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Abstract

Motivation: One common difficulty in the study of biological networks is the lack of certainty about the
presence or absence of edges between nodes due to technical limitations in biological experiments. As a
fundamental question, learning the true latent networks, or link prediction has attracted increasing atten-
tion in bioinformatics. We propose a new criterionbased method utilizing observed network topology as
well as information on nodes. The key ingredient of this work is the decomposition of the latent probability
matrix as a product of two low-rank matrices, which leads to a very efficient algorithm based on solving

Lyapunov equations.

Results: The algorithm is computationally efficient and performs well under different simulation setups
for recovery of latent networks. And the proposed method has been applied to a gene regulatory network

of E. coli.
Contact: yzhaol5@gmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A network is a data structure composed of objects (callerdices or
nodes) as well as relations (callegertices or nodes) between them. For
example, a gene regulatory network contains a collection décudar
regulators and interactions between these regulatorsria gepression.
Biological networks, for instance, protein-protein irgetion networks,
metabolic networks, neural networks, among others, are fuedtal to
understand underlying biological mechanisms. In the pastdies; mode-
ling and analyzing network structure have attracted irgirgpattention
in many research fields, including biology (especially bioimatics),
computer science, social sciences, statistics, among ofbeesNew-
man, 2010; Getoor and Diehl, 2005; Goldenbetrgl., 2010 for general
reviews).

A common difficulty in the study of biological networks is theka
of certainty about the presence or absence of edges betwees.rThat
is, some observed edges and non-edge status can be falseeposit

false negatives, respectively. Lack of negative exampligisal in bio-
logical networks due to technical limitations in biologiexjperiments Lu
and Zhou, 2010. For instance, in a protein—protein inteaatetwork,
a pair of proteins with no observed edge may not imply that tiers
interaction between the two proteins. Instead, it may intdi¢hat this
interaction has not been detected by experiment, that therdutech-
nigues did not have enough sensitivity to detect the intemacPositive
examples could sometimes also be uncertain. For example, anange
ber of false positive interactions may be generated by Higbughput
experiments (von Meringt al., 2002).

Therefore, learning the true latent networks, or so-cdilgdpredi-
ction has become a fundamental question in network sciendéparly
in the study of biological networks. The goal of link predbct is to esti-
mate the likelihood of the existence of a link between two sptlased on
the observed network topology as well as additional atteibwf nodes,
called node covariates, if applicable (see Getoor and DEB05, Lu
and Zhou, 2010 and Liben-Nowell and Kleinberg, 2007 forewas from
different research fields).

Rigorously speaking, there are two different settings iick predi-
ction. In the first setting, the network is assumed to be dynaand a
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snapshot of the network at time or a sequence of snapshots at time
1,...,t, is observed. And the task is to predict new links that arelyik
to emerge in the near future, like at timet 1. In the second setting,
the network is static but is only partially observed, or @m$ observa-
tion errors, and the task is to recover the entire latent odwThese
two tasks are related in practice since a missing link may appehe
future. For example, a missing interaction due to technicaitditions
in a protein-protein interaction network may become detéetap more
accurate experiments in the future. Or two real-life friendenected on
Facebook so far but may build a link later. However, these ®ttirgs are
quite different from the analysis of point of view. We focustbe second
setting, i.e., static networks in this article and do notsider dynamics
networks.

Further, we consider two subtypes of problems. The first gty
what we introduced in the beginning — the observed networkains
false positive/negative examples and the task is to recbeetrtie latent
network. To the best of our knowledge, this problem was fixglieitly

studied in Zhacet al., 2017. Their method does not estimate the nume-

rical values of the link probabilities, which in fact canrim estimated
since the false positive/negative rate is unknown. Instiépdovides rela-
tive rankings of probabilities of the existence of linksweén nodes. The
performance of these rankings can be evaluated by the RO@.cline
second subtype is a matrix completion problem, i.e., the obdeadja-
cency matrix contains missing components and the task is to filese
blanks. Our method are motivated from the first subtype. Angtbpo-
sed algorithm and method can also be applied to the secongpsulith
some modification. See Section 3.2 for details.

Existing link prediction methods in the literature can be skely
classified into unsupervised and supervised approachesupgrnvised
approaches are based on various types of node similarity mesasoi this
type of approaches, each pair of nodes is assigned a simiéante, and
pairs with higher similarity scores are assumed to be linketl higher
probabilities. Typical choices of such similarity measumedude local
indices based on common neighbors, such as the Jaccard initbex<{L
Nowell and Kleinberg, 2007) or the Adamic-Adar index (Adamita
Adar, 2003), and global indices based on the whole netwarkh ss
the Katz index (Katz, 1953) and the Leicht-Holme-Newman Inflesi-
chtet al., 2006). See Liben-Nowell and Kleinberg, 2007; Lu and Zhou,
2010 for comprehensive reviews of unsupervised approaches.

In supervised approaches, link prediction is reformulated hinary
classification problem, where the respons€s, (}) indicate whether
there exists a link for a pair, and the predictors are cotesian each pair,
constructed from node attributes. A number of popular supedviear-
ning methods have been used in the link prediction problertydiireg the
support vector machine (Ben-Hur and Noble, 2005; Bleakey., 2007),
semi-supervised learning (Kashirdial., 2009; Raymond and Kashima,
2010), optimizing the area under the curve (AUC) (Menon aridit|

2011). Hasaret al., 2006 evaluated the performance of several supervi-

sed learning methods. Further, methods based on probaifistiels for
incomplete network can also be categorized into supervipptbaches.
Popular examples of model-based supervised approachesénietent
space models (Hofét al., 2002), latent variable models (Hoff, 2007;
Miller et al., 2010), stochastic relational models (¥ual., 2007), and
hierarchical structure models (Clausetl., 2008).

Most of these supervised approaches are designed for tlemdsec
subtype problem introduced earlier — filling in missing valiean adja-
cency matrix. Zhaet al., 2017 considered the first subtype, allowing for
uncertainty of positive and negative examples. Zkaal., 2017 treated
link probabilities as unknown parameters and made no staicissum-
ption on networks. Thus this method needs to estimate an ofdef o
parameters where is the size of the network, which may result in high
computational cost for large networks.

To address this challenge, we propose a new criterion fomdiy
assuming that the latent probability matrix can be decomposedpao-
duct of two low-rank matrices. When the network is directe@, rtbws
of the two matrices represent the latent “features” of eadferas a link
sender or a link receiver, respectively. When the networknidirected,
these two matrices are set to be identical so that there isstmction
between senders and receivers. If the attributes of twosadesimilar,
it is natural to make the assumption that these nodes also ésaitar
as senders/receivers when building connections. It ishwmoticing that
this assumption is not the same as the assumption in unsupkagppeo-
aches: two nodes with high similarity are not necessarily niikety to
be connected as in unsupervised approaches. Instead, lthyeg pimi-
lar role in building connections. When a similarity matrix ofdes is
available, we include a penalty term into the criterion fiimrT in order
to penalize the difference between latent features of tweesavhen the
similarities between these nodes are high. This idea is argleragion
of the classical graph-based semi-supervised learningefimession or
classification (one-dimensional case) to the link prediciio networks
(two-dimensional case). See Chaped#teal., 2006 for a comprehen-
sive review of graph-based learning and other semi-supghiesarning
methods.

We develop an efficient algorithm by iteratively updating ttwo
matrices. The key ingredient of this algorithm is that eackaip is
equivalent to solving two Lyapunov equations, which can bmputed
efficiently by eigen-decomposition. With some modification;, method
can also be applied to the second subtype problem. The modifiedan
function is solved by a similar algorithm with an imputatiocheique.

The rest of this article is organized as follows. In Sectipw@ intro-
duce the model assumptions, and propose novel link predictiteria
via low-rank matrices decomposition. In Section 3, we devéhepalgo-
rithm for optimizing those criteria based on solving Lyapurguations
iteratively. In Section 4, we evaluate the performance oppsed crite-
ria on simulated networks under various settings. In Se&jome apply
our method to predict links a regulatory network of E. colictgmn 6
concludes with a summary and discussion of future works.

2 Methods

We begin with basic notation. A network withnodes can be represented
by ann x n adjacency matri¥” = [Y;;], where

Yz‘j:{

Here we useY to denote the adjacency matrix instead of the more
standard notatiomd, because we consider the links of the network as
responses, and the characteristics of nodes as explanatoaples. In
our work, node covariates will not explicitly appear in theterion
function. Instead, a similarity matrix constructed by nodeacates will

be used. Further, our method can be applied into both direntad-
orks and undirected networks. In fact, the case of direcetdiarks is
more straightforward. We focus on the link prediction probi®r dire-
cted networks and then show that our method can be easily extiépt
the undirected case. Therefore, in genéfatan be either symmetric (for
undirected networks) or asymmetric (for directed networks).

1
0

if there is an edge fromto j,
otherwise.

2.1 Model assumptions

We briefly reiterate the model assumption in Zlegal., 2017 and will fol-
low the same assumption in this paper. Assume that there is acesdy
matrix of the true latent network, denoted By "“¢, and this network
is observed with errors, denoted by EacthjT.T“e follows a Bernoulli
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distribution with success ra@()@?“e = 1) = P;;. And the observed
network is generated by

0) =8,

P(Y; = 1Yii™ = 1) = a, P(Y;; = 0|Y;;™ =

wherea andg are the probabilities of correctly recording a true edge
and an absent edge, respectively. Here we assuaral 3 to be constant.

Note thatg = 1 and« 1 are two important special cases. In
the former case, all observed links are true positives. Famgie, in a
protein-protein interaction network where all observetkdi have been
verified by experiments, we only need to estimate the likelihoblinks
for node pairs without observed links. Similarly, in the éattase, all
unobserved links are true negatives and the task is to igaéstthe
reliability of observed links.

Under the model setting, we have

Py 2B(Yij=1)=(a+B-1)Py+(1-B).

And by Bayes’ rule,

P
[P)(Yi?me _ 1‘Yij _ 1) _ a~ 137 1)
P
1— )Py
P(Yi?rue — 1‘1/;] — 0) — w (2)
1- Py

It is worth noticing that both (1) and (2) are monotone inciregs
functions ofﬁij if « + 3 > 1. Zhaoet al., 2017 then made a crucial
observation that it is sufficient to estimate the link proliaés for the
observed network 45’1-]- to provide rankings of potential links. We follow
this idea and focus on the estimationfag.

2.2 Criteria for link prediction via matrix decomposition

For the purpose of link prediction, in addition to the obseimetworky”,
we assume that there is a symmetric malthix= [W;;] with0 < W;; <
1 available, which describes the similarity between nadasd;. In this
article, we only consider the similarity matri¥” as external information
on nodes, that ig}y is generated from external node covariates, not from
the topology of the network. In generdll’ can also be obtained from
network topology, or a combination of both sources (see L2066 for
some popular choices of topology based similarity measures).

In this subsection, we first propose the criterion for estinga?ij in
directed networks:

> (Vi — Fiy)?
ij

FAD WiillUs = Uy P + XD WislIVi = Vi |2,
i<j i<j

argmin Q1 =
U,V

®

whereU, V € R**X F = UVT and\ is a tuning parameter. For any
matrix M, we useM;. to denote the-th row of M andM.; to denote
the j-th column of M.

The criterion function above is an improvement of the methocha?
et al., 2017. For comparison, we give the criterion function foedted
networks in that article,

n

arg min E (Yij — Fij)?
F —
ij

— Fi’j’

FA D Wi Wy (Fyy )2,

i’

4)

The key difference between the two criteria is thain (4) is a matrix

may become very high for large networks. By contrast, criter(8)
imposes a structure of the latent probability matkix that is, F' can be
decomposed into two low-rank matricésandV'. If K < n, the model
complexity can be significantly reduced. Matridésand V" have the fol-
lowing natural interpretatiori/;. can be considered as the feature of node
i as a link sender, antf;. can be consider as the feature of ngdas a
link receiver. And the probability of link existence betwesode: andj

is high if the features of and;j match.

The first term of both (3) and (4) is the widely used squaredréoss
connecting the link probabilities with the observed nekvdhe motiva-
tion of this loss function is that the minimizer of its poputativersion,
e, E(Y;; — Fij)2 is R—j. One can also choose other loss functions such
as the hinge loss or the negative log-likelihood. The maisardor choo-
sing the squared error loss here is computational efficiesnuye it makes
the first term of (3) a quadratic form.

The penalty term in (3) is based on the following assumptibmode
1 andyj are similar according to the similarity matri¥’, then node and
J will have similar behavior as link senders, i.&;. is close toU;., and
also have similar behavior as link receivers, i1§.,is close toV/;.. Since
F; = Ui.Vj", this assumption is equivalent to saying if both pairs
endpoints are similar, the link probabilities on these twiogpshould also
be close, which is the key assumption made in (4).

It is worth noticing that this “pair similarity” assumption dfferent
from the “node similarity” assumption used by many unsupedvige
prediction approaches and is more general. The node simiksgum-
ption is that a link is more likely to exist if two nodes are sianil By
assuming pair similarity, two nodes can possibly have higk pirobabi-
lities even they are not similar accordingid. We believe that the pair
similarity assumption is in particular more valid for biologimetworks.
For instance, predators are not similar to their preys in a foeb. But
a lion and a tiger may have similar preys since these two aninaals h
similar characteristics and both are at the top of the fooéhcha

Note that (4) is also based on the pair similarity assumptioa,more
explicit way in fact. The difference is that sinéeis decomposable in (3),
we can penalize the differences of two endpoliifsandV;. separately,
avoiding the complicated summation term in (4).

Another advantage of (3) is that we can safely remove the penal
unless the similarity matri¥¥’ does provide extra useful information.
Unlike (4), (3) is still a valid criterion function for link igdiction even
without the penalty term, i.e., settilg= 0. That is also part of the rea-
son that we only us&V based on external information on nodes in this
article, sincelV created by network topology is not very reliable if the
missing rate of links is high. Therefore, we would suggestmdtide the
penalty term in (3) if no useful node covariates are avadabl

By modifying (5), we can also propose a criterion for the secon
subtype problem in link prediction — fill in the missing compoteeof
a partially observed adjacency matiX Let S = [S;;] be ann x n
matrix, whereS;; = 1if Y;; is observed, and;; = 0 otherwise. In this
case, we propose the following criterion:

of

n
argmin Q2 =Y Si;(Yij — Fij)?
b ’L]

A Wil|Us = Uy [P + A D WiV = Vi |2,
i<j i<j

(@)

Since (5) only involves a partial sum of the loss functionrtsrwe will
refer to (5) as the partial-sum criterion and (3) as the $ult criterion
for the rest of the article, as in Zhabal. (2017).

The partial sum criterion is also closely related to the figdtype
problem. Suppose that some examples are certainly true @ssdivtrue

containingn? free parameters. Therefore, the computation costs of (4)negatives, that is, somE;; may be known to be true 1's and true 0's,
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while others may be uncertain. If there exist sufficient amafrirue
positives and true negatives, it makes sense to only include sertain
information in the criterion. Therefore, when using the jgdugum crite-
rion, we require that the observéd; contain no error. That is9;; = 1
only if it is known thatY;; = Ygr“e, and 0 otherwise. If this require-
ment is not satisfied, then the second subtype problem cansbg pat
into the framework of the first subtype by settilig; = 0 for all (¢, 5)
with S;; = 0. Therefore, due to the availability of extra information,
the partial-sum criterion (5) presumably performs betten the full-sum
criterion (3). On the other hand, the teri$ig bring extra difficulty to the
algorithm design and we will explain the details in Section 3

So far we focus on the link prediction criteria for directeztworks.
The link prediction criteria for undirected networks careiasily obtained
if we makeF' symmetric, i.e.lJ = V' in (3) and (5). Then the full-sum
criterion for undirected networks is

arg min Q3 = > (Vg = Fig)® +2X > Wis||Us. — Ui |?, (6)
ij 1<J

whereU € R*"*K andF = UUT. Similarly, the partial-sum criterion
for undirected network is

n
argmin Qq = D Sii(Yij = Fi)® + 20 Y Wis|Us. — U 1%,
ij i<j

@)

wheresS;; = 1ifitis known thatY;; = Y;7"¢, and 0 otherwise.

3 Algorithm

3.1 Optimizing full-sum criteria by solving Lyapunov
equations

We begin with the full-sum criterion for directed networlk®y some
simple matrix algebral); can be written as the following matrix form,

Q1 =Tr(vUTUVT —2vTF +YTY) 4+ ATr(UT DU — UTWU)
+ATr((VT DV —vTWV),

where D is a diagonal matrix withl;; = Zj Wi;;. By taking the par-
tial derivatives with respect t&/ andV/, one can show that the optimal
solution(U, V) of the full-sum criterion (3) must satisfy

®)
(©)

Naturally, we optimize the objective function by solving @)d (9) ite-
ratively. Specifically, we updaté in (8) with V fixed and updaté” in

However, directly solving (11) may be time-consuming when
n is large, especially as one iteration in the whole proceduke
commonly-used approach to solve Lyapunov equation is basedyen-
decomposition, which we describe in details as follows.

Since both and R are symmetric matrices, they can be diagonalized.
Let L = PA; PT andR = QA2QT, whereA; andA» are the diagonal
matrices. Then (10) becomes

PAMPTZ + ZQAQT =C.

By multiplying PT" from left andQ from right on both sides of the above
equation, we obtain

MPTZQ+ PTZQA, =PTCQ.

Let Z = PTZQ. ThenZ can be solved elementwisely by the for-
mulaZ;; = [PTCQlij/ (A1 + Az;;), sinceA; andAz are diagonal.
Finally we can easily ge¥ back byZ = PZQT.

In general, the method of eigen-decomposition is much morerfaste
than solving a system of linear equations directly. Moreriestingly and
importantly, this method can be further accelerated in ounate accor-
ding to the following observation. The most time-consuming péthis
procedure is eigen-decomposition bfand R. In our problem,UZU,
VTV andD — W require eigen-decomposition. Bi@ — W remains
unchanged for all the iterations, and thus requires eiggmhposition
only once. On the other hand, bdthf 7 andVZV are K x K matrix.
Typically, K is chosen to be a small number compared withn which
case eigen-decomposition of these matrix is trivial.

The full-sum criterion for undirected networks (6) can bived by a
similar approach. Note that (6) is equivalent to the follogvaonstrained
optimization problem,

n
arg min E (Yij — Fij)?
uvo

FAD WyllUs = Us P+ XD Wi Vi = Vi |12,
i<y i<y
(12

subject toU = V.

Empirically, we found that if we start from an initial valuetisying
the symmetry constraint, then the solutions (8) and (9) foh é&cation
also satisfy that constraint. Therefore, (6) can be optithizg directly
applying the method above with an initial valté®) = v/ (9,

3.2 Optimizing partial-sum criteria by imputation

With terms S;;, the derivatives of the partial-sum criterion (5) with
respect ta/ andV cannot be written as a form of (8) and (9), and thus
cannot be optimized directly by solving Lyapunov equatiddewever,

(9) with U fixed. Both (8) and (9) can be written as a general form called (5) can be solved by optimizing a sequence of full-sum cat¢), if we

Lyapunov equation (Bartels and Steward, 1972) as follows,

LZ+ZR=C, (10)
whereL, R andC and known matrices and is unknown. For example,
for (8),L =A(D —W),R=VTVandC = YV.

First, note that (10) is essentially a system of linear eéquatof Z.
By vectorizing both sides of (10), we obtain

(Ix ® L+ RT @ I,)ved Z) = veqC), (11)

where ve¢-) denotes the transformation of a matrix column by column to

a column vector, ang is the Kronecker product. The solution of (10) is
the matrix form of the solution of this system of linear eqons.

apply the idea of imputation.
Clearly, the partial-sum criterion (5) is equivalent to fiedowing
optimization problem with augmented variablés

n n n
argmin » Sy > (Vij — Fi)® + > (1= Si)(Vij — Fij)?
BY g ij ij

FADY Wil Us = U |+ X Wi Vi = Vi |12,
i<j i<j

(13)
subject toY;; = Y;;, for Si; = 1.

We can updaté” andY iteratively. WithY" being fixed, (13) now beco-
mes a standard full-sum criterion, and thus can be solvedénithod
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introduced in the previous subsection. Withfixed, Y can be obtai-
ned by imputing the values of;; for all S;; = 0. In summary, the
augmented optimization problem (13) can be solved by the Viotigp
steps iteratively.

e Optimization: Optimizing a full-sum criterion with” as the observed
network.
e Imputation:

if Sy =1,
if ;= 0.

4 Simulation studies

In this section, we evaluate the performance of the full-suih gartial-
sum criteria on several simulated scenarios. In all simuiagtodies, the
size of each network is fixed with = 500. And node: contains cova-

riates X; which are independently generated from a multivariate normal

distribution N, (0, I,,) with p = 5. EachYl.]T.“‘e is generated indepen-
dently, with logitP;; = f(X;, X;). We consider the following four
functions f (X, X;) in simulation studies.

(@) > (Xik — Xjz),

k
®) 2X7X;/1%1,

(@) > (Xir— Xjn) =8,
k

) 2X7X;/11X5] - 4,

Among them(a) is a linear function;(b) is the well-known projection
model proposed in Hofét al. (2002), under which the logit of link pro-
bability Y;; is the projection ofX; onto the direction ofX;. (a’) and
(b') are obtained by subtracting a constant within the logitiinka) and
(b), respectively(a’) and(b") will generate sparser networks, which will
allows us to evaluate the performance of our methods for bathedand
sparse networks.

Next we generate indicatof$;;'s as independent Bernoulli variables
with success probability 0.5, and defivig = S;; Yg’““e. In this setting,
all the observed edges are true positives but the missingsetgg or
may not be true negatives. The partial-sum criterion onlys us®rect
information, i.e.,Y;;’s on the pairs withS;; = 1. By contrast, the full-
sum criterion use all th&7;'s as responses, so it will include half of
absent edges as false negatives.

We define the similarity matri¥}’ by the Gaussian Kernel,

X — X2
Wiy :exp{_n 2l }
where we choose = imediar{”XﬁXjH,i =1,.,n,j=1,..,n}
We optimize the full-sum and partial-sum criteria with = 5 and A
chosen by 5-fold cross-validation.

The performance of link prediction is evaluated by ROC curixesv
we give the details of the evaluation procedure, becausesetting is
slightly different from the classical supervised learniegpecially for the
full-sum criterion. In each simulation, we evaluate the perfance of
both criteria on the same test €t, j) : S;; = 0} for fair comparison.
The ROC curves are determined by the rankingﬁ,gfestimated by the
full-sum or the partial-sum criterion on the test set. Speally, let R;;

positive rate (FPR) are defined by

{(i,5) : Sij =0,R;; < k;7yi?rue =1}
{d): Sy =0 YTre =1

03}

TPR(k) =

I{(ij) : Sij = OvRij <
|{(Z7]) : Sij = O’Y'i?'rue —

True
k, Y{True =

0}

FPRk) =

Figure 1 shows the performance of the full-sum criterion azdigl-
sum criterion for the four simulation settings by ROC curves ¢he
corresponding AUCs (Area under a curve). Each curve and ¢dhe-c
sponding AUC are the average of 50 replicates. We also pedhiel ROC
curves constructed from trug;;'s as a benchmark for comparison.

Both the full-sum and the partial-sum criteria perform virell simu-
lation settings. As expected, the partial-sum criteriomagls provides
better results since it assumes more information and only usesct true
positives and true negatives. But the performance of thesetiteria is
quite comparable; sometimes, the gaps between ROC curvestdano
clearly seen from the figures and can only be identified by threerical
values of AUCs. The criteria performs better for linear modeds latent
space models, which is also expected because of the simpiidityear
models.

5 Applications to a gene regulatory network of E.
coli

In this section, we analyze a gene regulation dataset of E. @am-
piled by Faithet al., 2007. This dataset includes of a gene regulatory
network and expression data. The regulatory network ctneis3293
experimentally confirmed links between 1209 genes, which mties
network very sparse (average degre®.72). Figure 2 shows this netw-
ork. The expression data consist of 445 E. coli Affymetrix idaehse2
microarray expression profiles for those genes. The sinyilarétrix W

is created from the gene expression data by the same Gaussiai &s

in simulation studies.

To evaluate the performance of our prediction methods, wergane
indicatorsS;;'s as independent Bernoulli variables with success prebabi
lity o, and sety;; = SingT“@. We test our criteria on two different
values ofa, o = 0.2, 0.5, corresponding to different proportions of the
available true positives. We fil = 5 and select\ by cross-validation.
ROC curves are plotted to evaluate the performance of thestufi and
partial-sum criterion on pairs with;; = 0.

From Figure 3, both criteria perform quite well even for a dream-
ple ratea = 0.2. The distinction between the full-sum and partial-sum
criteria become more apparent compared with the simulationestud
since this gene regulatory network is a challenging datfsethe pur-
pose of link prediction due to its sparsity. Moreover, thraikirity matrix
W plays an important role in link prediction for this example.faet,
settingA = 0 will result in low accuracy of prediction for both full-sum
and partial-sum criterion, that is, the AUCs for both ciaedrop below
0.7 withoutW. This suggests that the expression data are not only highly
relevant to link existence in the regulatory network, babarovide auxi-
liary information beyond the matrix decomposition based oreolesd
topology.

6 Summary and future work

be the ranking Offij on the test set in descending order. For any integerIn this article, we propose a novel link prediction approdeh both

k, false positives are pailg, j) ranked within topk but without links in

directed and undirected networks based on matrix decompositihis

the true networkX’ijT.’““e = 0), and true positives are pairs ranked within method naturally incorporates structural information of tiegwork as
top k with YiJT.T“e = 1. Then the true positive rate (TPR) and the false well as node covariates. By assuming that the latent prababilatrix
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Fig. 1. ROC curves over 50 replicates.

Fig. 2. Gene regulatory network of E. coli,

can be decomposed into two low-rank matrices and applyingneige
decomposition for Lyapunov equations, this new approachifsigntly
reduces the model complexity, and thus improves algorithmicieffty

and reliability of the existing methods.

0.6 0.8

prepared by Pajek.

0.4 E
03 i
0.2 E
full-sum (AUC=0.917)
0.1 partial-sum (AUC=0.923)({
True (AUC=0.964)
o . . ; :
0 0.2 0.4 0.6 08 1
FP
)

““““ full-sum (AUC=0.808)
0.1 = = partial-sum (AUC=0.811)| 1
True (AUC=0.887)

0 L L n
0 0.2 0.4 0.6 0.8 1

FP

In the future, we would like to investigate the theoreticagerties of
link prediction by our method. Recently, Du and Zhao, 201 dist the
consistency of the classical semi-supervised learning agdested the
estimator of the regression function is inconsistent whertihing para-
meter\ is non-zero. Similarly, we conjecture that it would be unistzd
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& 05 ;
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03!
0.2}k
oif [ full-sum (AUC=0.8709)
----- partial-sum (AUC=0.9154)
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FP

Fig. 3. ROC curves for gene regulatory network of E. coli.

to expect the consistency of the estimator of the probabiiiyrix in the

link prediction problem since it can be viewed as a genatbn of the

classical semi-supervised learning. On the other hande she perfor-
mance of link prediction is usually evaluated by ROC curvespuld be

more natural to investigate the asymptotic behavior of theesponding
AUCs (Area under the curve), which is potentially challermggbecause it
requires novel theoretical tools for rank consistency.

We also plan to further study the algorithm for the partiatrscri-
terion. Unlike the full-sum version, the partial-sum cribe cannot be
directly optimized by solving Lyapunov equations iteralyyeand thus
the proposed algorithm relies on an imputation techniquereNmalytic
work is needed to better understand the principle of impanatised in
the current algorithm.
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