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Summary: The correlation matrix of high-dimensional biomedical data (e.g. genomics, proteomics, and neuroimag-

ing data) often exhibits a complex and organized, yet latent graph topological structure. Estimating the correlation

matrix is fundamental to understand inter-relationship between the massive variables. We propose a two step

procedure that first detects the latent graph topological structure with parsimony from the sample correlation matrix

and then regularizes the correlation matrix by leveraging the detected graph topological information. We show that the

graph topological information guided regularization can reduce false positive and false negative rates simultaneously

because it allows edges to borrow strengths from each other precisely. Several examples illustrate that the proposed

latent graph topological structure widely exists across many biomedical platforms and identifying these network

structures can effectively improve correlation matrix estimation and understanding the interactive relationships.
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1. Introduction

Recent advances in bio-technologies allow measuring multi-dimensional biological features

simultaneously, for example, in genomics, proteomics, and neuroimaging research. The under-

lying biological machinery is often associated with the coordination between high-throughput

features (Emilsson, 2008; Allen and Tibshirani, 2012). For a large biomedical data set Xn×p

with the sample size n and p variables, we rely on the estimation of the covariance matrix

Σ or correlation matrix R to understand the inter-relationship between variables (Fan et al ,

2015).

Regularization methods have been developed to estimate the high-dimensional covari-

ance/correlation matrix. For instance, the `1 norm penalized maximum likelihood has been

utilized to estimate the sparse precision matrix Θ = Σ−1 (Friedman et al , 2008; Banerjee et

al , 2008; Yuan and Lin, 2007; Lam and Fan, 2009; Yuan, 2010; Cai and Liu, 2011; Shen et

al , 2012) and the covariance matrix thresholding methods to directly regularize the sample

covariance matrix (Bickel and Levina, 08; Rothman et al , 2009; Cai et al , 2011; Zhang, 2010;

Fan et al , 2013; Liu et al , 2014). The thresholding regularization techniques have also been

applied to correlation matrix R estimation (Qi and Sun, 2006; Liu et al , 2014; Cui et al ,

2016). Mazumder and Hastie (2012) and Witten et al (2011) point out that the two sets of

methods are naturally linked regarding vertex-partition of the whole graph and estimate of

the graph edge skeleton.

Graph notations and definitions are used to describe the relationship between the p vari-

ables of Xn×p (Yuan and Lin, 2007; Mazumder and Hastie, 2012). A finite undirected

graph G = {V,E} consists two sets, where the node/vertex set V represents variables

X = (X1, · · · , Xp) with |V | = p and the edge set E denotes relationships between the

nodes. Let ei,j be the edge between nodes i and j. Then ei,j is an connected edge if nodes

i and j are correlated in G. Under the sparsity assumption, the regularization algorithms
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assign most edges as unconnected, and G may be decomposed to a set of maximal connected

subgraphs (Witten et al , 2011; Mazumder and Hastie, 2012).

Many recent works estimate the covariance matrix by using the graph topological structural

information. For example, Witten et al (2011), Hsieh et al (2012), Tan et al (2015) utilize

the diagonal block structure and Bien et al (2016) use the banding structure to improve

the estimation of the covariance matrix. When analyzing biomedical high-dimensional data

sets, we note that the interactions between biological features often exhibit an interesting

organized network graph topological pattern which consists a number of block/community

subgraphs and a large random subgraph (see Figure 1). Therefore, we propose a new topo-

logical structure of G consisting of two components G = G1 ∪G0 where the first component

G1 = ∪C1
c=1Gc is a stochastic block model structure and the second component G0 = ∪C0

c=1G
0
c

(G0
c is a singleton) can be considered as an Erdös-Rényi random graph. We refer it as the

G1 ∪G0 mixture structure. The G1 ∪G0 mixture structure is a special case of the stochastic

block model, which contains many singletons and a number of communities (Bickel and

Chen, 2009; Karrer and Newman, 2011; Zhao et al , 2011; Choi et al , 2012; Nadakuditi and

Newman, 2012; Lei and Rinaldo, 2014). We observe the G1 ∪G0 mixture structure in many

omics and imaging data though it is latent, and we demonstrate two examples among many

in section 3.

However, in practice data sets are often noisy and thus conventional clustering algorithms

may not easily identify the G1 ∪G0 mixture structure (Tan et al , 2015). We propose a new

parsimonious algorithm to effectively recognize the latent G1∪G0 mixture structure from the

sample matrix, which is robust to false positive noises (edges). Our new approach imposes

a penalty term on the sizes of networks so that the {Gc} of G1 include as many highly

correlated edges as possible while minimizing the sizes of edges in {Gc}. We assume that

the (sample) false positive highly correlated edges are often distributed in a random pattern
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rather in a community structure. Therefore, with the new penalty term, these false positive

highly correlated edges are not likely to be included in community networks because they

can great increase network sizes.

Next, we estimate the large correlation matrix based on the detected G1∪G0 mixture graph

topological structure. Specifically, we perform thresholding for edges within and outside

communities adaptively by using an Empirical Bayes approach, and the detected graph

topology serves as prior knowledge. In this way, the decision of thresholding an edge is made

upon both this edge’s magnitude and the its neighborhood information via the detected

graph topological structure. Our network based thresholding strategy allows edges to borrow

strengths from each other (accounting for dependence) while avoiding the computationally

difficult step to estimate covariance between edges (i.e. correlation of correlations). Different

from the existing graph topology guided methods e.g. Hsieh et al (2012) and Tan et al (2015)

which mainly focus on the edges within block components, we utilize information of edges

from both inside and outside diagonal blocks.

We name the two step graph topology information guided regularization strategy as Network

Induced Correlation matrix Estimation (NICE). The NICE method makes three contri-

butions: i) we propose a new penalized objective function that is well-suited to estimate

latent graph topological structures and robust to false positive noises ii) we fuse the graph

topological information and threholding decision making procedure to simultaneously reduce

false positive and false negative discovery rates; and iii) we develop computationally efficient

algorithms. In addition, the detected graph topological structures may also help to reveal

interesting underlying biological networks.

The paper is organized as follows. Section 2 describes the NICE algorithm. In Sections

3, we perform the simulation studies and model evaluation/comparisons and we apply our
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method to a mass spectrometry proteomics data set and gene expression data. Concluding

remarks are summarized in Section 4.

2. Methods

We consider the sample covariance S and sample correlation matrix R̂=diag(S)−1/2 S diag(S)−1/2

as our input data (Qi and Sun, 2006; Liu et al , 2014; Fan et al , 2015). We can directly

perform hard thresholding on the sample correlation matrix to estimate R by using RTi,j =

{R̂i,jI(|R̂i,j| > T )} without exploring the underlying network structure, where T is a pre-

specified or calculated threshold (Bickel and Levina, 08). However, applying the universal

regularization rule (even when optimal T is provided) to each element (or column) may

introduce numerous false positive and false negative findings due to various noises and

measurement errors from the sample data. Therefore, we propose to leverage the information

from the latent topological structure of the correlation matrix (i.e. graph G) to assist the

decision making process adaptively.

The NICE method consists two steps: i) we first detect the latent topological structure of

G = G1 ∪ G0 mixture in G by applying the rule of parsimony; ii) we then apply empirical

Bayes based thresholding to the sample correlation matrix guided by the detected graph

topology.

2.1 Parsimonious estimation of latent networks from sample correlation matrix

We first define the weight matrix W based on the sample correlation matrix R̂. An entry wi,j

of W can be a transformed correlation coefficient between variables i and j that corresponds

to the edge ei,j in G, for example, Fisher’s Z transformation. wi,j is often a continuous metric.

In the Supplementary Materials, we describe an empirical Bayes based procedure to calculate

wi,j as a metric between 0 and 1. W is only used for the latent network detection rather

than the regularization step.
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We assume that G includes a set of community networks and many singletons as shown in

Figure 1a, and edges within the networks are more likely to be connected than edges outside

networks. However, in practice this topological structure is latent and the sample correlation

matrix has no explicit graph topological pattern (1c). By implementing the objective function

1 we can recognize the latent graph topological structures (1d). We next perform permutation

tests to evaluate the statistical significance for each Gc, and the statistically significant

subgraphs {Gc} are used to assist the estimation of the correlation matrix in the following

step.

[Figure 1 about here.]

We aim to identify the latent G1 ∪ G0 mixture structure from W by using penalized

optimization. The heuristic is to identify a set of subgraphs U = ∪Cc=1Gc that maximizes

the sum of weights of edges in the community networks while minimizing the community

network edge sizes. The penalty term is used to avoid the disruption of false positive noises

(edges). An interesting fact is that a singleton Gc contribute 0 edge and when the number of

subgraphs equal to the number of nodes C = |V | the sum of community network edge sizes

∪Cc=1|Ec| = 0. On the contrary, C = 1 leads to ∪C
c=1|Ec| = |E|. Therefore, C is considered to

be related to the penalty term and a larger C increase the parsimony level.

Formally, we propose the objective function:

arg max
C,{Gc}Cc=1

C∑
c=1

exp
[
log
{∑

(wi,j|ei,j ∈ Gc)
}
− λ0 log(|Ec|)

]
, (1)

with following definitions and conditions:

1. Gc (c = 1, · · · , C) is a clique subgraph that Gc = {Vc, Ec} and |Vc| > 1;

2. the size of the a subgraph Gc is determined by the number of edges |Gc| = |Ec|;

3. ∪Cc=1Vc = V , ∩Cc=1Vc = ∅ and ∪Cc=1Ec ⊆ E.

The objective function is non-convex and difficult to be directly solved. We develop iter-

ative algorithm to optimize C and {Gc}. In the Supplementary Materials, we provide the
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detailed derivation and optimization algorithms, which links 1 to a spectral clustering related

objective function (von Luxburg, 2007; Nadakuditi and Newman, 2012). By applying the

penalty term, the objective function often selects a relatively large Ĉ and include many Gc

as singletons to shrinkage the subgraph sizes. This objective function is well-suited to capture

general graph topological structure from sample correlation matrix as it is less affected by the

false positive noises by implementing the new penalty term (see more details in section 3.1).

Optimizing (1) provides the estimates of underlying network topological structure within the

large sample correlation matrix, which can be used to guide correlation matrix regularization.

2.2 Graph topology oriented correlation matrix threshohlding

To estimate the correlation matrix R, we perform graph topology guided thresholding on

the sample correlation matrix R̂ by using Bayes factors (BF). Let zi,j be the Fisher’s Z

transformed sample correlation coefficient of R̂i,j and it follows a mixture distribution that

zi,j ∼ π0f0(zi,j)+π1f1(zi,j) (Chen et al , 2016a). The distribution assumption is well supported

by the example data sets in section 3.1.

Universal thresholding

Without considering prior information of the topology structure, the universal threshold-

ing can be applied (Bickel and Levina, 08). For instance, an empirical Bayes framework

implements a Bayes factor based via the (Efron, 2004, Shäfer and Strimmer, 2005). The

hard-thresholding rule (Cai et al , 2011, Fan et al , 2015) is often employed for this purpose,

which sets an edge to zero unless

P(δi,j = 1|zi,j)
P(δi,j = 0|zi,j)

=
f1(zi,j)π1

f0(zi,j)π0

> T,

T is a constant that is linked to local fdr cutoff, and π0 and π1 are the proportions of null

and non-null distributions correspondingly. For example, T = 4 is equivalent to the cutoff

of local fdr of 0.2 (Efron, 2007). For instance, given π0 = 0.9 and π1 = 0.1, the universal
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decision rule is that an edge is thresholded when Bayes factor is less than 36, i.e.,

BFi,j =
f1(zi,j)

f0(zi,j)
6 36.

In practice, π0 and π1 are estimated based on the distribution of the statistics (e.g. zi,j) and

the Bayes factor cut-off is updated accordingly.

It has been well documented that the Bayes factor inferential models could adjust the

multiplicity by adjusting the prior structure (Jeffreys, 1961; Kass and Raftery, 1995; Scott

and Berger, 2006; Efron, 2007; Scott and Berger, 2010). The prior odds are tuned to control

false positive rates, and a larger π0 (π0 → 1) or a distribution of π0 with larger mean leads

to more stringent adjustment that may cause both low false positive discovery rates and

high false negative discovery rates. Scott and Berger, 2006 suggest a prior distribution with

median value around 0.9 and numerical methods have been developed to estimate π0 (Wu

et al , 2006; Efron, 2007).

However, there has been a long term challenge for all universal regularization methods

(e.g. shrinkage or thresholding): the trade-off between false positive and false negative find-

ings. In addition, edges may be dependent with each other and the mass univariate edge

inference (universal regularization) ignoring the dependency structure may not estimate

the large covariance and correlation matrix accurately. Yet, the direct estimation of the

dependency structure between edges is challenging and sometimes not feasible. We propose

one possible solution by leveraging latent graph topology to guide thresholding and account

for the dependency between edges. The detected topological structure can seamlessly fuse

into the empirical Bayes thresholding framework as prior knowledge and provides precise

neighborhood information that allows edges to borrow strengths for each other.

Network based thresholding

In a network induced correlation matrix, an edge with sample correlation value zi,j is

more likely to be truly connected within than outside a network community because the



8 Biometrics, 000 0000

within community ‘neighbor’ edges are more connected. Thus, we incorporate the topological

location information of an edge into the regularization procedure. We first calculate the prior

odds for edges (to be connected)within and outside community networks separately by:

θin =
P(δi,j = 0|ei,j ∈ Gc,∀c)
P(δi,j = 1|ei,j ∈ Gc,∀c)

=
πin

0

πin
1

,

θout =
P(δi,j = 0|ei,j /∈ Gc,∀c)
P(δi,j = 1|ei,j /∈ Gc,∀c)

=
πout

0

πout
1

,

Clearly, the within community edges are more connected by and thus πin
1 > π1 > πout

1 and

πout
0 > π0 > πin

0 , and θout > θall > θin.

Let edges inside and outside of the detected communities follow distributions:

zi,j|ei,j ∈ Gc ∼ πin
0 f0(zi,j) + πin

1 f1(zi,j) and

zi,j|ei,j 6∈ Gc ∼ πout
0 f0(zi,j) + πout

1 f1(zi,j),

respectively.

The proportions are different for the inside and outside networks, as well as overall edges,

yet we assume that the null f0(zi,j) and non-null f1(zi,j) distributions are identical (the

distribution assumption is well supported by examples in Section 3.1). By using the identified

the latent community networks where edges are more correlated in step one, we propose the

network based thresholding rule. Denote by R̂Ti,j the thresholded correlation estimates for

nodes i and j. Let B̂F i,j = f̂1(zi,j)/f̂0(zi,j) be an estimate of BFi,j. Let θ̂in and θ̂out be the

estimates of θin and θout, respectively.

If ei,j ∈ Gc,

R̂Ti,j =

 R̂i,j if B̂F i,j > T · θ̂in;

0 otherwise.

(2)

else if ei,j 6∈ Gc,
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R̂Ti,j =

 R̂i,j if B̂F i,j > T · θ̂out;

0 otherwise.

(3)

Equivalently, the we provide estimate of the edge set Ê by using:

δ̂ini,j = I
(
B̂F i,j > T · θ̂in

)
δ̂outi,j = I

(
B̂F i,j > T · θ̂out

)
,

(4)

where δi,j is an indicator variable that δi,j = 1 when variables i and j are correlated with

each other, otherwise δi,j = 0.

We obtain f̂1, f̂0, θ̂in and θ̂out by the following steps. First, assume the edge-specific Fisher’s

Z transformed sample correlation coefficients in R̂ follow a mixture distribution: f(zi,j) =

πall
0 f0(zi,j) + πall

1 f1(zi,j). π̂
all
0 , π̂all

1 , f̂0 and f̂1 can be estimated by using algorithms for local

fdr (Efron, 2007). Next, using f̂0 and f̂1 in the previous step we estimate π̂in
0 for in-network

edges ei,j ∈ Gc as the only parameter in f in(zi,j) = πin
0 f0(zi,j) + πin

1 f1(zi,j) via maximum

likelihood estimation. In results, we calculate θ̂in = π̂in
0 /π̂

in
1 (π̂in

1 = 1− π̂in
0 ). For edges outside

of networks (zi,j that ei,j /∈ Gc ), we estimate π̂out
0 in f out(zi,j) = πout

0 f0(zi,j) + πout
1 f1(zi,j) by

following steps above, and calculate θ̂out = π̂out
0 /π̂out

1 by following the same procedure.

In practice, our graph topological structure detection algorithm produces a very small odds

ratio θ̂in/θ̂out when the informative edges are distributed in an organized pattern. Thus, the

choice of T has little impact on thresholding.

The detected graph topology provides the prior knowledge of the ‘neighborhood’ and

‘location’ for each edge.

A community network defines a neighborhood (spatial closeness) of edges with explicit

boundaries and edges within the same neighborhood can borrow power from each other.

Many statistical models are developed to account for dependency based on the neighborhood

definition, for example, the Ising prior and conditional autoregressive (CAR) model (Besag
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and Kooperberg, 1995). Nevertheless, unlike data in spatial or imaging statistics the sample

correlation/covariance matrix of large biomedical data often include no available information

about the exact spatial location or closeness on edges. Alternatively, the detected graph

topological structure provides a graph topological ‘closeness’ of edges and thus accounts for

the dependency between edges.

2.3 Reduced false positive and negative discovery rates by using NICE thresholding

We show that under a mild condition, the NICE method can simultaneously reduce false

positive and false negative finding rates.

Condition 1: Let ω = (
∑C

c=1 |Vc| × (|Vc| − 1)/2)/(|V | × (|V | − 1)/2) the proportion of

edges inside community networks and
∫∞
z0
f(zi,j) = F (z0). z0 is the universal threshold cut-

off value , z0,in is the within networks threshold cut-off value, z0,out is the within networks

threshold cut-off value.

F0(z0)− F0(z0,out)

F0(z0,in)− F0(z0)
>

ωπin
0

(1− ω)πout
0

F1(z0)− F1(z0,out)

F1(z0,in)− F1(z0)
<

ωπin
1

(1− ω)πout
1

.

This condition is generally valid for network induced correlation matrix because by imple-

menting the parsimonious estimation of network topological structure f in is distinct from

f out (see Figures 2 and 3). Thus, we have πin
0 � πout

0 and πin
1 � πout

1 , and condition holds.

Theorem 1: Suppose Condition 1 holds, we have both 1) E(
∑

i<j I(δ̂NICE
ij = 1|δij =

0)) 6 E(
∑

i<j I(δ̂Univ
ij = 1|δij = 0)) the expected false positively thresholded edges by using the

graph topology oriented thresholding (NICE) method are less than the universal thresholding

method; 2) E(
∑

i<j I(δ̂NICE
ij = 0|δij = 1)) 6 E(

∑
i<j I(δ̂Univ

ij = 0|δij = 1)), the expected false

negatively thresholded edges by using the graph topology oriented thresholding (NICE) method

are less than the universal thresholding method.
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The proof is in the Supplementary Materials.

Uncovering the graph topological structure is important to understand the interactive

relationships between multivariate variables (nodes) and the dependency between edges. We

show that the detected topological structure can also provide prior knowledge to assist large

covariance/correlation matrix regularization and estimation. The network based regulariza-

tion approach utilizes the additional yet latent graph structure information and reduces

false positive and negative discovery rates simultaneously. We summarize the overall NICE

algorithm of both steps in details in the Supplementary Materials (Algorithm ??).

3. Data Analysis

3.1 Data examples

We apply the NICE method to two publicly available high-dimensional biomedical data sets.

By using these two examples, we show that the latent G1 ∪ G0 mixture structure widely

exists in data across platforms (e.g. proteomics, genomics, and imaging data, yet due to

space limitation we only demonstrate two data types).

3.1.1 Proteomics data. The first example is matrix-assisted laser desorption ionization

time of flight mass spectrometry (MALDI-TOF MS) proteomics data from human 288

subjects (Yildiz et al , 2007). The data assess the relative abundance of peptides/proteins in

human serum. Each raw mass spectrum consists roughly 70,000 data points. After preprocess-

ing steps including registration, wavelets denoising, alignment, peak detection, quantification,

and normalization (Chen et al , 2009), 184 features are extracted to represent the most

abundant protein and peptide features in the serum. Each feature is located at a distinct

m/z value that could be linked to a specific peptide or protein with some ion charges (feature

id label). The original paper utilizes the proteomics data to enhance understanding of lung
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cancer pathology at the molecular level. In this paper, we focus on estimating the correlation

matrix to investigate interactive relationships between these features.

We apply NICE to detect correlated peptide/protein networks and estimate correlation

matrix based on the Fisher’s Z transformed sample correlation matrix (Figure 2a). First,

the penalized objective function 1 is implemented to capture the latent G1 ∪ G0 mixture

structure. The estimation results are Ĉ = 77, and that seven significant community networks

(G1) are detected and the rest are singletons (G0) (see Figure 2b). Figure 2b reorders features

Figure 2a by the detected topological structure. Generally, features within networks are more

correlated than features outside networks

We show that the distributions of edges inside and outside networks in Figure 2c. Clearly,

f in and f out show distinct distributions, and f out is close to the null distribution for which

all edges are not connected. We estimate π̂all
0 = 0.78, π̂out

0 = 0.83, and π̂in
0 = 0.001. Then, we

apply the network based thresholding to estimate Ê and the correlation matrix. The estimate

Ê and thresholding rule {δ̂i,j} are shown in Figure 2d. The network detection results provide

informative inferences of the interactive relationship between these proteomics features. In

this data example, each network represents a group of related protein and peptides that can

be confirmed by proteomics mass spectrometry literature. For example, the most correlated

network three consists a list of proteins of normal and variant hemoglobins with one and two

charges (Lee et al , 2011) including normal hemoglobins α and β with one charge and two

charges (at m/z 15127, 15868, 7564, and 7934). The highly correlated networks of biomedical

features may provide guidance to identify a set of biomarkers for future research that allow

to borrow power between each other.

[Figure 2 about here.]

3.1.2 Gene expression data. The second data example is gene expression profiling data

based on Affy Human Genome U133A 2.0 array. The data is publicly available at Gene
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Expression Omnibus (GEO) with accession code: GSE17156, GSE30550, GSE52428 and

used by Dream Challenge (see more details at https://www.synapse.org/#!Synapse:

syn5647810/wiki/399110). Blood samples were collected for 110 healthy controls at base-

line. We focus on 1924 gene expression features that are commonly observed in human blood,

and normalized data is used for analysis. The input data for our model is a 1924×1924 sample

correlation matrix (Figure 3a). The sample correlation matrix show no explicit organized

topological structures. By applying the penalized objective function in 1, we identify the

latent G1 ∪ G0 mixture structure (Figure 3b). Note that Figure 3b is a isomorphic graph

to Figure 3a with reordered nodes. With Ĉ = 613, four large networks and a long list of

singletons and small networks (with 2 or 3 nodes) are detected because of the penalty term.

Figure 3c shows that edges inside and outside community networks follow distinct distri-

butions. We estimate π̂all
0 = 0.84, π̂out

0 = 0.99, and π̂in
0 = 0.05. The distribution of edges

outside of community networks is also close to the null distribution of non-connected edges,

whereas the distribution of edges inside networks again centers around 0.5. By applying the

network guided thresholding, we obtain the estimated correlation matrix and Ê as shown in

figure 3d.

Interestingly, the latent G1∪G0 mixture structure shows in both data examples, which can

also be identified in large data from many other platforms including neuroimaging activation

and connectivity data, DNA methylation data, and etc. (Chen et al , 2016a). In addition, for

most of these data sets the inside and outside network edge distributions tend to be distinct

with f out close to the null distribution and f in centers around 0.5. This further verifies that

our assumptions of mixture distribution and condition 1 are generally valid.

In comparison, when we apply existing methods (e.g. glasso), the latent G1 ∪G0 mixture

structure can not identified based on the estimated covariance or inverse covariance matrix.

https://www.synapse.org/#!Synapse:syn5647810/wiki/399110
https://www.synapse.org/#!Synapse:syn5647810/wiki/399110
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Many inside network edges are (false negatively) regularized to zero (see Supplementary

Materials).

[Figure 3 about here.]

3.2 Simulation Studies

We conduct numerical studies to evaluate the performance of our approach, and compare it

with several existing methods.

3.2.1 Synthetic data sets. We simulate each data set with p = 100 variables, and thus

|V | = 100 and |E| =
(

100
2

)
= 4950. We assume that the correlation matrix includes two

community networks, and the first include 15 nodes and the second 10 nodes. The induced

networks are complete subgraphs (cliques) that all edges are connected within these two

networks and no other edges are connected outside the two networks (Figure 1a). Next, we

permute the order of the nodes to mimic the practical data where the topological structure

is latent. Figure 1b represents the connected edges in the matrix. Let vector xk
p×1 follow

a multivariate normal distribution, with zero mean and covariance matrix Σp×p, and the

sample size is n. σi,j is an entry at the ith row and jth column of Σ, σi,j = 1 if i = j

(then Σ = R), and σi,j = ρ if ei,j ∈ Gc (inside network edges) and σi,j = 0 when ei,j /∈ Gc

(outside network edges). We simulate 100 data sets at three different settings with different

levels of signal to noise ratio (SNR) by using various sample sizes n and values of ρ. A larger

sample size reduces the asymptotic variance of σ̂i,j and thus the noise level is lower; and a

higher absolute value of ρ represents higher signal level. A higher SNR leads to more distinct

empirical distributions of σ̂i,j between inside network edges ei,j ∈ Gc and outside network

edges ei,j /∈ Gc. Figure 1c demonstrates a calculated correlation matrix based on a simulated

data set.

In our simulated data sets, 150 edges are connected and 4800 edges are unconnected,
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which together represent the graph edge skeleton E. For both precision matrix shrinkage

and covariance matrix thresholding methods we treat a non-zero entry δ̂i,j = 1 (Mazumder

and Hastie, 2012) as a connected edge. We summarize the false positive (FP) edges δ̂i,j = 1

when the edge is not connected and ei,j /∈ Gc and false negative (FN) edges δ̂i,j = 0 when

the edge is connected and ei,j ∈ Gc. We compare FN and FP counts of each method by

contrasting the estimated Ê with the truth E. We compare our method with universal

thresholding (Thresh), glasso, el1 minimization for inverse matrix estimation (CLIME), and

adaptive thresholding (AThres) by comparing the FP and FN edges of estimating the graph

edge skeleton E (Bickel and Levina, 08; Friedman et al , 2008; Cai et al , 2011; Cai and Liu,

2011).

[Table 1 about here.]

3.2.2 Simulation Study Results. The simulation results are summarized in Table 1. Rather

than selecting a single tuning parameter λ for glasso and other methods by cross-validation,

we explore all possible choices within a reasonable range and use the one with best perfor-

mance for comparison. Cross the 100 simulation data sets, we summarize the 25%, 50%, and

75% quantiles of the number of FP and FN edges to assess the performance of each method.

The results show that the NICE algorithm outperforms the competing methods even when

optimal tuning parameters are used (after comparing with the truth) for these methods.

One possible reason could be the NICE algorithm thresholds the correlation matrix based

on the topological structure rather than the a universal shrinkage or thresholding strategy.

More importantly, our approach is the only method can automatically detect the underlying

G1 ∪G0 mixture topological structure. When the graph topological structure does not exist,

the performance of all methods are similar across all settings. The matrix norm loss is not

compared, because the community networks are small in size and norm comparison are

likely determined by the false positive edges outside network communities. We note that the
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methods with sparsity assumption (e.g. glasso and CLIME) may miss many connected edges

(false negative discovery rates are higher) even when small tuning parameter is used (false

positive rates are high). Therefore, when a latent topological structure exists the sparsity

assumption may not be valid because a cluster of features within a network are all correlated

with each other and many of them can be conditionally independent.

In summary, the numerical results demonstrate that our new method not only provides

more accurate estimation of the correlation matrix and the edge set E than the competing

method, but also automatically detects the community networks where highly correlated

edges distribute in an organized fashion.

4. Discussion and Conclusion

We develop the NICE approach to bridge the correlation matrix estimation and graph

topological structure detection via a flexible empirical Bayesian framework. Recognizing

the latent network topological structure can not only reveal underlying biological pathways,

but also guide the decision making procedure of regularization.

The latentG1∪G0 mixture graph structure exist widely in high-throughput biomedical data

across platforms, however, the conventional network detection and clustering algorithms may

not detect it due to the impact of false positive noises. For instance, a few false positive edges

may lead to detecting a large networks with low proportion of highly connected edges. The

proposed penalized network estimation objective function can identify the mixture structure

because it is less affected by false positive noises. Interestingly, we find that the number of

networks is related to the penalty term because a larger C generate many singletons. Efficient

optimization algorithms of the penalized objective function is developed. The computational

cost of NICE algorithm is low (for our simulation example the algorithm takes about 40

seconds by using a i7 CPU and 24G memory desktop), and thus it is ready to scale up for

larger data sets.
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More complex subgraph topological structure of G may exist implicitly within the sample

correlation matrix (e.g. multipartite graph in Chen et al , 2016b). The detected organized

subnetworks (with more complex graph topological structures) can increase the objective

function 1 as the quality term increases and quantity term is almost unchanged. Therefore,

the refined graph topological structure detection algorithms, for instance, K-partite, rich-

club, and overlapped subgraphs could further assist to optimize the objective function, which

are compatible with the objective function 1. In future works, under the same framework

more graph topological structure automatic detection tools will be developed, tested, applied

when needed.

The new Bayes factor based thresholding approach naturally incorporates detected network

topological structure from step one as prior knowledge. The updated thresholding values are

determined by each edge’s ‘location’ on the detected graph topological ‘map’. Therefore,

edges can borrow strengths with each other with higher precision based on detected topolog-

ical structure, which also provides a flexible pathway to account for the dependency between

edges. With additional information from the detected topological structure and appropriate

modeling strategy, our new thresholding approach reduces false positive and false negative

rates simultaneously when topological structures exist. Clearly, the performance of graph

topological structure detection influences the accuracy of correlation matrix thresholding

because it determines the empirical distributions of zini,j and zouti,j and thus θ̂in and θ̂out.

Therefore, the two steps of the NICE algorithm are seamlessly connected as the parsimonious

property of the network detection ensures the efficiency and accuracy of the following

regularization step. Edges outside networks are subject to more stringent thresholds whereas

edges inside networks are less likely to be thresholded. This decision rule is data-oriented

and determined by the latent spatial distributions of edges in the sample correlation matrix.

In our application, only positive (correlation) edges are distributed in an organized graph
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topology and the negative (correlation) edges are randomly distributed. Based on the network

based thresholding, negative (correlation) edges are thresholded. Our methods are ready to

be extended to the scenario that negatively correlated edges show a organized topological

structure. The numerical studies and example data application have demonstrated excellent

performance of the NICE algorithm regarding false positive/negative findings and latent

network detection.

In addition, the NICE algorithm does not require that the large biomedical data follows

a multivariate Gaussian distribution. It is straightforward to extend the sample correlation

matrix to other sample metrics, for example maximal information coefficients (Kinney and

Atwal, 2014) for continuous data and polychoric correlation coefficients for categorical data

(Bonett and Price, 2005) because graph topology oriented thresholding are based on the

empirical distribution of the coefficients.
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(a) The truth: two networks (b) Shuffling the order of nodes

(c) The input data for NICE (d) Network detection results

Figure 1: An example of a network induced correlation matrix: |V |=100 nodes and |E|=4950
edges, there are two networks (a) and in practice they are implicit (b); it may be difficult to
recognize the the latent G1 ∪ G0 mixture structure when looking at the sample correlation
matrix (c); the proposed objective function is robust to false positive noise and identify the
latent G1 ∪G0 mixture structure from the sample correlation matrix.
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(a) Sample correlation (b) Detecting latent G1 ∪G0 mixture structure

(c) Edges inside and outside networks (d) Estimated edge set Ê

Figure 2: Application of the NICE to the example data set one. (a) is the heatmap of sample
correlation matrix; (b) demonstrates the latent G1 ∪G0 mixture structure by reordering the
variables in the heatmap; (c) shows the distributions of edges inside and outside the networks;
(d) is the estimated Ê based on the NICE thresholding.
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(a) Sample correlation (b) Weight matrix W

(c) Edges inside and outside networks (d) Estimated edge set Ê

Figure 3: Application of the NICE to the example data set two. (a) is the sample correlation
matrix; (b) demonstrates the latent G1 ∪ G0 mixture structure by reordering the variables
in the heatmap; (c) shows the distributions of edges inside and outside the networks; (d) is
the estimated Ê based on the NICE thresholding.
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Table 1: Median along with 25% and 75% quantiles of FP and FN

σ = 0.5, n = 25 σ = 0.5, n = 50 σ = 0.7, n = 25
Method Tuning FP FN FP FN FP FN

Par. Med. Quantiles Med. Quantiles Med. Quantiles Med. Quantiles Med. Quantiles Med. Quantiles

glasso 0.1 1673 (1648, 1702) 59 (55, 64) 1621 (1591.5, 1640) 44 (40, 46) 1581.5 (1557, 1606) 45.5 (42, 48)
0.2 1008.5 (989, 1025) 59 (53.5, 64.5) 630 (610, 644) 38 (33.5, 43) 932.5 (920, 955.5) 36 (32, 40)
0.3 546 (529.5, 560) 56 (48, 63.5) 151 (141, 162.5) 38 (30.5, 43) 500.5 (490, 516) 28 (23.5, 33)
0.4 211.5 (200.5, 222.5) 60 (50.5, 72) 19 (16, 21) 48.5 (38, 58) 194 (186, 204.5) 24.5 (20, 29)
0.5 51 (46, 59) 80.5 (66, 96) 1 (0, 2) 82.5 (67, 96.5) 47 (41.5, 54) 28 (22.5, 35)
0.6 7 (5, 10) 112.5 (97, 125.5) 0 (0, 0) 130 (118.5, 137) 6 (5, 8.5) 41 (31, 51)
0.7 0 (0, 1) 140 (131.5, 146) 0 (0, 0) 149 (147, 150) 0 (0, 1) 75 (61.5, 89)
0.8 0 (0, 0) 149 (148, 150) 0 (0, 0) 150 (150, 150) 0 (0, 0) 127 (119.5, 135)
0.9 0 (0, 0) 150 (150, 150) 0 (0, 0) 150 (150, 150) 0 (0, 0) 149 (149, 150)
1.0 0 (0, 0) 150 (150, 150) 0 (0, 0) 150 (150, 150) 0 (0, 0) 150 (150, 150)

CLIME 0.1 1082.5 (1047.5, 1108) 56 (48, 64.5) 993.5 (981, 1024) 39 (32, 45.5) 1054 (1021, 1079) 48.5 (40, 56)
0.2 353 (339.5, 367.5) 79.5 (69, 87.5) 241.5 (231.5, 251.5) 61 (54, 67.5) 345 (328, 359) 70 (59, 78)
0.3 63 (57, 69) 110 (98.5, 115) 25 (22, 29) 92 (84.5, 100) 64 (59, 68) 98 (87, 103)
0.4 0 (0, 1) 140 (135, 144) 0 (0, 0) 130 (124, 135) 0 (0, 1) 134 (129, 139)
0.5 0 (0, 0) 150 (150, 150) 0 (0, 0) 150 (150, 150) 0 (0, 0) 150 (150, 150)

Thres 0.1 2017.5 (1963.5, 2067.5) 0 (0, 2) 1978.5 (1944.5, 2021.5) 0 (0, 0) 2021.5 (1968.5, 2061) 0 (0, 1)
0.3 1292.50 (1252, 1331) 2 (0, 5) 1249.5 (1220.5, 1288.5) 0 (0, 0) 1293.5 (1251, 1341.5) 1 (0, 3)
0.5 721.5 (699, 752) 5 (1, 12) 689 (673.5, 721) 0 (0, 1) 722 (693, 756) 3 (1, 10.5)
0.7 344.5 (325, 360) 14 (7, 26.5) 328.5 (311.5, 349.5) 1 (0, 2) 342.5 (324, 363) 10 (3, 21.5)
0.9 132 (121, 143.5) 30 (18, 45) 129.5 (121, 142) 3 (1, 7) 133 (123.5, 146) 24 (12, 39.5)
1.1 41.5 (35, 46) 55.5 (40, 78.5) 40.5 (36.5, 47.5) 10 (4.5, 17) 40 (35.5, 46.5) 49.5 (28, 63)
1.3 9 (6, 10) 92 (74, 112) 10 (8, 12) 25 (13, 37) 9 (6, 11) 78 (54.5, 89)
1.5 1 (0, 2) 126 (112.5, 137) 2 (1, 3) 50.5 (32.5, 68) 1 (0, 2) 106 (92.5, 114)
1.7 0 (0, 0) 145 (138.5, 148) 0 (0, 0) 85.5 (67, 102.5) 0 (0, 0) 132.5 (120.5, 138.5)
1.9 0 (0, 0) 150 (149, 150) 0 (0, 0) 120.5 (105, 130) 0 (0, 0) 147 (144, 149)

AThres 0.3 2593 (2566.5, 2627.5) 2 (0, 5) 2538.5 (2509.5, 2571) 0 (0, 0) 2594 (2563, 2619) 1 (0, 3)
0.5 1460 (1421.5, 1486) 5 (1, 12) 1412.5 (1379.5, 1440) 0 (0, 1) 1453 (1419.5, 1491) 3 (1, 10.5)
0.7 691.5 (667, 717) 14 (7, 26.5) 668.5 (646, 697) 1 (0, 2) 695.5 (665.5, 720) 10 (3, 21.5)
0.9 271.5 (258, 291.5) 30 (18, 45) 265 (252, 283.5) 3 (1, 7) 270.5 (255.5, 288) 24 (12, 39.5)
1.1 83 (75, 95) 55.5 (40, 78.5) 85 (75.5, 95.5) 10 (4.5, 17) 82 (74, 89.5) 49.5 (28, 63)
1.3 18 (15, 21) 92 (74, 112) 22 (18.5, 25.5) 25 (13, 37) 18 (14.5, 22) 78 (54.5, 89)
1.5 2 (1, 4) 126 (112.5, 137) 4 (3, 6) 50.5 (32.5, 68) 3 (1, 3) 106 (92.5, 114)
1.7 0 (0, 0) 145 (138.5, 148) 0 (0, 1) 85.5 (67, 102.5) 0 (0, 0) 132.5 (120.5, 138.5)
1.9 0 (0, 1) 150 (149, 150) 0 (0, 0) 120.5 (105, 130) 0 (0, 0) 147 (144, 149)

NICE None 44 (15, 98) 3 (0, 27) 11 (1, 30) 0 (0, 4) 32.5 (13.5, 71) 14 (4, 38.5)


