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a b s t r a c t

Longitudinal clinical outcomes are often collected in genomic studies, where selection
methods accounting for dynamic effects of biomarkers are desirable. Biomarker effects
can be modeled by nonparametric B-splines and selected by group lasso. A novel weight
function is proposed based on the extremum of the biomarker effects over time for
the penalty. In addition to the common practice treating weights as adaptive functions
depending on some first-stage estimates, an integrative group lasso which treats the loss,
penalty and weight functions as an integrative whole is proposed, where parameters in
all three are jointly estimated in one step. Generalized local quadratic approximations
are developed to optimize the integrative group lasso whose guidelines are applicable
in a wide range of non-convex optimization problems. The integrative version has
theoretical advantages as it requires weaker assumptions in achieving consistency and
sparsistency. Both adaptive and integrative procedures show larger areas under the ROC
curves as well as smaller biases and mean square prediction errors over unweighted
group lasso in simulation studies. Finally, the proposed method is illustrated on the GWAS
from the Epidemiology and Intervention of Diabetes Complication trial. To accommodate
more candidate markers, 23 chromosomes are analyzed separately with common tuning
parameters.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the presence of large number of candidate markers with inherent group structure, group lasso (Yuan and Lin, 2006) or
COSSO (Lin and Zhang, 2006) are desirable for their group sparsity property. However, similar to lasso, regression coefficients
estimates from group lasso are biased. By contrast, Wei et al. (2011) proved that under some regularity conditions, group
lasso with adaptive weights selects the correct subset of variables with probability converging to one. Besides adaptive
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weights where parameters in the weight function are estimated in the first stage and plugged into the penalized log-
likelihood in the second stage, we propose integrative weights, which are functions of the unknown parameter values.
In the adaptive version, the regression coefficient estimates depend on the accuracy of the estimates in the first stage.
In the integrative group lasso, the parameters in the weight function are set to be unknown, and hence the loss function
and the weighted penalty function are minimized jointly in one step as a unified whole. Such a weight function does not
require any prior information on or first-stage estimation of the parameters. As a consequence, the integrative group lasso
has theoretical advantages—it achieves sparsistency under milder conditions. However, neither traditional local quadratic
approximation (Fan and Li, 2001) nor group LARS (Yuan and Lin, 2006) can solve the integrative group lasso directly due
to the unknown parameters in the weights. We develop a generalized local quadratic approximation (GLQA) that gives a
convex quadratic approximation of any penalty function and is guaranteed to converge in combination with back-tracking
line search (Conway, 2004). The three guidelines of GLQA, which were not found in the literature by our knowledge, can be
borrowed into other non-convex optimization problems.

The comparison of the adaptive and integrativeweights also provides new insights into the adaptive lasso (Zou, 2006) and
the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) methods. Although appearing to be different, adaptive
lasso and SCAD both modify the lasso penalty to achieve asymptotic consistency in both selection and estimation. The
difference lays in the form of their penalty functions—adaptive weights depend on the first-stage estimators while SCAD
penalty is a function of the unknown parameters. The same difference lays between the adaptive group lasso and our
integrative group lasso. The adaptive and integrative group lasso procedures modify group lasso following the spirits of
adaptive lasso and SCAD, respectively, in the following sense: Adaptive group lasso and adaptive lasso share the same
essential properties;while both the integrative group lasso and SCAD construct penaltieswhich are complicated functions of
the unknown parameters, resulting in selection and estimation procedures with desirable properties such as unbiasedness
and sparsity.

Our study is motivated by a genome wide association study (GWAS) with longitudinal clinical outcomes, where the
effects of SNPs are presumably time-varying. Various nonparametric splines have been widely employed in literature to
model time-varying effects of biomarkers. Take a few examples: Fan et al. (2012) used linear penalized splines to model
temporal trends of SNP effects on longitudinal quantitative traits in analyzing the FraminghamHeart Study Genetic Analysis
Workshop data.Wang et al. (2007) alsomodeled the effects of transcription factors as B-splines. Chen and Zhang (2008) used
multivariate adaptive splines to describe the relationship between the presence of regulatory motifs and gene expression.
Chen andWang (2011) estimated functional mixed effects models in which both the random and fixed effects are modeled
as P-splines. Yan and Huang (2002) extended the adaptive group lasso procedure to Cox proportional hazards models and
selected variables by maximizing penalized partial likelihood where the two penalties represented time-invariant effects
and time-varying effects, respectively.

By using the adaptive and integrative lasso, we propose novel variable selection and coefficient estimation procedures
for time-varying effects with an emphasis on effects with large extremum. The effects of themarkers over time aremodeled
as cubic B-splines. And all the coefficients in constructing the same spline are viewed as a group, and selected or unselected
jointly by group lasso with adaptive or integrative weights. Furthermore, we design novel weight functions based on the
largest absolute values of the spline coefficients in the group. The weights based on extremum are motivated from, but not
limited to, the following biological scenarios—when the true marker effects are small values around zero, they are most
likely biological fluctuations without serious disease consequences. In such cases, the proposed method will assign large
penalties, leading to lower chances of selection. On the contrary, we target at markers with large effects for at least a period
of time, which pass the threshold to trigger disease onset or progression. In summary, the proposedmethod prefersmarkers
with large temporary effects for at least a period of time over markers with consistently small fluctuations.

The rest of the article is organized as follows. The adaptive and integrative versions of the weighted group lasso are
introduced in Section 2. Section 3 describes the computation algorithms for both versions. Asymptotic selection consistency
and estimation consistency of the parameters are derived in Section 4, with emphasis on the difference between the
conditions required by adaptive and integrative weights. Section 5 examines their performances and compares them to
the unweighted group lasso through simulation studies. Finally, the motivating data are analyzed by both procedures in
Section 6.

2. Weighted group lasso based on extremum

First we introduce the notation. Define Y = [yik] as an n×T matrix, where yik is the outcome for the ith subject at the kth
time point. Outcomes aremeasured at t1, . . . , tT . Let X = [xip] be an n× (P +1)matrix. The ith row Xi· denotes the covariate
vector for the ith subject, where xi0 = 1 corresponds to the intercept and xi1, . . . , xiP represent candidate biomarkers. Note
that the index p starts from 0. We assume (yi1, . . . , yiT , xi1, . . . , xiP) are independently and identically distributed for all i.
The relationship between Y and X is modeled as,

yik =

P
p=0

xipβp(tk) + ϵik, ϵik i.i.d. ∼ N(0, σ 2),
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where β0(t), . . . , βP(t) are time-varying regression coefficients. We approximate the time-varying coefficients by cubic
B-spline expansions. Let B1(t), . . . , Bj(t), . . . , BJ(t) be the cubic B-spline basis functions with J −4 uniform internal knots
covering the time range. Then βp(t) =

J
j=1 θpjBj(t), where Θ = [θpj] is a (P + 1) × J coefficient matrix.

The sum of squared errors (SSE) is calculated as

SSE =

n
i=1

T
k=1


yik −

P
p=0

xipβp(tk)

2

.

Let B = [bjk] be an J×T matrixwhere bjk = Bj(tk). Then SSE can bewritten in the followingmatrix form, SSE = ∥Y−XΘB∥2
F ,

where ∥ · ∥F indicates the Frobenius norm. In the following discussion, matrices are converted to vectors by column. That is,
for an m × n matrix M , vec(M) = [M11, . . . ,Mm1, . . . ,M1n, . . . ,Mmn]

′. Define 2 = vec(Θ ′), Y = vec(Y ′), and X = X ⊗ B′

where ⊗ denotes the Kronecker product. With some simple algebra, we obtain SSE = ∥Y − X2∥
2.

We adopt the regularization framework to estimate Θ . In general, the objective function for estimating Θ could be
written as

argmin
Θ


SSE(Θ) + λ


P

p=1

Pen(Θp.)


,

where Pen(Θp.) indicates a penalty function for the pth coefficient vector Θp.. Note that the row index p goes from 1 to
P , corresponding to the P covariates but not the coefficients Θ0. for the intercept function. Therefore, the estimate of the
intercept function β0(t) will not shrink. A natural choice of the penalty function is the group lasso penalty (Yuan and Lin,
2006),

argmin
Θ


SSE(Θ) + λ


P

p=1

∥Θp.∥


,

where ∥·∥ denotes the l2 norm. All the coefficients in constructing the same spline are viewed as a group and estimated to be
zero or non-zero simultaneously. Similarly to the lasso (Zou, 2006), a drawback to the group lasso is that it introduces bias
in estimating non-zero coefficients. To correct the bias and hence achieve both consistency and sparsistency, we introduce a
weighted group lasso with novel weight functions based on the extremum of each coefficient group. For an arbitrary vector
z = [z1, . . . , zJ ], define

w(z) = exp

−

∥z∥∞

σ


,

where ∥z∥∞ = max{|z1|, . . . , |zJ |} is the l∞ norm of z, and σ is a scale parameter. The weights are constructed in a way
such that the larger the extremum of Θp., the smaller the weighted group lasso penalty. The l∞ norm is preferred over the
common choices of l1 or l2 norm because we target at biomarkers with large effects in at least a period of time. Furthermore,
we choose exponential decay form of ∥z∥∞ instead of ∥z∥r

∞
, r < 0, because ∥z∥r

∞
functions are undefined for vectors of

zeros.
We further study two versions ofweighted group lasso—adaptive group lasso and integrative group lasso. Adaptive group

lasso is a two-stage procedure. In the first stage, we obtain a
√
n-consistent estimator Θ0, for example, the least square

estimator ΘLS . Then we plug Θ0
p. into the weight function w(z) for p = 1, . . . , P . The objective function of the adaptive

group lasso is

argmin
Θ


SSE(Θ) + λ


P

p=1

w(Θ0
p.)∥Θp.∥


. (1)

The performance of adaptive group lasso depends on the accuracy of the initial estimator, which can be problematic
especially when P is large. To remedy this issue, we propose the following integrative group lasso objective function,

argmin
Θ


SSE(Θ) + λ


P

p=1

w(Θp.)∥Θp.∥


. (2)

The weight function in the integrative group lasso contains the unknown parameter Θ . Therefore, no prior information is
needed. On the contrary, parameters in theweights are estimated togetherwith parameters in the loss and penalty functions
in one step.

We illustrate the unweighted and integrative weighted group lasso penalties using a simplified example of a coefficient
vector z with two elements z1 and z2. Theweighted penalties λw(z)∥z∥ are plotted side by side in Fig. 1. The ranges of z1 and
z2 are restricted to (−10, 10). To compare the shapes, different λ values are used so that the ranges of the four functions are
all [0, 1]. It can be seen that the weights result in a bounded penalty function, compared to the unweighted penalty which
always increases when either z1 or z2 increases. The plot also helps us understand the extra tuning parameter σ in addition
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Fig. 1. Comparison of the unweighted and weighted penalty functions for a two-dimensional coefficient vector.

to λ, which is set to regulate the locations of the peaks of λw(z)∥z∥. In the cases in Fig. 1, for any direction z1 = rz2, it can
be shown that the integrative group penalty peaks at 1+r

1+r2
σ .

3. Estimating procedures

3.1. LQA for adaptive group lasso

In the adaptive group lasso, the parameter estimatesminimizing (1) can be solvedby adirect application of local quadratic
approximation (LQA). Following Fan and Li (2001), let Θ(m) be the solution at themth iteration. The LQA goes as follows,

∥Θp.∥ ≈ ∥Θ(m)
p. ∥ +

1
2

J
j=1

(θ2
pj − (θ̂

(m)
pj )2)

∥Θ(m)
p. ∥

. (3)

The group lasso penalty is approximated by an l2 penalty and the optimization of the objective function is reduced to a ridge
regression.

SSE(Θ) + λ


P

p=1

w(Θ0
p.)∥Θp.∥


≈ SSE(Θ) +

λ

2

 P
p=1

w(Θ0
p.)

J
j=1

θ2
pj

∥Θ(m)
p. ∥

+
λ

2


P

p=1

w(Θ0
p.)∥

Θ(m)
p. ∥



= ∥Y − X2∥
2
+ λ2′ΦA(m)2 +

λ

2


P

p=1

w(Θ0
p.)∥

Θ(m)
p. ∥


, (4)

where ΦA(m)
= diag


V0,

w(Θ0
1.)

2∥Θ(m)
1. ∥

IJ , . . . ,
w(Θ0

P.
)

2∥Θ(m)
P.

∥
IJ


, and V0 and IJ are J × J zero and identity matrices, respectively. The

minimization of (4) has a closed form solution,2(m+1)
=

X′X + λΦA(m)

−1
X′Y.

The solution 2(m+1)
can be rewritten as a matrix Θ(m+1) where Θ(m+1)

p. =

2(m+1)
pJ+1 , . . . ,2(m+1)

(p+1)J


. If ∥Θ(m+1)

p. ∥ < 10−8, we

set Θp. = 0 and remove the pth covariate from the candidate list. We repeat the procedure above until convergence.
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The adaptive group lasso can be solved using readily usable computation packages for group lasso, such as the ‘‘grplasso’’
package (Meier, 0000) in R, following the transformation in Zou (2006) to rewrite a weighted group lasso in the form of an
unweighted group lasso.

3.2. GLQA for integrative group lasso

Sinceweights in the integrative group lasso are also functions of unknownΘ , more complicated quadratic approximation
needs to be developed. We begin with calculating the derivative of the penalty function Pen(Θp.) in the integrative group
lasso where Pen(Θp.) = w(Θp.)∥Θp.∥.

∂Pen(Θp.)

∂θpj
= dpjθpj,

where

dpj =


w(Θp.)(∥Θp.∥)

−1 if |θpj| ≠ ∥Θp.∥∞,

w(Θp.)(∥Θp.∥)
−1

− w(Θp.)∥Θp.∥(|θpj|σ)−1 if |θpj| = ∥Θp.∥∞.
(5)

Again, let Θ(m) be the solution from the mth iteration. By replacing θpj with θ̂
(m)
pj in (5), we obtain d(m)

pj . Had we applied
the LQA method in (3), Pen(Θp.) would be approximated by the following function,

Pen(Θp.) ≈ Pen(Θ(m)
p. ) +

1
2

J
j=1

d(m)
pj {θ2

pj − (θ (m)
pj )2}. (6)

However, a key difference between (6) and (3) is that sometimes d(m)
pj < 0when |θpj| = ∥Θp.∥∞. As a consequence, the right

hand side of (6) is not guaranteed to be convex. Therefore, we propose a set of general guidelines to design convex quadratic
approximations for any penalty function, called generalized local quadratic approximation (GLQA). A quadratic function
G(Θp.) is a generalized local quadratic approximation of Pen(Θp.) at Θ(m)p. , if it satisfies the following three conditions:

1. G(Θp.) is convex.
2. G(Θ(m)

p. ) = Pen(Θ(m)
p. ).

3. For all p and j,

∂G(Θp·)

∂θpj


θpj=θ̂

(m)
pj

=
∂Pen(Θp·)

∂θpj


θpj=θ̂

(m)
pj

.

For adaptive group lasso, GLQA reduces to the standard LQA, since (3) satisfies the three conditions above.
For integrative group lasso, the classical LQA Pen(Θ(m)

p. ) +
1
2

J
j=1 d

(m)
pj {θ2

pj − (θ (m)
pj )2} satisfies the second and third

condition. However, it may not satisfy the first condition since some d(m)
pj < 0.

We propose the following approximation,

Pen(Θp.) ≈ Pen(Θ(m)
p. ) +

J
j=1

Q (θpj),

where Q (θpj) =
1
2
|d(m)

pj |

(θpj + c1)2 + c2


,

with c1 and c2 being constants not including θpj.
Pen(Θ

(m)
p. ) +

J
j=1 Q (θpj) satisfies the first condition since the second derivative of Q (θpj) equals |d(m)

pj | which is always
nonnegative.We need to select the proper values for c1 and c2 in order to satisfy the second and third condition, which leads
to the following function

Q (θpj) =
1
2
|d(m)

pj |


[θpj − {1 − sgn(d(m)

pj )}θ̂
(m)
pj ]

2
− (θ̂

(m)
pj )2


.

Here sgn(·) is the sign function, i.e.,

sgn(z) =


1 if z > 0,

−1 otherwise.

GLQA is solved as follows. Define a (P + 1) × J matrix D(m)
= [d̃(m)

pj ], where

d̃(m)
pj =


|d(m)

pj | if p ≥ 1,
0 if p = 0,
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and let Φ I(m)
= diag[vec(D(m)′)]. Define another (P + 1) × J matrix C (m)

= [c(m)
pj ], where

c(m)
pj =


|d(m)

pj |{1 − sgn(d(m)
pj )}θ̂

(m)
pj /2 if p ≥ 1,

0 if p = 0,

and let C(m)
= vec(C (m)′). At the (m + 1)th iteration, we minimize the following quadratic function

SSE(Θ) + λ

P
p=1

J
j=1

Qpj = ∥Y − X2∥
2
+ 2λ2′Φ I(m)2 − λC(m)′2. (7)

The solution of (7) goes as follows2(m∗)
=

X′X + λΦ I(m)

−1 
X′Y + λC(m)


.

Let Θ(m∗) be the corresponding matrix form of 2(m∗)
. Since the approximation is only accurate near Θ(m), G(Θ(m+1)) may

give a very poor approximation of Pen(Θ(m+1)) when 2(m∗)
is far away from 2(m)

. We thereby employ the back-tracking
line search algorithm to guarantee monotone decreasing updates of the objective function at each iteration. One can refer
to Chapter 9 of Conway (2004) for details. The parameter estimate Θ(m)

pj is updated by a value between itself and Θ(m∗)
pj .

The updated estimate Θ(m+1)
pj is the one giving the longest step length among the parameter values on the straight line

connecting Θ(m)
pj and Θ(m∗)

pj that satisfy SSE(Θ(m+1)) + λ
P

p=1 Pen(Θ(m+1)
p. ) ≤ SSE(Θ(m)) + λ

P
p=1 Pen(Θ(m)

p. ).

Similar to Section 3.1, at each iteration, if ∥Θ(m+1)
p. ∥ < 10−8, we set Θp. = 0 and remove the pth covariate from the

candidate list.With an initial valueΘ(0), we iterate theprocedure aboveuntil the gradient of the objective function converges
to zero. It is worth pointing out that the GLQA procedure may converge to local minimal points, which can be remedied by
trying different starting values of the parameters.

Remark 3.1. Zou and Li (2008) proposed an algorithm based on local linear approximation (LLA). Using our notation,
Pen(Θp.) can be approximated by

Pen(Θp.) ≈ Pen(Θ(m)
p. ) +

J
j=1

d(m)
pj {|θpj| − |θm

pj |}. (8)

However, similarly to LQA, the LLA algorithm requires all weights to be non-negative. Therefore, the approximation above
cannot be directly used to solve the objective function for the integrative lasso since d(m)

pj < 0 sometimes. Moreover, LLA
cannot be reformatted to make all weights non-negative while satisfying conditions 2 and 3 due to the inflexibility of the
linear approximation. In fact, the proposed GLQA (6) is a much more flexible algorithm compared to existing ones because
it does not require the weighted penalty function to be nonconcave.

4. Asymptotic properties

We establish the asymptotic properties of the adaptive and integrative group lasso estimators. The tuning parameters λ
and σ are denoted by λn and σn in this section to reflect the fact that they depend on the sample size n.

Theorem 4.1 (Theorem 1). Let ΘA and Θ I be the adaptive and integrative group lasso estimator, respectively, and Θ0 be
a

√
n-consistent initial estimator for Θ . Furthermore, we assume (yi1, . . . , yiT , xi1, . . . , xip) having finite fourth moment for

i = 1, . . . , n. Let P = {p : ∥Θp·∥ ≠ 0} and P c be the complementary set of P . Then we have the following conclusions.

1. ΘA p
→ Θ and P(ΘA

P c = 0) → 0, if λn/n → 0, λn/
√
n → ∞, σn → 0 and σn

√
n → ∞, as n → ∞.

2. Θ I p
→ Θ and P(Θ I

P c = 0) → 0, if λn/n → 0, λn/
√
n → ∞ and σn → 0, as n → ∞.

The proof of Theorem 1 is given in Appendix A. In Appendix A, we prove that ΘA and Θ I satisfy the following optimality
conditions, respectively,

∥XpY − XpXvec(ΘA′

)∥ ≤ λnw(Θ0
p.), for ΘA

p. = 0, (9)

∥XpY − XpXvec(Θ I ′)∥ ≤ λn, for Θ I
p. = 0, (10)

where 0 is a J × 1 vector of zeros. To prove sparsistency, we construct estimators with the correct non-zero set which
asymptotically satisfies (9) or (10). Condition (9) of the adaptive group lasso is similar to the corresponding optimality
condition in group lasso (Yuan and Lin, 2006). Following the proof of the adaptive lasso (Zou, 2006),w(Θ0

p.) → 1 is required
for the correct non-zero set to satisfy condition (9), which is guaranteed if λn/

√
n → ∞. By contrast, the proof for the
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sparsistency is quite different when parameters in weights take their true values because condition (10) does not require
w(Θ0

p.) → 1. In fact, the right hand side of (10) does not depend on σn because w(Θp.) = 0 automatically holds when
Θp. = 0. Therefore, Θ I is theoretically superior because it does not require σn

√
n → ∞ in the proof of sparsistency.

We now derive the covariance estimator of the non-zero rows of Θ I , following the sandwich estimator in Fan and Li
(2001). Without loss of generality, suppose at themth iteration the first a+ 1 rows of Θ I(m) are nonzero, denoted by Θ I(m)

[a+1].
Let X[a+1] be the first a + 1 columns of X. Define Φ I(Θ I(m)

[a+1]) and C(m)
[a+1] by replacing Θ I(m) with Θ I(m)

[a+1] in the definitions of
Φ I(m) and C(m). Through GLQA, Θ I(m)

[a+1] is updated by,

2I(m∗)
=


X′

[a+1]X[a+1] + λΦ I(Θ I(m)
[a+1])

−1 
X′

[a+1]Y + λC(m)
[a+1]


.

At the time of convergence, Θ I(m)
[a+1] ≈ Θ I(m∗)

[a+1] = Θ I
[a+1]. Therefore, the estimated covariance matrix is

Cov(Θ[a+1]) = ς̂2 X′

[a+1]X[a+1] + λΦ I(Θ[a+1])
−1

X′

[a+1]X[a+1]

X′

[a+1]X[a+1] + λΦ I(Θ[a+1])
−1

,

where ς̂2 is the variance estimated from the least square estimatorswithout penalty. The covariance estimation for adaptive
group lasso is derived similarly and omitted here.

5. Simulation studies

In this section, we compare the performance of unweighted group lasso, adaptive group lasso and integrative group
lasso through simulations. Each dataset contains 200 independent observations. The outcome Y is generated as yik =30

p=0 βp(tk)xip + ϵik, k = 1, . . . , 20, where the error term ϵik is independent from xip. Furthermore, the error vector
(ϵi1, . . . , ϵi20) follows multivariate normal distribution with mean zero, standard deviation 0.5 and auto-regressive
correlation matrix with ρ(ϵik1 , ϵik2) = 0.5|k1−k2| for k1 = 1, 2, . . . , 20 and k2 = 1, 2, . . . , 20. Covariates xi1, . . . , xi30
also follow multivariate normal distribution with auto-regressive covariance matrix ρ(xip1 , xip2) = 0.5|p1−p2| for p1 =

1, 2, . . . , 30 and p2 = 1, 2, . . . , 30. Correspondingly, there are 31 coefficient functions β0(t), β1(t), β2(t), . . . , β30(t).
Regression coefficient functions β11(t), . . . , β30(t) are all zero. The true values of the eleven nonzero coefficient functions
are listed below,

β0(t) = 1/4,
β1(t) = 1/4 cos(t),
β2(t) = 1/4 sin(t),
β3(t) = 1/4 cos(t)I(0 ≤ t ≤ π),

β4(t) = 1/4 sin(t)I(0 ≤ t ≤ π),

β5(t) = 1/4 cos(t/2)I(0 ≤ t ≤ 2π),

β6(t) = 1/4 sin(t/2)I(0 ≤ t ≤ 2π),

β7(t) = 1/4 cos(t/3)I(0 ≤ t ≤ 3π),

β8(t) = 1/4 sin(t/3)I(0 ≤ t ≤ 3π),

β9(t) = 1/4 cos(t/4)I(0 ≤ t ≤ 4π) and
β10(t) = 1/4 sin(t/4)I(0 ≤ t ≤ 4π).

In each setup, 500 replicates are generated.
Because it is computationally infeasible to fine-tune the optimal knots for thousands of candidate genomic markers

with different regression coefficient functions, we follow the general guidelines given in Wold (1974) to choose knots for
B-splines, ensuring that there are at least 4–5 time points and no more than one extremum or inflexion points per interval.
Five evenly based interval knots are employed for the simulation study with 20 time points.

Firstly, we compare the performance of unweighted group lasso, adaptive group lasso and integrative group lasso when
the tuning parameters are set to the same values in Figs. 2 and 3. The patterns of themean squared prediction errors (MSPEs)
and extended Bayesian Information Criterion (BIC) (Chen and Chen, 2008) for the two weighted group lasso procedures are
plotted over a series of pre-specified λ and σ values in Fig. 2. The objective function of extended BIC is

SSE(Θ) + ν log n + log

PJ
ν


, (11)

where ν is the number of non-zero θ̂pj selected by the method under evaluation. The calculation of MSPEs is based on
validation datasets independent of the datasets used in variable selection and coefficient estimation. To see the comparison
of sensitivities/specificities andMSPEs more clearly, we further compare the three procedures by fixing σ = 5 and allowing
λ to change in Fig. 3. We first plot the receiver operating characteristic (ROC) curves to compare the performances in terms
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Fig. 2. Adaptive group lasso vs. integrative group lasso vs. (λ, σ ) values.

Table 1
Comparison of five lasso procedures.

Method True False MSPE Bias2 Variance MSE
Method Positive Positive

1 0.4432 0.0672 0.4307 – – –
2 0.7392 0.0267 0.3468 0.0030 0.0001 0.0032
3 0.9128 0.1019 0.3168 0.0021 0.0005 0.0026
4 0.8940 0.0549 0.3287 0.0020 0.0012 0.0032
5 1 0 0.2975 0.0011 0.0005 0.0016

Method 1: Lasso. Method 2: Group lasso. Method 3: Adaptive group lasso. Method 4: Integrative group lasso. Method 5: Oracle.

of variable selection. Both weighted group lasso procedures show similar performance according to ROC curves, and both of
themhave larger areas under the curve (AUCs) than unweighted group lasso.We further plot theMSPEs versus false positive
rates in Fig. 3. The MSPEs for both weighted procedures are smaller than the MSPEs for the unweighted procedure at the
same false positive level. Moreover, the MSPEs for the integrative group lasso is larger than the adaptive lasso. As mean
square errors can be decomposed into bias square and variance, we plot the average squared biases and variances of β̂ from
the three procedures. The integrative group lasso procedure gives the smallest biases but the largest variances, which may
result from the true parameter values in the weights of integrative group lasso which require the more complicated GLQA
algorithm.

Secondly, we compare the performance of the three group lasso procedures plus the lasso, which ignores the time-
varying effects of βp(t), at the optimal tuning parameter values selected by minimizing extended BIC. We report in Table 1
the average true positive rates, false positive rates and MSPEs from the four methods. We also report the average mean
square errors, average squared biases and variances of β̂ estimated by the unweighted, adaptive and integrative group
lasso. We also include the MSPE by the oracle procedure, which fits time-varying coefficients in the form of cubic B-splines
for x0, . . . , x10 and excludes x11, . . . , x30. As shown in Table 1, the lasso method ignoring the time-varying property of βp(t)
performs worst with the highest MSPEs and the lowest true positive rates. Even though the unweighted group lasso gives
slightly lower false positive rates, its true positive rates are much lower and MSPEs are higher than the weighted methods.
The MSPEs of the adaptive and integrative group lasso procedures are comparable. Moreover, the integrative group lasso
has the smallest bias but the largest variance at the optimal tuning parameters. And the adaptive group lasso gives the best
MSE. These observations are consistent with Fig. 3.

Fig. 4 plotsmean (β̂1(t), β̂5(t), β̂9(t), β̂13(t)) and (β̂2(t), β̂6(t), β̂10(t), β̂14(t)) at the optimal λ and σ values. The estimated
regression coefficient curves β̂1(t), β̂2(t), β̂5(t), β̂6(t) obtained by integrative group lasso are less biased than the estimates
by the other two methods. For β9(t) and β̂10(t), all three methods give similar estimates. And all the methods correctly
identify the zero coefficient function β13(t) and β̂14(t).

In summary, the proposed weighted methods provide smaller bias and MSPE as well as higher true positive rates at the
same false positive values and at the optimal (λ, σ ) value.
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Fig. 3. Comparison of unweighted group lasso (solid), adaptive group lasso (dash) and integrative group lasso (dot–dash) when sigma = 5.

6. Application to GWAS data

The fast advancements of sequencing techniques have provided rich information in genome, epigenome, transcriptome
and proteome. However, the number of clinicallymeaningful biomarker discoveries are less thanwhat researchers expected
and the discovered biomarkers account for small percentages of the total heritable phenotype variation (Maher, 2008). One
of the challenges is the efficient extraction of phenotypic information representative of the underlying complex diseases.
Binary case and control data ignore the dynamic patterns of clinical symptoms. Therefore, studies using such outcomes have
limited power to detect biomarkers with strong dynamic effects. Recently, more and more genomic studies are employing
longitudinal clinical and biochemical measurements. Such outcomes provide opportunities to capture the time-varying
effects of biomarkers.

The Diabetes Control and Complications Trial (DCCT) and Epidemiology of Diabetes Intervention and Complication (EDIC)
trial aremulti-center randomized clinical trials designed to assess the effects of an intensive glucosemonitoring intervention
on the incidence of microvascular complications among Type 1 diabetic patients. At the enrollment of DCCT, patients were
randomized to either the intensive or conventional therapy. In total, 1441 Type 1 diabetic patients enrolled in DCCT from
1983 to 1989. DCCT ended in 1993 when significant reduction in the risk of microvascluar complications was found in the
intensive therapy group (The DCCT Research Group, 1993). EDIC study started at the end of DCCT where 1394 of the 1441
DCCT participants continued being followed and intensive therapy was provided to all participants. We are particularly
interested in one kind of macrovascular complications—nephropathy, which is commonly measured by urine glomerular
filtration rates (GFR). GFR has been measured annually in DCCT/EDIC for up to 26 years. Logarithm transformation is
employed for the right-skewedGFR values and used as the outcome. In the real data, someGFR values aremissing, especially
at the end of follow-up. Missing values in the response are handled conveniently through vectorization. After transforming
Y and X into Y and X, we remove Yl and the lth row of X when Yl is missing.

In total, 1 039611 candidate SNPs are genotyped in the EDIC GWAS study. We exclude 173571 SNPs with minor allele
frequency less than 0.01. Among the remaining 866040 markers, 2217 fail the Hardy–Weinberg equilibrium test with
unadjusted P-values less than 0.001 and 863823 passed. We also deleted SNPs withmore than 50%missing. SNPs in linkage
disequilibrium (>0.5) with other SNPs in a sliding window of 50 SNPs along the chromosomes are pruned out. The data
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Fig. 4. True (plus sign) and estimated regression coefficient functions from unweighted group lasso (short dash), adaptive group lasso (solid) and
integrative group lasso (dot–dash) over time.

cleaning procedure results in 293469 candidate SNPs. Then we estimate time-varying coefficients in the form of cubic
B-spline for the remaining SNPs on log(GFR) one by one, adjusting for age at randomization, gender, treatment and duration
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Fig. 5. Top ten SNP effects over time.

of diabetes at enrollment. Five evenly spaced internal nodes (year 4, 8, 12, 16, 20) are employed. Each spline coefficient vector
has eight elements, and the smallest P-value from the eight corresponding P-values is taken as the significance level of the
spline as we are interested in the extremum effects. Then, the 293469 marginal P-values resulted from the one-at-a-time
regressions are ranked from the smallest to the largest. One by one regressions estimate marginal effects which could be
‘‘pseudo’’ effects resulting from collinearity or confounding of other correlated biomarkers. We employ the proposed group
lasso procedures to further select and estimate biomarker effects conditional on other markers. Due to the computation
limitation on the number of SNPs that can be handled by group lasso, we set the top one percentile of all 293469 marginal
P-values as our threshold, which is 0.000005673. With such a threshold, 2864 SNPs get in the prescreened candidate set for
the proposed group lasso procedures.

However, it takes 2868×8 = 22 944 coefficients to specify the nonparametric effects of 2864 SNPs and four adjustment
covariates. This number is still too large given current computation ability. We propose a chromosome-wise approximation
procedure to accommodate large number of genome-wide biomarkers. As chromosomes are distributed into haploid cells in
meiosis independently, we assume that genotypes of SNPs locating on different chromosomes are independent. When two
sets of SNPs are independent, the estimated regression coefficients in the linear regression of one set are irrelevant to the
other set. At the same time, note that the independence assumption is only approximately true as we ignore recombinations
across chromosomes. The same tuning parameters λ and σ are used for all the 23 chromosomes and mitochondria to
guarantee consistent selection stringency. We select the optimal tuning parameters by the following procedure. First,
the coefficients of SNPs on chromosome 1 to 23 and mitochondria are estimated by the proposed weighted group lasso
methods separately, with the same tuning parameters. Then we pool coefficient estimates of SNPs in all 24 regressions and
calculate predictions of the outcome. The extended BIC is further calculated based on the predicted outcomes. Finally, tuning
parameters are selected by minimizing the overall extended BIC through a grid search.

Adaptive group lasso selected 280 SNPswhile integrative group lasso selected 243 SNPs, of which 191 overlaps. The SNPs
selected by both weighted group lasso procedures are scattered on all chromosomes as listed in Table 2. Their relationship
to GFR or retinopathy is worth further biological and clinical investigation.

In Fig. 5, we plotted the unpenalized least square estimates of the top ten regression coefficient functions, which are
defined as the ten β̂(t) functions with the largest maxj(|θ̂pj|) values using the integrative weights. All the ten SNPs are also
selected by adaptive group lasso. It isworth noting that these top SNPs selected by the proposedmethods do not overlapwith
another set of 22 SNPs known to be associated with severe nephropathy or persistent microalbuminuria in the DCCT/EDIC
cohort (Al-Kateb et al., 2008) possibly because the previous publication treated regression coefficients of SNPs as scalers,
ignoring potentially time-varying SNP effects over time. Besides, the 22 SNPs were ranked top usingmarginal p-values from
one SNP at a time regressions.
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Table 2
Selected SNPs for the log(GFR) outcome in DCCT/EDIC.

CHR Selected by both procedures Selected by only one

1 rs6426025 rs10493186 rs1570727 rs1323723 rs877343 rs704859 rs17162990 rs16825658 rs4926747 rs12409037 rs4920564 rs4654861
rs4915219 rs2799085 rs6702689 rs1949009 rs536014 rs2243188 rs10746361 rs11585386

rs11210966 rs3011207 rs11810829 rs17301783
2 rs7582948 rs6709878 rs1400153 rs12470501 rs13384029

rs4246586
rs312965 rs10201541 rs10207139 rs13385731 rs1428571 rs4952725

rs6545276 rs805312 rs2272429 rs11681842 rs6732834 rs13420256 rs11123744 rs163660 rs12620150 rs6716449 rs6706564 rs2430425
rs17044762 rs745907 rs6430686 rs17384549 rs10497114 rs288077 rs6753711 rs11894267 rs9808399
rs4141835 rs4571049 rs17863775

3 rs2686698 rs9311438 rs6443126 rs17781377 rs17042373
rs10510577

rs13061928 rs161898 rs11715608 rs1642756 rs3852027 rs9289584

rs2041376 rs35845142 rs9854395 rs11711534 rs2027815
rs10511167

rs7624985 rs415926 rs17008142

rs704574
4 rs2946405 rs4861106 rs4689705 rs4689157 rs13442 rs4689166 rs4696662 rs3828557

rs13114204 rs2973271 rs13119998 rs10019259 rs2298756
5 rs13178673 rs6420053 rs883535 rs3797954 rs16882600 rs297218 rs275460 rs2463506 rs10521011 rs12188200 rs1901509 rs12659828

rs35354255 rs2029108 rs8180405
6 rs1612811 rs1286044 rs179996 rs17771861 rs7775617 rs991974 rs9328033 rs3763236 rs1158059

rs12212942
7 rs4720377 rs12056266 rs293184 rs2107755 rs395158 rs11764487 rs17133176 rs1709592 rs1156381 rs17169954 rs3801204 rs1978326

rs7800244 rs921630 rs34768413 rs4727283 rs17241640 rs2113849 rs2351383 rs6976662
8 rs2912268 rs1504769 rs17855458 rs6601540 rs9792165 rs2683300 rs1616976 rs7820311 rs17055923

rs17524988 rs508419 rs6992462 rs4294223 rs7837124 rs6994178
rs261565

9 rs12238888 rs12351930 rs2381526 rs6477360 rs10961156
rs4144932

rs10973251 rs884886 rs4361859

rs2888998 rs10867972 rs2277175 rs7044827 rs6478489
rs10820780

10 rs17158243 rs10795733 rs12769311 rs12360332 rs10509433
rs1931144

rs7087615 rs12258781 rs12415542 rs6482487 rs2460543 rs10508899

11 rs1354803 rs7102266 rs7104985 rs1590287 rs2447524 rs3751031 rs12806058 rs3849994 rs7945325 rs11607491 rs1447576 rs4945357
rs5743248 rs12804886 rs12807005 rs12802587 rs12418496
rs11227644

rs7119735 rs11034732

rs4945343 rs1939616
12 rs4763561 rs9783464 rs3847860 rs2070875 rs17546579

rs10506416
rs6488591 rs7301316 rs12827160 rs10506202 rs7971372 rs2286646

rs4761378 rs17043605 rs11106355 rs4246224 rs2231696 rs11107199 rs3858659
13 rs7997997 rs3794387 rs9535625 rs10507602 rs551714 rs9578870 rs9600846 rs11616606 rs6562141 rs9284246
14 rs10148442 rs17126349 rs1676300 rs1959462 rs17126543

rs7152495
rs8005345 rs4904117

15 rs4779705 rs4438268 rs9652429 rs1711493 rs7180597 rs435137 rs7175761 rs4932438
rs8025780

16 rs2516787 rs12927811 rs13330694 rs8061112 rs1032618 rs12448481 rs4843349 rs4987018 rs17596071 rs9302384 rs11861871
17 rs16950266 rs11655238 rs11657599 rs7217851 rs3751928

rs7224144
rs471943 rs17821506

18 rs11665524 rs16945001 rs11081082 rs4796915 rs1284402
rs12608110

rs12960602 rs8084112 rs1371726 rs9945821 rs7229701

rs1469593 rs7243138 rs1460537 rs8094401 rs17205646 rs9947297
rs8087543

19 rs4807441 rs12427 rs1317877 rs11084046 rs12373539 rs8112223 rs10419308 rs7245988 rs380442
20 rs188205 rs1573166 rs225146 rs13038175 rs6097667 rs1047527 rs4811948 rs6061772 rs6010965
21 rs2832956 rs7279465 rs2410348 rs8133951 rs647688 rs2254583
22 rs5763914 rs4820864 rs2283956 rs9619738 rs6002232
23 rs7885992 rs5944670 rs2529554 rs7890762 rs12849033 rs5918554 rs36073189 rs7061285 rs16994333 rs1554916 rs6628658

rs1320317 rs17283948 rs5974525 rs909439

7. Conclusion

In this article, wemodel time-varying biomarker effects as nonparametric functions over time. Furthermore, we propose
the weighted group lasso procedures based on extreme values to select markers with large maximum absolute effects
at some time point. Novel generalized local quadratic approximation is developed for non-convex minimization of the
integrative objective function. The integrative group lasso guarantees that the weight function equals one for truly zero
coefficients andhence requiresmilder conditions in the proof of sparsistency. In simulation studies, theweighted group lasso
procedures have larger AUC, smaller bias and MSPE compared to the unweighted group lasso. The proposed procedure is
applied to theGWASdata from theDCCT/EDIC trial of type 1 diabetic patients. Three hundred and thirty-two SNPs prognostic
of GFR values during follow-up and potentially related to nephropathy development are identified.
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Both adaptive and integrative weights are designed to reduce the estimation bias, but they differ in the treatment
of the parameters. Adaptive weights employ some first-stage estimates, which can be solved by tricking existing group
lasso computing algorithms, but requires stronger condition in theoretical analysis. Integrative weights employ unknown
parameter values and requires the generalized local quadratic approximation, but has better theoretical properties. This
comparison provides new insights into the understanding of adaptive lasso and SCAD.

The idea of the adaptive and integrative weights can also be applied in other contexts. For example, the time-varying
effects can be modeled by nonparametric regression methods other than B-splines. In addition, the groups may not be the
vectors of spline coefficients. For example, in the screening of biomarkers for correlated outcomes measures of the same
disease, the coefficients of the same biomarker for different outcomes can be viewed as a group. Finally, the choice ofweights
can also be flexible. Various weights can be developed to down-weigh the penalty of markers with desirable characteristics.
For example, in Yan and Huang (2002), the first element of their coefficient vector represents the time-invariant effect and
the rest elements capture the time-varying effect. We could design corresponding adaptive and integrative procedures for
emphasizing either the time-invariant or time-varying effects.
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