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1 Web Appendix A: Proof of Lemma 1

Recall that β̂0 and β̂1 can be obtained by

(β̂0, β̂1) = argmax
β0,β1

n∑

i=1

{
yi(β0 + xiβ1)− log(1 + eβ0+xiβ1)

}
.

Taking derivative of the log-likelihood above with respect to β0 and β1, we obtain

n∑

i=1

exiβ̂1+β̂0

1 + exiβ̂1+β̂0

=
n∑

i=1

yi, (1.1)

n∑

i=1

xie
xiβ̂1+β̂0

1 + exiβ̂1+β̂0

=
n∑

i=1

yixi. (1.2)

Denote s = (1/n)
∑n

i=1 yi. Then s is constant for e ∈ E , since s = n1γ1 + n2(1− γ2).
By the defintion of Riemann integral, for sufficiently large n,

(1− ǫ)s ≤

∫ 1

0

exβ̂1+β̂0

1 + exβ̂1+β̂0

dx ≤ (1 + ǫ)s. (1.3)

Without loss of generality, we assume β̂1 6= 0, since it is easy to show that β̂0 is bounded
from (1.2) otherwise.

Under this assumption, the integral in (1.3) has a closed form:

∫ 1

0

exβ̂1+β̂0

1 + exβ̂1+β̂0

dx =
1

β̂1

{log(1 + eβ̂0+β̂1)− log(1 + eβ̂0)}.
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First we consider the case that β̂1 > 0. According to (1.3),

log
es(1−ǫ)β̂1 − 1

eβ̂1 − es(1−ǫ)β̂1

≤ β̂0 ≤ log
es(1+ǫ)β̂1 − 1

eβ̂1 − es(1+ǫ)β̂1

. (1.4)

By (1.4), it is easy to check that

lim
β̂1→+∞

exβ̂1+β̂0 ≥ lim
β̂1→+∞

e(x+s(1−ǫ))β̂1 − exβ̂1

eβ̂1 − es(1−ǫ)β̂1

=

{
+∞ if x > 1− s(1− ǫ),
0 if x < 1− s(1− ǫ).

Therefore, for sufficiently large n,

lim
β̂1→+∞

1

n

n∑

i=1

xie
xiβ̂1+β̂0

1 + exiβ̂1+β̂0

≥ lim
β̂1→+∞

(1− ǫ)

∫ 1

0

xexβ̂1+β̂0

1 + exβ̂1+β̂0

dx ≥ (1− ǫ)

∫ 1

1−s(1−ǫ)

xdx. (1.5)

However,

max
e∈F∩E

1

n

n∑

i=1

yixi ≤
1

n

n∑

i=n−n̂1γ̃1+1

xi +
1

n

n̂2∑

i=n̂2−n̂1(1−γ̃1)+1

xi, (1.6)

the right hand side of (1.6) converges to

∫ 1

1−γ̃1s

xdx+

∫ 1−s

1−s−s(1−γ̃1)

xdx, (1.7)

and thus it is strictly less than (1.5). Therefore, there exists M1 such that β̂1 < M1 for
sufficiently large n. Note that M1 only depends on (1.7), and hence is independent with n.

Similarly, when β̂1 < 0,

log
es(1+ǫ)β̂1 − 1

eβ̂1 − es(1+ǫ)β̂1

≤ β̂0 ≤ log
es(1−ǫ)β̂1 − 1

eβ̂1 − es(1−ǫ)β̂1

. (1.8)

For sufficiently large n,

lim
β̂1→−∞

1

n

n∑

i=1

xie
xiβ̂1+β̂0

1 + exiβ̂1+β̂0

≤ lim
β̂1→−∞

(1 + ǫ)

∫ 1

0

xexβ̂1+β̂0

1 + exβ̂1+β̂0

dx ≤ (1 + ǫ)

∫ s

0

xdx.

But

min
e∈F∩E

1

n

n∑

i=1

yixi ≥
1

n

γ̃2n̂1∑

i=1

xi +
1

n

n̂1+(1−γ̃2)n̂1∑

i=n̂1+1

xi →

∫ γ̃2s

0

xdx+

∫ s+(1−γ̃2)s

s

xdx.

which implies β̂1 > −M2 for a fixed positive value of M2. It implies the solution (β̂0, β̂1)
for (1.1) and (1.2) is bounded together with (1.4) and (1.8).
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2 Web Appendix B: Proof of Theorem 1

With Lemma 1, the proof of Theorem 1 is closely followed the proof of Proposition 1 and
Theorem 3 in (Amini et al., 2013). We give the details for completeness. We begin with

notation. Recall that confusion matrix R defined as Rka = (1/n)
n∑

i=1

1(ei = k, ci = a) is

constant in E and is given by

R =

(
γ1π1 (1− γ2)π2

(1− γ1)π1 γ2π2

)
.

Let τ = π2/π1 and define

u(x) =
(1− γ1)x+ γ2τ

γ1x+ (1− γ2)τ
, v(x) = u(

1

x
),

and

F1(x, y) = log
1 + u(x)

1 + v(y)
, F2(x, y) = log

1 + [u(x)]−1

1 + [v(y)]−1
.

Define the KullbackC-Leibler divergence of two Bernoulli distribution with success rates
p and q respectively as

D(p||q) = p log
p

q
+ (1− p) log

1− p

1− q
.

In addition to the conditions listed in the main text of Theorem 2, we need the following
regularity condition: There exists δ ∈ (0, 1) such that

τ

ρ1
(1 + δ) ≤

D(γ1||(1− γ2)))

D((1− γ2)||γ1)
≤ (1− δ)ρ2τ.

Let Cℓ be the set of nodes in true community ℓ, and Sk be the set of nodes in community
k according to initial labeling e. We set nℓ = |Cℓ|, n̂k = |Sk|, and Skℓ = Sk

⋂
Cℓ.

Now we consider i ∈ C1. Then ĉi(e) = 1 if

bi1 log
θ̂21

θ̂11
+ bi2 log

θ̂22

θ̂12
< log

π̂i1

1− π̂i1

.

Let π̂(1) be the smallest value of π̂i1 (i = 1, ..., n). Define

α1 = log
θ̂21

θ̂11
, α2 = log

θ̂22

θ̂12
,

σj(e) = α11{ej = 1}+ α21{ej = 2}, (j = 1, ..., n)

τ̂(1) =
1− π̂(1)

π̂(1)

.
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So that α1bi1 + α2bi2 =
∑

j Aijσj(e) = ξi{σ(e)}. Thus, the mis-match ratio over class 1
(with identity permutation) is,

Mn,1(e) = (1/n1)
∑

i∈C1

1{ĉi(e) 6= 1}

≤ (1/n1)
∑

i∈C1

1{α1bi1 + α2bi2 ≥ log
π̂i1

1− π̂i1

}

≤ (1/n1)
∑

i∈C1

1{α1bi1 + α2bi2 ≥ − log τ̂(1)}

By Bernstein inequality, we have

pr[ξi(σ) ≥ E{ξi(σ)}+ t] ≤ exp

{
−

t2/2∑
j var(Aijσj) + ‖α‖

∞
t/3

}
,

where ‖α‖
∞

:= max |α1|, |α2| and we have used that |Ãijσj| ≤ ‖α‖
∞

since i ∈ C1, then we
have

E[ξi(σ)] =
∑

j

σjE[Aij] =
2∑

k=1

2∑

ℓ=1

∑

j

σjE[Aij]1{j ∈ Skℓ}

=
2∑

k=1

2∑

ℓ=1

∑

j

αkP1ℓ1{j ∈ Skℓ} = n[αTRP ]1 = [Λα]1.

In which [Λα]1 denotes the value for the first row of Λα, so is [αTRP ]1. By a similar
argument,

∑

j

var(Aijσj) =
∑

j

σ2
jvar[Aij ]

≤
∑

j

σ2
jE[Aij] ≤ ‖α‖

∞

∑

j

|σj|E[Aij] = ‖α‖
∞
[Λ|α|]1,

where |α| = (|α1|, |α2|). Combining what we’ve got above, we have

pr[ξi(σ) ≥ E{ξi(σ)}+ t] ≤ exp

[
−

t2

2 ‖α‖
∞
{[Λ|α|]1 + t/3}

]
.

Take t = z1,n = −[Λα]1− log τ̂(1). We now show that −[Λα]1 → ∞ and by Lemma 1 we
can conclude z1,n > 0.

We first consider the extreme case that ρ̂1 = ρ̂2 = ∞. Hence we have u(∞) = (1−γ1)/γ1,
v(∞) = γ2/(1− γ2), α1 = log{(1− γ2)/γ1} and α2 = log{γ2/(1− γ1)}. By definition of Λ,

Λα = bπ1

(
ρ1 1
1 ρ2

)(
γ1 1− γ1

(1− γ2)τ γ2τ

)(
log 1−γ2

γ1

log γ2
1−γ1

)
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= bπ1

(
ρ1 τ
1 ρ2τ

)(
γ1 1− γ1

(1− γ2) γ2

)(
log 1−γ2

γ1

log γ2
1−γ1

)

= bπ1

(
ρ1 τ
1 ρ2τ

)(
−D(γ1||(1− γ2))
D((1− γ2)||γ1)

)
.

So [Λα]1 has the form

[Λα]1 = b[π1{τD((1− γ2)||γ1)− ρ1D(γ1||(1− γ2))}],

Since γ1, γ2 6= 1/2 and

τ

ρ1
(1 + δ) ≤

D(γ1||(1− γ2)))

D((1− γ2)||γ1)
≤ (1− δ)ρ2τ,

it is easy to see that [Λα]1 < 0 when ρ̂1 = ρ̂2 = ∞. And therefore it is also true for
sufficiently large ρ̂1 and ρ̂2. Moreover, [Λα]1 → −∞ when b → ∞. And we can have
similar result of [Λα]2 → ∞.

In addition, for sufficiently large value of n, [Λα]1 ≤ 3 ‖α‖
∞
[Λ|α|]1.

Putting pieces together, we have

pr[ξi(σ) ≥ − log τ̂(1)] ≤ exp

{
−

z21,n
4 ‖α‖

∞
(Λ|α|)1

}
. (2.1)

Pick u1
n satisfying

u1
n log u

1
n =

2C

eπ1p̄1{log τ̂(1)}
,

where p̄1{log τ̂(1)} = 1
n1

n1∑
i=1

pr[ξi(σ) ≥ −τ̂(1)]. We have

pr[sup
e∈E

Mn,1(e) >
1

π1

2C

log u1
n

] ≤ exp{−n(C − rn)},

by the same arguments in the supplement material of Amini et al. (2013), where C is a
constant and rn = o(1/n).

The right hand side of (2.1) goes to 0 as b → ∞. Therefore, log u1
n → ∞, which implies

for any ǫ > 0,
pr[sup

e∈E

Mn,1(e) > ǫ] → 0, as n → ∞. (2.2)

By a similar argument as above, for i ∈ C2,

pr[sup
e∈E

Mn,2(e) > ǫ] → 0, as n → ∞, (2.3)

where Mn,2(e) = (1/n2)
∑
i∈C2

1{ĉi(e) 6= 2}. The result of the theorem will automatically

follows by putting (2.2) and (2.3) together, i.e., Mn(e) = π1Mn,1(e) + π2Mn,2(e). This
competes our proof to the theorem.
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