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SUMMARY: When searching for gene pathways leading to specific disease owtoampropose to take advantage of additional
information on gene characteristics to differentiate genes of interestsifrelevant background ones when connections involving
both types of genes are observed and their relationships to the diseasekaown. Novel community detection methods are
proposed that singles out irrelevant background genes with the helpxifary information through a logistic regression, and
clusters relevant genes into cohesive groups using the adjacendy. leapectation-maximization algorithm is modified to max-
imize a joint pseudo-likelihood assuming latent indicators for relevanceetalidease and latent group memberships as well as
Poisson or multinomial distributed link numbers within and between groupsbist version allowing arbitrary structures within
the background is further derived. Asymptotic consistency of latsigjaments under the stochastic blockmodel is proven. Superior
performance and robustness in finite samples are observed in simstatithes. The proposed robust method identifies previously
missed gene sets underlying autism and related neurological diseasediusrse data sources including de novo mutations, gene
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1. Introduction

Community detection is a fundamental question in networlyama (Goldenberg et al., 2010;
Newman, 2006; Fortunato, 2010). Traditional approachesider the adjacency matrix, whose
elements equal one or zero indicating whether there is aectiom between two nodes, as the
input. Then the nodes are partitioned into cohesive graias,is, communities, with more links
within and fewer links between the groups. Current commuaetgction methods assume all nodes
belong to certain communities of interests. However, tesuanption is not always true in real
applications. For example, when we are looking for pathwayslving many genes that lead to
certain disease, connections between candidate genedlesgatheir involvement in the disease
process are collected. Furthermore, whether a gene isddlathe disease is usually unknown. We
propose to utilize information on the characteristics eftlodes/genes to differentiate between the
nodes related to the outcome of interests and the unrelates] blovel two-stage models with one
joint likelihood are proposed to incorporate the node-gpeimformation which isolate relevant
nodes from irrelevant ones and in return improve detectemuigacy of communities related to a
specific outcome.

Our study is motivated by the problem to discover gene pagteieading to complex diseases
in genomic studies. Multiple sources of data, e.g. highlyrelated gene expression levels and
experimentally verified protein-protein interactionspyde useful information on connections
between genes. However, not all genes are related to thaesdisader study. In fact, most genes
are “household” genes that function to maintain the normefatmolic processes within healthy
human bodies. Mixing genes and pathways for normal life @gses with those leading to the
target disease in community detection models will intradnoise as well as impurity to disease-
generating pathways which are the true interests of ciingiand biologists. De novo mutations
refer to gene mutations that occur for the first time in a fgrmdmpared to mutations inherited

from parents. We believe that discrepancy in the numbers abdo mutations on the same gene in
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cases and controls would help differentiate genes relatédtktdisease from those unrelated to the
disease, which we call the “background”. The proposed nosthod is feasible because the three
kinds of data, gene expression, protein-protein intevacind number of de novo mutations, can
be downloaded from different online data consortiums amdlined using unique gene names. In
summary, our method targets at gene groups with the follgwharacteristics — 1) cases have a
higher frequency of de novo mutations than controls, 2) coeat expression patterns within
the same group, and 3) dense protein-protein interactiatismthe same module and sparse
interactions between different groups.

The stochastic blockmodel is the most used statisticalftwahodeling and detecting communi-
ties (Holland et al., 1983; Snijders and Nowicki, 1997; Nakvand Snijders, 2001). We generalize
the blockmodel by modeling the relationship between thebsaoved indicator whether a gene
Is related to the target disease or not and gene-specificiateain the first stage, then cluster
disease-related genes into closely connected pathwalys getond stage. Because both indicators
for disease relevance in the first stage and community lab#ie second stage are latent variables,
the expectation-maximization algorithm is employed. Hesvethis approach is intractable due to
the numerous possible label assignments in the E-step.iAtah (2013) proposed a fast pseudo-
likelihood algorithm for fitting blockmodels and we adapisthlgorithm in Section 3 to the joint
pseudo-likelihoods incorporating both the logistic reagien and the block models. The pseudo-
likelihood may also be optimized by other alternative appfees such as the EMM algorithm by
Gormley and Murphy (2008).

Another distinct feature of the proposed method is the esxterto the robust community detec-
tion allowing heterogeneous linkage probabilities in taekground, which relaxes the assumption
of homogeneous linkage probability within each group indteehastic blockmodel. For instance,
the background can be a mixture of multiple strongly or wea&kinnected groups. These groups

all belong to the background because they are not relatdtettatget disease, but their structure
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is not necessarily homogeneous. In Section 4, we furthezldp\the model in section 3 to allow
for arbitrary structures within the background. Intenagty, when the linkage probabilities within
the background are unspecified, the pseudo-likelihoodigihgo can be easily adapted to leave the
likelihood of the links in the background out while the clas$likelihood approach cannot.
Recently there have been works on community detection whitiheucovariates information.
These papers are seeking how to use the additional coamdiidemation to improve the accuracy
of community detection. This task is sometimes achieved dilening a similarity or kernel
matrix defined based on covariates with the adjacency méBixkiewicz et al., 2014; Zhang
et al., 2015; Yan and Sarkar, 2016; Xu et al., 2012). On theratide, likelihoods of linkage
probabilities incorporating auxiliary nodal informatidrave been proposed by Tallberg (2004),
Yang et al. (2013), Newman and Clauset (2016), Handcock €2@0D7), Krivitsky et al. (2009)
and Gormley and Murphy (2010). However, none of these waskevl the same framework as
our method. In short, the sole reason of using auxiliaryrmition on nodal characteristics in
our method is to distinguish the disease related nodes froralated ones, then we carry out
community detection within the disease-related nodes.H@rcontrary, auxiliary information in
the literature is usually used to facilitate partition of mbdes into communities. For example,
Tallberg (2004) used covariates to predict the probadditnto each homogeneous community in
a Bayesian framework, while we use covariates to predict tbhbability into the heterogeneous

background in a pseudo-likelihood framework.

2. Methods

We begin by introducing the data structure and notation. #akk with » nodes can be repre-

sented by am x n adjacency matrixl = [A;;], where
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1 ifthere is an edge betweeérand,

0 otherwise

In addition to the adjacency matrik, some covariate information on nodes is also availables&he
covariates are represented byrax P matrix X = [z;,], wherez;, denotes the value of theh
covariate on node

We model networks with a particular community structure whine network is composed of
multiple cohesive communities, together with sdoaekgroundhodes. Unlike the usual definition
of background set which is diffuse within itself or weaklyneected to other parts of the network
(Zhao et al., 2011), we assume that the probability of a nadeniging to the background set
depends on its covariates. Suppose therdsatmmmunities besides the background set.d et
(¢1, ¢, ...,¢,) denote the community that each of thenodes/genes belongs to, thys= k if
nodes: belongs to community, for k € {1,2,..., K}, andc¢; = K + 1 if nodei is a background
gene. Moreover, ley = [y;] be a vector indicating whether the node belongs to one ofithe
communities or the background, izg.= 1if ¢; < K, y; = 0 otherwise.

The network is generated in three steps.

STeEP1l: The random variablg; is independent fof = 1,--- ,n and follows a logistic regres-
sion
X e®iB
My, =1 =,

where3 = (34, ..., Bp)" is the coefficients vector, and; is theith row of X. Here the logistic

model has an intercept, that i%, contains(1, 1, ..., 1) as its first column.

STEP2: The probability that a node witly = 1 belongs each of th& communities is given

by the independent multinomial distribution with paramete= (4, ..., 7x),

pric,=k|ly,=1)=m, (1=1,...,nk=1,.. K).
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In addition,c; = K + 1 if y; = 0.

Step3: Conditional on the labels);; for ¢ < j are independent Bernoulli variables with
pr(Aij =1 ‘ C) - PCiCj7

wherePisa(K + 1) x (K + 1) symmetric matrix.

The total number of genes in thi¢h community isn, = " | 1(¢; = k) and the number of
links between thé&:th and/th commuity is given byO,, = ZKM@ A;jl(c; = k,c; = 1), where
1(-) is the indicator function. Moreover, let,;, = nyn, if k& # [, andng, = ni(nx — 1). Then the

joint log-likelihood ofc and A is
n K
L(B,7, P;c,A) = Z{yiwlﬂ —log(1 + e®P)} + Z ny log Ty,
=1 k=1

+ Z {Opilog Py + (ng — Oxg) log(1 — Py) } -

1<k ISKK+1

DO | —

3. Estimating Procedures

The community labelg are unobserved in a community detection problem. Furthepibe E-
step of such algorithm requires evaluating all the posdddbel assignments, which makes the
algorithm intractable (Amini et al., 2013; Zhao et al., 2DMe adopt the idea of pseudo-likelihood
in Amini et al. (2013) which partitions each row df into blocks and assumes the independence
among rows.

We briefly review some notation used in Amini et al. (2013)eVectore = (e, ..., ¢,,) denotes
an initial blocking vector, where; € {1, ..., K + 1}. And b;;, denotes the number of edges associ-
ated with node in the kth block, thatispy, = >0 Ayl(e; = k) (i=1,.,n;5 =1,..., K +1).

Let B = [bi)ici<cni<k<r+1 aNdA = [Ng|i<ik<ix+1, Where), is the expected total number of
edges in the:-th block for a nodel in communityl, i.e.,c¢; = [. Whenn is large,b;, can be
approximated by a Poisson distribution givenand the dependence Bfbetween different rows

is weak. Assuming;;, are independence for= 1,--- ,n andk = 1,--- , K + 1 and using the
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Poisson approximation, the log-pseudolikelihood: @ind B (up to a constant) is

n K41 K+1
Z{ymﬁ log(1 + eP)} + an logm,+» Y 1(c (—m + > bixlog )\lk) :

1=1 =1 [=1 k=1

wherey, = Y, Ay (=1, ..., K+ 1). And the log of marginal distribution @8 (up to a constant)

is

mB K+1
l bz

k=1
1 K+1
- 1 bz
) e
k=1

Given initial labelse, equation (1) can be maximized by a standard expectatiotrmzation
algorithm. The details of the E-step and M-step are givenlgoAthm 1.

Algorithm 1. (The expectation-maximization algorithm under Poissatrithiution)

e E-step: LetB, # andA be the estimates at the current iteration, ane ), ik (l=1,.,. K+

1). The posterior probability of label assignment is

Zil = pr(cl- = ‘ B)

B . K+13b
£ me ‘”( k+1 )\”“)

1+€e*® iB
=8 A K+1 b K+1 b
6 1 1 ik K ik
Zl 11+6 LB me fi < k=1 >\ )+ e Iz +1( k=1 )\K—l-lk)

1+e*® s

Zi K+l = pl‘(ci =K+1 | B)

1 —fK+t1 K41 3bip
Te®iP C el K1k

=8 K+1 (b 1 —i K+1 b
e®i 'u ik [ ik
ZZ 1 emip 1€ < k=1 A ) T el ( el AR k>

e M-step: Giver;; (i =1,..n;0=1,...,K+1),7 andA can be updated by closed form formulae,

PR VL l=1,..K),
> Zl 1 Zil

< > Zibik
Np = =0k K4 lk=1,. K +1).
Ik S ( )
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3 can be updated by logistic regression,

= argmaxz { (Z z,-l) x;08 —log(1 + e%ﬂ)} '

=1

Note Z{il z; 1S the sum of the estimated conditional probabilities ofegelnelonging to one of

the K communities.

Once the expectation-maximization algorithm converges can update the labeésby e¢; =
argmax, << x4, 2ii- We repeat this procedure several times untlecomes stable.

Amini et al. (2013) introduced a pseudo-likelihood coratiil on the node degrees. We general-
ize this conditional pseudo-likelihood to our scenarionbie the node degree by = )", b, (i =
1,...,n). Then(b;, ..., b; k+1) follows multinomial distribution conditional on labelandd;. The

multinomial log pseudo-likelihood (up to a constant) is

K+1
LMultinomial (3, 7, ©; B) Zlog{z 1+ cwiB Q (H 9%) 2)

K+1
b;
1T em <H 9K1”+1,k> } )

where®© = [0y] (I =1,..., K+1;k = 1,..., K+1) is the parameter in the multimomial distribution
satisfying> r " 0 = 1(1 =1,..., K + 1).

The algorithm is similar to that for the Poisson pseudolliia@d. For completeness, we give the
details of the expectation-maximization algorithm under nultinomial distribution in Algorithm

2.

Algorithm 2: (The expectation-maximization algorithm under multinahdlistribution)

e E-step: Based on current estimaf®st and©, the posterior probability of label assignment is
@i # K+1 ebzk
1+6 P T k=1
@if - K+1 gb; 1 K+1 jb;
Zl 11; =B l( k=1 0 k>+1+emi3< k=1 ‘9K'11k>
1 K+1 eblk

ZK e x;f & K+1 ébik + 1 K+1 Qb”“
I=1 1 ozp 'l k=1 “ik Lie®iP K+1,k

Zit =

ZiK+1 =
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e M-step: Givenz; (i =1,..n;l =1,...., K + 1), #, © and3 can be updated by

D V'L I o}
D D Fil
A Z-Zilbik
O ==— (I=1,....K+1;k=1,....K+1
lk Zizz‘ldi ( ) ) + ) 3 ) + )7
. n K
B = argmaxz { (Z zil> x;0 —log(1 + e%ﬂ)} .
B 4 =1

4. Robust Community Detection

So far we assume that all the disease-related communitiethatackground satisfy the stochastic
blockmodel assumption. In this section, we propose a newdusékelihood method that allows
for arbitrary structure in the background, for example, atore of tightly and weakly connected
groups, or nodes with high degree variations. In other wondsstill assume that the disease-
related communities follow the stochastic blockmodel agstion, but make no assumption on
structure within the background. As in Section 2, a netwoitk whe robust background is gener-
ated by three steps. The first two steps remain unchangecandst step has been modified as
follows.

SteP 3*: Conditional on the labels, wheln < K orl < K, A;; for i < j are independent

Bernoulli variables with
pr(Aij =1 | C; = k,Cj = l) = P.

The link probabilities within the background set, i.e., whe= K + 1 and/ = K + 1, are not
specified.

It would not be helpful to consider the likelihood functioontributed by the links within
the background because part of the link probabilities aspecified. By contrast, the pseudo-
likelihood method introduced in Section 3 can be extendethito new scenario and provides
interesting insights. Recall the setup in Section 3.d_et (e, ..., ¢,,) be an initial blocking vector.

And b;;, denotes the number of edges associated with riadehe kth block (: = 1,..,n;5 =
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1,..., K +1). Imagining thate is a reasonable initial vectdry can be approximated by a mixture
of Poisson distributions as before when- 1, ..., K. But whenk = K + 1, the distribution ob;;,

Is unknown since the link probabilities within the backgnduare unspecified. By excluding this
part of unreliable information, we propose the followingpdo-likelihood for robust community

detection,

n K

LRobustB: ™ A B e) => {yxiB —log(1+¢™P)} + > nylogm

i=1 k=1

n K41 K
+ Z Z L(c; =1) <—Ml + Z bix log )\lk) , (3)

i=1 [=1 k=1

wherey; = S8 A (k=1,.., K).

Notice equation (3) is indeed a valid likelihood functiom &fixede because the blocking vector
e and the community labeling vecterare different. The blocking vecter partitions the columns
of A into K + 1 blocks andb;;, is the kth block sum for row:. Likelihood (3) does not include
B. k11 - the last column ofB since the Poisson approxmiation may not be valid. But thisdoe
not affect the range af;, which is still {1, ..., K + 1}. Community detection based on (3) can be
viewed as a classic clustering problem®nWe need to assign a label from 140+ 1 to each row
data point, i.e., eacB;., which containg{ + 1 features. But we only use the first features since
the last one is not reliable. The algorithm is therefore ksinto Algorithm 1. For completeness,
we give the detalils.

Algorithm 3: (The expectation-maximization algorithm for robust conmityidetection)

e E-step: Let3,# and A be the estimates at the current iteration, g@nd= S"1 Ay (I =



10 Biometrics, Decembez008
1,..., K 4+ 1). The posterior probability of label assignment is

Zil = pr(cz- =1 | B)

B - —fy bik
me (Hk Alk)

1+e® B

K emif N 1 i K b
> LiewiB M€ i <Hk L) T D=t It A1

Zik+1 =prlcc=K+1|B)
\b;
1+e1 BE T (Hk 1 A K k)

K ezié A bzk bzk
> Le=B ME fu <Hk 1 Al 1+em Se [Ties AR 1k

e M-step: Givenz;; (1 =1,..n;l=1,.... K + 1), 7, A andg3 can be updated by,

PR V'L B 1. K),
E Ez 1 %l
N Z'Zilbik
AN = =2 —— l=1,.. K+1.k=1.. K
lk Z Zil ( ) ) + ) ) 9 )7

= argmaxz { (Z zil) x;08 —log(1 + em’ﬂ)} )

=1

As before, once the expectation-maximization algorithmveogese is updated by; =
argmax, << x4 2ii- e repeat this procedure untilbbecomes stable.
We do not consider robust community detection using muttiiab approximation since the

conditionS < 6, = 1(1 =1, ..., K + 1) becomes invalid if the last column is removed.

5. Asymptotic Properties
In this section we study the consistency under stochastickbiodels. Equation (2) has slightly
simpler form and theoretical derivations than (1). The thg&ocal analysis in this section will focus
on the multinomial pseudo-likelihood.

We begin with the setup, which closely follow those in Aminiag. (2013). The case of one

community with the background is taken as an example. The cammunity labels: are the
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parameters of interests, wherg=1/n3_1(c; = k) (k = 1,2). We focus on the case of directed
blockmodel. A coupling technique can lbe used to extend gdtr® the undirected case analogous
to that in Amini et al. (2013). Consider the edge matrix

1 [ a b bl ;1 1

b (05} " 1 P2

wherep, = a;/b. Herep, andp, remain constant, whilé can scale witm. The directed block-
model assumes that all the entries in the adjacency matixnalependent Bernoulli variables
without forcing P to be symmetric, that isd;; ~ Bernoulli(P.,.;) (i = 1,...,n;j = 1,...,n). For
simplicity, a univariate covariate taking values in1/n,2/n, ..., 1) is assumed.

We illustrate the consistency of one-step expectationsmization of the multinomial pseudo-
likelihood. Starting from some initial labetsand initial estimates, /1, p» of the parameters, p;

andps, the initial estimates q£0 andBl are obtained from the logistic regression, that is,

(BO7 Bl) = argmaxz {yz(ﬁo —+ I'Z/Bl) —_ ]Og(l + 6504'331‘51)} ]

0751 i=1
Define
eBO'f‘l’iBl
= — (i=1,..,n),
1 + ePotziba
1
7%12:* (Z: 1,...,n).
1 + ePotzib
Let
b
p="2 ,
n ~
L ps

and R be the 2 by 2 matrix with entrie§R;,} given by Ry, = (1/n) f: 1(e; = k,¢; = a). The
i=1

initial estimatesO is obtained by row normalization df = [n.RP]7, that is,

_ 5‘1% _ 5‘1%
@ _ A11+A12 AritAie
A21 A2o

Aa1+HAa2 Aortdee
With the notation defined above, the output of one-step dafien-maximization is

2
¢;(e) = argmax <10g i+ bulog ékl> (i=1,..,n).

ke{1,2} =1
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We use the mis-classification error rate (Choi et al., 2012048t al., 2012; Amini et al., 2013)

to measure the performance®f That is, define

L.
M,(e) = e 2 1{¢i(e) # d(ci)},
where{(12), (21)} is the set of permutations ¢fi, 2}. In this definition we consider al} values
that are permutations of each other because they result satime community structure.
Consider the class of initial labels that correctly clasfily nodei as a member of community

k. The fraction of such nodes among all nodes belonging to aamitsnk, 74, is formally given by

Ez{e:ZI(Gi:k,Ci:k)zvknk,kzl,Q},

7

wheren, = > 1(¢; = k) is the size of community.
An extra condition is introduced to avoid perfect separatibe in the logistic fit. We define the

following class
n 1

F={e: Y 1e;=1) <,y Le=1) < inde},

i=fg+1 i=1

wheren, = > 1(e; = k) is the size of initial estimate of communiky

The uniform consistency a@f within the class€ N F is established by the following theorem.

THEOREM1 (Main result): Assumey;, v # 1/2 and0 < 41,7 < 1. Then under some

regularity condition, with sufficiently largg,, p, andb — oo, for anye,

pr{sup M,(e) >¢| -0, asn— .

ecENF

The details of the regularity condition and the proof is giue the supplementary material.
The proof of the main theorem depends on a key fact that thealogof the estimated probabil-
ities 7r;; and7;, has a uniform bound independent withfor e € F N £. This is summarized in

the following lemma.

LEMMA 1: Assumé) < 7,7, < 1. Thenife € F N &, there exist\ such that for sufficiently
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large n,

31
log —
32

< M,

whereM is independent with.

The proof is given in the supplementary material.

6. Simulations

We first examine the performance of the proposed methods stetedard stochastic blockmodel.
Each network containa = 500 nodes and each setup is repeated 500 times. There are three
groups including two disease-related communities and @eade-irrelevant background set. The
probability a gene is related to the disease follows a lagiegression with logit giy; = 1 | z;) =

4x; + Po. Herey; is the indicator for theth node belonging to a disease-related community and
covariater; ~ U(—1,1). And 5, = —1,0, 1 correspond to the percentages backgrai2yd, 50%
and38%, respectively. Nodes with; = 1 are assigned to two non-overlapping communities with
equal probabilitiesr; = m, = 1/2. Pairs within the background, as well as pairs composed of
one node in the background and the other node in a diseadededommunity are linked with
probability 0-1. The linkage probability between the two non-backgrounchmanities is €05,

while the linkage probability for pairs within the same coomity ranges from @5 to 025.
[Table 1 about here.]

Table 1 compares the performance of three models - the pdiatibood methods with Poisson
and multinomial approximation introduced in Section 3 all aethe robust community detection
method introduced in Section 4. For each model, we furthempaoe the two versions where aux-
iliary nodal information, i.e, logistic regression is atlused or unused. The community detection
accuracy is measured by the adjusted rand index)((Vinh et al., 2010). The performance of all
methods improves as the linkage probability within dise@ated community increases, or as the

percentage of background nodes decreases. More impgytdeatiporoposed method incorporating
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auxiliary information through logistic regression alwaystperforms the corresponding method
without logistic regression. Moreover, the robust methvggthe same performance as the Pois-
son pseudo-likelihood which suggests the robust method dotlose discriminatory accuracy
when data follow standard stochastic block models. On therdtand, the algorithm fitting multi-
nomial distributions performs slightly worse than the othvo methods. Rigorously speaking,
the multinomial pseudo-likelihood is an approximationtie tlegree-corrected blockmodel, which
is a generalization of standard blockmodel by allowing meagation on degrees (Zhao et al.,
2012; Karrer and Newman, 2011; Amini et al., 2013). Themftre finite sample performance of
multinomial pseudo-likelihood has slightly lower ARI on aage since it fits a more complicated
model.

Next we consider the setup with heterogeneous backgroutesngor any nodein background,
we generate, from U(0, 0-2). The linkage probability between a background noded a disease-
related node is;. For two background nodesandj, the linkage probability ig/u;u;. The rest of
the model setups such as the generation mechanism of cotmsuabels, the linkage probabilities
within/between communities and linkage probabilitiesisstn a community and the background

remain the same.
[Table 2 about here.]
[Figure 1 about here.]
[Figure 2 about here.]
[Figure 3 about here.]

The ARI of the six methods are shown in Table 2 and Figures 1 - 3. Sirtolavhat we ob-
served in Table 1, the average ARIs of all methods increaséisealinkage probability within
community increases, or as the percentage of backgrouresramtreases. And the method with

logistic regression outperforms the corresponding methitiabut logistic regression. The robust
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method with logistic regression gives the best performamogost scenarios. The Poisson pseudo-
likelihood has the worst performance when the stochastickohodel assumption is violated
in the heterogeneous background. Especially, under the afakigh percentage of background
nodes, the Poisson pseudo-likelihood performs poorly evieen the linkage probability within
community is high. The multinomial pseudo-likelihood slity outperforms the robust method
when both the percentage of background nodes is high anthitagk probability within commu-
nity is low, in which case the robust method discards lotsnédrimation, while the multinomial
pseudo-likelihood (or correspondingly degree correctedrastic blockmodel) accounts for high
variations on degrees. On the other hand, the robust metitpérdorms the multinomial pseudo-
likelihood in all the other cases. In summary, the robustmetas the best performance in terms
of both accuracy and efficacy in almost all the setups we exagnregardless the data follows
stochastic blockmodels or not. In the only exception whéee rhultinomial pseudo-likelihood
method with logistic regression performs slightly bettbg discrepancies between the two meth-

ods are small. Therefore, the robust community detecticihogeis our recommended method.

7. Application

With the development of improved sequencing techniqueseraod more de novo mutations
in candidate genes associated with neurodevelopmentawopshychiatric diseases are being
reported. Here we focus on autism spectrum disorder antedelzeurological disorders. Most
identified de novo mutations are rare and patients with theesainical symptoms often carry
heterogeneous mutation loci on different genes. Most frlgbthe pathophysiology mechanism
underpinning autism involves perturbed molecular patrswva@ipere is evidence of enrichment of de
novo mutations in gene groups connected by protein-pratéenactions, co-expression patterns,
or pathways defined by common functions, annotations ougoeolal patterns (Allen et al., 2013).
Our study targets interactive groups of biomarkgene moduleghat form biological pathways

producing autism. Gene modules are defined as a set of gemd®&g product proteins interact



16 Biometrics, Decembet008

on the molecular level and 2) expression levels change asahee time. Furthermore, we are
particularly interested in autism related gene module$ \Bjt higher occurrences of de novo
mutations in cases.

Autism and related disorder data from Hormozdiari et al1&0are employed, which reports
four types of information (1. clinically diagnosed diseasatus, 2. RNA expression levels, 3.
de novo mutations, 4. protein-protein interactions) frémreé major data consortiums including
BrainSpan Atlas, published autism studies, protein-pnateeraction databases. There are 52,801
verified protein-protein interaction links and 192,499 mRp&irs with Pearson’s correlation co-
efficient between their expression levels higher th&n @ith an overlap of 1060 links. Together,
there are 244,240 unique links from both data sources. Timksanvolve 13,243 genes. Hormoz-
diari et al. (2015) further gathered the de novo mutationlandth information on 796 out of the
13,243 genes. In total, 796 genes with de novo mutationsraptoged in our analysis with 1334
mutual links between them, among which 602 genes have dtdeaslink and 194 have none.
The number of gene groups are picked using a modified Bayesiamiation criterion designed

specifically for stochastic blockmodels (Saldana et afl,220that is,

—2L(B, %, P; ¢, A) +

(K+1)2(K+2) g (@) |

In this data of 796 genes, the model assuming seven autisttedeinodules plus one irrelevant
background group produces the smallest Bayesian informatiterion.

Mutations are divided into two main categories — missenselass of function. Synonymous
mutations that differ at the DNA level but produce the sanuwegin products are excluded. The
frequencies of each type of mutation in a gene in all caseswarened up as well as the total
number in the controls. Three covariates are employed imashg the probability that a gene is
involved in the occurrence or progression of autism andedlaeurological disorders — frequency

of missense mutations in cases, frequency of loss of fumetiatations in cases, total number
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of mutations in controls. The choice of the covariates isedasn biological beliefs on their
involvement on autism development, hence decided a priori.

The robust community detection method in Section 4 idestifi@ genes showing no sign of
involvement in autism or related disorders as well as 74@ge@otentially involved in neurological
disorder pathways. The 743 genes are clustered into seveovwaslapping gene modules with
different sizes:7,533,79,28,35,43,18. The link densiudich are defined as the ratio of the number
of links over the number of possible pairs, within each grang between any two groups are listed
in Table 2. The majority of links concentrate on the diagasfahe linkage matrix for the seven
groups related to autism. Group eight is the group of 53auaht background genes, which have
low to medium linkage probabilities with all groups incladiitself. The linkage probabilities for
background genes within themselves are not necessarighigan the linkage probabilities with

autism-related genes in the other groups.

[Table 3 about here.]

The gene set enrichment analysis (GSEA) of the selected gpadkiles compared with the
curated gene sets in the Molecular Signatures Databagstackih Table 3. P-values are calculated
assuming a hypergeometric distribution for the number eflapping genes between the selected
group and the curated gene set. Given the large number ofpteuttomparisons, stringent P-
value threshold 02 is employed. Group two overlaps significantly with ten gesis én abnormal
conditions such as carcinoma, cancer, UV response, apgpidsheimers and melanoma. Group
three overlaps with gene sets related to neurological fomsbr disorders. Gene set “REACTOME
AXON GUIDANCE” are genes involved in Axon guidance, the pregdy which neurons send
out axons to reach the correct targets. Gene set “KEGG CALCIUGNBLING PATHWAY”
concerns multiple cellular processes that uses calciumasrthe signal. Gene sets “REACTOME
DEVELOPMENTAL BIOLOGY” and “REACTOME HEMOSTASIS” are compodeof genes

involved in developmental biology and hemostasis, resgygt Group four and seven overlaps
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with a lot cancer-related gene sets, while group one, fivesando not have any overlap with P-
value less than0~8. Furthermore, our results are compared to those from thgiktgAaffected
Genes into Integrated-Nnetworks method in Hormozdiarile{2915). The Merging Affected
Genes into Integrated-Networks method was not able to tigteap one. P-values from gene set
enrichment analysis for the two best sets identified by tmeithod against known neurodevelop-

mental diseases sets ar@%410~° and 20x 1074, failing to reach the 0~® threshold.

[Table 4 about here.]

8. Discussion

A major improvement of the proposed method over previous esi¢he integration of network
topology and auxiliary node information. The proposed gsialpools rich epigenomic information
from heterogeneous online resources, such as expressiexypcession profiles from BrainSpan
Atlas, de novo mutations in cases and controls from autisralated neurological disorder studies,
protein-protein interactions in protein databases. Alttothese three types of information are
measured on different cohorts, they describe distinctasue the candidate genes. They can be
linked by unique genes, which are the unit of our analysithérera of big data, statistical methods
need not be restricted to one data source or single climiahllhstead, methods should incorporate
information from many related resources.

The estimation method is non-standard. For a fixed initl@lassignment, we use the expectation-
maximization algorithm to fit a pseudo-likelihood. Then thkel assignment is updated according
to the expectation-maximization results, and used asid#bel assignment in the next iteration.
Taking advantage of the pseudo-likelihood, we are ableltovdieterogeneous linkage probabil-
ities in the background. The consistency of the label agsagrs is proved for a simple version
of this complicated procedure — one-step expectation-mization. Further research is needed to

understand the statistical properties of the algorithm amertomplex settings.
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Researchers have suggested that a node may belong to matiipl@unities in a biological
networks. For example, Airoldi et al. (2008) proposed a mixeembership stochastic blockmodels
and applied this model into a network of protein-proteieratctions. We will explore the extension

of the logistic regression augmented model to overlappamgraunity detection in our future work.
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Figure 2. Comparison of the average ARI for Poisson pseudo-likelihomafinomial pseudo-

likelihood and robust community detection with and withdagistic regressions under %0of
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Table1
Comparison of average adjusted rand index (ARL)00 under stochastic blockmodels.
Numbers within parentheses are empirical standard deviations ofxAR0.

With Logistic Models Without Logistic Models
p1n Poisson Multinomial Robust Poisson Multinomial Robust

62% Background Nodels

15 58(12) 57(13) 59(12) 15 (7) 15 (8) 15 (8)
16 66 (8) 66 (9) 67 (8) 23(11)  24(11)  23(11)
17 72(7) 72 (6) 73 (7) 34 (13) 33(13) 33(13)
18 77 (5) 76 (5) 77 (5) 48 (14)  45(13) 46 (15)
19 81 (5) 80 (5) 81 (4) 61(11)  55(13) 60 (11)
20 85 (4) 83 (4) 85 (4) 70 (8) 66 (9) 70 (9)
21 88(3) 86 (4) 88 (3) 78 (6) 73 (7) 78 (7)
22 91(3) 88 (3) 91 (3) 83 (4) 79 (6) 83 (5)
23 93(3) 90 (3) 93 (3) 87 (4) 83 (5) 87 (4)
24 94 (2) 92 (3) 94 (2) 90 (3) 86 (4) 90 (3)
25 96 (2) 93 (2) 96 (2) 93 (3) 89 (3) 93 (3)

50% Background Nodels

15 74 (5) 74 (5) 74(5)  44(10)  44(10) 43 (11)
16 78 (4) 78 (4) 79 (4) 56 (8) 56 (8) 55 (10)
17 82(4) 82 (4) 82 (4) 66 (6) 64 (7) 66 (7)
18 86 (3) 85 (4) 86 (3) 74 (6) 72 (6) 74 (6)
19 89 (3) 88 (3) 89 (3) 80 (5) 78 (5) 80 (5)
20 91(3) 90 (3) 92 (3) 86 (4) 82 (4) 86 (4)
21 94 (2) 92 (3) 94 (2) 89 (3) 86 (4) 89 (3)
22  95(2) 93 (2) 95 (2) 92 (3) 89 (3) 92 (3)
23 96 (2) 95 (2) 97 (2) 94 (2) 91 (3) 94 (2)
24 98(1) 96 (2) 97 (1) 96 (2) 93 (3) 96 (2)
25 98 (1) 96 (2) 98 (1) 97 (1) 94 (2) 97 (1)

38% Background Nodels

15 82 (4) 82 (4) 82 (3) 67 (6) 67 (6) 67 (6)
16 86 (3) 86 (3) 86 (3) 74 (5) 74 (5) 74 (5)
17 89(3) 88 (3) 89 (3) 81 (4) 80 (4) 80 (4)
18 91(3) 91 (3) 91 (3) 85 (3) 84 (4) 85 (3)
19 94 (2) 92 (2) 94 (2) 89 (3) 87 (3) 89 (3)
20 96 (2) 94 (2) 96 (2) 92 (2) 90 (3) 92 (2)
21 97 (1) 95 (2) 97 (1) 95 (2) 92 (2) 95 (2)
22 98(1) 96 (2) 98 (1) 96 (2) 94 (2) 96 (2)
23 98(1) 97 (1) 98 (1) 97 (1) 95 (2) 97 (1)
24 99 (1) 97 (1) 99 (1) 98 (1) 96 (2) 98 (1)
25 99 (1) 98 (1) 99 (1) 99 (1) 97 (2) 99 (1)
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Table2
Comparison of average adjusted rand index (ARLDO under heterogeneous backgrounds.
Numbers within parentheses are empirical standard deviations ofxAR0.

With Logistic Models Without Logistic Models
p1n Poisson Multinomial Robust Poisson Multinomial Robust

62% Background Nodels

15 20(11) 58(14) 54 (21) 15 (6) 17(8) 12 (10)
16 23 (13) 65(9)  63(18) 18 (5) 23(10) 17 (12)
17  25(13) 70 (8) 69 (16) 20 (5) 30(12) 24 (17)
18 29 (14) 74 (6) 76 (11) 23 (5) 39 (13) 31 (21)
19 35(18) 78 (5) 81 (8) 24 (5) 50 (12) 43 (26)
20 39 (20) 80 (5) 85 (6) 27 (6) 57(12) 50 (27)
21 43(23) 83 (5) 88 (5) 29 (5) 63(10) 61 (27)
22 48 (25) 85 (4) 91 (3) 30 (6) 66 (10) 71 (25)
23 53(27) 86 (4) 93 (3) 32 (7) 69 (10) 78 (22)
24 60 (29) 87 (4) 94 (2) 34 (9) 72 (10) 84 (19)
25 67 (30) 89 (4) 95 (2) 37(13) 74(10) 89 (15)

50% Background Nodels

15 62 (19) 73 (5) 74 (5) 34 (12) 44 (9) 42 (12)
16 70 (15) 77 (4) 79 (4) 41 (15) 53 (9) 55 (11)
17 75(14) 81 (4) 83 (4) 46 (15) 62 (8) 66 (8)
18 81(10) 84 (4) 86 (3) 52 (15) 69 (6) 74 (7)
19 85(9) 86 (4) 89 (3) 58 (15) 74 (6) 80 (6)
20 89 (7) 89 (3) 92 (3) 63 (17) 78 (5) 85 (5)
21 92 (4) 90 (3) 93 (2) 72 (18) 82 (5) 89 (3)
22 95(2) 92 (3) 95 (2) 82 (16) 84 (5) 92 (2)
23 96 (2) 93 (2) 96 (2) 88 (15) 87 (4) 94 (2)
24 97(2) 94 (2) 97 (1) 93 (10) 88 (4) 96 (2)
25 98 (1) 94 (2) 98 (1) 96 (7) 90 (4) 97 (1)

38% Background Nodels

15 81 (5) 82 (4) 82 (4) 65 (8) 66 (6) 67 (7)
16 85 (4) 85 (3) 86 (3) 71 (7) 72 (5) 74 (5)
17 89(3) 88 (3) 89 (3) 77 (7) 78 (5) 81 (4)
18 91(3) 90 (3) 91 (2) 83 (6) 82 (4) 85 (4)
19  93(2) 92 (3) 94 (2) 88 (4) 86 (4) 90 (3)
20 95(2) 93 (2) 95 (2) 91 (3) 88 (3) 92 (3)
21 96 (2) 94 (2) 97 (2) 94 (2) 90 (3) 94 (2)
22 98(1) 95 (2) 98 (1) 96 (2) 92 (3) 96 (2)
23 98(1) 96 (2) 98 (1) 97 (2) 93 (2) 97 (1)
24 99 (1) 97 (2) 99 (1) 98 (1) 94 (2) 98 (1)
25 99 (1) 97 (1) 99 (1) 99 (1) 95 (2) 99 (1)
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Table3

Estimated Link Probabilities 10° between Groups

Group 1-7 Group 8
04 0 0 O O O O 3
0O 0 1 1 O 0 1 2
0O 123 0 11 3 1 16
0O 1 0 628 221 0 4 86
0O 0 11 221175 0 O 65
O 0 3 O 0O 30 O 2
O 1 1 4 0O 0 414 14
3 2 16 8 65 2 14 53

27
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Table4

Gene Set Enrichment Analysis of Selected Groups

Group Gene Set Group GeneSet Overlap Nominal FDR

Number Name Size Size Size P-value g-value
2 DODD NASOPHARYNGEAL CARCINOMA UP 533 1821 62 2 x107 7.22x107
2 GOBERT OLIGODENDROCYTE DIFFERENTIATION DN 533 1080 46 B x107'*  7.22x107 %
2 BONOME OVARIAN CANCER SURVIVAL SUBOPTIMAL 533 510 31 61x107*  1.03x1071°
2 NABA MATRISOME 533 1028 42 62 %1072 1.92x107°

2 SENESE HDAC3 TARGETS DN 533 536 29 .3 x107'2 697x1078

2 YOSHIMURA MAPKS8 TARGETS UP 533 1305 46 @ x107  1.65x1078

2 DACOSTA UV RESPONSE VIA ERCC3 DN 533 855 36 92x107' 1.93x10°8

2 GRAESSMANN APOPTOSIS BY DOXORUBICIN DN 533 1781 55 .23 x107'  1.93x107®

2 BLALOCK ALZHEIMERS DISEASE UP 533 1691 53 49 x107 2.19x1078

2 ONKEN UVEAL MELANOMA UP 533 783 34 464 x10711 219x1078

3 REACTOME AXON GUIDANCE 79 251 9 B53x1071°  2.11x107¢

3 KEGG CALCIUM SIGNALING PATHWAY 79 178 8 892 x107°  2.11x107¢

3 REACTOME DEVELOPMENTAL BIOLOGY 79 396 10 F1x107°  2.70x107¢

3 REACTOME HEMOSTASIS 79 466 10 @6 x107°  9.52x107¢

4 DACOSTA UV RESPONSE VIA ERCC3 DN 28 855 11  4Dx107'? 6.60x107°

4 GRAESSMANN APOPTOSIS BY DOXORUBICIN DN 28 1781 13 - ®x107'? 219x107®

4 MILI PSEUDOPODIA HAPTOTAXIS UP 28 518 8 B0x1071  9.92x1077

7 GOBERT OLIGODENDROCYTE DIFFERENTIATION UP 18 570 11 -8 x107'" 1.35x107'3
7 DUTERTRE ESTRADIOL RESPONSE 24HR UP 18 324 9 7Ax107'® 419x107'2
7 PUJANA BRCA2 PCC NETWORK 18 423 9 97 x107*  310x10~
7 PUJANA XPRSS INT NETWORK 18 168 7 27 x107  2.63x1071°
7 GEORGES TARGETS OF MIR192 AND MIR215 18 893 10 78x107'% 2.63x1071°
7 NUYTTEN EZH2 TARGETS DN 18 1024 10 @8 x107 2 848x1071°
7 PUJANA CHEK2 PCC NETWORK 18 779 9 @88 %1072  3.16x107°

7 KINSEY TARGETS OF EWSR1 FLII FUSION UP 18 1278 9 73x107'° 222x1077

7 PUJANA BRCA CENTERED NETWORK 18 117 5 B x107°  4.30x1077

7 BLUM RESPONSE TO SALIRASIB DN 18 342 6 80x107° 118 x107¢

1

The first column is the group number identified by the proposed metlipely&ers to the number of genes in the identified group,

or gene set in the GSEA or their overlap.



