n), (log(n))1/2, the sample quantiles deviate from the theoretical ones slightly. This phenomenon
disappears when n increases to 1000 and the sample quantiles coincide with the theoretical ones very well. On the other
hand, whenM = log(n), the sample quantile evidently deviates from the theoretical one for both n = 100 and n = 1000.
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Fig. 1. The QQ plots of (T − n)/(2n)1/2 .

Table 1
Estimated coverage probabilities of T .

n M = 0 M = log(log n) M = (log n)1/2 M = log(n)

100 95.28 94.76 94.42 88.38
200 95.09 94.83 94.70 88.99
1000 94.98 94.93 94.75 89.61

The 95% coverage frequencies for T lying in the interval [n − zα(2n)1/2, n + zα(2n)1/2] are reported in Table 1, where
zα is the α-quantile of the standard normality and α = 0.975. From this table, we can see that the estimated coverage
frequencies are close to the target level 95% when M ≤ (log n)1/2 while those are less than 95% when M = log(n). In
both the QQ plot and the table, when M ≤ (log n)1/2, the asymptotic approximation is very good. It may show that there
exists room for improvement on the increasing rate of Qn in Theorem 2. On the other hand, the asymptotic approximation
is not good when M = log(n). This shows that it is necessary to restrict the increasing rate of Qn in order to guarantee the
asymptotic normality for the score test statistic.

4. Summary and discussion

We have established the central limit theorem for one of the score test statistics in the generalized β-model when the
number of parameters goes to infinity. Along the way, we derive the central limit theorem for the weighted quadratic sum
of degrees. If aij’s, 1 ≤ i < j ≤ n are mutually independent and bounded, then Theorem 2 still holds. The simulation results
show that even if Qn = (log n)1/2, the asymptotic approximation is still very good. It would be of interest to investigate
whether the condition imposed on Qn in Theorem 2 could be relaxed.

Hillar and Wibisono (2013) considered two other types of weights (i.e., continuous and infinite discrete). In both cases,
condition (6) holds no longer since it is an unbounded random variable. It is interesting to seek for other conditions to
replace (6) so that the unbounded random variables can be covered. We note that the result may be extended to more
general scenarios. For a class of n-parameter network models with the generalized β-model as a special case, Yan et al.
(2016) have obtained the consistency and asymptotic normality of the moment estimator. It could be expected that there
may be similar results in the model considered in Yan et al. (2016) as well as other degree-based models (Chung and Lu,
2002; Perry and Wolfe, 2012).
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Appendix A

We introduce one useful theorem which will be used in the proofs. Let {Xi}i∈I be a family of random variables (defined
on a common probability space). A dependency graph for {Xi} is any graph Lwith vertex set V (L) = I such that if A and B are
two disjoint subsets of I with eL(A, B) = 0, then the families {Xi}i∈A and {Xi}i∈B are mutually independent, where eL(A, B)
denotes the number of edges connecting one vertex in A and another in B. For any integer r ≥ 1 and i1, . . . , ir ∈ I, denote
by

NL(i1, . . . , ir) =

r
k=1

{j ∈ I : j = ik or j is adjacent to ik in L}

the closed neighborhood of {i1, . . . , ir} in L. If the family {Xi}i∈I can construct a dependency graph, then the normalized sum
i Xi converges to the standard normal distribution (Mikhailov, 1991). Here we use an improved version, i.e., Theorem 6.21

in Janson et al. (2000) stated as one theorem below.

Theorem 3 (Janson et al., 2000). Suppose that {Sn}∞n=1 is a sequence of random variables such that Sn =


α∈An
Xnα , where for

each n, {Xnα}α∈An is a family of random variables with dependency graph Ln. Suppose further that there exist numbers Mn, Kn and
Br such that


α∈An

E|Xnα| ≤ Mn and, for every n and r ≥ 1, and α1, . . . , αr ∈ An,
α∈NLn (α1,...,αr )

E(|Xnα||Xnα1 , . . . , Xnαr ) ≤ BrKn. (6)

Let σ 2
n = Var(Sn). If MnK s−1

n /σ s
n → 0 for some real s > 2, then σ−1

n (Sn − E(Sn)) converges to the standard normal distribution.

A.1. Proof of Theorem 1

Proof of Theorem 1. Let ãij = aij − E(aij), zij = (ci + cj)ã2ij, zijk = 2ciãijãik, Γ1 = {(i, j) : 1 ≤ i < j ≤ n} and
Γ2 = {(i, j, k) : 1 ≤ i ≤ n; 1 ≤ j < k ≤ n; j, k ≠ i}. Denote the set of all zijswith (i, j) ∈ Γ1 and all zijkswith (i, j, k) ∈ Γ2 by
{Xnα}α∈An , where An = Γ1


Γ2. For simplicity, we omit the subscript n in Xnα . Then the cardinality of An is:

|An| =

Γ1


Γ2

 =


n
2


+ 3


n
3


=

1
2
n(n − 1)2. (7)

It is easy to verify that
n

i=1

ci(di − E(di))2 =


1≤i<j≤n

(ci + cj)ã2ij +


1≤j<k≤n,k,j≠i

2ciãijãik =


α∈An

Xα.

We start by outlining the idea of the proof:Wewill use Theorem3 to obtain the limiting distribution of the above summation
by constructing a dependency graph Ln. The graph Ln is made up of a set of vertices {α : α ∈ An} and edges by connecting
every pair of vertices α and β such that Xα and Xβ share at least one common random variable ãkl ∈ {ãij : 1 ≤ i < j ≤ n}.
It is clearly a dependency graph for {Xα}α∈An . According to the definition of Xα , for different α, β ∈ An, Xα and Xβ share at
most one common random variable.

We verify the conditions of Theorem 3 as follows. Recall the notations used in Theorem 1: Vn = (vij) is the Fisher
information matrix. v∗ and v∗∗ are the lower and upper bound of vij for i ≠ j. ρ1 and ρ2 are the lower and upper bound
of ci. uij = Var(ãij)2 and u∗ is the lower bound of uij. Then,

E(ã2ij) = vij ≤ v∗∗, E|ãijãik| ≤
1
2
E(ã2ij + ã2ik) =

1
2
(vij + vik) ≤ v∗∗,

and ρ1 ≤ ci ≤ ρ2. Therefore,


α∈An
E|Xα| ≤ 2ρ2v∗∗|An|. By equality (7), |An| =

1
2n(n − 1)2, so Mn in Theorem 3 can be

chosen as n3ρ2v∗∗.
Next, we will calculate the maximum value of the cardinality of NLn(α1, . . . , αr). We say that Tα is an edge with vertices

i and j if Xα = zij; Tα is a two-path with vertices i, j and k if Xα = zijk. Then there is a one-to-one mapping between Xα and
Tα . Suppose that α1, . . . , αr ∈ An are given. Consider the union

r
i=1 Tαi , whose vertices construct a vertex set V . Let KV

be the complete graph on V . Note that KV has at most 3r vertices, and the cardinality of NLn(α1, α2)


{α : Tα ⊂ KV } is not
more than 2 · (3r)2 = 18r2. Moreover, each Tβ for β ∈ NLn(α1, . . . , αr) \ {α : Tα ⊂ KV } is such a path that one edge is in KV
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and another one is not, hence the number of such β is less than 8n. Recall that aij takes values from the set {0, 1, . . . , q− 1}
and q is a fixed integer. Since |ãij| ≤ (q − 1)2, we have that for any α, α1, . . . , αr ∈ An,

E[|Xα||Xα1 , . . . , Xαr ] ≤ 2(q − 1)2,

such that 
α∈NLn (α1,...,αr )

E[|Xα||Xα1 , . . . , Xαr ] ≤ 2(q − 1)2|NLn(α1, . . . , αr)|

≤ 2(q − 1)2(18r2 + 8n)ρ2

< [2(q − 1)2(8 + 18r2)]ρ2n.

So we could choose Br in Theorem 3 as 2(q − 1)2(8 + 18r2) and Kn as nρ2. This shows that condition (6) holds.
By equality (2), we have

Var


i

cid̃2i


≥ nρ2

1 [(n − 1)u∗ + 2(n − 1)2v∗] + n(n − 1)ρ2
1u∗.

It follows that for s = 5,

MnK 5−1
n

(Var(Zn))5/2
≤

n3ρ2v∗∗ · (ρ2n)5

[ρ2
1 (nu∗ + 2n(n − 1)2v∗ + n(n − 1)u∗)]5/2

= O

 ρ6
2v∗∗

ρ5
1v

5/2
∗ n1/2

×
1

2 +
u∗

nv∗
+

u∗

nv∗

5/2
 = o(1).

This complete the proof. �

A.2. Proof of Theorem 2

Proof of Theorem 2. Let Sn = diag(1/v11, . . . , 1/vnn) and Wn = V−1
n − Sn. By Corollary 2, it is sufficient to show

(d − E(d))⊤Wn(d − E(d))
√
2n

= op(1). (8)

in order to prove Theorem 2.
First, we have

E[{d − E(d)}TWn{d − E(d)}] = E[tr({d − E(d)}TWn{d − E(d)})]

= tr{WnE[{d − E(d)}{d − E(d)}T ]}

= tr(In − SnVn) = n −

n
i=1

vii

vii
= 0.

For simplifying the notation, we denote d̃i = di − E(di). Therefore, it is sufficient to show

Var


n

i,j=1
d̃iwijd̃j


2n

= o(1).

in order to prove (8). There are four cases for calculating the covariance Cov(d̃id̃j, d̃hd̃g).

Case 1: i = j = h = g . Similar to the calculations of (2), we have Cov{d̃2i , d̃
2
i } = 2v2

ii +


j≠i uij.
Case 2: Three indices among the four indices i, j, h, g are the same (e.g. j = h = g). In order to guarantee non-zero covariance
of ãiα ãjβ and ãjkãjl with i ≠ j, (ãiα, ãjβ) and (ãjk, ãjl) must have at least one common element. By noting that E(ãij) = 0 and
ãij, 1 ≤ i < j ≤ n are mutually independent, the only case for non-zero covariance is α = k = l = j. Therefore, we have

Cov(d̃id̃j, d̃2j ) = Cov

 
α≠i,β≠j

ãiα ãjβ ,


k≠j,l≠j

ãjkãjl


= Cov(ãijãji, ãjiãji).

There are similar arguments for the other two cases below.
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Case 3: Two indices among the four indices i, j, h, g are the same (e.g. i = j or j = h).

Cov(d̃2i , d̃g d̃h) = 2Cov(ãig ãih, ãgiãhj),

Cov(d̃id̃j, d̃jd̃g) = Cov(ãijãjg , ãjiãgj) +


β≠i

Cov(ãig ãjβ , ãjβ ãgi).

Case 4: All four indices i, j, h, g are different.

Cov(d̃id̃j, d̃hd̃g) = Cov(ãihãjg , ãhiãgj) + Cov(ãig ãjh, ãhjãgi).

Let gijhg = Cov(d̃iwijd̃j, d̃hwhg d̃g). By noting that |ãij| ≤ q, for different i, j, h, g ,

|giiii| ≤ w2
ii(2(n − 1)2 + (n − 1))q4, |gijjj| ≤ q4|wijwjj|, |giigh| ≤ 3(n − 1)q4|wiiwhg |,

|gijjg | ≤ 3(n − 1)q4|wiiwjg |, |gijhg | ≤ |wijwhg |q4.

By Lemma 1 in the supplementary material and inequality (4), we have

∥Wn∥ = O


M2

m3n2


= O


(1 + eQn)3

n2q4


.

Consequently, if eQn = o(n1/6), then we have

var[{dn − E(dn)}
⊤Wn{dn − E(dn)}]

2n
≤

1
2n

O


(1 + eQn)3

n2q4

2


×


n(2n2

+ n) +


n
2


+


n
3


· 3n + 2


n
4


1
q4

= O

e6Qn

n


= o(1).

The condition e17Qn/2 = o(n1/2) in Theorem 2 implies that eQn = o(n1/17). Therefore, equality (8) holds. This completes the
proof. �

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.spl.2016.07.022.
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