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Social network analysis presupposes that observed social behavior is influenced by an unobserved net-
work. Traditional approaches to inferring the latent network use pairwise descriptive statistics that rely
on a variety of measures of co-occurrence. While these techniques have proven useful in a wide range of
applications, the literature does not describe the generating mechanism of the observed data from the
network.

In a previous article, the authors presented a technique which used a finite mixture model as the
connection between the unobserved network and the observed social behavior. This model assumed
that each group was the result of a star graph on a subset of the population. Thus, each group was the
result of a leader who selected members of the population to be in the group. They called these hub
models.

This approach treats the network values as parameters of a model. However, this leads to a general
challenge in estimating parameters which must be addressed. For small datasets there can be far more
parameters to estimate than there are observations. Under these conditions, the estimated network can
be unstable.
In this article, we propose a solution which penalizes the number of nodes which can exert a leadership
role. We implement this as a pseudo-Expectation Maximization algorithm.

We demonstrate this technique through a series of simulations which show that when the number
of leaders is sparse, parameter estimation is improved. Further, we apply this technique to a dataset of
animal behavior and an example of recommender systems.

© 2016 Elsevier B.V. All rights reserved.
. Introduction

Networks consist of discrete nodes or vertices which are con-
ected by links or edges. These pairwise connections are frequently
epresented by a square matrix called an adjacency matrix. Net-
ork analysis has drawn attention in a wide variety of scientific

nd engineering disciplines because of the practicality of the net-
ork structure. The applications of networks include concrete
roblems such as finding the shortest path through a trans-

ortation system or determining the maximum flow through a
electrical transmission system (Hiller and Lieberman, 2001). The

enerality of networks allows for their application to more abstract
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problems such as the propagation of disease or information through
a population (Jackson, 2008). Applications further extend to iden-
tifying key nodes in social networks (Koschützki et al., 2005),
community detection among weblogs on the World Wide Web
(Karrer and Newman, 2011), link prediction in social and biological
networks (Liben-Nowell and Kleinberg, 2007; Zhao et al., 2013),
as well as many others (Kolaczyk, 2009; Goldenberg et al., 2010;
Newman, 2011).

Traditionally, statistical network analysis focuses on modeling
the random generation of observed or explicit network structure.
For physical networks, like communication systems or railway net-
works, the nodes are clearly defined and the links between nodes
can be directly observed (Hiller and Lieberman, 2001; Kolaczyk,
2009; Newman, 2011).

In other fields of research, explicit network structure may not
be observable. This is especially true in the social sciences where

the observed raw data is usually the social behavior instead of an
explicit network structure (Freeman et al., 1989; Whitehead, 2008).
This situation may also occur in the analysis of protein–protein
interaction or gene regulatory networks. In these situations, the

dx.doi.org/10.1016/j.socnet.2016.09.003
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.socnet.2016.09.003&domain=pdf
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Table 1
Dataset for six children and three birthday parties, Adapted from (Wasserman and
Faust, 1994).

Party Child

Allison Drew Eliot Keith Ross Sarah

1 1 0 0 0 1 1
2 0 1 1 0 1 1
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ter selection. Simulation studies are provided in Section 5. In
3 1 0 1 1 1 0

bserved behavior is presumed to result from a latent network
tructure. For instance, researchers may not directly observe
friendships” within a population; instead, they may observe some
ocial behavior (e.g., four people gather together with a certain fre-
uency or they visited each other’s house at least once in a month).

The notion that there is a connection between observable behav-
or and network structure can be traced to the so-called social
etwork perspective proposed by Moreno (1934). Wasserman and
aust (1994) also gave a detailed explanation of this concept. The
entral principle of the social network perspective is that a net-
ork model governs the action of individual nodes and makes them

ehave interdependently. This relationship between behavior and
etwork structure suggests that the network may be inferred from
uch observed behavior. In a previous article, Zhao and Weko (2016)
eveloped a model which used the network as a parameter for the
andom generation of observed behavior.

The construction of latent networks often relies on data struc-
ures generated from surveys in which individuals or researchers
eport relationships (Sampson, 1969; Zachary, 1977). In this article
e focus on an alternative type of dataset which is frequently col-

ected in the social sciences and which can be generalized to other
reas of research. Wasserman and Faust (1994) introduce such a
ataset using the example of children attending birthday parties.

n Table 1, the value 1 indicates that a specific child attended a party,
nd 0 indicates otherwise. For example, Allison attended Parties 1
nd 3 but did not attend Party 2. Whitehead (2008) refers to each
arty as a group and Table 1 as a group-by-individual matrix. Zhao
nd Weko (2016) referred to this type of data as grouped data.

The existing methods for network inference from grouped data
re essentially descriptive statistics. The most common approach is
o use the frequency of co-occurrence between two nodes to esti-

ate the strength of the link between individuals (Zachary, 1977;
reeman et al., 1989; Wasserman and Faust, 1994; Kolaczyk, 2009).
e refer to this measure as the co-occurrence matrix. As an alterna-

ive, the half weight index (Dice, 1945; Cairns and Schwager, 1987;
ejder et al., 1998; Whitehead, 2008) estimates the strength of the

ink by the frequency that two nodes co-occur given that one of
hem is observed.

One shortcoming of these techniques is that they do not define
ow the observed data is generated from the estimated statistics.
particular challenge is that the probability of co-occurrence is

ot equivalent to the probability of connection. For example, in
able 1 it is possible that two children who do not know each
ther attended the same party because they are invited by a mutual
riend. It remains unclear what model assumption justifies the net-
ork structure inferred by these measures.

Zhao and Weko (2016) proposed a simplistic generating mech-
nism for grouped data based on a network structure. The hub
odel (HM) assumes that each observed group is the result of a

eader bringing together a subset of the population. That is, every
roup is brought together by a central node (often referred to as the
eader). The other members of the group are present based on their

elationship to this leader. Thus, the hub model parameters have
n interpretation which can be easily applied to relevant research
uestions.
orks 49 (2017) 27–36

Despite the fact that hub models assume an intuitive generat-
ing mechanism and perform well with sufficient observations, the
number of parameters in the model presents a challenge. If we
let n be the number of nodes in the network, the network con-
tains O(n2) parameters. Therefore, a moderate-sized network (e.g.,
n = 50) would in principle require a large number of observations
to accurately estimate the network.

Moreover, in most practical situations, the central node of each
group is unobserved. Without any prior information, it is possible
for any node in the group to be the central node for that group. Zhao
and Weko (2016) use an Expectation-Maximization (EM) algorithm
to identify the central node for each group. As n increases, the
possibility for larger and larger groups also increases. Thus identi-
fying the central node of such groups can be difficult because there
are many nodes which could be central and the probability of each
node being central can be small.

In practice, it is not necessary to model every node in the
population as a potential leader. For example, there may be low
ranking members of the population who do not have the authority
or influence to initiate a group. This is especially true when the
number of observations is small. Therefore, we propose a penalized
component hub model (PCHM) to reduce the hub model’s complex-
ity. Using a penalized likelihood of hub models, the probability
that a node is a leader is shrunk towards 0 when that probability is
small.

The PCHM assumes sparse parameters. That is, only a small
proportion of the nodes have a non-zero probability of forming a
group. Since the hub model is an example of a finite mixture model,
we essentially penalize the number of components in the mixture
model.

This penalization technique belongs to the class of regulariza-
tion methods which have been extensively studied in the statistical
literature. For example, least absolute shrinkage and selection
operator (LASSO) introduced by Tibshirani (1996) is a famous L1
regularization method for variable selection in linear regression.
Ridge regression (Hoerl and Kennard, 1970) applies L2 regulariza-
tion to reduce the variance of the coefficients estimates and hence
obtains smaller mean square error than least square estimates. Sim-
ilarly in the PCHM case, regularization on the probabilities of nodes
being leaders increases the stability of the estimated networks and
yields better performance when the sample size is limited.

Regularization techniques have been widely used in graphical
models and covariance estimation to obtain a “sparse” estimated
adjacency matrix (Bickel and Levina, 2008; Friedman et al., 2008;
Guo et al., 2010). However, the definition of “sparse” in these tech-
niques is different from the definition we will use. Traditional
techniques define the network structure solely based on an adja-
cency matrix. Thus a “sparse” network is one where the adjacency
matrix contains many elements which are equal to zero. In this
case, regularization of the network is achieved by penalizing the
elements of the adjacency matrix of the network.

Hub models define the network structure using two parame-
ters (a mixing distribution and an adjacency matrix). Under PCHM,
sparsity is defined on the mixing distribution. Thus PCHM penalizes
the probability of nodes being centers. The detailed explanation
motivating this approach will be given in Section 2 and further
elaborated in Section 3.

The rest of this article is organized as follows. We start with a
brief review of hub models to motivate our approach in Section 2.
We propose PCHM and the algorithm for solving the penalized
likelihood in Section 3. In Section 4, we discuss the application
of the Bayesian Information Criterion (BIC) for tuning parame-
Section 6, we apply the PCHM to a dataset of Hector’s dolphins
(Bejder et al., 1998) and a recommender system in supplemental
materials.
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. Motivation for penalizing hub models

The technique of penalizing hub models is closely related to the
echnique used to solve hub models. Therefore, we introduce the

otivation concurrently with the basic notation of hub models.

.1. Data

For a population of n individual nodes, V = {v1, . . ., vn}, we
bserve T subsets of the global population, {V(t)|V(t) ⊆ V, t = 1, . . .,
}. Each observed subset V(t) can be represented by an n length row
ector G(t) where: for i = 1, . . ., n,

(t)
i

=
{

1 if vi ∈ V (t),
0 if vi /∈ V (t).

The full set of observations is denoted by a T × n matrix, G. The
th row of G is G(t).

.2. Empirical methods

The classical approaches to infer the latent network in the social
ciences literature rely on descriptive statistics. We give the for-
ula of two popular techniques, co-occurrence matrix and half
eight index, which we will compare with PCHM in data analysis

n Section 6.
A co-occurrence matrix, O, is an n × n symmetric matrix, defined

s:

= G′G
T

,

here Oij is the relative frequency with which nodes vi and vj are
bserved in the same group.

The half weight index, H, is an n × n symmetric matrix whose
lements, Hij, estimate the conditional probability that the nodes
i and vj are observed in the same group given that one of them is
bserved. It has been introduced in a number of equivalent forms
Dice, 1945; Cairns and Schwager, 1987). We give the simplest form
s follows,

ij =
2
∑T

t=1G(t)
i

G(t)
j∑T

t=1G(t)
i

+
∑T

t=1G(t)
j

.

.3. Generating mechanism of hub models

The empirical methods do not establish the connection of the
enerating mechanism of the groups and these descriptive statis-
ics. Hub models introduce a model-based approach for network
stimation. Hub models assume that at the moment of observation
ach group is a brought together by a single leader.

The central node initiating G(t) is represented by an n length row
ector, S(t), where

(t)
i

=
{

1 if vi the central node of sample t,
0 otherwise.

here is one and only one element of S(t) that is equal to 1.
Let S be a T × n matrix, where the tth row of S is S(t). S is

nly observable in a narrow range of datasets, for example, emails
Michalski et al., 2014) and Congressional legislation (Fowler,
006). We focus on the more general case where S is unobserved.

Under the hub model, each group G(t) is independently gener-

ted by the following two step process.

. The central node is drawn from a multinomial distribution
with parameter � = (�1, . . ., �n), where �i = P(S(t)

i
= 1), with the
orks 49 (2017) 27–36 29

constraint
∑

i�i = 1. Thus, �i represents the probability that node
vi will form a group.

2. The central node, vi, includes vj in the group with probability Aij,

where, Aij = P(G(t)
j

= 1|S(t)
i

= 1).

Thus, {A, �} is the set of parameters of hub models.
It is assumed that Aii = 1 for all i. This means that the central node

will always include itself in any group it forms. As a result, the only
way that vi can appear as a singleton is if vi is the center.

Hub models provide researchers with parameters which are
easy to interpret. The value of �i indicates the influence that the
node vi exerts over the population. Thus, if �x = 0.2 and �y = 0.1, we
could say that node vx has twice the influence of node vy. At the
same time, if �z = 0.0001, we could say that node vz is a subordi-
nate member of the population and exerts negligible influence of
its own.

The value of Aij indicates the “popularity” of node vj with node vi.
If Aij is close to one, this means that whenever node vi forms a group
that he chooses to include node vj . However, when Aij is close to zero
this indicates that there is antipathy between the individuals.

A finite mixture model of multivariate Bernoulli random
variables like hub models is not identifiable (Teicher, 1961;
Carreira-Perpinan and Renals, 2000). Zhao and Weko (2016)
showed that symmetry of the adjacency matrix (i.e., Aij = Aji) is a
sufficient condition ensuring identifiability. We will use the same
symmetric assumption in this article.

2.4. Discussion of hub models

Now that we have introduced the basic notation of hub models,
it is worthwhile to explain why we would study hub models and
what their implications would be.

We begin with why we are interested in a model-based
approach for network estimation from grouped data. There is an
extensive literature of statistical analysis on social networks. How-
ever, this literature usually models the behavior of given adjacency
matrices. Examples of such models include stochastic blockmod-
els (Holland et al., 1983; Snijders and Nowicki, 1997; Nowicki and
Snijders, 2001), latent space models (Hoff et al., 2002), preferential
attachment model (Barabási and Albert, 1999), and so on. Statistical
methods concerning implicit network and grouped data focus on
randomizing the existing data to test the sensitivity of the descrip-
tive statistics (Whitehead, 2008). They do not propose stochastic
processes for data generation. To the best of our knowledge, hub
models are the first approach which fills this gap.

Hub models formally link the underlying network structure to
the observed group data. Traditional descriptive statistics which
estimate network structure answer the question “given a set of
data, what is the underlying structure”. However, these statistics
cannot be used to answer the reverse question, “given an under-
lying structure, generate a ‘similar’ dataset”. Hub models are an
important reinforcement of the notion of social networks because
they are able to answer both questions.

The assumption of hub models comes from the observation that
certain types of groups such as e-mails and Congressional legisla-
tion explicitly have this structure. In these cases, the leader of the
group is usually known; however, this structure can exist in situ-
ations where the leader is unknown. For example, office meetings
are generally called by a single manager who exerts control over

subordinate employees. Also, journal articles typically have a pri-
mary author who coordinates and leads a group of collaborators.
In all of these examples, the leader may not be explicit, but the
structure of the groups still follows the hub model.
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.5. Motivation of penalized component hub models

The hub model contains
[

n(n−1)
2 + (n − 1)

]
free parameters due

o A and �. In principle this demands a large number of observa-
ions to estimate the parameters accurately. If the sample size is

oderate, it would be helpful to reduce the number of parameters.
The hub model’s complexity can be significantly reduced if only

small portion of nodes could be central nodes. That is, if �i = 0
or a non-trivial number of nodes. Let no denote the number of �i’s
hich are non-zero. Without loss of generality, we define sparsity

s � = (�1, �2, . . ., �(no), 0, . . ., 0) and refer to the set of nodes with
i > 0 as the leader set.

Since � can be interpreted as the mixing distribution of a finite
ixture model, �i = 0 implies that the elements of the adjacency
atrix Aij for all j have no impact on the likelihood function. Essen-

ially the adjacency matrix has the dimension no × n. However, in
rder to be able to compare models with different no conveniently,
e want to define A as n × n matrix. Therefore, if both �i = 0 and

j = 0, then we set Aij = 0 as a convention and apply the symmetry
ssumption. Thus, the structure of the adjacency matrix becomes

where X is an no × no symmetric matrix, Y is an no × (n − no)
atrix, and 0 is an (n − no) × (n − no) matrix of zeros. There are

no(no−1)
2 elements in X and no(n − no) elements in Y to be estimated.
Our goal is to propose a regularization method to shrink �i with

small value towards 0 and obtain a sparse estimator �̂ while
aintaining the constraint

∑
i�̂i = 1.

emark 1. At first glance, a more direct approach to parameter
eduction would be to penalize Aij directly using L1 regularization.
owever, this approach is not appropriate for hub models because

here is a conceptual difference between the matrices in hub mod-
ls and classical graphical models.

In any situation where variable selection is at issue, there is a
simplest version” of the model which indicates the case that the
esponse variable is independent of the model parameters.

As an example, the parameter of interest in graphical models
s a covariance matrix, �, or inverse covariance matrix, �−1. Thus,

−1
ij

= 0 if variables i and j are conditionally independent and the
iagonal matrix is the “simplest version” for a graphical model.
herefore, L1 regularization penalizes �−1 towards the simplest
ersion.

By contrast, the matrix for a hub model governs the behavior
f the groups through the leader. In the simplest version of hub
odels, there is no leader and nodes should appear in groups inde-

endently based on a multivariate Bernoulli distribution. But Aij = 0
eans that if vi is the leader of a group, then vj will not appear in the

roup. This implies a negative correlation between vi and vj . There-
ore, we do not directly penalize A by L1 penalization. We show in
he following section that PCHM penalizes A towards the correct
implest version for hub models.

. Methodology

.1. Penalized likelihood

The likelihood function of the hub model can be written as
(G|A, �) =
∏

t

⎧⎨
⎩

∑
i

�iG
(t)
i

∏
j

A
G(t)

j

ij
(1 − Aij)

(1−G(t)
j

)

⎫⎬
⎭ . (1)
orks 49 (2017) 27–36

P(G(t)|A, �) belongs to the family of finite mixture models, where

�i is the mixing distribution and G(t)
i

∏
j

A
G(t)

j

ij
(1 − Aij)

(1−G(t)
j

)
is the

component distribution (Hastie et al., 2009).
Observe that the simplest version of (1) is the one where the

model has only one component. Without loss of generality, this
means that �n = 1 and �i = 0, for i = 1, . . ., n − 1. Under this assump-
tion P(G(t)|A, �) becomes,

P(G(t)|A, �) =
n∏

j=1

Ã
G(t)

j

j
(1 − Ãj)

(1−G(t)
j

)
,

where Ãj = Anj .
The simplest version of the hub model implies that all the nodes

behave independently, which suggests that regularization on �i can
penalize the model towards the simplest version.

We propose the following penalized likelihood to reduce the
number of components in (1),

f (G|A, �, �) =
∏

t

⎧⎨
⎩

∑
i

��
i
G(t)

i

∏
j

A
G(t)

j

ij
(1 − Aij)

(1−G(t)
j

)

⎫⎬
⎭ , (2)

where � is a tuning parameter greater than 1. We refer to (2) as the
penalized component hub model (PCHM).

When maximizing PCHM (2), we use the maximum likelihood
estimator (MLE) of HM, �̂HM , as the starting point. When the true
value of �i is 0 or very small, �̂HM

i
is also close to 0. Then the proba-

bility that a node is the leader of any group is also close to 0, thus the
�̂i estimated by PCHM will be shrunken towards 0 quickly due the
power � in (2). We will carefully explain the motivation of PCHM
in the next subsection.

It is worth highlighting the fact that the penalized component
hub model (2) does not belong to the classical “loss + penalty”
framework (i.e., it is not a linear combination of the log-likelihood
function and a penalty term). The reason we do not use this type
of criterion is due to the existence of the inequality constraints
0 ≤ �i ≤ 1. The “loss + penalty” type of criterion usually leads to
a non-convex optimization problem with inequality constraints,
which is difficult to solve. By contrast, we will show that (2) can be
solved by an algorithm very similar to EM. Therefore, the complex-
ity of the algorithm is same as the algorithm for HM.

3.2. Optimizing the penalized component hub model

We now derive the estimating equations to optimize the penal-
ized likelihood function (2). It is very straightforward to write the
Lagrangian function which enforces the condition that

∑
i�i = 1 and

A is symmetric.

�(G|A, �, �) = log f (G|A, �, �) − �o[(
∑

i

�i) − 1] −
∑
i<j

�ij(Aij − Aji).

Since our immediate interest is on �, we begin by taking the
derivative with respect to �.

∂
�(G) =

∑ ���−1
x G(t)

x

∏
jA

G(t)
j

xj
(1 − Axj)

1−G(t)
j

− �o
=
∑

t

1
�x

���
x G(t)

x

∏
jA

G(t)
j

xj
(1 − Axj)

1−G(t)
j

∑
i�

�
i
G(t)

i

∏
jA

G(t)
j

ij
(1 − Aij)

(1−G(t)
j

)
− �o.
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Applying stationary conditions,

x = 1
�o

∑
t

���
x G(t)

x

∏
jA

G(t)
j

xj
(1 − Axj)

1−G(t)
j

∑
i�

�
i
G(t)

i

∏
jA

G(t)
j

ij
(1 − Aij)

(1−G(t)
j

)
.

Before preceding we solve for �o. Noticing that
∑

x�x = 1, it is
asy to obtain �o = �T.

Thus,

x =
∑

t

1
T

��
x G(t)

x

∏
jA

G(t)
j

xj
(1 − Axj)

1−G(t)
j

∑
i�

�
i
G(t)

i

∏
jA

G(t)
j

ij
(1 − Aij)

(1−G(t)
j

)
.

With some minor abuse of notation, let

(S(t)
x |G(t)) =

��
x G(t)

x

∏
jA

G(t)
j

xj
(1 − Axj)

1−G(t)
j

∑
i�

�
i
G(t)

i

∏
jA

G(t)
j

ij
(1 − Aij)

(1−G(t)
j

)
. (3)

This gives an estimating equation for �x of

ˆ x =
∑

t

f (S(t)
x |G(t))

T
. (4)

y applying similar techniques and those outlined in Zhao and
eko (2016), it is straightforward to show that

ˆ xy =
∑

tG
(t)
y f (S(t)

x |G(t)) +
∑

tG
(t)
x f (S(t)

y |G(t))∑
t[f (S(t)

x |G(t)) + f (S(t)
y |G(t))]

. (5)

The above estimating equations suggest an algorithm which is
irtually identical to an EM algorithm. That is, we iteratively per-
orm an “E-step” by solving (3) then perform an “M-step” by solving
4) and (5). We refer to this as a pseudo-Expectation Maximization
lgorithm because it is not maximizing the likelihood function, and
3) is not actually a posterior “probability”; however, the perfor-

ance is similar.
Recall from Section 2.3 that there is an unobserved matrix, S,

hich indicates the true leader of observed groups. Under the HM,
he EM algorithm estimates S as a T × n matrix during the E-step.
ach row of this posterior probability matrix sums to one.

The key feature of our approach to penalizing � is that (3) also
roduces a T × n matrix where every row sums to one. Additionally,
he EM algorithm shrinks �x by penalizing the posterior probabil-
ty P(S(t)

x |G(t)), which will lead to some unusual behaviors. These
ehaviors will be demonstrated and discussed in Section 6.

Algorithm 1 shows the details of the pseudo-EM algorithm. We
lways use the MLE ÂHM and �̂HM from HM as the starting point
f PCHM. To obtain ÂHM and �̂HM , we run the standard EM algo-
ithm using a number of random starting points. We use 20 starting
oints in the simulation studies and 100 starting points in the data
nalysis.

Additionally, note that the right hand side of (3) is always
etween 0 and 1. So the updated �̂x satisfies the inequality con-
traint automatically. Therefore, the pseudo-EM algorithm does not
equire special considerations to satisfy the inequality constraints.

PCHM can produce a sparse estimator �̂ for two reasons. Firstly,
ero is an absorbing state for �̂ in this algorithm. It is easy to show
hat if at the mth iteration, �̂(m)

x = 0, then by (3) f (S(t)
x |G(t)) = 0 and

y (4) �̂(m+1)
x = 0. Therefore, �̂x = 0 is an absorbing state. Secondly,
hen �̂(m)
x is small, P(S(t)

x |G(t)) is also small and the power � in (3)
ill make �̂x quickly converge to 0.

Due to numerical imprecision, Algorithm 1 cannot guarantee
hat �i will reach absolute zero. In practice, we set �̂i = 0 if the
orks 49 (2017) 27–36 31

value is less than 10−6. The estimates are in fact very insensitive to
this threshold.

Algorithm 1. Pseudo-EM for PCHM.

4. Selecting tuning parameters

In this section, we select the tuning parameter � which mini-
mizes the Bayesian Information Criterion (BIC).

The BIC is frequently used to fit a model using maximization of
a log-likelihood function (Hastie et al., 2009). The generic form of
BIC is:

BIC = −2L + (log T)d, (6)

where L is the log-likelihood, T is the number of observations, and
d is the number of parameters.

Researchers often use the BIC to balance the goodness-of-fit
against the complexity of a model. The second term of the crite-
rion penalizes the number of parameters and thus can avoid the
selection of the full models.

In previous sections, we have calculated the number of param-
eters in the HM as d =

[
n(n−1)

2 + (n − 1)
]
. This is the number of

unique symmetric elements in A, n(n−1)
2 , according to the symmetry

assumption, and the number of free parameters in �, (n − 1).
However, as the number of non-zero elements in � decreases

from n, the structure of A changes and d will not follow this equation
(see discussion in Section 2.5). Recalling that no is the number of
non-zero elements in �, the formula for the number of parameters
becomes:

d = no(no − 1)
2︸ ︷︷ ︸
X

+ no(n − no)︸ ︷︷ ︸
Y

+ (no − 1)︸ ︷︷ ︸
�

�. (7)

From (7), when no is close to n, the reduction in parameters
is not very significant. However, as the number of non-zero nodes
decreases, the number of parameters begins to decline rapidly. This
suggests that while PCHM will be beneficial in simplifying models
when a significant number of �’s are reduced to zero, there may be
little benefit if the dataset contains many nodes which cannot be
reduced to zero.
This has implications for the types of datasets where PCHM can
be employed. In Section 2, we pointed out that the assumption that
Aii = 1 means that for groups where node vi is observed as a single-
ton, vi is the center. Thus, �i must be greater than zero. Therefore in
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Table 2
Example of a model with sparse �’s (rows of adjacency matrix with nonzero �’s are
shown).

� i j

1 2 3 4 5 6 7

0.5 1 1.0000 0.7854 0.0000 0.9063 0.0000 0.0000 0.7452
0.5 2 0.7854 1.0000 0.8324 0.8817 0.5885 0.8594 0.0000

Table 3
Frequency table low observations example.

G Frequency Elements

1 2 3 4 5 6 7

1 0 0 0 0 0 0 1 1
1 0 0 1 0 0 0 1 2
1 1 0 0 0 0 1 1 3
1 1 0 1 0 0 0 1 3
0 1 1 1 1 0 0 2 4
1 1 0 1 0 0 1 3 4
1 1 0 1 0 1 0 1 4
1 1 1 1 0 0 0 1 4
1 1 0 1 1 1 0 1 5
1 1 1 0 1 1 0 1 5
1 1 1 1 0 1 0 5 5
1 1 1 1 1 0 0 1 5
1 1 1 1 1 1 0 1 6
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Table 5
Rows of estimated adjacency matrix with nonzero �’s for optimal �.

� i j

1 2 3 4 5 6 7

T
B

Number of times observed 20
18 18 11 17 6 9 4

atasets where singletons are common or the group size is small,
he degree to which no can be reduced is limited.

. Simulation studies

To better understand the performance of PCHM and demon-
trate some aspects of the approach, we perform a series of
imulation studies. We begin with a simple toy example to intro-
uce some basic behaviors. Then we conduct simulations with
arying link density, strength of relationships, and sparsity to
emonstrate how these aspects effect model performance. Finally,
e show that PCHM is a robust technique even when the assump-

ions of the hub model are not strictly valid.

.1. Toy example

First, we consider the following simple situation. We have a set

f parameters represented in Table 2 where there are only two
embers of the population exerting leadership. We have a lim-

ted set of 20 observations shown in Table 3. Notice that node v4 is
ot a leader, but it is very popular.

able 4
ayesian information criterion as � increases.

� �i

1 2 3 4 5

1.0 0.3500 0.4507 0.0799 0.1194 0.0000
1.1 0.3453 0.5597 0.0949 0.0000 0.0000
1.2 0.3451 0.5612 0.0938 0.0000 0.0000
1.3 0.3447 0.5630 0.0922 0.0000 0.0000
1.4 0.3444 0.5655 0.0902 0.0000 0.0000
1.5 0.3439 0.5689 0.0872 0.0000 0.0000
1.6 0.3433 0.5744 0.0823 0.0000 0.0000

1.7 0.3386 0.6614 0.0000 0.0000 0.0000

1.8 0.3379 0.6621 0.0000 0.0000 0.0000
1.9 0.3370 0.6630 0.0000 0.0000 0.0000
2.0 0.3361 0.6639 0.0000 0.0000 0.0000
0.339 1 1.000 0.800 0.000 0.705 0.000 0.000 0.591
0.661 2 0.800 1.000 0.832 0.924 0.454 0.680 0.000

Table 4 shows the effect of applying the PCHM algorithm with
increasing � until the number of non-zero elements of � has been
reduced to no = 2. Notice that when we apply HM (i.e., � = 1), the
model estimates that nodes v1 though v4 all have non-zero �. This
is not surprising when we consider that each of these nodes appear
in over half of the observations (see Table 3).

As � increases, v4 is the first node to shrink to zero. This reduction
is achieved with a relatively low value of � = 1.1. When � is increased
to 1.7, the PCHM identifies the true leader set of the original model
and the Bayesian Information Criterion achieves its minimum.

It is worth noticing that the lowest value that no can take on is
two. To see why this is true, consider Table 3. As mentioned ear-
lier, if a node appears as a singleton, there must be a non-zero �
associated with it. From this, we might expect that the minimum
value of no would be one because there is only one singleton in the
dataset. However, notice that there is one group (the fifth row of
Table 3) which does not have v1 as a member. Thus, v1 could not
have created this observation and there must be at least one more
node with a non-zero �.

One might observe that the estimates in Table 5 are not very
accurate when compared to the true adjacency matrix (Table 2);
however, with only 20 observations, it is not surprising that the
estimates are not very accurate.

Remark 3. In Table 4, we notice that when the number of parame-
ters decreases, there is a sudden drop in BIC. However, observe that,
in general, the lowest value of � that produces a certain number of
parameters also seems to be the � associated with the lowest BIC.
That is, BIC tends to increase as � increases when the number of
parameters remains the same. This is because the estimation bias
is increasing with no decrease in the number of parameters. This is
a natural result of (6).

5.2. Estimating parameters for networks (n = 50) with link
density 0.5

In this section, we randomly generate sparse networks of 50
nodes. In each network no = 8. For each element in the networks we

apply the following distribution:

Aij =
{

Beta(˛, ˇ) with probability p,
0 with probability (1 − p),

LL BIC no

6 7

0.0000 0.0000 −54.6946 172.2996 4
0.0000 0.0000 −54.9719 160.8712 3
0.0000 0.0000 −54.9730 160.8734 3
0.0000 0.0000 −54.9756 160.8787 3
0.0000 0.0000 −54.9813 160.8900 3
0.0000 0.0000 −54.9935 160.9145 3
0.0000 0.0000 −55.0242 160.9758 3

0.0000 0.0000 −57.8882 151.7253 2

0.0000 0.0000 −57.8896 151.7279 2
0.0000 0.0000 −57.8913 151.7313 2
0.0000 0.0000 −57.8933 151.7355 2
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Fig. 1. For a population of 50 nodes where only 8 members initiate groups, increas-
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Table 6
Comparison of estimation error from hub model and penalized component hub
model (no = 8, link density = 0.5).

Obs MAE (A) MAE (�)

HM PCHM HM PCHM

Avg (StDev) Avg (StDev) Avg (StDev) Avg (StDev)

100 0.1118 (0.0129) 0.0748 (0.0167) 0.0251 (0.0045) 0.0182 (0.0049)
200 0.0991 (0.0147) 0.0345 (0.0149) 0.0159 (0.0044) 0.0078 (0.0038)
500 0.0845 (0.0110) 0.0066 (0.0042) 0.0055 (0.0018) 0.0021 (0.0011)
1000 0.0828 (0.0100) 0.0041 (0.0018) 0.0029 (0.0006) 0.0014 (0.0005)
2000 0.0819 (0.0098) 0.0028 (0.0005) 0.0018 (0.0003) 0.0010 (0.0003)

with probability 1 − q. In the former case, the group is generated
ng the penalty, �, reduces the number of parameters and achieves the true number
f non-zero elements of � with the minimum BIC.

here p is the link density. For the initial simulation, only half of
he pairs will have a relationship (i.e., p = 0.5) and the average rela-
ionship will be 0.25 (i.e., ˛ = 1 and ˇ = 3). We fix � to be (1/no, . . .,
/no, 0, . . ., 0) for all the simulations.

.2.1. Single simulated dataset
For our first simulation, we create a single set of parameters

nd generate T = 500 observations. The results of this simulation are
hown in Fig. 1 where we see that the number of non-zero elements
n � decrease until the minimum BIC is achieved at � = 3.0.

In this graphical representation, we plot the BIC along with no.
t may appear to the naked eye that the BIC is not rising for � > 3.0;
owever, it is increasing very slightly.

.2.2. General simulation results
We use the mean absolute error (MAE) as a measure of the

verall accuracy of an estimate of hub model parameters.

MAE(A) = 1(
n
2

)∑
i<j

|Âij − Aij|,

MAE(�) = 1
n

∑
i

|�̂i − �i|.

For both HM and PCHM, we set �̂i = 0 if the value is less than
0−6. In addition, when both �̂i = 0 and �̂j = 0, we set Âij = 0, when
e calculate the MAE.

We generate 200 sets of parameters (A, �) using the same tech-
ique described above. We generate a dataset with T groups based
n each (A, �). We then fit HM and PCHM on each dataset and the
esult is summarized in Tables 6 and 7. Each average and stan-
ard deviation are calculated over the 200 datasets. To evaluate
he performance of the methods under various sample sizes, we
ry 7 different values of T, that is T =100, 200, 500, 1000, 2000, 5000
nd 10000. The tuning parameter � is chosen based on a grid value
earch from 1 to 15 with increment 0.5.

Zhao and Weko (2016) observed that as the number of obser-

ations increases, the MAE of the estimated A improves. However,
or situations where there is a large number of nodes, the improve-

ent rate can be very slow. Since PCHM does not seem to introduce
ignificant bias into the individual elements of A, we now show that
5000 0.0798 (0.0094) 0.0019 (0.0011) 0.0009 (0.0002) 0.0006 (0.0002)
10000 0.0776 (0.0098) 0.0013 (0.0005) 0.0006 (0.0001) 0.0004 (0.0001)

for sparse latent network structure, the PCHM estimates are much
more accurate than HM according to MAE.

First, notice in Table 6 that as the number of observations
increases, the error in A and � under PCHM is quickly shrunken
towards zero while the error in A under HM does not significantly
improve despite a dramatic increase in the number of observations.
Also note that the MAE of the PCHM is always lower than that of
HM.

Next, consider Table 7 where we compare the number of non-
zero elements in each estimated � as well as the corresponding
number of parameters d. Not only does the HM not reduce the num-
ber of parameters in the estimates, but no actually increases as the
number of observations increases. On the other hand, PCHM iden-
tifies a much sparser model and detects the true number of nodes
influencing the group behavior with very few observations.

Finally, the last column of Table 7 shows the average value of
� which achieves the minimal BIC. Notice that as the number of
observations increases, the optimal penalty decreases. Since the
true parameters are sparse, as the number of observations gets
larger, the starting point gets closer to the true parameters and less
penalty is needed. In the supplemental materials, we will perform
more simulation studies under various parameter settings.

5.3. Testing robustness of PCHM

The hub model makes two key assumptions:

1. The groups are generated independently from the previous
groups.

2. There is only one leader in each group.

Both assumptions can be violated in some practical examples.
If groups are ordered in time, there may exist dependency among
groups. Also there may exist multiple leaders in some groups.

In this section, we test the robustness of PCHM, especially its
ability to identify the leader set if the data is not generated exactly
by the hub model.

5.3.1. Dependency among groups
We first consider the effect of dependency between some

groups. We employ a time varying hub model proposed by one of
the authors. This model assumes that the dataset can be partitioned
into multiple time segments. The groups in different segments are
independent while they have Markov dependence of order 1 within
the same time segments.

Specifically, a group G(t) at time t is a start of a new segment with
probability q, and is within the same segment as the previous group
by the hub model. For the purpose of this article, we continue to
assume the sparsity of � in the hub model, i.e., � = (1/no, . . ., 1/no,

0, . . ., 0). However, given the group leader, Aij = exp{�ij}
1+exp{�ij} .
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Table 7
Comparison of model selection from hub model and penalized component hub model (no = 8, link density = 0.5).

Obs Estimated no Estimated d �

HM PCHM HM PCHM PCHM

Avg (StDev) Avg (StDev) Avg (StDev) Avg (StDev) Avg (StDev)

100 31.2050 (2.1131) 18.8950 (2.6777) 503.7000 (67.3348) 190.5250 (51.2374) 10.4825 (2.7125)
200 32.7850 (2.4431) 12.6200 (2.7465) 555.7900 (82.1888) 88.6950 (37.9984) 9.6400 (2.5848)
500 33.0400 (2.1544) 8.2300 (0.7415) 563.6500 (72.0767) 37.2550 (7.6965) 7.6050 (2.7311)
1000 33.8850 (2.0378) 8.0500 (0.3287) 592.1050 (69.9353) 35.4800 (3.3279) 5.2375 (2.2822)
2000 34.2700 (1.8987) 8.0200 (0.1404) 605
5000 34.4100 (2.2555) 8.0450 (0.2078) 610
10000 34.3450 (1.8878) 8.0200 (0.1404) 607

Table 8
Comparison of estimation error from hub model and penalized component hub
model for time varying groups.

Obs MAE (A) MAE (�)

HM PCHM HM PCHM

Avg (StDev) Avg (StDev) Avg (StDev) Avg (StDev)

100 0.2118 (0.0159) 0.1773 (0.0205) 0.0317 (0.0037) 0.0300 (0.0045)
200 0.2061 (0.0152) 0.1417 (0.0235) 0.0279 (0.0043) 0.0241 (0.0047)
500 0.1823 (0.0147) 0.0749 (0.0261) 0.0166 (0.0041) 0.0137 (0.0042)
1000 0.1725 (0.0123) 0.0430 (0.0226) 0.0089 (0.0026) 0.0068 (0.0032)
2000 0.1703 (0.0114) 0.0260 (0.0194) 0.0053 (0.0019) 0.0038 (0.0019)
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In Fig. 2b, we visualize the estimated adjacency matrix by
5000 0.1710 (0.0113) 0.0185 (0.0187) 0.0031 (0.0017) 0.0024 (0.0016)
10000 0.1736 (0.0116) 0.0149 (0.0137) 0.0020 (0.0013) 0.0016 (0.0011)

When an observation is not the start of a new segment, G(t) is
onsidered as a transformation of G(t−1). That is, the leader in G(t)

s the same as in G(t−1). If G(t−1)
j

= 1, the leader will continue to

nclude vj in the group with probability Bij = exp{�ij+	b}
1+exp{�ij+	b} . If G(t−1)

j
=

, the leader will choose to add vj to the group with probability

ij = exp{�ij+	c }
1+exp{�ij+	c } . When 	b > 0 and 	c < 0, this setup suggests some

evel of the stability among groups within the same segment. That
s, a group member has a higher probability of being kept in the
roup and an outsider has a lower probability of being selected
nto the group.

For our simulation, we generate A from the model defined in Sec-
ion 5.2 and obtain 
 = [�ij] correspondingly. We set q = 0.2, 	b = 1
nd 	c =−1. We generate G from the same procedure described in
ection 5.2.

The results are given in Tables 8 and 9. The results are natu-
ally less impressive than the results in Tables 6 and 7 because
he model was correctly specified in the earlier simulation. How-
ver, PCHM still outperforms HM in both parameter estimation and
eader set identification. Specifically, PCHM still results in a much
parser model and eventually approaches the correct no.

.3.2. Multiple leaders
In this final simulation, we consider groups with multiple lead-

rs. We test our method on a simple model with two leaders for
ach group. Two leaders are sampled from � = (1/no, . . ., 1/no, 0,
. ., 0) without replacement. With vi and vj as the group leaders,

(G(t)
k

= 1|S(t)
i

= 1, S(t)
j

= 1) = exp{hik+hjk+c}
1+exp{hik+hjk+c} , where H = [hik] is an

o by n matrix with hik ≥ 0.
In this model, the appearance of node vk in a group is influenced

y both leaders through hik and hjk. We assume that all components
n H are non-negative to make both leaders have positive effect on
ttraction of group members.
We set no = 8, generate each hik from U(0, 1) independently, and
hoose c =−3.5 to adjust the average group size to be comparable
ith the setup in Section 5.2.
.1450 (66.1839) 35.1800 (1.2632) 3.8925 (1.4604)

.7600 (77.8296) 35.4050 (1.8704) 3.0750 (0.4216)

.7350 (65.5346) 35.1800 (1.2632) 2.8475 (0.3294)

The results are given in Table 10. Since there is no reason-
able comparison of Â and H, we focus on leader set identification.
Because the data generating procedure deviates from the hub
model more than the time varying example, it is more difficult to
detect the leader set using PCHM. However, PCHM still produces
a sparser model and eventually identifies a leader set close to the
truth.

Notice in Table 10 that PCHM seems to eventually estimate
a leader set which is slightly smaller than the true number
of leaders. This is a consequence of the HM assumption that
every group has only one leader. PCHM is penalizing the data
towards a single leader and it is likely that the influence of
some leaders will be marginalized. For example, if there are
two leaders who frequently appear together, the hub model
will treat one of them as the leader and the other as a fol-
lower.

6. Data analysis

In this section, we analysis a dataset from the animal behavior
literature and records the interaction of Hector’s dolphins (Bejder
et al., 1998). In this dataset, there are a moderate number of obser-
vations compared to the number of parameters. Here there are
n = 18 individuals which form T = 40 groups. In this case, T > n but
T < [ n(n−1)

2 + (n − 1)].
An important point about this dataset is that there are 5 nodes

which appear as singletons. This means that this is the lower bound
of no.

This dataset consists of observations of Hector’s dolphins
(Cephalorhynchus hectori) in the inshore waters of the South Island
of New Zealand taken over 1996–1997. The full population is esti-
mated to contain 50–70 individuals.

Hector’s dolphins are most often observed in groups of two to
eight individuals. These groups often fuse together and split up over
periods of several hours. The researchers considered individuals
associated if they were members of the same group or cluster of
groups. Groups of dolphins were considered part of the same cluster
of groups if groups merged in the time span when observations
were being taken.

Observations were recorded by photographs. Photography is a
noninvasive tool that is frequently used to study the social structure
of cetaceans and other social animals. Groups are defined entirely
based on photographic records. That is, individuals seen but not
photographed are not included in the observed group (Bejder et al.,
1998).

As with the simulations, we select � by BIC. Here the optimal BIC
is achieved at � = 2.7, and there are 7 individuals in the population
with non-zero �̂i.
a grayscale plot where the strength of a relationship is repre-
sented by the cell’s color. Nodes with weak relationships have light
cells while nodes with strong relationships have dark cells. Cells
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Table 9
Comparison of model selection from hub model and penalized component hub model for time varying groups.

Obs Estimated no Estimated d �

HM PCHM HM PCHM PCHM

Avg (StDev) Avg (StDev) Avg (StDev) Avg (StDev) Avg (StDev)

100 32.3800 (2.4072) 22.6050 (3.0040) 542.3050 (79.3144) 270.2850 (68.7773) 10.9425 (2.7842)
200 36.3950 (2.1801) 18.9650 (3.5022) 681.8600 (80.7547) 194.4200 (69.4177) 10.7650 (2.9012)
500 39.2300 (2.0043) 13.0750 (3.2111) 790.1100 (79.4202) 96.1450 (47.4858) 7.9700 (2.3594)
1000 40.1150 (1.8760) 10.9300 (2.5013) 825.4150 (76.0390) 67.3100 (31.4978) 6.3275 (1.3086)
2000 41.4750 (1.8375) 9.3950 (2.0762) 881.5050 (77.3807) 49.9750 (25.3889) 5.6825 (1.0776)
5000 43.4350 (1.6672) 8.7550 (2.0582) 965.4000 (72.8805) 43.8100 (26.7504) 4.6675 (1.0553)
10000 43.9661 (1.5740) 8.4576 (1.6623) 988.7203 (69.6916) 40.3644 (20.7384) 4.1017 (0.5569)

Table 10
Comparison of model selection from hub model and penalized component hub model for time varying groups.

Obs Estimated no Estimated d �

HM PCHM HM PCHM PCHM

Avg (StDev) Avg (StDev) Avg (StDev) Avg (StDev) Avg (StDev)

100 36.0650 (1.9129) 26.1900 (2.5821) 669.1950 (70.0464) 358.3700 (69.0955) 10.4225 (2.9664)
200 40.1050 (1.7519) 25.1350 (3.2604) 824.7850 (71.0863) 332.7400 (83.5993) 9.9275 (3.0832)
500 43.0550 (1.6540) 22.7600 (4.7163) 948.7550 (71.8719) 280.4550 (110.2504) 8.7700 (3.3989)
1000 44.0350 (1.5315) 21.9050 (5.4979) 991.7250 (68.1297) 264.9050 (128.4688) 7.8750 (3.7787)
2000 44.4950 (1.5204) 20.0850 (7.6255) 1012.3000 (68.0081) 239.6750 (147.8264) 6.2550 (3.4210)
5000 44.3316 (1.5785) 7.9037 (4.5745) 1005.0481 (70.8127) 44.5936 (89.5893) 3.6765 (0.5116)
10000 43.8487 (1.7106) 7.0672 (0.2515) 983.7311 (75.4491) 27.5378 (2.0118) 3.2563 (0.2673)

Fig. 2. In the Hector’s dolphin dataset, subsets of 18 animals are observed in groups at 40 different independent times.
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Fig. 3. Traditional measures of socia

epresenting relationships of intermediate strength are shaded
long the grayscale. In addition, the nodes are ranked in descending

rder of their �̂i.

Recall from above that there are five members of the population
hich appear as singletons. These nodes are represented in Fig. 2b

y the letters M, B, E, A, and F. That is, the singletons account for all
orks applied to the Dolphin dataset.

but the two nodes with the lowest �̂. In fact, nodes vI and vJ have
an estimated � of 1/T.
In Fig. 2a, we can see an additional effect of the penalization
technique used in PCHM which is different from traditional meth-
ods of regularization. That is, the number of non-zero elements does
not decrease monotonically.
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This behavior is related to the fact that the penalty is really
ffecting the E-step of the algorithm and the estimation of the
osterior probability matrix. The penalty induces sparsity in Ŝ and
rives it towards a binary matrix. Thus it is possible for Ŝ(�1) to be
loser to a binary matrix than Ŝ(�2) but n(�1)

o is greater than n(�2)
o .

While this behavior is not as desirable as monotonically declin-
ng elements, it does not appear that this negatively impacts the
erformance of the PCHM.

Figs. 2 and 3 clearly demonstrate that PCHM provides a much
impler characterization of the population behavior than tradi-
ional measures.

In supplemental materials, we will analyze a dataset from the
ecommender system literature which provides user preferences
Goldberg et al., 2001).

. Conclusion and discussion

In this article, we developed the penalized component hub
odel (PCHM) to improve the performance of the hub model (HM)

roposed by the authors when applied to relatively small datasets.
n previous work, it has been shown that datasets with relatively
ow numbers of observations tend to produce unstable estimates of
he adjacency matrix. PCHM reduces this instability without intro-
ucing significant bias. An additional benefit of PCHM is that even
hen the number of parameters is not larger than the sample size,

nalysts can benefit from reducing the complexity of the model.
PCHM has two significant differences from the regulariza-

ion penalization methods traditionally used for graph estimation.
irstly, PCHM penalizes �i, the probability of nodes being centers,
nstead of Aij in the adjacency matrix. This method is conceptu-
lly appropriate since it penalizes the model towards the simplest
ase – the case of independence. Secondly, instead of using the
loss + penalty” paradigm, PCHM adds a power of � on �i which may
ave more general applications to finite mixture models when the
umber of components is unknown. An advantage of this approach

s that PCHM can be solved by the pseudo-EM algorithm very effi-
iently.

By applying the PCHM to Hector’s Dolphins and Jester datasets,
e demonstrate that PCHM obtains a sparse �̂ and thereby reduces

he model complexity when the sample size is moderate. In addi-
ion, PCHM only introduces mild estimation bias and thus the result
s close to HM when the sample size is large.

While we have focused on social network analysis in this paper,
his is primarily motivated by the intuitive link between social
ehavior and hub models. In principle, hub models have application

n any area which uses co-occurrence as a proxy for relationship
trength. Thus, market basket analysis, recommender systems, and
iological networks all have potential for benefiting from hub mod-
ls and PCHM.

Further, to the best of our knowledge, this approach to penal-
zing component selection in finite mixture models is itself a
echnical innovation. In Section 3.1, we showed that regularization
n �i rather than on Aij penalizes the model towards the simplest
ersion, that is, every node behaves independently. However, there
xists a small gap: since we assume Ann = 1, node vn must appear
n every group to achieve the simplest version. In future work, we
onsider relaxing this assumption and allow Aii to be an arbitrary
umber between 0 and 1. We will further investigate the theoreti-
al properties of PCHM, for example, the behavior of the estimator
s the size of the network grows. To fully understand the behavior

f the pseudo-EM is also an intriguing topic.

As mentioned in Section 2, hub models and PCHM make
wo key assumptions: (1) independence among groups, (2) one
eader for each group. Both assumptions can be generalized for
orks 49 (2017) 27–36

practical applications. In future work, we will generalize the idea
of the hub model and PCHM to allow for flexible number of leaders
and dependency structure among groups.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.socnet.2016.09.
003.
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