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1 Web Appendix A: Proof of Lemma 1

Recall that Bo and Bl can be obtained by

~

(6 6 ) = arg maxz {yz 60 + xzﬂl) log(l + 6,30+Ii51)} :

Bo,B1 i=1

Taking derivative of the log-likelihood above with respect to 5y and 3, we obtain

n evi B1+5o
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Z 1+ e iB1+Bo - Zyﬂ?z

(1.1)

(1.2)

Denote s = (1/n) > ", y;. Then s is constant for e € £, since s = nyy; + na(1 — 72).

By the defintion of Riemann integral, for sufficiently large n,

1 exﬁl-&-éo
— < —dx < .
(1—¢€)s < /0 s oA dr < (1+€)s

(1.3)

Without loss of generality, we assume Bl # 0, since it is easy to show that Bo is bounded

from (1.2) otherwise.
Under this assumption, the integral in (1.3) has a closed form:

1 696814-30 1 B +B 3
——dx = —{log(1 + &) — log(1 + ") }.
e = 5 s+ ) —los(1 1 b))



First we consider the case that 8 > 0. According to (1.3),

es1—B1 _ esUab _

log— < fy<log — .
8 6’81 _ 65(1—6)51 - 50 = 108 661 _ 68(1+e),6’1

By (1.4), it is easy to check that

lim ex31+/3’0 > lim elrtim9h — e = { too ifw>1- 8(1 - €
Bl—H-oo o Bl—H—oo 6’81 — 65(1_6)/81

Therefore, for sufficiently large n,
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However,
n 1 no
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the right hand side of (1.6) converges to
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(1.4)

(1.5)

(1.6)
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and thus it is strictly less than (1.5). Therefore, there exists M; such that B, < M, for
sufficiently large n. Note that M; only depends on (1.7), and hence is independent with n.

Similarly, when @1 <0,
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For sufficiently large n,
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(1.8)

which implies Bl > — M, for a fixed positive value of Ms. It implies the solution (BO, Bl)

for (1.1) and (1.2) is bounded together with (1.4) and (1.8).



2 Web Appendix B: Proof of Theorem 1

With Lemma 1, the proof of Theorem 1 is closely followed the proof of Proposition 1 and
Theorem 3 in (Amini et al., 2013). We give the details for completeness. We begin with

notation. Recall that confusion matrix R defined as Ry, = (1/n) > 1(e; = k,¢; = a) is
i=1
constant in £ and is given by
R:( : N (1—72)7T2).

1—71)7T1 Y22

Let 7 = my/m and define

(I =m)z+ T 1
U _71x+(1_72>7j ( ) u(l')7
and
Fi(z,y) = log 11—383 Fy(z,y) = log %

Define the KullbackC-Leibler divergence of two Bernoulli distribution with success rates
p and ¢ respectively as
1—p

D
D(pllq) = plog=+ (1 — p) log .

In addition to the conditions listed in the main text of Theorem 2, we need the following
regularity condition: There exists 6 € (0,1) such that

T D(ml[(1 —12)))
TS B ) <

Let Cy be the set of nodes in true community ¢, and Sy be the set of nodes in community
k according to initial labeling e. We set n, = |Cy|, n. = |Sk|, and Sge = Sk () Ce.
Now we consider ¢ € C;. Then ¢;(e) = 1 if

(1 — 5)p27'.

A~ ~
~
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Let 71y be the smallest value of 7;; (i = 1,...,n). Define

021 02
a; =log=—, ay=1log——,
11 012
ojle) =a1l{e; =1} + awl{e; =2}, (j=1,...,n)
. 1-— 7AT(1)
(1) = fr(l) .



So that a1b;1 + anbiy = Zj Ajjo;(e) = &{o(e)}. Thus, the mis-match ratio over class 1
(with identity permutation) is,

M,i(e) = (1/n1) Y " 1{éi(e) # 1}

i€Cy
M
S (1/711) Z 1{0&1[)@1 + Oégbig Z log 1_ ;_Zl}
i€Cy
S (1/711) Z 1{041[%1 + OéQbZ‘Q Z - log %(1)}
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By Bernstein inequality, we have

prii(o) > E{&(o)} +1] <exp {_Z } Var(Aijfj/)QJr e t/s} ;

where ||af| , = max ||, |a2| and we have used that |gijoj] < |la]|, since i € Cy, then we
have

2

El&i(o)] = Z 0;E[Aiy) =D ) Y o E[A]1{j € Su}

J k=1 +¢=1 j

= Z Z Zakpufl{j € Sp} = nla" RP]; = [Aaly.

k=1 ¢=1 j

In which [Aa]; denotes the value for the first row of Aa, so is [a” RP];. By a similar
argument,

Z var(A;jo;) = Z o;var[A]
J J
<Y E[Ay] < llall Y log | ElAy] = llall [Alal],
J J

where |a] = (Jaq], |az|). Combining what we’ve got above, we have

t2
prl&i(o) = E{&(0)} + 1] < exp {_2 ol {[Alel]: +t/3}} '

Take t = 21, = —[Aa]; —log 7(1). We now show that —[Aa]; — oo and by Lemma 1 we
can conclude 2, > 0.
We first consider the extreme case that p; = po = oco. Hence we have u(oo) = (1—71) /71,

v(00) = 712 /(1 —72), an = log{(1 —2)/m} and as = log{~y2/(1 — 71)}. By definition of A,

_ log 1=22
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e (0T no L= ) [ logi2
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= (8 5) (o)

So [Aa]; has the form

[Aa]y = b[m{TD((1 = 72)[[71) = L D(n[(1 = 72))}],

Since 71,72 # 1/2 and

T D[ — 7))
o U= B )

it is easy to see that [Aa]; < 0 when p; = py = oo. And therefore it is also true for
sufficiently large p, and p,. Moreover, [Aa]; — —oo when b — oco. And we can have
similar result of [Aa]y — oco.

In addition, for sufficiently large value of n, [Aa]; < 3 |la| [Ale]]:.

Putting pieces together, we have

S (]‘ - 6)p27—7
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u, logu, = - — ,
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where p;{log 7(1)} = nil > pri&i(o) > —7n)]. We have
i=1

1 2C
M,, > —
prisap Mo le) > g a

| < exp{—n(C =)},

by the same arguments in the supplement material of Amini et al. (2013), where C' is a
constant and r,, = o(1/n).

The right hand side of (2.1) goes to 0 as b — oo. Therefore, log u} — oo, which implies
for any € > 0,

prlsup M, 1(e) > €] — 0, as n — oo. (2.2)
ect

By a similar argument as above, for i € Cy,

pr[sup M, »(e) > €] — 0, as n — oo, (2.3)
ec&
where M, 2(e) = (1/n2) > 1{¢(e) # 2}. The result of the theorem will automatically
i€Ca

follows by putting (2.2) and (2.3) together, i.e., M,(e) = m M, 1(e) + mM,2(e). This
competes our proof to the theorem.
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