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Graph-based semi-supervised learning is one of the most popular methods in machine learn-
ing. Some of its theoretical properties such as bounds for the generalisation error and the
convergence of the graph Laplacian regulariser have been studied in computer science and
statistics literatures. However, a fundamental statistical property, the consistency of the es-
timator from this method has not been proved. In this article, we study the consistency
problem under a non-parametric framework. We prove the consistency of graph-based learn-
ing in the case that the estimated scores are enforced to be equal to the observed responses
for the labeled data. The sample sizes of both labeled and unlabeled data are allowed to
grow in this result. When the estimated scores are not required to be equal to the observed
responses, a tuning parameter is used to balance the loss function and the graph Laplacian
regulariser. We give a counterexample demonstrating that the estimator for this case can be
inconsistent. The theoretical findings are supported by numerical studies.

Keywords: Consistency ; Semi-supervised learning ; Graph Laplacian

1. Introduction

Semi-supervised learning is a class of machine learning methods that stand in the middle
ground between supervised learning in which all training data are labeled, and unsu-
pervised learning in which no training data are labeled. Specifically, in addition to the
labeled training data X1, . . . , Xn, there exist unlabeled inputs Xn+1, . . . , Xn+m. Under
certain assumptions on the geometric structure of the input data, such as the cluster
assumption or the low-dimensional manifold assumption (Chapelle, Schölkopf, and Zien
2006), the use of both labeled and unlabeled data can achieve better prediction accuracy
than supervised learning that only uses labeled inputs X1, . . . , Xn.
Semi-supervised learning has become popular since the acquisition of unlabeled data is

relatively inexpensive. A large number of methods were developed under the framework
of semi-supervised learning. For example, Ratsaby and Venkatesh (1995) proposed that
the combination of labeled and unlabeled data will improve the prediction accuracy un-
der the assumption of mixture models. The self-training method (Rosenberg, Hebert, and
Schneiderman 2005) and the co-training method (Jones 2005) were soon applied to semi-
supervised learning when mixture models are not assumed. Zhang, Brady, and Smith
(2001) described an approach to semi-supervised clustering based on hidden Markov
random fields (HMRFs) that can combine multiple approaches in a unified probabilis-
tic framework. Basu et al. (Basu, Banerjee, and Mooney. 2002) proposed a probabilistic
framework for semi-supervised learning incorporating a K-means type hard partition
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clustering algorithm (HMRF-Kmeans). Vapnik (1998) proposed the transductive sup-
port vector machines (TSVMs) that used the idea of transductive learning by including
unlabeled data in the computation of the margin. Transductive learning is a variant of
semi-supervised learning which focuses on the inference of the correct labels for the given
unlabeled data other than the inference of the general rule. Bie and Cristianini (2004)
used a convex relaxation of the optimisation problem called semi-definite programming
as a different approaches to the TSVMs.
In this article, we focus on a particular semi-supervised method – graph-based semi-

supervised learning. In this method, the geometric structure of the input data are rep-
resented by a graph G = (V ,E), where nodes V = {v1, . . . , vn+m} represent the inputs
and edges E represent the similarities between them. The similarities are given in an
n + m by n + m symmetric similarity matrix (or called kernel matrix), W = [wij ],
where 0 ≤ wij ≤ 1. The larger wij implies that Xi and Xj are more similar. Further, let
Y1, . . . , Yn be the responses of the labeled data.
Zhu, Ghahramani., and Lafferty. (2003) proposed the following graph-based learning

method,

min
f=(f1,...,fn+m)T

n+m
∑

i=1

n+m
∑

j=1

wij(fi − fj)
2 (1)

subject to fi = Yi, i = 1, . . . , n.

Its solution is called the estimated scores. The objective function (1) (named “hard
criterion” thereafter), requires all the estimated score to be exactly the same as the
responses for the labeled data. Delalleau et al. (Delalleau, Bengio, and Roux 2005) relaxed
this requirement by proposing a soft version (named “soft criterion” thereafter). We
follow an equivalent form given in Zhu and Goldberg (2009),

min
f=(f1,...,fn+m)T

n
∑

i=1

(Yi − fi)
2 +

λ

2

n+m
∑

i=1

n+m
∑

j=1

wij(fi − fj)
2. (2)

The soft criterion belongs to the “loss+penalty” paradigm: It searches for the minimiser
f̂ which achieves a small training error, and in the meanwhile imposes the smoothness
on f̂ by a penalty based on similarity matrix. It can be easily seen that when λ = 0 the
soft criterion is equivalent to the hard criterion.

Remark 1 The tuning parameter λ being 0 in the soft criterion (2) is understood in the
following sense: The squared loss has infinite weight and thereby Yi = fi for all labeled
data. But

∑n+m
i=1

∑n+m
j=1 wij(fi−fj)

2 still plays a crucial role when it has no conflict with
the hard constraints on the labeled data, that is, it provides links between fi’s on the
labeled and unlabeled data. Therefore, the soft criterion (2) at λ = 0 becomes the hard
criterion (1).

Zhou, Bousquet, Lal, Weston, and Schölkopf (2004); Belkin, Matveeva, and Niyogi
(2004) have also proposed different variants of graph-based learning methods. We only
focus on (1) and (2) in this article.
The theoretical properties of graph-based learning have been studied in computer sci-

ence and statistics literatures. Bosquet, Chapelle, and Hein (2004) derived the limit of

2
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the Laplacian regulariser when the sample size of unlabeled data goes to infinity. Hein
(2006) considered the convergence of Laplacian regulariser on Riemannian manifolds.
Belkin, Niyogi, and Sindhwani (2006) reinterpreted the graph Laplacian as a measure
of intrinsic distances between inputs on a manifold and reformulated the problem as a
functional optimisation in a reproducing kernel Hilbert space. Nadler, Srebro, and Zhou
(2009) pointed out that the hard criterion can yield completely noninformative solution
when the size of unlabeled data goes to infinity and labeled data are finite, that is, the
solution can give a perfect fit on the labeled data but remains as 0 on the unlabeled
data. Lafferty and Wasserman (2008) obtained the asymptotic mean squared error of a
different version of graph-based learning criterion. Belkin et al. (2004) gave a bound of
the generalisation error for a slightly different version of (2). Alaoui, Cheng, Ramdas,
Wainwright, and Jordan (2016) studied the theoretical properties of ℓp-based Laplacian
regularisation – in particular the phase transition of p for a informative solution.
But to the best of our knowledge, no result is available in literature on a very funda-

mental question – the consistency of graph-based learning, which is the main focus of
this article. Specifically, we want to answer the question that under what conditions f̂i
will converge to E[Yi|Xi] on unlabeled data, where E[Yi|Xi] is the true probability of a
positive label given Xi if responses are binary, and E[Yi|Xi] is the regression function
on Xi if responses are continuous. We will always call E[Yi|Xi] as regression function for
simplicity.
Most of the literatures discussed above considered a “functional version” of (1) and (2).

They used a functional optimisation problem with the optimiser f̂(x) being a function, as

an approximation of the original problem with the optimiser f̂ being a vector. And they
studied the behavior of the limit of graph Laplacian and the solution f̂(x). We do not
adopt this framework but use a more direct approach. We focus on the original problem
and study the relations of f̂i and E[Yi|Xi] under the general non-parametric setting. Our
approach essentially belongs to the framework of transductive learning, which focuses on
the prediction on the given unlabeled data Xn+1, . . . , Xn+m, not the general mapping
from inputs to responses. By establishing a link between the optimiser of (1) and the
Nadaraya-Watson estimator (Nadaraya 1964; Watson 1964) for kernel regression, we will
prove the consistency of the hard criterion. The theorem allows both m and n to grow.
On the other hand, we show that the soft criterion is inconsistent for sufficiently large λ.
To the best of our knowledge, this is the first result that explicitly distinguishes the hard
criterion and the soft criterion of graph-based learning from a theoretical perspective and
shows that they have very different asymptotic behaviors.
The rest of the article is organized as follows. In Section 2, we state the consistency

result for the hard criterion and give the counterexample for the soft criterion. We prove
the consistency result in Section 3. Numerical studies in Section 4 support our theoretical
findings. Section 5 concludes with a summary and discussion of future research directions.

2. Main Results

We begin with basic notation and setup. Let (X1, Y1), . . . , (Xn+m, Yn+m) be indepen-
dently and identically distributed pairs. Here each Xi is a d-dimensional vector and
Y = (Y1, . . . , Yn+m)T are binary responses labeled as 1 and 0 (the classification case) or
continuous responses (the regression case). The last m responses are unobserved.

3
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Zhu et al. (2003) used a fixed point algorithm to solve the hard criterion (1), which is

fa =

∑n+m
i=1 wakfi
∑n+m

i=1 wai

, a = n+ 1, . . . , n+m. (3)

Note that (3) is not a closed-form solution but an updating formula for the iterative
algorithm, since its right-hand side depends on unknown quantities.
In order to obtain a closed-form solution for (1), we begin by solving the soft version (2)

and then let λ = 0. Recall that W is the similarity matrix. Let D = diag(d1, . . . , dn+m)

where di =
n+m
∑

j=1
wij , and L = D − W being the unnormalised graph Laplacian (see

Newman (2010) for more details). Soft criterion (2) can be written in matrix form

min
f

(f − Y )TV(f − Y ) + λfTLf , (4)

where V is an n+m by n+m matrix defined as

V =

(

In 0

0 0

)

.

Then by taking the derivative of (4) with respect to f and setting equal to zero, we
obtain the solution as follows,

f̂ = (V + λL)−1V

(

Y n

0

)

.

where Y n = (Y1, . . . , Yn)
T .

What we are interested in are the estimated scores on the unlabeled data, i.e.
f̂ (n+1):(n+m) = (f̂n+1, . . . , f̂n+m)T . In order to obtain an explicit form for f̂ (n+1):(n+m),
we use a formula for inverse of a block matrix (see standard textbooks on matrix algebra
such as Intriligator and Griliches (1988) for more details): For any non-singular square
matrix A

A =

(

A11 A12

A21 A22

)

,

A−1 =

(

(A11 −A12A
−1
22 A21)

−1 −(A11 −A12A
−1
22 A21)

−1A12A
−1
22

−(A22 −A21A
−1
11 A12)

−1A21A
−1
11 (A22 −A21A

−1
11 A12)

−1

)

.

Write D and W as 2× 2 block matrices,

D =

(

D11 D12

D21 D22

)

,W =

(

W11 W12

W21 W22

)

.

4
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By the formula above,

f̂ (n+1):(n+m) =

(D22 −W22 − λW21(In + λD11 − λW11)
−1W12)

−1W21(In + λD11 − λW11)
−1Y n.

(5)

By letting λ = 0, we obtain the solution for the hard criterion (1),

f̂ (n+1):(n+m) = (D22 −W22)
−1W21Y n. (6)

Belkin et al. (2004) obtained a similar formula for a slightly different objective function.
Clearly, the form of (6) is closely related to the Nadaraya-Watson estimator (Nadaraya

1964; Watson 1964) for kernel regression, which is

q̂n+a =

∑n
i=1wn+a,iYi
∑n

k=1wn+a,i
, a = 1, . . . ,m. (7)

The Nadaraya-Watson estimator is well studied under the non-parametric framework.
We can construct W by a kernel function, that is, let wij = K((Xi −Xj)/hn), where K
is a nonnegative function on R

d, and hn is a positive constant controlling the bandwidth
of the kernel. Let q(X) = E[Y |X] be the true regression function. The consistency of
Nadaraya-Watson estimator was first proved by Watson (1964) and Nadaraya (1964).
And many other researchers such as Devroye (1978) and Cai (2001) studied its asymptotic
properties under different assumptions. Here we follow the result in Devroye and Wagner
(1980). If hn → 0, nhdn → ∞ as n → ∞, and K satisfies:

(i) K is bounded by k∗ < ∞;
(ii) The support of K is compact;
(iii) K ≥ βIB for some β > 0 and some closed ball B centered at the origin and having

positive radius δ,

then q̂n+a converges to q(Xn+a) in probability for a = 1, . . . ,m.
By establishing a connection between the solution of the hard criterion and Nadaraya-

Watson estimator, we prove the following main theorem:

Theorem 2.1 Suppose that (X1, Y1), (X2, Y2), . . . , (Xn+m, Yn+m) are independently and
identically distributed with Yi being bounded; hn and K satisfy the above conditions.
Further, we assume that the density function φ(·) of X1 has a compact support X . And
for every inner point x in X ,

φ(x) ≥ s∗ > 0. (8)

Then, for m = o(nhdn), f̂n+a given in (5) converges to q(Xn+a) in probability, for
a = 1, . . . ,m.

The proof will be given in Section 3.

Remark 2 Theorem 2.1 established the consistency of the hard criterion under the stan-
dard non-parametric framework with two additional assumptions. Firstly, both labeled
data and unlabeled data are allowed to grow but the size of unlabeled data m grows
slower than the size of labeled data n. We conjecture that when m grows faster than n,

5
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the graph-based semi-supervised learning may not be consistent based on the simulation
studies in Section 4. Nadler et al. (2009) also suggested that the method may not work
when m grows too fast. Secondly, we assume that density function of the difference of two
independent inputs is strictly positive near the origin, which is a mild technical condition
valid for commonly used density functions.

Theorem 2.1 provides some surprising insights about the hard criterion of graph-based
learning. At a first glance, the hard criterion makes an impractical assumption that
requires the responses to be noiseless, while the soft criterion seems to be a more natural
choice. But according to our theoretical analysis, the hard criterion is consistent under
the standard non-parametric framework where the responses on training data are of
course allowed to be random and noisy.
We now consider the soft criterion with λ 6= 0.

Proposition 2.2 Suppose that (X1, Y1), (X2, Y2), . . . , (Xn+m, Yn+m) are independently
and identically distributed with Yi being bounded. Further, suppose that W represents a
connected graph. Then for sufficiently large λ, the soft criterion (2) is inconsistent.

Proof. Consider another extreme case of the soft criterion (2), λ = ∞. When W repre-
sents a connected graph, the objective function becomes

min
f=(f1,...,fn)T

n
∑

i=1

(Yi − fi)
2 (9)

subject to fi = fj , 1 ≤ i, j ≤ n+m.

It is easy to check that the solution of (9), denoted by f̂(∞), is given by

f̂n+a(∞) =
1

n

n
∑

i=1

Yi, a = 1, . . . ,m.

By the law of large numbers,

lim
n→∞

f̂n+a(∞) = E[q(X1)] almost surely.

Clearly, E[q(X1)] 6= q(Xn+a) since the right-hand side is a random variable. This implies
that for sufficiently large λ, the soft criterion is inconsistent. �

3. Proof of the Main Theorem

We give the proof of Theorem 2.1 in this section.
Recall that

f̂ (n+1):(n+m) = (D22 −W22)
−1W21Y n.

We first focus on (D22 −W22)
−1. Clearly,

(D22 −W22)
−1 = (Im −D−1

22 W22)
−1D−1

22 .

6
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For any positive integer l, define

Sl = D−1
22 W22 + (D−1

22 W22)
2 + (D−1

22 W22)
3 + · · ·+ (D−1

22 W22)
l.

Our goal is to prove that the limit of Sl exists with probability approaching 1, and thus
we can have

(Im −D−1
22 W22)

−1 = Im + lim
l→∞

Sl

with probability approaching 1 (Werner 2005).

By definition,

D22 =







dn+1,n+1 · · · 0
...

. . .
...

0 · · · dn+m,n+m






, W22 =







wn+1,n+1 · · · wn+1,n+m
...

. . .
...

wn+m,n+1 · · · wn+m,n+m






,

where

dn+a,n+a =

n+m
∑

k=1

wn+a,k, wn+a,i = K

(

Xi −Xn+a

hn

)

,

for 1 ≤ a ≤ m, 1 ≤ i ≤ n+m. Thus we have

D−1
22 W22 =







wn+1,n+1/dn+1,n+1 · · · wn+1,n+m/dn+1,n+1
...

. . .
...

wn+1,n+m/dn+m,n+m · · · wn+m,n+m/dn+m,n+m






.

Define p(Xn+a) = P(‖Xi−Xn+a‖ ≤ δhn | Xn+a). Then since hn → 0, by the assumption
in (8) and the definition of multiple integral, with probability 1.

lim
n→∞

p(Xn+a)

Vd(δhn)
= φ(Xn+a) ≥ s∗,

where Vd(δhn) denotes the volume of a d-dimensional ball with radius δhn. Then for
sufficiently large n,

p(Xn+a) ≥
1

2
s∗Vd(δhn) = shdn,

where s is a constant only related to s∗ and δ.
Since nhdn → ∞, the above inequality implies np(Xn+a) → ∞. On the other side,

p(Xn+a) → 0 since hn → 0.
Further,

Var(I{‖Xi −Xn+a‖ ≤ δhn} | Xn+a) = p(Xn+a)(1− p(Xn+a)).

7
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By Chebyshev’s Inequality, for any 0 < ǫ < 1/2, since nhdn → ∞,

P

(∣

∣

∣

∣

∑n
i=1 I{‖Xi −Xn+a‖ ≤ δhn}

np(Xn+a)
− 1

∣

∣

∣

∣

≥ ǫ

∣

∣

∣

∣

Xn+a

)

=P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

I{‖Xi −Xn+a‖ ≤ δhn} − p(Xn+a)

∣

∣

∣

∣

∣

≥ ǫp(Xn+a)

∣

∣

∣

∣

∣

Xn+a

)

≤
p(Xn+a)(1− p(Xn+a))

nǫ2p(Xn+a)2
≤

1

ǫ2p(Xn+a)n
≤

1

ǫ2snhdn
. (10)

Therefore,

P

(∣

∣

∣

∣

∑n
i=1 I{‖Xi −Xn+a‖ ≤ δhn}

np(Xn+a)
− 1

∣

∣

∣

∣

≥ ǫ

)

≤
1

ǫ2snhdn
→ 0 as n → ∞. (11)

This further implies

n
∑

i=1
I{‖Xi −Xn+a‖ ≤ δhn}

np(Xn+a)
→ 1 in probability.

We now continue to study the property of D−1
22 W22. Consider each element (D−1

22 W22)ab
of this matrix. For 1 ≤ a, b ≤ m,

(D−1
22 W22)ab =

wn+a,n+b

dn+a,n+a
= K

(

Xn+b −Xn+a

hn

)

/
n+m
∑

i=1

K

(

Xi −Xn+a

hn

)

≤
k∗

β
n
∑

i=1
I{‖Xi −Xn+a‖ ≤ δhn}

,

by condition (i) and (iii). For simplicity of notation, let

Φn(a) =

n
∑

i=1
I{‖Xi −Xn+a‖ ≤ δhn}

np(Xn+a)
,

where Φn is a nonnegative function depending on n. By (10), we have

P(0 ≤ Φn(a) ≤ 1− ǫ) ≤ P(|Φn(a)− 1| ≥ ǫ) ≤
1

ǫ2snhdn
,

which implies

P

(

min
1≤a≤m

Φn(a) ≤ 1− ǫ

)

= P

(

m
⋃

a=1

{Φn(a) ≤ 1− ǫ}

)

≤

m
∑

a=1

P(Φn(a) ≤ 1− ǫ) ≤
m

ǫ2snhdn
,

8
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and

P

(

max
1≤a≤m

k∗

βΦn(a)np(Xn+a)
≤

k∗

β(1− ǫ)np(Xn+a)

)

≥ 1−
m

ǫ2snhdn
.

Since m
ǫ2snhd

n

→ 0, we have

P

(

max
1≤a,b≤m

(D−1
22 W22)ab ≤ max

1≤a≤m

k∗

βΦn(a)np(Xn+a)
≤ M

1

nhdn

)

→ 1, as n → ∞, (12)

where M = 2k∗

sβ > k∗

(1−ǫ)sβ . Note that M is a constant independent with n and m.

For the sake of simplicity, we say a matrix A has tiny elements, if

‖A‖max ≤ M
1

nhdn
,

with probability approaching 1, where ‖A‖max = maxij Aij . And (A)i denotes the i-th
row of A. Then D−1

22 W22 has tiny elements by (12). Moreover,

‖(D−1
22 W22)

2‖max = ‖(D−1
22 W22)(D

−1
22 W22)‖max

≤ (M
1

nhdn
)2m =

M

nhdn
(
mM

nhdn
)

holds with probability approaching 1. By induction,

‖(D−1
22 W22)

l‖max = ‖(D−1
22 W22)(D

−1
22 W22)

l−1‖max ≤
M

nhdn
(
mM

nhdn
)l−1,

with probability approaching 1. Therefore,

‖Sl‖max =‖D−1
22 W22 + · · ·+ (D−1

22 W22)
l‖max

≤‖D−1
22 W22‖max + · · ·+ ‖(D−1

22 W22)
l‖max

≤
M

nhdn

(

1 + · · ·+ (
mM

nhdn
)l−1

)

with probability approaching 1.

lim
l→∞

‖Sl‖max ≤ lim
l→∞

M

nhdn

(

1 + · · ·+ (
mM

nhdn
)l−1

)

≤
M

nhdn
/(1−

mM

nhdn
) ≤

2M

nhdn
with probability approaching 1.

Thus S
△
= lim

l→∞
Sl exists with probability approaching 1 since lim

l→∞
‖Sl‖max < ∞, and S

also has tiny elements. Therefore,

(D22 −W22)
−1 = (Im −D−1

22 W22)
−1D−1

22 = (Im + S)D−1
22 ,

with probability approaching 1.
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We now go back to the solution of the hard criterion of graph-based semi-supervised
learning,

f̂ (n+1):(n+m) = (D22 −W22)
−1W21Y n

= (Im + S)D−1
22 W21Y n = D−1

22 W21Y n + SD−1
22 W21Y n, (13)

with probability approaching 1. For 1 ≤ a ≤ m, f̂(n+a) equals to the ath row of (D22 −

W22)
−1W21Y n, i.e.,

f̂(n+a) =
(

(D22 −W22)
−1W21Y n

)

a
(14)

=
n
∑

i=1

wi,n+a

dn+a,n+a
Yi + (S)aD

−1
22 W21Y n,

with probability approaching 1, where (S)a denotes the ath row of S.
By assumption, Yi’s are bounded. Without loss of generality, assume ‖Yn‖max ≤ 1. For

1 ≤ a ≤ m, define

g(n+a) =
n
∑

i=1

Yi

(

wi,n+a
∑n

k=1wk,n+a
−

wi,n+a

dn+a,n+a

)

.

We have

|g(n+a)| ≤
n
∑

i=1

‖Yn‖max

(

wi,n+a
∑n

k=1wk,n+a
−

wi,n+a

dn+a,n+a

)

=

∑n
i=1wi,n+a

∑n
k=1wk,n+a

−

∑n
i=1wi,n+a

∑n+m
k=1 wk,n+a

=

∑n+m
k=n+1wk,n+a

dn+a,n+a

≤
mk∗

βΦn(a)np(Xn+a)
≤

mM

nhdn
→ 0,

with probability approaching 1 as n → ∞. This implies

g(n+a) → 0 in probability,

since for any ǫ > 0 we can find m,n ∈ N such that mM
nhd

n

≤ ǫ and

P(|g(n+a)| ≤ ǫ) ≥ P

(

|g(n+a)| ≤
mM

nhdn

)

→ 1.
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Finally, for each 1 ≤ a ≤ m,

f̂(n+a) =
n
∑

i=1

wi,n+a

dn+a,n+a
Yi + (S)aD

−1
22 W21Y n

=
n
∑

i=1

wi,n+a
∑n

k=1wk,n+a
Yi + (S)aD

−1
22 W21Y n − g(n+a),

Since S has tiny elements,

‖(S)aD
−1
22 W21Y n‖ ≤

mM

nhdn
→ 0 with probability approaching 1,

which implies (S)aD
−1
22 W21Y n → 0 in probability. The theorem then holds by the con-

sistency of Nadaraya-Watson estimator.

4. Numerical Studies

In this section, we compare the performance of the hard criterion and the soft criterion
with different tuning parameters under a linear and non-linear model.
The inputs X1, . . . Xn+m are generated independently from a truncated multivariate

normal distribution. Specifically, let X̃i follow a p-dimensional multivariate normal with
the mean µ = (0.5, . . . , 0.5), and the variance-covariance matrix











0.1 0.05 0.05 . . . 0.05
0.05 0.1 0.05 . . . 0.05
...

...
...

. . .
...

0.05 0.05 0.05 . . . 0.1











.

We set p = 5. For i = 1, . . . , n + m and k = 1, . . . , p, let Xik = X̃ik if X̃ik ∈ [0, 1] and
X̃ik = 0 otherwise, where Xik and X̃ik are the k-th component of Xi and X̃i, respectively.
Let W be the Gaussian radial basis function (RBF) kernel, that is,

wij = exp

(

−
‖Xi −Xj‖

2

σ2

)

, for 1 ≤ i, j ≤ m+ n,

where σ = hn = (log n/n)1/5. Note thatW has compact support sinceXi’s are truncated,
and the choice of hn satisfies the condition in Theorem 2.1.
We consider two models in simulation studies. In Model 1, the responses Yi’s follow a

logistic regression with

logit q(Xi) = −1.35 + 2Xi1 −Xi2 +Xi3 −Xi4 + 2Xi5,

for i = 1, . . . ,m+ n. Model 2 uses a non-linear logit function,

logit q(Xi) = −1.35 + 2Xi1 −Xi2 +Xi3 −Xi4 + 2Xi5 +Xi1Xi3 +Xi2Xi4,

for i = 1, . . . ,m+ n.

11

Page 11 of 15

jnps@tandf.co.uk

Journal of Nonparametric Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

June 19, 2017 Journal of Nonparametric Statistics gNT˙semi

We compare the performance of graph-based learning methods with four different
tuning parameters, λ = 0, 0.01, 0.1 and 5. The performance is measured by the root
mean squared error (RMSE) on the unlabeled data, that is,

√

√

√

√

1

m

m
∑

a=1

(q(Xn+a)− q̂n+a)2.

Each simulation is repeated 1000 times and the average RMSEs are reported.
Figure 1 shows the RMSEs under Model 1 when the sample size of unlabeled data m

is fixed as 30 and the sample size of labeled data n = 10, 30, 50, 100, 200, 300, 500, 800,
1000 and 1500. As n increases, the RMSEs of all methods decrease as expected. More
importantly, the RMSE increases as λ increases. In particular, the hard criterion always
outperforms the soft criterion, which is consistent with our theoretical results.
Figure 2 shows the RMSEs under Model 1 when n is fixed as 100 and m = 30, 60, 100,

300, 500 and 1000. As before, the RMSE always increases as λ increases. Moreover, the
RMSEs of all methods increase as m increases, which suggests that the hard criterion
may not be consistent when m grows faster than n. For the non-linear logit function,
Figure 3 and 4 show the same patterns as in Figure 1 and 2, respectively, which also
support our theoretical results.

5. Summary

In this article, we proved the consistency of graph-based semi-supervised learning when
the tuning parameter of the graph Laplacian is zero (the hard criterion) and showed that
the method can be inconsistent when the tuning parameter is nonzero (the soft criterion).
Moreover, the numerical studies also suggest that the hard criterion outperforms the soft
criterion in terms of the RMSE. These results provide a better understanding about the
statistical properties of graph-based semi-supervised learning. Of course, the accuracy of
prediction can be measured by other indicators such as the area under the receiver oper-
ating characteristic curve (AUC). The hard criterion may not always be the best choice
in term of these indicators. Further theoretical properties such as rank consistency will
be explored in future research. Moreover, we would also like to investigate the behavior
of these methods when the unlabeled data grow faster than the label data.
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Figure 1.: Average RMSEs when m = 30 under Model 1
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Figure 2.: Average RMSEs when n = 100 under Model 1
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Figure 3.: Average RMSEs when m = 30 under Model 2
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Figure 4.: Average RMSEs when n = 100 under Model 2
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