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Abstract

Estimating the number of communities is one of the fundamental problems in community
detection. We re-examine the Bayesian paradigm for stochastic block models and propose
a “corrected Bayesian information criterion”, to determine the number of communities and
show that the proposed estimator is consistent under mild conditions. The proposed crite-
rion improves those used in Wang and Bickel (2016) and Saldana, Yu and Feng (2017) which
tend to underestimate and overestimate the number of communities, respectively. Along the
way, we establish the Wilks theorem for stochastic block models. Moreover, we show that,
to obtain the consistency of model selection for stochastic block models, we need a so-called
“consistency condition”. We also provide sufficient conditions for both homogenous net-
works and non-homogenous networks. The results are further extended to degree corrected
stochastic block models. Numerical studies demonstrate our theoretical results.
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1 Introduction

Community structure within network data is quite common. For instance, peoples form groups
in social networks based on common locations, interests, occupations and so on; proteins form
communities based on functions in metabolic networks; papers form communities by research
topics in citation networks. As a result, the links (or edges) among nodes are dense within
communities and relatively sparse inter-communities. Identifying such sub-groups provides im-
portant insights into network formation mechanism and how network topology affects each other.

The stochastic block model (SBM) proposed by Holland, Laskey and Leinhardt (1983) is the

best studied network models to detect community structure. For its applications, see Snijders
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and Nowicki (1997) and Nowicki and Snijders (2001). Let A € {0,1}"*™ be the symmetric
adjacency matrix of an undirected graph with n nodes. In the stochastic block model with
k communities, each node is associated with one community labeled by zx (i), where zx(i) €
[k]. Here [m] = {1,...,m} for any positive integer m. In other words, the nodes are given
a community assignment zx : [n] — [k|". The diagonal entries of A are all zeros and the
entries of the upper triangle matrix A are independent Bernoulli random variables with success
probabilities {P;;} which only depend on the community labels of nodes ¢ and j. That is,
given the node communities, all edges are independent and for certain probability matrix 6 =

{Okab b 1<a<b<i,
P(Ai = 1] 2(), 26(5)) = Okzy(i)20(5)-

For simplicity, 0, and z; are abbreviated to # and z, respectively.

A wide variety of methods have been proposed to estimate the latent block membership of
nodes in an stochastic block model, including modularity Newman (2006a), profile-likelihood
Bickel and Chen (2009), pseudo-likelihood Amini et al. (2013), variational methods Daudin,
Picard and Robin (2008); Latouche, Birmele and Ambroise (2012), spectral clustering Rohe,
Chatterjee and Yu (2011); Fishkind et al. (2013); Jin (2015), belief propagation Decelle et
al. (2011), and so on. The asymptotic properties of these methods have also been established
Bickel and Chen (2009); Rohe, Chatterjee and Yu (2011); Celisse, Daudin and Pierre (2012);
Bickel et al. (2013); Gao, Lu and Zhou (2015); Zhang and Zhou (2016). However, most of these
works assume that the number of communities k£ is known a priori. In real network data, k is
usually unknown and needs to be estimated. Therefore, it is of importance to investigate how
to choose k (called model selection in this article). Some methods have been proposed in recent
years, including recursive approaches Zhao, Levina and Zhu (2011), spectral methodsLe and
Levina (2015), sequential test Bickel and Sarkar (2015); Lei (2016), and network cross-validation
Chen and Lei (2017). The likelihood methods for model selection have also been proposed
Daudin, Picard and Robin (2008); Latouche, Birmele and Ambroise (2012); Saldana, Yu and
Feng (2017). Wang and Bickel Wang and Bickel (2016) established the limiting distribution of
the log-likelihood ratio under model misspecification—underfitting and overfitting, and deduced

a likelihood-based model selection method. Specifically, their penalty function is

k(k+1)

A

nlogn, (1)
where A is a tuning parameter. The penalty function @ logn (called the “BIC”) was used to
select the optimal number of communities in Daudin, Picard and Robin (2008) and Saldana, Yu
and Feng (2017). When we use the penalty function (1) and the BIC to estimate k in simulations
and real data examples, we find that they tend to underestimate and overestimate the number
of communities, respectively. We propose a “corrected Bayesian information criterio” (CBIC)
which is in the midway of those two criteria. Specifically, our penalty function is

k(k+1)
2

Anlog k + logn, (2)



which is smaller than that in (1) used by Wang and Bickel (2016). In comparison with the
penalty function in the BIC used in Saldana, Yu and Feng (2017), it contains one more term
Anlogk. It is worth noting that Wang and Bickel Wang and Bickel (2016) dealt with the
marginal log-likelihood where z as latent variables are integrated out, while here we plug a
single estimated community assignment into the log-likelihood. These two log-likelihoods are
equivalent asymptotically since the probability of the observations under incorrect community
assignments is negligible asymptotically.

Similar to the classical BIC in linear and generalized linear models, the tuning parameter A
can be set to a constant, i.e., A = 1. For the sake of convenience in the proofs and comparisons
with Wang and Bickel (2016), we keep the tuning parameter A in (2). Built on the work of
Wang and Bickel (2016), we show that the proposed estimator is consistent. It is worth noting
that we assume that the true number of communities is fixed in this article. Along the way of
proving consistency, we obtain the Wilks theorem for stochastic block models. Furthermore, we
show that, to obtain the consistency of model selection for stochastic block models, we need a
so-called “consistency condition”. We also provide sufficient conditions for both homogenous
networks and non-homogenous networks. The results are further extended to degree corrected
block models. The proposed method can be easily conducted by the popular spectral clustering
methods Rohe, Chatterjee and Yu (2011); Jin (2015).

For the remainder of the paper, we proceed as follows. In Section 2, we re-examine the
Bayesian paradigm for stochastic block models and propose the CBIC to determine the number
of communities. In Section 3, we analyze the asymptotic behavior of the log-likelihood ratio
and establish their asymptotic distributions. In Section 4, we establish the consistency of the
estimator for the number of communities. We extend our results to degree corrected stochastic
block models in Section 5. The numerical studies are given in Section 6. Some further discussions

are made in Section 7. All proofs are given in Section 8.

2 Corrected BIC

In this section, we re-examine the Bayesian paradigm for the SBM and propose a corrected
family of Bayesian information criteria.
For any fixed (0, z), the log-likelihood of observing the adjacency matrix A under the stochas-

tic block model up to a constant is

log f(Al6,2) = > (map10g bap + (nap — map) 10g(1 = bap)),

1<a<b<k

with count statistics

Ng = Zn:l{zl =a}, ng = iZl{zl =a,z; = b},

i=1 i=1 j#i



n

Meaep = ZZAU]'{ZZ =a,z; = b}

i=1 ji
Daudin, Picard and Robin Daudin, Picard and Robin (2008) and Saldana, Yu and Feng
Saldana, Yu and Feng (2017) used the following penalized likelihood function called the “BIC”,

to select the optimal number of communities:

_ k(k+1
(k) = sup log (A, 2) — "FED 1oy, 3)
0cOy
where O = [0, 1]k(k2+ = According to our simulation studies, the BIC tends to overestimate

the number of communities (see section 6). We now give some hint of why this phenomenon
occurs. The BIC assumes that community assignment z is fixed for a given k. As soon as z
is unknown and is estimated by some community detection methods, it cannot be treated as
fixed any more. Therefore, the BIC essentially estimates the number of communities & using
the penalized likelihood of the following form,

k(k+1)

{(k) = max sup log f(A|0,z) —

log n.
ZE[]C]" 0cOy,

Let Z be the set of all possible community assignments under consideration and let £(z) be
the prior probability of community assignment z. Assume that the prior density of 6 is given

by 7(#). Then the posterior probability of z is

 g(Alz)E(2)
P = AReey

where g(A|z) is the likelihood of community assignment z, given by
g(4lz) = [ (a0, 2)x(0)a.

Under the Bayesian paradigm, a number of communities k that maximizes the posterior proba-

bility is selected. Since )., g(A]z){(2) is a constant,

k = arg max max g(A|2)&(z).
k  zelk]n

According to Daudin, Picard and Robin (2008), we have

k(k+1)

log g(A|z) = sup log f(A|f,z) — logn + O(1).
0Oy,
Thus,
log g(A|2)&(2) = sup log f(A|f, z) — k(k+1) logn + O(1) 4+ log &(2). (4)

0cOy,

By comparing equations (3) and (4), we can see that the BIC essentially assumes that £(z)



is constant for z over Z, ie., {(z) = 1/7(Z), where 7(Z) is the size of Z. Suppose that the
number of nodes in the network is n = 500. The set of community assignments for k = 2,
Zo, has size 2°9°, while the set of community assignments for k = 3, Zs, has size 3°°°. The
constant prior in the BIC assigns probabilities to Z; proportional to their sizes. Thus the
probability assigned to Z3 is 1.5°%° times that assigned to Z,. Community assignments with a
larger number of communities get much higher probabilities than community assignments with
fewer communities. This gives an explanation why the BIC tends to overestimate the number
of communities.

This re-examination of the BIC naturally leads us to consider a new prior over Z. Assume
that Z is partitioned into | J,_, Z;. Let 7(Zj) be the size of Zj,. We assign the prior distribution
over Z in the following manner. We assign an equal probability to z in the same Zj, i.e.,
P(2|Zy) = 1/7(Zy) for any z € Zj. This is due to that all the community assignments in Zj,
are equally plausible. Next, instead of assigning probabilities P(Zy) proportional to 7(Zy) , we
assign P(Z}) proportional to 77%(Z},) for some 6. Here § > 0 implies that small communities
are plausible while § < 0 implies that large communities are plausible. This results in the prior
probability

£(z) = P(2|Zy)P(Zy) o« 7 N2Zy), z € Zy,

where A =1+ 4. Thus,

log g(A|2)¢(z) = sup log f(Al6,z) — M
0Oy

logn + O(1) — Anlog k.

This type of prior distribution on the community assignment gives rise to a corrected BIC

criterion as follows:

¢(k) = max sup log f(Al6,z) — | Anlogk +

logn|, )
z€[k]" gco, )

k(k+1)
2
where the second term is the penalty and A > 0 is a tuning parameter. Then we estimate k by

maximizing the penalized likelihood function:

k = arg max (k).

We make some remarks on the choice of the tuning parameter. If we have no prior information
on the number of communities, i.e., both small communities and large communities are equally
plausible, then A =1 (§ = 0) is a good choice. It is similar to the case of variable selection in
regression, where the BIC is also tuning free. We set A = 1 in the CBIC for simulation studies
which gives good performance.

In order to obtain the consistency of the CBIC, we analyze the asymptotic order of the

log-likelihood ratio under model-misspecification in the next section.



3 Asymptotics of the log-likelihood ratio

In this section, we present the refined order of the log-likelihood ratio built on the work of Wang
and Bickel (2016). The results here will be used for the proof of Theorem 4 in the next section.
We consider the following log-likelihood ratio

Ly = max sup log f(A|6,z) —log f(A|67, ),
z€[k']" gcO,,

where 6* and z* are the true parameters. Further, &’ is the number of communities under the
alternative model and k is the true number of communities. Therefore, the comparison is made
between the correct k-block model and a fitted &’-block model.

The asymptotic distributions of Ly, ;» for the cases k' < k and k' > k are given in this section.
In Theorems 2.4 and 2.7 of Wang and Bickel (2016), the order of the log-likelihood ratios is n3/2,
Here, the order is n. We use the techniques developed in Wang and Bickel (2016) for the proofs

of Theorems 1 and 3 with some refinements. For the case k¥’ = k, we establish the Wilks theorem.

3.1 K<k

We start with &’ = k& — 1. As discussed in Wang and Bickel (2016), a (k — 1)-block model can
be obtained by merging blocks in a k-block model. Specifically, given the true labels z* € [k]™
and the corresponding block proportions p = (p1,...,pk), Pa = na(2*)/n, we define a merging
operation U, (6%, p) which combines blocks a and b in 6* by taking weighted averages with
proportions in p. For example, for § = Uj_1 (0%, p),

Oup =0 for 1 <a,b<k—2,

papk—lez(k,l) + paprtyy,
DaPk—1 + PaPk

Oa(k—1) = for 1<a<k-2,

*

pzfle(kfl)(kfl) + 2P 1Pk, + Pk
Pp_1 + 2pk—1Pk + D}

Ok—1)(k—-1) =

For consistency, when merging two blocks (a,b) with b > a, the new merged block will be
relabeled as a and all blocks ¢ with ¢ > b will be relabeled as ¢ — 1. Using this scheme, we also
obtain the merged node labels U, j(z) and the merged proportions U, (6%, p).
Define
T={(a,b)€k]?:k—1<a<kork—1<b<k}

a, for a < k —2;
u(a) =
k—1, fork—1<a<k.

To obtain the asymptotic distribution of Ly, ;/, we need the following condition.

(A1) There exists C7 > 0 such that minj<,<j n, > Cin for all n.

The asymptotic distribution of Ly, is stated below, the proof of which is given in the
Appendix.



Theorem 1. Suppose that A ~ Py« .« and condition (A1) holds. Then we have
n Lypor — % N(0,0(67)),

where ,

1 * u(a)u(db *
=523 > na(6log (9) O 4 (1-67) 10
(a,b)ET ab

/
L= Hu(a)u(b)
1-0%

)7

)%,

1 Hz/z(a)u(b) (1 - H;;b)
o(07) = - Z Caplay(1 — 03 (log 7 *
4 er (1= O ayucey)Pae

.on
Cyp = lim —a2b
n

Condition (A1) requires that the size of each community is at least proportional to n. For
finite k, it is satisfied almost surely if the membership vector o is generated from a multinominal
distribution with n trials and probability = = (7, ..., m) such that minj<;<;m > Cs. For a
general k= < k, the same type of limiting distribution under condition (A1) still holds by
assuming the uniqueness of the optimal merging scheme and identifiability after merging. But
the proof will involve more tedious descriptions of how various merges can occur as discussed in
Wang and Bickel (2016).

3.2 K=k
In this case, we establish the Wilks theorem.

Theorem 2. Suppose that A ~ Py« .« and condition (A1) holds. Then we have

* sk d
2 max sup log F(Al9, 2) — log F(A6", =) % X2
ZE[]C]" 0cOy, 2

3.3 K>k

As discussed in Wang and Bickel (2016), it is very difficult to obtain the asymptotic distribution

of Ly, s in the case of k' > k. Instead, we obtain its asymptotic order.

Theorem 3. Suppose that A ~ Py« .« and condition (A1) holds. Then we have

Lip+ < anloghk™ +supgee, log f(Al0, %) — log f(A|0", 2*)

= anlog k™ + Op(@ logn),

2logn+logk
nlogkt

C
Where0<0z§1—logk+ +

4 Consistency of CBIC

In this section, we establish the consistency of the CBIC in the sense that it chooses the correct

k with probability tending to one when n goes to infinity.



To obtain the consistency of the CBIC, we need an additional condition.

(A2) (Consistency condition) ny — —oc.

Theorem 4. Suppose that A ~ Py« .« and (A1)-(A2) hold. Let (k) be the penalized likelihood
function for the CBIC, defined at (5).
For k' <k,

P(K") > (k) — 0.

For k' > k, when A > (alogk’)/(log k' —log k),
PU(K) > (k) — 0,

where « is given in Theorem 3.

By Theorem 4, the probability P(¢(k") > ¢(k)) goes to zero, regardless of the tuning param-
eter \ in the case of k' < k. When k' > k, it depends on the parameter \. Then a natural
question is whether the choice of A = 1 is good. Note that it also depends on a. With an
appropriate «, the probability P(¢(k') > ¢(k)) also goes to zero when A\ = 1 as demonstrated in

the following corollary.

Corollary 5. Suppose that A ~ Py« .« and (A1)-(A2) hold. Let ((k) be the penalized likelihood
function for the CBIC, defined at (5).
For k' <k,

PU(K) > (k) — 0.

For k' > k, suppose a < 1 — 1?5:,, for A =1,

P(U(K) > (k) — 0.

By checking the proof of Theorem 4, it is easy to see that for k& > k, P(0(K') > {(k)) — 1.
This implies that the BIC tends to overestimate the number of communities k for stochastic
block models.

Remark 1. Note that in the proof of Theorem 4, for k' < k, every step is reversible. Thus,
for appropriate A, under the condition (A1), the consistency condition nu — —oo is a necessary

and sufficient condition.

Next we analyze that under what condition we have ny — —oo. We consider both ho-
mogeneous network and non-homogeneous network. Consider a homogeneous network 6* =
(0% )i<a<b<i, where 0, =p forall a =1,...,k and 6%, = ¢ for 1 < a < b < k. For simplicity,

we assume ng,/n? = C3. That is,

0, 1-0
p= DS O log 0 (1) log — M0,
(a,b)eT ab ab



Figure 1: nu vs p

Set ¢ = 0.03, C3 = 0.2, n = 500, 71 = 211 = 0.5. We can see from Figure 1
(k—1)(k—1) TP (k—1)k
that under the condition that p/q > 6, we have nu — —oco. We also changed the values of x;
and C3 and found that the result is similar.

In fact, for a homogeneous network, we have the following result.
Theorem 6. Suppose that p/q is sufficiently large, then ny — —oo.

Here p/q is sufficiently large means that there exists a constant C' > 1 such that p/q > C.

For a non-homogeneous network, we have the similar result:
Corollary 7. Suppose that mini<q<p<i(05,/0%,) is sufficiently large, then nyu — —oo.

Remark 2. We notice that the tuning parameter \ being equal to 1 may not always be the
best choice. Simulation studies in Section 6 shed some lights. In our simulations, we found that
A = 1 have a good performance for estimating the number of communities k£ in the following
two cases: (1) when the number of communities & is small (e.g., k < 4), for both large p/q (e.g.,
p/q > 6) and medium p/q (e.g., p/q > 4); (2) when the number of communities & is large (e.g.,
k > 5), for large p/q (e.g., p/q > 6). However, when the number of communities k is large (e.g.,
k > 5), for both medium and small p/q (e.g., 1 < p/q < 4), A =1 tends to underestimate the
number of communities k. As a result, 0 < A < 1 may be a better choice. For this case, we may
use the cross-validation method to choose the tuning parameter A. We would like to explore

this problem in future work.

5 Extension to a degree-corrected SBM

Real-world networks often include a number of high degree “hub” nodes that have many con-
nections Barabdasi and Bonabau (2003). To incorporate the degree heterogeneity within com-
munities, the degree corrected stochastic block model (DCSBM) was proposed by Karrer and
Newman (2011). Specifically, this model assumes that P(A;; = 1 | 2(7), 2(j)) = wiw;0.3)2()s

where w = (wj)1<i<n are a set of node degree parameters measuring the degree variation within



blocks. For identifiability of the model, we need the constraint ), w;1{2(i) = a} = n, for each
community 1 < a < k.

Similar to Karrer and Newman (2011), we replace the Bernoulli random variables A;; by the
Poisson random variable. As discussed in Zhao, Levina and Zhu (2012), there is no practical
difference in performance. The reason is that the Bernoulli distribution with a small mean is
well approximated by the Poisson distribution. An advantage using Poisson distributions is
that it will greatly simplify the calculations. Another advantage is that it will allow networks
containing both multi-edges and self-edges.

For any fixed (0,w,z), the log-likelihood of observing the adjacency matrix A under the

degree corrected stochastic block model is

log f(Alf,w,2) = Y dilogwi+ Y (may10gbar — napbap),

1<i<n 1<a<b<k

where d; = Zlgjgn Ajj.

We first consider the case w is known, which was also assumed by Lei (2016), Gao, Ma,
Zhang and Zhou (2016) in their theoretical analyses. With similar arguments, one can show
that the previous Theorems 1 and 3 still hold in the DCSBM. Although Theorem 2 does not
hold in the DCSBM, we have the following result.

Theorem 8. Suppose that A ~ Py« .« and (A1) holds. Then we have

max sup log f(A|f,w, z) — log f(A|0*,w, z*) = Op(k‘(k +1)

logn).
Ze[k]RGEQk 2 )

Therefore, Theorem 4 still holds in the DCSBM.

If w;’s are unknown, we use the plug-in method. That is, we need to estimate w;’s. After
allowing for the identifiability, constrain on w, the MLE of the parameter w; is given by @&; =
nadi/ > — d;. Simulations show that the CBIC can estimate k£ with high accuracy for the
DCSBM.

6 Experiments

6.1 Algorithm

Since there are k™ possible assignments for the communities, it is intractable to directly optimize
the log-likelihood of the SBM. Since the primary goal of our article is to study the penalty func-
tion, we use a computationally feasible algorithm—spectral clustering to estimate the community
labels for a given k.

The algorithm finds the eigenvectors wuq,...,u; associated with the k eigenvalues of the
Laplacian matrix that are largest in magnitude, forming an n x k matrix U = (uq,...,u), and
then applies the k-means algorithm to the rows of U. For details, see Rohe, Chatterjee and Yu

(2011). They established the consistency of spectral clustering in the stochastic block model

10
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Figure 2: Emipirical distribution of n*ILk,k,l. The solid curve is normal density with mean nu
and o(6*) as given in Theorem 1.

under proper conditions imposed on the density of the network and the eigen-structure of the
Laplacian matrix.

For the DCSBM, we apply a variant of spectral clustering, called spectral clustering on
ratios-of-eigenvectors (SCORE) proposed by Jin (2015). Instead of using the Laplacian matrix,
the SCORE collects the eigenvectors vy, ..., v associated with the k eigenvalues of A that are
largest in magnitude, and then forms the n x k matrix V = (1,vy/v1,...,vx/v1). The SCORE
then applies the k-means algorithm to the rows of V. The corresponding consistency results for
the DCSBM are also provided.

We restrict our attention to candidate values for the true number of communities in the

range k' € {1,...,18}, both in simulations and the real data analysis.

6.2 Simulations

Simulation 1. In the SBM setting, we first compare the empirical distribution of the log-
likelihood ratio with the asymptotic results on Theorems 1, 2 and 3. We set the network size
as n = 500 and the probability matrix 0%, = 0.03(1 +5 x 1(a = b)). We set n = 500 and k = 3
with 1 = my = m3 = 1/3. Each simulation in this section is repeated 200 times. The plot for
n_lLk,k_l is shown in Figure 2. The empirical distribution is well approximated by the normal
distribution in the case of underfitting. Figure 3 plots the empirical distribution of 2Ly, ;, in the
case of k' = k. The distribution also matches the chi-square distribution well. Figure 4 plots
the empirical distribution of Ly j1.

Simulation 2. In the SBM setting, we investigate how the accuracy of the CBIC changes as
the tuning parameter \ varies. We let A increase from 0 to 3.5. The probability matrix is the same
as in Simulation 1. We set each block size according to the sequence (60, 90, 120, 150, 60, 90, 120, 150).
That is, if £ = 1, we set the network size n to be 60; if k£ = 2, we set two respective block sizes to
be 60 and 90; and so forth. This setting is the same as in Saldana, Yu and Feng (2017). As can
be seen in Figure 5, the rate of the successful recovery of the number of communities is very low

when \ is close to zero. When A\ is between 0.5 and 1.5, the success rate is almost with 100%;
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When A becomes larger, the success rate decreases in which the change point depends on k. It
can be seen from Figure 5 that A = 1 is a good tuning parameter.

Simulation 3. In the SBM setting, we compare the CBIC with the BIC proposed by Daudin,
Picard and Robin (2008) and Saldana, Yu and Feng (2017) and the bootstrap corrected sequen-
tial test proposed by Lei (2016). For the bootstrap corrected sequential test, we select threshold
t, corresponding to nominal type I error bound 10~%. The network size n is the same as in
Simulation 2 and the probability matrix is 6%, = 0.03(1 4+ 7 x 1(a = b)). The numerical results
are shown in Tables 1, 2 and 3. From these Tables, we can see that the CBIC shows a significant
improvement over the BIC and the bootstrap corrected sequential test. It can be seen from Ta-
ble 1 that, for large p/q (e.g., = 5), the CBIC recovers the number of communities k perfectly
while the success rates for the BIC and the bootstrap corrected sequential test are low for k < 4
and k > 5, respectively. It can also be seen from Table 3 that, for medium p/q (e.g., r = 3), the
CBIC recovers the number of communities k quite well for £k < 4. When the number of commu-
nities k is large (e.g., k > 5), for medium p/q (e.g., r = 3), the BIC outperforms the CBIC. For
this case, the performance of the CBIC may be improved by tuning A using cross-validation. We
also implemented the penalized likelihood method (PLH) proposed by Wang and Bickel (2016)

and found out that it usually underestimates the number of communities k.

Table 1: performance of CBIC for SBM: r=5

CBIC (A=1) BIC Lei (2016)
Prob Mean (Var) | Prob Mean (Var) | Prob Mean (Var)
k= 1 2 (0) 0.19  3.11 (0.70) 1 2 (0)
k= 1 3 (0) 0.48  3.64 (0.56) | 0.99  3.03 (0.09)
k= 1 4 (0) 0.72  4.36 (0.45) | 0.97 4.02 (0.02)
k=5 1 5 (0) 0.92 5.09 (0.10) | 0.86 4.86 (0.12)
k= 1 6 (0) 1 6.00 (0.00) | 0.65 5.65 (0.23)
k=17 1 7 (0) 1 7.00 (0.00) | 0.21  6.21 (0.17)
k= 1 8 (0) 1 8.00 (0.00) | 0.16 7.16 (0.14)
Table 2: performance of CBIC for SBM: r=4
CBIC (A = 1) BIC Lei (2016)
Prob Mean (Var) | Prob Mean (Var) | Prob Mean (Var)
k=2 1 2 (0) 032 3.14 (1.23) | 1 2 (0)
k=3 1 3 (0) 0.70  3.42 (0.57) | 0.95  3.04 (0.04)
k=4 1 4 (0) 0.85 4.16 (0.16) | 0.62 4.31 (0.97)
k=5 097 497 (0.02) | 092 5.00(0.10) | 0.08 4.50 (0.76)
k=6 093 593(0.04) | 1  6.00(0.00) | 002 514 (0.31)
k=7 090 69009 | 1  7.00(0.00) | 0.04 6.00 (0.49)
k=8 084 7.84(0.13) | 0.98 802 (0.02) | 0.05 6.40 (0.65)

Simulation 4. In the SBM setting, we compare the CBIC with the BIC and the bootstrap

corrected sequential test for a non-homogeneous network. The block sizes are (60,90, 120, 150)
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Table 3: performance of CBIC for SBM: r=3

CBIC (A = 1) BIC Lei (2016)
Prob Mean (Var) | Prob Mean (Var) | Prob Mean (Var)
k=2 1 2 (0) 0.19 3.11 (0.70) | 0.99 2.01 (0.01)
k=3 098 298 (0.19) | 0.3 3.36 (1.60) | 0.47  3.00 (1.42)
k=4 091 3.91(0.08) | 092 4.06 (0.16) | 0.15 3.33 (0.81)
k=5 033 422(0.39) | 0.98 5.02(0.02) | 0.13 3.67 (1.43)
k=6 016 4.94(0.40) | 0.87 591 (0.12) | 0.07 4.17 (0.28)
k=7 0.12 5.77 (0.46) | 0.68 6.68 (0.23) | 0.00  4.89 (0.20)
k=8 003 6.34(041) | 041 7.48 (0.39) | 0.00 5.50 (0.25)
and the probability matrix is

0.20 0.04 0.05 0.03

o =, 0.03 0.20 0.03 0.05

0.06 0.03 0.25 0.04

0.03 0.05 0.04 0.25

Here k = 4 is small and minj<,<p<(0;,/0%,) = 4 is medium. The numerical results are given

in Table 4. The comparisons are similar to those in Tables 1, 2 and 3.

Table 4: performance of CBIC for SBM: non-homogeneous

CBIC (A = 1) BIC Lei (2016)
Prob Mean (Var) Prob Mean (Var) | Prob Mean (Var)
p=07 003 309 (0.01) | 0.83 4.17 (021) | 0.12  4.52 (5.15)
p=08 1 4 (0) 0.82 421 (0.24) | 0.25 5.40 (1.67)
p=09 1 4 (0) 0.77 423 (0.18) | 0.50  5.50 (2.90)
p=10 1 4 (0) 0.80 4.32 (0.15) | 0.86  4.28 (0.57)
p=12 1 4 (0) 0.72 434 (0.17) | 0.95 4.09 (0.19)

Simulation 5. In the DCSBM setting, we investigate the performance of the CBIC for the
DCSBM. Since the bootstrap corrected sequential test is only designed for the SBM, we compare
the CBIC with the BIC and the network cross-validation proposed by Chen and Lei (2017). In
choosing the parameters 0, w in the DCSBM, we follow the approach proposed in Zhao, Levina
and Zhu (2012). w; is independently generated from a distribution with expectation 1, that is

wi =1+« 7/11, w.p. 0.1;
15/11, w.p. 0.1,

where 7; is uniformly distributed on the interval [2 £, 5] The edge probability and network sizes

are set the same as in Simulation 3. The numerical results are given in Tables 5, 6 and 7. The
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comparisons are similar to those in Tables 1, 2 and 3.

Table 5: performance of CBIC for DCSBM: r=>5

CBIC (A = 1) BIC NCV

Prob Mean (Var) Prob Mean (Var) | Prob Mean (Var)
k=2 097 204(006) | 0  4.35(1.62) | 0.04 2.14 (0.40)
k=3 1 3 (0) 0.11  5.38(2.38) | 0.94  3.06 (0.06)
k=4 1 4 (0) 029 5.67 (2.34) | 0.89 4.14 (0.18)
k=5 097 5.06(0.09) | 020 7.07(271) | 0.33  5.09 (0.66)
k=6 098 6.02(0.02) | 052 7.00(1.61) | 0.29 7.41 (1.58)
k=7 093 7.06(0.09) | 0.57 7.63(0.76) | 0.25 8.50 (1.26)
E=8 0.95 8.05(0.05) | 0.58 8.59 (0.61) | 0.15  9.38 (0.54)

Table 6: performance of CBIC for DCSBM: r=4

CBIC (A =1) BIC NCV

Prob Mean (Var) | Prob Mean (Var) | Prob Mean (Var)
k=2 006 2.04(0.39) | 003 4.57 (1.78) | 0.80  2.52 (1.56)
k=3 097 3.03(029) | 011 5.18(1.93) | 0.65 3.60 (1.25)
k=4 093 4.09 (0.12) | 042 527 (2.26) | 0.14  4.12 (3.52)
k=5 072 5.05(043) | 0.35 632 (1.81) | 017  5.42 (3.71)
k=6 050 570 (0.62) | 0.56 6.84 (1.53) | 0.16 6.41 (2.27)
k=7 043 6.76 (0.73) | 0.44 7.85(1.79) | 0.23  8.00 (2.02)
k=8 024 7.39(0.56) | 0.37 861 (088) | 0 876 (1.43)

6.3 Real data analysis
6.3.1 International trade dataset

We study an international trade dataset collected by Westveld and Hoff (2011). It contains
yearly international trade data among n = 58 countries from 1981-2000. Omne can refer to
Westveld and Hoff (2011) for a detail description. This dataset was revisited by Saldana, Yu
and Feng (2017) for the purpose of estimating the number of communities. Following their
paper, we only focus on data from 1995 and transform the weighted adjacency matrix to the
binary matrix using their methods. An adjacency matrix A is created by first considering a
weight matrix W with W;; = Trade;; + Trade;;, where Trade;; denotes the value of exports from
country ¢ to country j. Define A;; = 1 if W;; > W, and A;; = 0 otherwise. Here W, denotes
the a-th quantile of {Wi;}1<icj<n. We set @ = 0.5 as in Saldana, Yu and Feng (2017). At
A =1, the CBIC for the SBM estimates k= 5, while the BIC and the NCV estimate k =10 and
k=3, respectively. The CBIC for the DCSBM estimates k = 3, while both the BIC and the
NCV estimate k = 1. As discussed in Saldana, Yu and Feng (2017), it is seems reasonable to

select 3 communities, corresponding to countries with highest GDPs, industrialized European
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Table 7: performance of CBIC for DCSBM: r=3

CBIC (A=1) BIC NCV

Prob Mean (Var) Prob Mean (Var) | Prob Mean (Var)

k=2 097 202(0.03) | 0 502 (1.80) | 0.74 2.44 (1.50)
k=3 1 3 (0) 0.19  5.09 (3.03) | 0.16 4.20 (6.73)
k=4 033 355(053) | 0.15  6.16 (3.18) | 0.15  3.56 (1.80)
k=5 010 4.12(0.67) | 0.14 623 (3.91) | 0.13  3.82 (3.74)
k=6 009 486 (0.61) | 021 6.44 (2.65) | 0.10  5.56 (5.98)
(0.60) (1.93) (5.88)

(0.12) (1.34) (3.02)

k=7 0.06 5.54 (0.60 0.18  6.61 (1.93 0.07 6.43 (5.88
k=28 0 6.09 (0.12 0.13 7.07 (1.34 0 9.09 (3.02

and Asian countries with medium-level GDPs, and developing countries in South America with
the smallest GDPs.

6.3.2 Political blog dataset

We study the political blog network Adamic and Glance (2005), collected around 2004. This
network consists of blogs about US politics, with edges representing web links. The nodes are
labeled as “conservative” and “liberal” by the authors of Adamic and Glance (2005). So it is
reasonable to assume that this networks contains these two communities. We only consider its
largest connected component of this network which consists of 1222 nodes with community sizes
586 and 636 as is commonly done in the literature. It is widely believed that the DCSBM is a
better fit for this network than the SBM. At A = 1, the CBIC for the DCSBM estimates k= 2,
while the PLH and the NCV estimate k& = 1 and k = 2, respectively. We can see that both the

CBIC and the NCV give a reasonable estimate for the number of communities.

7 Discussion

In this paper, under both the SBM and the DCSBM, we have proposed a “corrected Bayesian
information criterion” that leads a consistent estimator for the number of communities. The
criterion improves those used in Wang and Bickel (2016) and Saldana, Yu and Feng (2017)
which tend to underestimate and overestimate the number of communities, respectively. The
simulation results indicate that the criterion has a good performance for estimating the number
of communities for finite sample sizes.

Some extensions may be possible. For instance, it is interesting to study whether the CBIC
is still consistent for correlated binary data. For this case, it seems that we can consider the
composite likelihood studied in Saldana, Yu and Feng (2017). In addition, we only prove the
asymptotic results in the case that the number of communities is fixed. It is interesting to
explore whether our results can be extended to high dimensional SBMs. We have also noticed
that A = 1 is not always the best choice. When the number of communities k is large (e.g.,
k > 5), for both medium and small p/q (e.g., 1 < p/q < 4), A = 1 tends to underestimate the
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number of communities k. As a result, 0 < A < 1 may be a better choice. For this case, we
may use the cross-validation method to choose the tuning parameter A, which will be explored

in future work.

8 Appendix

We quote some notations from Wang and Bickel (2016). Define

Zt

a,b=1

where y(z) = xlogz + (1 — z)log(1l — ). Then

sup log £(416,2) = =P 2C),

Géek/ n2 '
Define
GRE),0%) = 3 [RITRT () (2T
Za _abZI z ab7 R]_]_TRT(Z) 9

where R(Z) is the k' x k confusion matrix whose (a, b)-entry is
Rap(#, 2" ZZl{z =a,z; = b}.
i=1 j#i

8.1 Proofs for Theorem 1

Without loss of generality assume the maximum of G(R(z),0*) is achieved at 2’ = Uj_; ().
Denote 0" = Uy_1 ,(6%,p*). The following Lemmas 1 and 2 are from Wang and Bickel (2016),
which will be used in the proof of Theorem 1.

Lemma 1. Given the true labels z* with block proportions p = n(z*)/n, mazimizing the funciton

G(R(z),0%) over R achieves its mazximum in the label set
{z € [k = 1]" : there exists T such that T7(z) = Ugp(2),1 < a < b < k},

where Uy, merges z with labels a and b.
Furthermore, suppose z' gives the unique mazimum (up to a permutation 7), for all R such
that R >0, RT1 = p,

IG((1 — €)R(Z) + €R(z),0%)
Oe

|5:0+< —Cy < 0.
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Lemma 2. Suppose z € [K'|" and define X (z) = miz) _ RO*R(2)T. For e <3,

n2

n2€2
P(max || X(2) [|> €) < 2(K)" 2 exp(~

s, 0 oD

Let y € [K']™ be a fized set of labels, then for € < 377”,

P(maxz:\:vfy\gm H X(Z) - X(y) HOO> 6%)
3.2
< 2() (k)2 eXp(_4m(4||n€*€”oo+1) )-
In order to prove Theorem 1, we need one lemma below.

Lemma 3. Suppose that A ~ Py ,-. With probability tending to 1,

max sup log f(A|0,2) = sup log f(Alf,2)
Ze[k“_l}n 0€O)_1 0€O)_1

Proof. The arguments are similar to those for Lemma 2.3 in Wang and Bickel (2016). By Lemma
1, suppose G(R(z),6*) is maximized at z’. Define

I; = {z € [k — 1" : G(R(2),0%) - G(R('),0%) < 6.},

for §,, — 0 slowly enough.
By Lemma 2, for €, — 0 slowly,

k—1
| F(m(2)/n*,n(2)/n*) = G(R(2),07) |< C Y | map(2)/n* = (RO“RT(2))ab |= 0p(en)
a,b=1

since 7y is Lipschitz on any interval bounded away from 0 and 1.

max_. ;- Suppee, , log f(Al]0, 2)

< IOg(Z:zeI(;L SUPgeo,_, J(A|0,2))
— 10g(2zelg SUDpco, elogf(A|9,z))
< log(supgeo, , f(Al6, 2k — 1)neop(n2en)fn25n)

— log(supyco, , F(AIB. ) + log((k — 1)rerntrien o)
< supgee,_, log f(A]0,2).

For z ¢ I, G(R(2),0%) — G(R(2'),0") — 0. Let Z = min | 7(2) — 2’ |. Since the maximum
is unique up to 7, || R(2) — R(2') [leo— 0.
By Lemma 2,

P(ma.grion || X(2) = X(2') o> €| 2= 2' | /n)
D=1 P(max,.—z s e || X(2) = X(2') [loo> €77)
zn 2(/€ _ 1)k71nm(k _ 1)m+2670nm - 0.

m=1

IN A

18



It follows for | z — 2" [=m, z & I} ,

| 2R — ),

I
B
IS}
+
=
<>
*
ey
/j

%) — RO*RT (') [|oo

Y,
338
N =
_l’_
S

Observe that || M—RH*RT( ) o= 0p(1). RllTRT( ") lloo= 0p(1).
m(z') n(z')

Note that F(-,-) has continuous derivation in the nelghborhood of (—2, —=7>). By Lemma 1,

OF((1— ) ™) 4 M, (1— ) 5D 4 o)

|€:0+< -C<0

F n?2 ’ n? )~ I n? ' n? )S_Cz'
Since
SUPgeo, , logf(AIH z) — supge/@k_llog f(A|0,2")
< n?(F(ZR, 20 - p(m) mady)
= —Cmn,
we have

maxzélé_n,zéfr(z’) Sup@e@k,1 log f(A‘07 Z)

< log(zz%;,z@(z/) supgeo,_, f(Al0,2))

< 108(X L cr (o) SUPgeo, , f(Al0,2) Yoy (k — 1)'nmem O

< log(supgeo,_, F(AI0,2) X.erion Xmor (k= 1)"0me” M)

= Suppeo,_, log f(Al0, ') +log((k — 1)1 Yomei(k=1)"n me=Cmn)
< Suppee,_, 10g f(A]6,2).

Proof of Theorem 1. By Hoeffding’s (1963) inequality, we have

> 1<a<v<k P 05y — bap [> 1)
k26—2t2nanb

P(maxi<q<p<i | 0% — Oap |> 1)

VAN VANVAN

62 log k—2t2nany _ 62 log k—ZC’%thQ )

It implies that
logn

).

* N |—
1§r£§g<§k|9ab Oab |[= 0p(

Note that supycg, , log f(A]f,2) is uniquely maximized at

. 1
0. = [Mab :sz—i—op(ﬂ) for 1<a,b<k-2,
Nap n
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Ma(k—1) + Mg , (logn)

Oak—1) = Ta(hn) I ek = Og—1) T Op

for 1 <a,b<k-—2,
k k
Za:k—l Zb:a Map

R logn
Ok—1)(k—1) = = 0 _1)(r_1) T Op(
POUIND S (h=Dt=n

).

n

Therefore, we have

-1

n~(max,epr—1)» SUpgeo,_, 10g f(Al0, z) — log f(A[0%,2*))
n I(SUPeeek log f(A]0, 2 — logf(AIG* z*))
= n7'(3 Zal b2 naby(ap) + 5 30k ( kl)"’nak) (B 1))
+% Z = Zb—kq “ab’Y(@(k Dk—1)) — 3 Za 1 Zb 1(Map log = 9* + nap log(1 = 603,)))
— ula)u ( 0 ) - w(a)u
= 30" Yamyez(Malog W + nap log M) +0p(1).
Note that 1 can be written as
1 % HL(a)u(b)(l - HZb) L- Hg(a)u(b)
p=55 Y na(blog ; +— + log —— 22
2n (a,b)eT ( Hu(a)u(b))aab 1 Hab

It is easy to see that the expectation of this term is nu. Therefore, we have

1(maxze[k 1yr Sup9€®k ,log f(A|9 z) — log f(A|9* z2*)) —np

n
- wula)uw (1 ) - uwula)uw
31 Y apyez (Mab log W + ngplog %b“’)) — g+ 0y(1)
L,
2

wula)uw (1 a )
- Z(a,b)el(mab - E(mab) log % + Op(l)

4 N(0,0(6%)).

8.2 Proofs for Theorem 2

We first prove one useful lemma below.

Lemma 4. Suppose that A ~ Py ,-. With probability tending to 1,

max sup log f(Al6,z) = sup log f(A|0, z%).
zc[k]" peo, 0€6),

Proof. This lemma is essentially Lemma 3 in Bickel et al. (2013). The arguments are similar
to those for Lemma 2.3 in Wang and Bickel (2016). Note that G(R(z),0") is maximized at z*.
Define

Is, ={z € [k]" : G(R(2),0%) — G(R(z"),0%) < —d,},

for 9,, — 0 slowly enough.

20



By Lemma 2, for ¢, — 0 slowly,

| F(m(z)/n?,n(z)/n%) — G(R(2),6%) |
Oyt | map(2)/n® — (RO*RT(2))a |

= op(en),

IN

since « is Lipschitz on any interval bounded away from 0 and 1. Then we have

maxzefs, SUPgeco, log f(A’67 z)
log(Z,zeL;n SUPgco, f(A]9,2))
IOg(ZzeLgn SUpgeo, elog f(A10.2))
log(sup%@k f(Al6, Z*)kneop(n2en)_n25n)
Supgeo, log f(A|0, 2*).

AN

For z ¢ I5,, G(R(z),0%) — G(R(2*),6*) — 0. Let z = min | 7(2) — z* |. Since the maximum is
unique up to 7, || R(2) — R(z*) ||co— 0.
By Lemma 2,

P(maxzéT(z*) | X(2) — X(2%) |loo> €] 2 —2"| /n)
Dot PMax, .oz 5o j—m || X(2) = X(2%) [oo> €5)
Yo 1 2(k — DFtpm(k — 1)m+2670nm

0.

LN IA

It follows for | z — 2* |=m, z ¢ I5,,

| 22— mED = 0,(1) || ROFRT(2) — RO*RT(2%) ||
m(C + 0p(1)).

v

Observe || %2 — RO*RT(2*) [lo= 0p(1) by Lemma 2, | 52 — R117TRT(2*) [|s= 0,(1).
m(z) (')

n2 " p2

Note that F(+,-) has continuous derivation in the neighborhood of (

). By Lemma 1,

OF((1— €)™ 4 e, (1 - e)™5) 4 o)

2
& _ —C <0
e ’6_0+< <
for (M,t) in the neighborhood of (my(;*), ngf;)) Thus,
HaS2A gy

Since
SuPgeo, {og f{A[G, z) — Suppeo, log f(A]0, z%)
nZ(F(m(z) n(z)) _ F(m(z ) n(z )))

n2 ' n2 n2  np2

= —Cmn,
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we have

maXx,¢rs, .=¢r(z*) SUPgeo, log f(Aw’ Z)

< 108(X 21y, (=) SUPseo, [ (A0, 2))

< 108(X . r (o) SWpeo, [ (Alf,2) o0,y (k — 1) ne=Cmn)

< log(max,c; (- supgeo, f(Al0,2) X cr(ar) 2Zomar (k — Lmpme=Cmn)
= suppep, log f(A[0, z*) +log(k* 327, ) (k — 1)™nme=Cmm)

< Suppee, log f(A]G, z%).

Proof of Theorem 2. By Taylor’s expansion, we have

2(max_ ¢ (xn Supgeo, log f(A|0, 2) — log f(Al0%, 2*))
= 2(sup9€@k log f (A6, z*) — log f(A|0*, z¥))
= 2> 1<a<pb<k(Maplog gab (Rab — Map) log = 9‘“’)
= 237 cpcper(Mabfap log LZG“" + nab(l — fap) log ”a‘iiﬁz‘e“)
= 2% o (a0 + D) (5 — 58) + nan(1 = 03 — D) (T3 — o)) + Olnandy)
(

A2,
= 221§a§b<k nab( ab + 29* ) + nab( Aab + 2(1_&91)217))) + O(nabAzb),

where Ay, = éab — 07,. By the proof of Theorem 1, nabAgb = 0p(1). Consequently, we have
nabA

2
2Lke = 22 1cacoen(Togn,™ + aigty) T op(l)

Nab (Gab Gab)

= Z1§a§b§k 07,(1-07,) + op(1),

which converges in distribution to the Chi-square distribution with k(k+1)/2 degrees of freedom
by the central limit theory. O

8.3 Proof of Theorem 3

The idea for the proofs is to embed a k-block model in a larger model by appropriately
splitting the labels z*. Define v+ = {z € [kT]: there is at most one nonzero entry in every row
of R(z,2z*)}. v+ is obtained by splitting of z* such that every block in z is always a subset of
an existing block in z*.

The following lemma will be used in the proof of Theorem 3.

Lemma 5. Suppose that A ~ Py ,-. With probability tending to 1,

max sup log f(A|f,z) < anlogk™ 4 sup log (A6, z*).
z€[kT]" gco, 4 0Oy,

Proof. The arguments are similar to those of Lemma 2.6 in Wang and Bickel (2016). Note that
G(R(z),0") is maximized at any z € v+ with the value >, pappy(63,). Denote the optimal
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G* = Z&bpapb’)/(ezb) and
I ={z € [k"]": G(R(2),0%) — G* < =4,},

for §,, — 0 slowly enough.
By Lemma 2, for ¢, — 0 slowly,

| F(m(2)/n?,n(2)/n%) = G(R(2),0%) |< C Sk y | man(2)/n? = (RO“RT(2))ap |= 0p(en)

since v is Lipschitz on any interval bounded away from 0 and 1.
It follows from the definition of v+ there exists a surjective funciton h : [k] — [k] describing

the block assignments in R(z,z*). For any 2’ € v+, it is easy to see

MaX ¢+ SUPgeo, log f(A|6, z)

log(ZZg;n supgeo, , f(Al0,2))

log(X_ery SuPheo, . elo8 /(A10.2))

log(supgeo, . f(A|f,2') (kT — 1)reor(n®en)—n®on)

log(supge@]€+ f(A]0,2"))

supgeo, , log f(Al0,2')

SUPgeo, ;. % Z’Z,bzl Z(u,v)eh—l(a)xh—l(b) (M 108 Oup + (Nuw — M) log(1 = bup)).-

IN

ARVAN

Let
Lab - Z (muv log Huv + (nuv - muv) 10g(1 - euv) + )\( Z Nyv — 7ﬂ"ab)-
(u,v)€h=1(a)xh=1(b) (u,v)eh=1(a)xh=1(b)
Let 5L
ab
= 1 1 — == .
e 0g(l =0uy) +A=0

This implies that for (u,v) € h='(a) x h=1(b), Oy,’s are all equal. Let 0, = 0,. Hence,

2 (uw)eh=1 (a)xh-1(b) (Muw 108 buy + (Nuy — My ) log(1 — Oup)
= Mgp log Hab + (nab - mab) log(l - Hab)7

where mab = 3, v)en1(a)xh=1(b) M A0 Nab = D2 0)eh=1(a)xh1 () v
Thus,

max, e+ SUbgeo, 4 log f(Alf, z)
k
< SuPpeo, % Za,b:l Z(u,v)eh—l(a)xh—l(b) (M 10g Oup + (Ruv — M) log (1 = bun))
SUPpe6, 5 gt (Mab 108 O + (ab = mat) 10g(1 = b))
= Supyeo, log f(Al0, z").

Note that treating R(z) as a vector. For every z ¢ Ij , 2 ¢ v+, let 21 be such that
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R(z1) = mingny.e,,, | B(2) — R(2') [2. R(z) — R(2') is perpendicular to the corresponding
kT — k face. This orthogonality implies the directional derivative of G(-,6*) along the direction
of R(z) — R(2') is bounded away from 0. That is

OG((1 —€)R(z1) + €R(2),6%)
Oe

’5:0+ <-C
for some universal positive constant C'. Similar to the proof in Lemma 3,

sup log f(A|f,z) — sup log f(Alf,z,) < —Cmn,
9€®k+ 9€@k+

2logn+logk
nlog k™

_ C
where | z — z; |=m. For some 0 <o <1 — 95 + , we have

MaX g1+ g, , SWPseo, , log f(Alf,2)
log(Zz¢I;n,z¢uk+ supgeo, , f(Al0,2))
IOg(ZzeuH SUPgeo, ;. f(A]0,2) 31 (k= 1)™n
l0g(X.ey,, SUPseo, , (A0, 2) 3oy (k — 1) neCmm)
)
)

IN

myme Cnm)

10g | Vit | +max.ey,, supgee , log f(A]0, 2) +log(3p,_; (k — 1)™nme” ")

log | v+ | + maxzey, , supgee, , log f(Alf, z) + log(n 2ke=Cn)
nlogk* +max.e, . Supgco, , log f(A|0,z) +2logn +logk — Cn

INIAN AN TN A

anlog k* 4 supyeg, log f(Al6, 2%).

Proof of Theorem 3. By Lemma 5 and Theorem 2,

mMax, ¢ (k+]n SUPgeo, , log f(A|0, z) — log f(A|0*, 2*)
anlog k* 4 supgeg, log f(Al0, 2*) — log f(A[6*, )

Nab (éabfezb)2

= anloght + 3 Y cachar g gt + op(1)
= anlogkt + O0,(=5—~ (kH) logn)

8.4 Proof of Theorem 4

Let

gn(k, A, A) = max sup log f(A|0, z) — (Anlogk + Mlogn),
Ze[k“}n 0cOy, 2

and

hn(k, A, A) = max sup log f(Al6, z) — log f(A|6%, z*) — (Anlog k + Mlogn).
=€[k]" 6coy, 2
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For k' < k, by Theorem 2, we have

P(U(K') > £(k)) = P(gn(K', A\, A) > gn(k, A, A))
= P(hn(K, N\ A) > holk, ), A))
= P(
(

= P(max,| K] SUPgee,, log f(Al6, 2) —log f(A]f*,2*) > A(nlog k' — nlog k:)

K (k +1) logn —

+ (5
= P(maxze[k/]n SupPgeo,, 10g f(A|0, z) —log f(A]0*,2") > A(nlog k' — nlogk)
+ (Wlogn — @log )+ Op(=5— (kH) logn))
= P(n ! (max.cpn supgeo,, log f(Al0, ) — log f(A!9*7 ")) —np
> —nu+n"t(A(nlogk' —nlogk) + (w logn — @ logn)) + Op(

By Theorem 1, the above probability goes to zero.
For k' > k, we have

PUUK) > €(K)) = Plga(K', X, 4) > gu(k, X, 4)
P(hy (K A\ A) > hy(k, A, A)))

P(anlog k' + supyeg, log f(A|0, 2*) — log f(A]6*, 2*) — (Anlog k' + w
suppeo, log f(A|0, 2*) —log f(A|0*, z*) — (Anlog k + @ logn)).

IN

k(k+1)
2n

n(k'; N, A) > supgeg, log f(A]6, 2*) —log f(A]0%, 2*) — (Anlog k + k(kH) logn))

k(k;l) logn) + Supgeo, log f(A]9, z*) —log f(A]6*, 2*))

logn)).

logn) >

By Theorem 3, for A > (alogk’)/(log k' — log k), the above probability goes to zero.

8.5 Proof of Theorem 7

Fora=k—1,b=Fk—1, u(a) =k — 1, we have

/ / N
Ouywwy  P—ne—1 _ Op—nk-1) To (bﬂ)
[ R o7 n
(k 1)(k—1) (k—1)(k—1)
—_ Me-D(k- 1) Mg — l)k/ +o (lo n)
N(k—1)(k— 1)+7L(k 1k (k—=1)( IZ 1) P\
=) k-0 1y 1) T R— DR 1)k logn
- N(k—1)(k— 1*)+n(k Dk /e(k 1)(k—1) +Op( n )

00— 1
= o1+ (1- ﬂfl)% +op(<57)

= o1+ L1 —31) + 0, (1EL),

n

where r; = Rob)(ht) . It yields
N(k—1)(k—1) TN (k—1)k

0/
k—1)(k—1 q
Ok—1)(k—1) logie( s )—plog(w1+—(1—m1))+o(1).
(k—1)(k—1) p
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Again, we have

1-0; 1-0] 1-6
u(a)u(b) (k=1)(k—1) __ (k—1)(k—1) logn
* — * - * + Op|l ——
ST T e D e T :
_ logn
= - (k- 1(><kel>+"<k v )/( (Hl(ke 1)(k )1))+0P( )
_ =)= 00 o) AR (0G4, ¥ log n
- N(k—1)(k—1) TN (k—1)k /( a(k 1) (k— 1))+0p( n )
= $1—|— (1—$1)+0p(107gln).
It yields
GEk 1)(k—1) 1—g¢q
(1= 00—1)k—1)) 10% T = (d=p)log(ar +— (1 —21)) +0(1).
(k—1)(k—1) -Pp

Fora=k, b=k—1, u(a) =k — 1, we have

’ / ~
_guwgu(b) _ %-nee-ny _ fu-neey Yo (logn)
Oar O k—1) N Ok (k—1) p
— M-k TM(k-1)k logn
N(k—1)(k—1) TN (k—1)k / k(k— 1)+0p( n )
(k1) (k—1)0 (k1) (h— 1)+n(k RO 1)k

* logn
= /Oy + 0p(Z57)

N(k—1)(k—1) TN (k—1)k

1
= Lo+ (1—m1) +0p(2").

n

It yields
0
k—1)(k—1
Ork-1) k’g% = qlog( 1+ (1 —21)) + o(1).
k(k—1)
Again, we have
1-¢’ 1-¢’ 1—d
Z u(@ud) (k D(k=1) _ (k—1)(k—1) logn
T T T ey T
— k—1)(k—1 k—1)k X ogn
= - Tk~ 1()(k01)+n(k 1);; )/(1_(91 (g 1))?‘01)( n )
o M(k-1)(k—1) (k—1)(k—1)) T (E=1)k (k—1)k _ log 1
B M(e—1)(h—1) TRk 1)k /(=0 yy) +0(557)
= 2o+ (1 —21) + 0p (1),
It yields
1-0 B 1—
(1~ 8- o ——E2ED — (1 g)log(r—Lry + (1~ ) + o(1)
Ork—1) I—gq

Let s =p/q and p; = . Noting that z1 + £ (1 —x1) = x1(1 + B1), we have
plog(z1 + = (1 —x1)) = plogxy + plog(1 + B1).

Under the condition that s = p/q is sufficiently large, compared with plogz, plog(l + (1) is

very small and can be omitted .
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By similar discussions,

— P

(1= p)log(a + T—2(1 = 20)) = (1= p)log = + (1= p) log(1+ ).

glog(Z x1+(1—x1))—qlog( . L) 4 glog(1 + fs),

(1 = ) log(—L1 + (1= a1) = (1= ) log(1 ) + (1 = ) o1 + ).

Thus,
263 (plog w1 + (1 — p) log 722 + glog(P2L) 4 (1 — ) log(1 — px1)) + I5 + o(n)

11+12+13+I4+I5+0( ).
O(n) + O(n) + npz1 (35 log(P)) + O(n) + Is + o(n),

>l

where I5 = 52 (plog(1+ 1) + (1 — p) log(1 + fa) + qlog(1 + ) + (1 — g) log(1 + 54)).

Compared with I; < 0,7 =1,2,3,4, I5 is very small and can be omitted. Note that I < 0,
I, <0, I3 >0 and I, < 0. For large p/q, JT%Jog(p—gq“) is very small. That is, I3 <| I |. Thus,
we get ny — —oo.

8.6 Proof of Theorem 8

By Taylor expansion, we have

2(max, [g)n SuPpco, 10g f(Al0,w, 2) — log f(Al0*, w, z))
= 2(supgee, log f(A|0,w,z") —log f(A|0",w,z7))
= 2> 1<q<p<k(maplog 221) Nab (Bab — 03))
= 2 Z1<a<b<k(nab9ab log M) - nab(éab —03)
= 2> 1<q<p<rn(navn(ba + Aab)( ;Agﬂ) NapDab + O(napAdy)
O (2 - 80 O
= Di<a<b<k @ nabAfb + O(napAdy)

Nab (eab eab)

= Dicasvek —arw— to(l)

where Ay, = 04, — 07,. Since

nab(éab - azb)z « nab(éab — H*b)z
g ——— 2~ < max (1-0}) E abl7ad “abl
* — al * _ A*
1<a<b<k Hab ISasbsk 1<a<b<k aab(l aab)

and

> ralla 00 5 iy (- gy $ nab(0ap = ;1)
* - al * * b)
1sasbsk & fsashsk wen G105
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we have .
2

nab(ab = 05)" _

6*

1<a<b<k ab
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