Web-based Supplementary Materials for "Logistic Regression Augmented Community Detection for Networks with Application in Identifying Autism-Related Gene Pathways"

Yunpeng Zhao ${ }^{1}$, Qing Pan^{2} and Chengan Du^{1}
${ }^{1}$ Department of Statistics, George Mason University
${ }^{2}$ Department of Statistics, George Washington University

June 8, 2017

1 Web Appendix A: Proof of Lemma 1

Recall that $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ can be obtained by

$$
\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\underset{\beta_{0}, \beta_{1}}{\arg \max } \sum_{i=1}^{n}\left\{y_{i}\left(\beta_{0}+x_{i} \beta_{1}\right)-\log \left(1+e^{\beta_{0}+x_{i} \beta_{1}}\right)\right\} .
$$

Taking derivative of the log-likelihood above with respect to β_{0} and β_{1}, we obtain

$$
\begin{align*}
& \sum_{i=1}^{n} \frac{e^{x_{i} \hat{\beta}_{1}+\hat{\beta}_{0}}}{1+e^{x_{i} \hat{\beta}_{1}+\hat{\beta}_{0}}}=\sum_{i=1}^{n} y_{i}, \tag{1.1}\\
& \sum_{i=1}^{n} \frac{x_{i} e^{x_{i} \hat{\beta}_{1}+\hat{\beta}_{0}}}{1+e^{x_{i} \hat{\beta}_{1}+\hat{\beta}_{0}}}=\sum_{i=1}^{n} y_{i} x_{i} . \tag{1.2}
\end{align*}
$$

Denote $s=(1 / n) \sum_{i=1}^{n} y_{i}$. Then s is constant for $\boldsymbol{e} \in \mathcal{E}$, since $s=n_{1} \gamma_{1}+n_{2}\left(1-\gamma_{2}\right)$. By the defintion of Riemann integral, for sufficiently large n,

$$
\begin{equation*}
(1-\epsilon) s \leq \int_{0}^{1} \frac{e^{x \hat{\beta}_{1}+\hat{\beta}_{0}}}{1+e^{x \hat{\beta}_{1}+\hat{\beta}_{0}}} d x \leq(1+\epsilon) s \tag{1.3}
\end{equation*}
$$

Without loss of generality, we assume $\hat{\beta}_{1} \neq 0$, since it is easy to show that $\hat{\beta}_{0}$ is bounded from (1.2) otherwise.

Under this assumption, the integral in (1.3) has a closed form:

$$
\int_{0}^{1} \frac{e^{x \hat{\beta}_{1}+\hat{\beta}_{0}}}{1+e^{x \hat{\beta}_{1}+\hat{\beta}_{0}}} d x=\frac{1}{\hat{\beta}_{1}}\left\{\log \left(1+e^{\hat{\beta}_{0}+\hat{\beta}_{1}}\right)-\log \left(1+e^{\hat{\beta}_{0}}\right)\right\} .
$$

First we consider the case that $\hat{\beta}_{1}>0$. According to (1.3),

$$
\begin{equation*}
\log \frac{e^{s(1-\epsilon) \hat{\beta}_{1}}-1}{e^{\hat{\beta}_{1}}-e^{s(1-\epsilon) \hat{\beta}_{1}}} \leq \hat{\beta}_{0} \leq \log \frac{e^{s(1+\epsilon) \hat{\beta}_{1}}-1}{e^{\hat{\beta}_{1}}-e^{s(1+\epsilon) \hat{\beta}_{1}}} . \tag{1.4}
\end{equation*}
$$

By (1.4), it is easy to check that

$$
\lim _{\hat{\beta}_{1} \rightarrow+\infty} e^{x \hat{\beta}_{1}+\hat{\beta}_{0}} \geq \lim _{\hat{\beta}_{1} \rightarrow+\infty} \frac{e^{(x+s(1-\epsilon)) \hat{\beta}_{1}}-e^{x \hat{\beta}_{1}}}{e^{\hat{\beta}_{1}}-e^{s(1-\epsilon) \hat{\beta}_{1}}}=\left\{\begin{array}{cl}
+\infty & \text { if } x>1-s(1-\epsilon), \\
0 & \text { if } x<1-s(1-\epsilon)
\end{array}\right.
$$

Therefore, for sufficiently large n,

$$
\begin{equation*}
\lim _{\hat{\beta}_{1} \rightarrow+\infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} e^{x_{i} \hat{\beta}_{1}+\hat{\beta}_{0}}}{1+e^{x_{i} \hat{\beta}_{1}+\hat{\beta}_{0}}} \geq \lim _{\hat{\beta}_{1} \rightarrow+\infty}(1-\epsilon) \int_{0}^{1} \frac{x e^{x \hat{\beta}_{1}+\hat{\beta}_{0}}}{1+e^{x \hat{\beta}_{1}+\hat{\beta}_{0}}} d x \geq(1-\epsilon) \int_{1-s(1-\epsilon)}^{1} x d x \tag{1.5}
\end{equation*}
$$

However,

$$
\begin{equation*}
\max _{e \in \mathcal{F} \cap \mathcal{E}} \frac{1}{n} \sum_{i=1}^{n} y_{i} x_{i} \leq \frac{1}{n} \sum_{i=n-\hat{n}_{1} \tilde{\gamma}_{1}+1}^{n} x_{i}+\frac{1}{n} \sum_{i=\hat{n}_{2}-\hat{n}_{1}\left(1-\tilde{\gamma}_{1}\right)+1}^{\hat{n}_{2}} x_{i} \tag{1.6}
\end{equation*}
$$

the right hand side of (1.6) converges to

$$
\begin{equation*}
\int_{1-\tilde{\gamma}_{1} s}^{1} x d x+\int_{1-s-s\left(1-\tilde{\gamma}_{1}\right)}^{1-s} x d x \tag{1.7}
\end{equation*}
$$

and thus it is strictly less than (1.5). Therefore, there exists M_{1} such that $\hat{\beta}_{1}<M_{1}$ for sufficiently large n. Note that M_{1} only depends on (1.7), and hence is independent with n.

Similarly, when $\hat{\beta}_{1}<0$,

$$
\begin{equation*}
\log \frac{e^{s(1+\epsilon) \hat{\beta}_{1}}-1}{e^{\hat{\beta}_{1}}-e^{s(1+\epsilon) \hat{\beta}_{1}}} \leq \hat{\beta}_{0} \leq \log \frac{e^{s(1-\epsilon) \hat{\beta}_{1}}-1}{e^{\hat{\beta}_{1}}-e^{s(1-\epsilon) \hat{\beta}_{1}}} \tag{1.8}
\end{equation*}
$$

For sufficiently large n,

$$
\lim _{\hat{\beta}_{1} \rightarrow-\infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} e^{x_{i} \hat{\beta}_{1}+\hat{\beta}_{0}}}{1+e^{x_{i} \hat{\beta}_{1}+\hat{\beta}_{0}}} \leq \lim _{\hat{\beta}_{1} \rightarrow-\infty}(1+\epsilon) \int_{0}^{1} \frac{x e^{x \hat{\beta}_{1}+\hat{\beta}_{0}}}{1+e^{x \hat{\beta}_{1}+\hat{\beta}_{0}}} d x \leq(1+\epsilon) \int_{0}^{s} x d x
$$

But

$$
\min _{e \in \mathcal{F} \cap \mathcal{E}} \frac{1}{n} \sum_{i=1}^{n} y_{i} x_{i} \geq \frac{1}{n} \sum_{i=1}^{\tilde{\gamma}_{2} \hat{n}_{1}} x_{i}+\frac{1}{n} \sum_{i=\hat{n}_{1}+1}^{\hat{n}_{1}+\left(1-\tilde{\gamma}_{2}\right) \hat{n}_{1}} x_{i} \rightarrow \int_{0}^{\tilde{\gamma}_{2} s} x d x+\int_{s}^{s+\left(1-\tilde{\gamma}_{2}\right) s} x d x
$$

which implies $\hat{\beta}_{1}>-M_{2}$ for a fixed positive value of M_{2}. It implies the solution ($\hat{\beta}_{0}, \hat{\beta}_{1}$) for (1.1) and (1.2) is bounded together with (1.4) and (1.8).

2 Web Appendix B: Proof of Theorem 1

With Lemma 1, the proof of Theorem 1 is closely followed the proof of Proposition 1 and Theorem 3 in (Amini et al., 2013). We give the details for completeness. We begin with notation. Recall that confusion matrix R defined as $R_{k a}=(1 / n) \sum_{i=1}^{n} 1\left(e_{i}=k, c_{i}=a\right)$ is constant in \mathcal{E} and is given by

$$
R=\left(\begin{array}{cc}
\gamma_{1} \pi_{1} & \left(1-\gamma_{2}\right) \pi_{2} \\
\left(1-\gamma_{1}\right) \pi_{1} & \gamma_{2} \pi_{2}
\end{array}\right)
$$

Let $\tau=\pi_{2} / \pi_{1}$ and define

$$
u(x)=\frac{\left(1-\gamma_{1}\right) x+\gamma_{2} \tau}{\gamma_{1} x+\left(1-\gamma_{2}\right) \tau}, \quad v(x)=u\left(\frac{1}{x}\right)
$$

and

$$
F_{1}(x, y)=\log \frac{1+u(x)}{1+v(y)}, \quad F_{2}(x, y)=\log \frac{1+[u(x)]^{-1}}{1+[v(y)]^{-1}}
$$

Define the KullbackC-Leibler divergence of two Bernoulli distribution with success rates p and q respectively as

$$
D(p \| q)=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q} .
$$

In addition to the conditions listed in the main text of Theorem 2, we need the following regularity condition: There exists $\delta \in(0,1)$ such that

$$
\frac{\tau}{\rho_{1}}(1+\delta) \leq \frac{\left.D\left(\gamma_{1} \|\left(1-\gamma_{2}\right)\right)\right)}{D\left(\left(1-\gamma_{2}\right) \| \gamma_{1}\right)} \leq(1-\delta) \rho_{2} \tau
$$

Let \mathcal{C}_{ℓ} be the set of nodes in true community ℓ, and \mathcal{S}_{k} be the set of nodes in community k according to initial labeling e. We set $n_{\ell}=\left|\mathcal{C}_{\ell}\right|, \hat{n}_{k}=\left|\mathcal{S}_{k}\right|$, and $\mathcal{S}_{k \ell}=\mathcal{S}_{k} \cap \mathcal{C}_{\ell}$.

Now we consider $i \in \mathcal{C}_{1}$. Then $\hat{c}_{i}(\boldsymbol{e})=1$ if

$$
b_{i 1} \log \frac{\hat{\theta}_{21}}{\hat{\theta}_{11}}+b_{i 2} \log \frac{\hat{\theta}_{22}}{\hat{\theta}_{12}}<\log \frac{\hat{\pi}_{i 1}}{1-\hat{\pi}_{i 1}}
$$

Let $\hat{\pi}_{(1)}$ be the smallest value of $\hat{\pi}_{i 1}(i=1, \ldots, n)$. Define

$$
\begin{aligned}
\alpha_{1} & =\log \frac{\hat{\theta}_{21}}{\hat{\theta}_{11}}, \quad \alpha_{2}=\log \frac{\hat{\theta}_{22}}{\hat{\theta}_{12}}, \\
\sigma_{j}(\boldsymbol{e}) & =\alpha_{1} 1\left\{e_{j}=1\right\}+\alpha_{2} 1\left\{e_{j}=2\right\}, \quad(j=1, \ldots, n) \\
\hat{\tau}_{(1)} & =\frac{1-\hat{\pi}_{(1)}}{\hat{\pi}_{(1)}} .
\end{aligned}
$$

So that $\alpha_{1} b_{i 1}+\alpha_{2} b_{i 2}=\sum_{j} A_{i j} \sigma_{j}(\boldsymbol{e})=\xi_{i}\{\sigma(\boldsymbol{e})\}$. Thus, the mis-match ratio over class 1 (with identity permutation) is,

$$
\begin{aligned}
M_{n, 1}(\boldsymbol{e}) & =\left(1 / n_{1}\right) \sum_{i \in \mathcal{C}_{1}} 1\left\{\hat{c}_{i}(\boldsymbol{e}) \neq 1\right\} \\
& \leq\left(1 / n_{1}\right) \sum_{i \in \mathcal{C}_{1}} 1\left\{\alpha_{1} b_{i 1}+\alpha_{2} b_{i 2} \geq \log \frac{\hat{\pi}_{i 1}}{1-\hat{\pi}_{i 1}}\right\} \\
& \leq\left(1 / n_{1}\right) \sum_{i \in \mathcal{C}_{1}} 1\left\{\alpha_{1} b_{i 1}+\alpha_{2} b_{i 2} \geq-\log \hat{\tau}_{(1)}\right\}
\end{aligned}
$$

By Bernstein inequality, we have

$$
\operatorname{pr}\left[\xi_{i}(\sigma) \geq E\left\{\xi_{i}(\sigma)\right\}+t\right] \leq \exp \left\{-\frac{t^{2} / 2}{\sum_{j} \operatorname{var}\left(A_{i j} \sigma_{j}\right)+\|\alpha\|_{\infty} t / 3}\right\}
$$

where $\|\alpha\|_{\infty}:=\max \left|\alpha_{1}\right|,\left|\alpha_{2}\right|$ and we have used that $\left|\widetilde{A}_{i j} \sigma_{j}\right| \leq\|\alpha\|_{\infty}$ since $i \in \mathcal{C}_{1}$, then we have

$$
\begin{aligned}
E\left[\xi_{i}(\sigma)\right] & =\sum_{j} \sigma_{j} E\left[A_{i j}\right]=\sum_{k=1}^{2} \sum_{\ell=1}^{2} \sum_{j} \sigma_{j} E\left[A_{i j}\right] 1\left\{j \in \mathcal{S}_{k \ell}\right\} \\
& =\sum_{k=1}^{2} \sum_{\ell=1}^{2} \sum_{j} \alpha_{k} P_{1 \ell} 1\left\{j \in \mathcal{S}_{k \ell}\right\}=n\left[\alpha^{T} R P\right]_{1}=[\Lambda \alpha]_{1} .
\end{aligned}
$$

In which $[\Lambda \alpha]_{1}$ denotes the value for the first row of $\Lambda \alpha$, so is $\left[\alpha^{T} R P\right]_{1}$. By a similar argument,

$$
\begin{aligned}
\sum_{j} \operatorname{var}\left(A_{i j} \sigma_{j}\right) & =\sum_{j} \sigma_{j}^{2} \operatorname{var}\left[A_{i j}\right] \\
& \leq \sum_{j} \sigma_{j}^{2} E\left[A_{i j}\right] \leq\|\alpha\|_{\infty} \sum_{j}\left|\sigma_{j}\right| E\left[A_{i j}\right]=\|\alpha\|_{\infty}[\Lambda|\alpha|]_{1}
\end{aligned}
$$

where $|\alpha|=\left(\left|\alpha_{1}\right|,\left|\alpha_{2}\right|\right)$. Combining what we've got above, we have

$$
\operatorname{pr}\left[\xi_{i}(\sigma) \geq E\left\{\xi_{i}(\sigma)\right\}+t\right] \leq \exp \left[-\frac{t^{2}}{2\|\alpha\|_{\infty}\left\{[\Lambda|\alpha|]_{1}+t / 3\right\}}\right]
$$

Take $t=z_{1, n}=-[\Lambda \alpha]_{1}-\log \hat{\tau}_{(1)}$. We now show that $-[\Lambda \alpha]_{1} \rightarrow \infty$ and by Lemma 1 we can conclude $z_{1, n}>0$.

We first consider the extreme case that $\hat{\rho}_{1}=\hat{\rho}_{2}=\infty$. Hence we have $u(\infty)=\left(1-\gamma_{1}\right) / \gamma_{1}$, $v(\infty)=\gamma_{2} /\left(1-\gamma_{2}\right), \alpha_{1}=\log \left\{\left(1-\gamma_{2}\right) / \gamma_{1}\right\}$ and $\alpha_{2}=\log \left\{\gamma_{2} /\left(1-\gamma_{1}\right)\right\}$. By definition of Λ,

$$
\Lambda \alpha=b \pi_{1}\left(\begin{array}{cc}
\rho_{1} & 1 \\
1 & \rho_{2}
\end{array}\right)\left(\begin{array}{cc}
\gamma_{1} & 1-\gamma_{1} \\
\left(1-\gamma_{2}\right) \tau & \gamma_{2} \tau
\end{array}\right)\binom{\log \frac{1-\gamma_{2}}{\gamma_{1}}}{\log \frac{\gamma_{2}}{1-\gamma_{1}}}
$$

$$
\begin{gathered}
=b \pi_{1}\left(\begin{array}{cc}
\rho_{1} & \tau \\
1 & \rho_{2} \tau
\end{array}\right)\left(\begin{array}{cc}
\gamma_{1} & 1-\gamma_{1} \\
\left(1-\gamma_{2}\right) & \gamma_{2}
\end{array}\right)\binom{\log \frac{1-\gamma_{2}}{\gamma_{1}}}{\log \frac{\gamma_{2}}{1-\gamma_{1}}} \\
=b \pi_{1}\left(\begin{array}{cc}
\rho_{1} & \tau \\
1 & \rho_{2} \tau
\end{array}\right)\binom{-D\left(\gamma_{1} \|\left(1-\gamma_{2}\right)\right)}{D\left(\left(1-\gamma_{2}\right) \| \gamma_{1}\right)} .
\end{gathered}
$$

So $[\Lambda \alpha]_{1}$ has the form

$$
[\Lambda \alpha]_{1}=b\left[\pi_{1}\left\{\tau D\left(\left(1-\gamma_{2}\right) \| \gamma_{1}\right)-\rho_{1} D\left(\gamma_{1} \|\left(1-\gamma_{2}\right)\right)\right\}\right]
$$

Since $\gamma_{1}, \gamma_{2} \neq 1 / 2$ and

$$
\frac{\tau}{\rho_{1}}(1+\delta) \leq \frac{\left.D\left(\gamma_{1} \|\left(1-\gamma_{2}\right)\right)\right)}{D\left(\left(1-\gamma_{2}\right) \| \gamma_{1}\right)} \leq(1-\delta) \rho_{2} \tau
$$

it is easy to see that $[\Lambda \alpha]_{1}<0$ when $\hat{\rho}_{1}=\hat{\rho}_{2}=\infty$. And therefore it is also true for sufficiently large $\hat{\rho}_{1}$ and $\hat{\rho}_{2}$. Moreover, $[\Lambda \alpha]_{1} \rightarrow-\infty$ when $b \rightarrow \infty$. And we can have similar result of $[\Lambda \alpha]_{2} \rightarrow \infty$.

In addition, for sufficiently large value of $n,[\Lambda \alpha]_{1} \leq 3\|\alpha\|_{\infty}[\Lambda|\alpha|]_{1}$.
Putting pieces together, we have

$$
\begin{equation*}
\operatorname{pr}\left[\xi_{i}(\sigma) \geq-\log \hat{\tau}_{(1)}\right] \leq \exp \left\{-\frac{z_{1, n}^{2}}{4\|\alpha\|_{\infty}(\Lambda|\alpha|)_{1}}\right\} \tag{2.1}
\end{equation*}
$$

Pick u_{n}^{1} satisfying

$$
u_{n}^{1} \log u_{n}^{1}=\frac{2 C}{e \pi_{1} \bar{p}_{1}\left\{\log \hat{\tau}_{(1)}\right\}},
$$

where $\bar{p}_{1}\left\{\log \hat{\tau}_{(1)}\right\}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \operatorname{pr}\left[\xi_{i}(\sigma) \geq-\hat{\tau}_{(1)}\right]$. We have

$$
\operatorname{pr}\left[\sup _{e \in \mathcal{E}} M_{n, 1}(\boldsymbol{e})>\frac{1}{\pi_{1}} \frac{2 C}{\log u_{n}^{1}}\right] \leq \exp \left\{-n\left(C-r_{n}\right)\right\}
$$

by the same arguments in the supplement material of Amini et al. (2013), where C is a constant and $r_{n}=o(1 / n)$.

The right hand side of (2.1) goes to 0 as $b \rightarrow \infty$. Therefore, $\log u_{n}^{1} \rightarrow \infty$, which implies for any $\epsilon>0$,

$$
\begin{equation*}
\operatorname{pr}\left[\sup _{e \in \mathcal{E}} M_{n, 1}(\boldsymbol{e})>\epsilon\right] \rightarrow 0, \text { as } n \rightarrow \infty . \tag{2.2}
\end{equation*}
$$

By a similar argument as above, for $i \in \mathcal{C}_{2}$,

$$
\begin{equation*}
\operatorname{pr}\left[\sup _{e \in \mathcal{E}} M_{n, 2}(\boldsymbol{e})>\epsilon\right] \rightarrow 0, \text { as } n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

where $M_{n, 2}(\boldsymbol{e})=\left(1 / n_{2}\right) \sum_{i \in \mathcal{C}_{2}} 1\left\{\hat{c}_{i}(\boldsymbol{e}) \neq 2\right\}$. The result of the theorem will automatically follows by putting (2.2) and (2.3) together, i.e., $M_{n}(\boldsymbol{e})=\pi_{1} M_{n, 1}(\boldsymbol{e})+\pi_{2} M_{n, 2}(\boldsymbol{e})$. This competes our proof to the theorem.

References

Amini, A., Chen, A., Bickel, P., and Levina, E. (2013). Pseudo-likelihood methods for community detection in large sparse networks. Annals of Statistics 41, 2097-2122.

