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Abstract

Motivation: One common difficulty in the study of biological networks is the lack of certainty about the
presence or absence of edges between nodes due to technical limitations in biological experiments. As a
fundamental question, learning the true latent networks, or link prediction has attracted increasing atten-
tion in bioinformatics. We propose a new criterionbased method utilizing observed network topology as
well as information on nodes. The key ingredient of this work is the decomposition of the latent probability
matrix as a product of two low-rank matrices, which leads to a very efficient algorithm based on solving
Lyapunov equations.
Results: The algorithm is computationally efficient and performs well under different simulation setups
for recovery of latent networks. And the proposed method has been applied to a gene regulatory network
of E. coli.
Contact: yzhao15@gmu.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A network is a data structure composed of objects (calledvertices or
nodes) as well as relations (calledvertices or nodes) between them. For
example, a gene regulatory network contains a collection of molecular
regulators and interactions between these regulators in gene expression.
Biological networks, for instance, protein-protein interaction networks,
metabolic networks, neural networks, among others, are fundamental to
understand underlying biological mechanisms. In the past decades, mode-
ling and analyzing network structure have attracted increasing attention
in many research fields, including biology (especially bioinformatics),
computer science, social sciences, statistics, among others(see New-
man, 2010; Getoor and Diehl, 2005; Goldenberget al., 2010 for general
reviews).

A common difficulty in the study of biological networks is the lack
of certainty about the presence or absence of edges between nodes. That
is, some observed edges and non-edge status can be false positives or

false negatives, respectively. Lack of negative examples istypical in bio-
logical networks due to technical limitations in biologicalexperiments Lu
and Zhou, 2010. For instance, in a protein–protein interaction network,
a pair of proteins with no observed edge may not imply that thereis no
interaction between the two proteins. Instead, it may indicate that this
interaction has not been detected by experiment, that the current tech-
niques did not have enough sensitivity to detect the interaction. Positive
examples could sometimes also be uncertain. For example, a largenum-
ber of false positive interactions may be generated by high-throughput
experiments (von Meringet al., 2002).

Therefore, learning the true latent networks, or so-calledlink predi-
ction has become a fundamental question in network science, particularly
in the study of biological networks. The goal of link prediction is to esti-
mate the likelihood of the existence of a link between two nodes, based on
the observed network topology as well as additional attributes of nodes,
called node covariates, if applicable (see Getoor and Diehl, 2005, Lu
and Zhou, 2010 and Liben-Nowell and Kleinberg, 2007 for reviews from
different research fields).

Rigorously speaking, there are two different settings for link predi-
ction. In the first setting, the network is assumed to be dynamic, and a

c© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



“main˙zhao˙revsc” — 2017/5/12 — page 2 — #2

2 Zhao et al.

snapshot of the network at timet, or a sequence of snapshots at time
1, ..., t, is observed. And the task is to predict new links that are likely
to emerge in the near future, like at timet + 1. In the second setting,
the network is static but is only partially observed, or contains observa-
tion errors, and the task is to recover the entire latent network. These
two tasks are related in practice since a missing link may appear in the
future. For example, a missing interaction due to technical limitations
in a protein-protein interaction network may become detectable by more
accurate experiments in the future. Or two real-life friendsconnected on
Facebook so far but may build a link later. However, these two settings are
quite different from the analysis of point of view. We focus on the second
setting, i.e., static networks in this article and do not consider dynamics
networks.

Further, we consider two subtypes of problems. The first subtype is
what we introduced in the beginning – the observed network contains
false positive/negative examples and the task is to recover the true latent
network. To the best of our knowledge, this problem was first explicitly
studied in Zhaoet al., 2017. Their method does not estimate the nume-
rical values of the link probabilities, which in fact cannotbe estimated
since the false positive/negative rate is unknown. Instead, it provides rela-
tive rankings of probabilities of the existence of links between nodes. The
performance of these rankings can be evaluated by the ROC curve. The
second subtype is a matrix completion problem, i.e., the observed adja-
cency matrix contains missing components and the task is to fill in these
blanks. Our method are motivated from the first subtype. And thepropo-
sed algorithm and method can also be applied to the second subtype with
some modification. See Section 3.2 for details.

Existing link prediction methods in the literature can be loosely
classified into unsupervised and supervised approaches. Unsupervised
approaches are based on various types of node similarity measures. In this
type of approaches, each pair of nodes is assigned a similarity score, and
pairs with higher similarity scores are assumed to be linked with higher
probabilities. Typical choices of such similarity measures include local
indices based on common neighbors, such as the Jaccard index (Liben-
Nowell and Kleinberg, 2007) or the Adamic-Adar index (Adamic and
Adar, 2003), and global indices based on the whole network, such as
the Katz index (Katz, 1953) and the Leicht-Holme-Newman Index(Lei-
cht et al., 2006). See Liben-Nowell and Kleinberg, 2007; Lu and Zhou,
2010 for comprehensive reviews of unsupervised approaches.

In supervised approaches, link prediction is reformulated as a binary
classification problem, where the responses ({1, 0}) indicate whether
there exists a link for a pair, and the predictors are covariates on each pair,
constructed from node attributes. A number of popular supervised lear-
ning methods have been used in the link prediction problem, including the
support vector machine (Ben-Hur and Noble, 2005; Bleakleyet al., 2007),
semi-supervised learning (Kashimaet al., 2009; Raymond and Kashima,
2010), optimizing the area under the curve (AUC) (Menon and Elkan,
2011). Hasanet al., 2006 evaluated the performance of several supervi-
sed learning methods. Further, methods based on probabilistic models for
incomplete network can also be categorized into supervised approaches.
Popular examples of model-based supervised approaches include latent
space models (Hoffet al., 2002), latent variable models (Hoff, 2007;
Miller et al., 2010), stochastic relational models (Yuet al., 2007), and
hierarchical structure models (Clausetet al., 2008).

Most of these supervised approaches are designed for the second
subtype problem introduced earlier – filling in missing values in an adja-
cency matrix. Zhaoet al., 2017 considered the first subtype, allowing for
uncertainty of positive and negative examples. Zhaoet al., 2017 treated
link probabilities as unknown parameters and made no structural assum-
ption on networks. Thus this method needs to estimate an order of n2

parameters wheren is the size of the network, which may result in high
computational cost for large networks.

To address this challenge, we propose a new criterion function by
assuming that the latent probability matrix can be decomposed as a pro-
duct of two low-rank matrices. When the network is directed, the rows
of the two matrices represent the latent “features” of each node as a link
sender or a link receiver, respectively. When the network is undirected,
these two matrices are set to be identical so that there is no distinction
between senders and receivers. If the attributes of two nodes are similar,
it is natural to make the assumption that these nodes also behave similar
as senders/receivers when building connections. It is worth noticing that
this assumption is not the same as the assumption in unsupervised appro-
aches: two nodes with high similarity are not necessarily morelikely to
be connected as in unsupervised approaches. Instead, they play a simi-
lar role in building connections. When a similarity matrix of nodes is
available, we include a penalty term into the criterion function in order
to penalize the difference between latent features of two nodes when the
similarities between these nodes are high. This idea is a generalization
of the classical graph-based semi-supervised learning for regression or
classification (one-dimensional case) to the link prediction in networks
(two-dimensional case). See Chapelleet al., 2006 for a comprehen-
sive review of graph-based learning and other semi-supervised learning
methods.

We develop an efficient algorithm by iteratively updating the two
matrices. The key ingredient of this algorithm is that each update is
equivalent to solving two Lyapunov equations, which can be computed
efficiently by eigen-decomposition. With some modification, our method
can also be applied to the second subtype problem. The modified criterion
function is solved by a similar algorithm with an imputation technique.

The rest of this article is organized as follows. In Section 2, we intro-
duce the model assumptions, and propose novel link predictioncriteria
via low-rank matrices decomposition. In Section 3, we developthe algo-
rithm for optimizing those criteria based on solving Lyapunov equations
iteratively. In Section 4, we evaluate the performance of proposed crite-
ria on simulated networks under various settings. In Section5, we apply
our method to predict links a regulatory network of E. coli. Section 6
concludes with a summary and discussion of future works.

2 Methods

We begin with basic notation. A network withn nodes can be represented
by ann× n adjacency matrixY = [Yij ], where

Yij =

{

1 if there is an edge fromi to j,
0 otherwise.

Here we useY to denote the adjacency matrix instead of the more
standard notationA, because we consider the links of the network as
responses, and the characteristics of nodes as explanatoryvariables. In
our work, node covariates will not explicitly appear in the criterion
function. Instead, a similarity matrix constructed by node covariates will
be used. Further, our method can be applied into both directednetw-
orks and undirected networks. In fact, the case of directed networks is
more straightforward. We focus on the link prediction problem for dire-
cted networks and then show that our method can be easily adapted to
the undirected case. Therefore, in generalY can be either symmetric (for
undirected networks) or asymmetric (for directed networks).

2.1 Model assumptions

We briefly reiterate the model assumption in Zhaoet al., 2017 and will fol-
low the same assumption in this paper. Assume that there is an adjacency
matrix of the true latent network, denoted byY True, and this network
is observed with errors, denoted byY . EachY True

ij follows a Bernoulli



“main˙zhao˙revsc” — 2017/5/12 — page 3 — #3

Learning Latent Networks 3

distribution with success rateP(Y True
ij = 1) = Pij . And the observed

network is generated by

P(Yij = 1|Y True
ij = 1) = α, P(Yij = 0|Y True

ij = 0) = β,

whereα andβ are the probabilities of correctly recording a true edge
and an absent edge, respectively. Here we assumeα andβ to be constant.

Note thatβ = 1 andα = 1 are two important special cases. In
the former case, all observed links are true positives. For example, in a
protein-protein interaction network where all observed links have been
verified by experiments, we only need to estimate the likelihood of links
for node pairs without observed links. Similarly, in the latter case, all
unobserved links are true negatives and the task is to investigate the
reliability of observed links.

Under the model setting, we have

P̃ij
△
= P(Yij = 1) = (α+ β − 1)Pij + (1− β).

And by Bayes’ rule,

P(Y True
ij = 1|Yij = 1) =

αPij

P̃ij

, (1)

P(Y True
ij = 1|Yij = 0) =

(1− α)Pij

1− P̃ij

. (2)

It is worth noticing that both (1) and (2) are monotone increasing
functions ofP̃ij if α + β > 1. Zhaoet al., 2017 then made a crucial
observation that it is sufficient to estimate the link probabilities for the
observed network –̃Pij to provide rankings of potential links. We follow
this idea and focus on the estimation ofP̃ij .

2.2 Criteria for link prediction via matrix decomposition

For the purpose of link prediction, in addition to the observed networkY ,
we assume that there is a symmetric matrixW = [Wij ] with 0 ≤ Wij ≤

1 available, which describes the similarity between nodesi andj. In this
article, we only consider the similarity matrixW as external information
on nodes, that is,W is generated from external node covariates, not from
the topology of the network. In general,W can also be obtained from
network topology, or a combination of both sources (see Liben2007 for
some popular choices of topology based similarity measures).

In this subsection, we first propose the criterion for estimating P̃ij in
directed networks:

argmin
U,V

Q1 =
n
∑

ij

(Yij − Fij)
2

+ λ
∑

i<j

Wij‖Ui· − Uj·‖
2 + λ

∑

i<j

Wij‖Vi· − Vj·‖
2,

(3)

whereU, V ∈ R
n×K , F = UV T andλ is a tuning parameter. For any

matrix M , we useMi· to denote thei-th row of M andM·j to denote
thej-th column ofM .

The criterion function above is an improvement of the method in Zhao
et al., 2017. For comparison, we give the criterion function for directed
networks in that article,

argmin
F

n
∑

ij

(Yij − Fij)
2

+ λ

n
∑

ii′jj′

Wii′Wjj′(Fij − Fi′j′ )
2. (4)

The key difference between the two criteria is thatF in (4) is a matrix
containingn2 free parameters. Therefore, the computation costs of (4)

may become very high for large networks. By contrast, criterion (3)
imposes a structure of the latent probability matrixF , that is,F can be
decomposed into two low-rank matrices,U andV . If K ≪ n, the model
complexity can be significantly reduced. MatricesU andV have the fol-
lowing natural interpretation.Ui· can be considered as the feature of node
i as a link sender, andVj· can be consider as the feature of nodej as a
link receiver. And the probability of link existence between nodei andj
is high if the features ofi andj match.

The first term of both (3) and (4) is the widely used squared error loss
connecting the link probabilities with the observed network. The motiva-
tion of this loss function is that the minimizer of its population version,
i.e.,E(Yij −Fij)

2 is P̃ij . One can also choose other loss functions such
as the hinge loss or the negative log-likelihood. The main reason for choo-
sing the squared error loss here is computational efficiency,since it makes
the first term of (3) a quadratic form.

The penalty term in (3) is based on the following assumption: if node
i andj are similar according to the similarity matrixW , then nodei and
j will have similar behavior as link senders, i.e.,Ui· is close toUj·, and
also have similar behavior as link receivers, i.e.,Vi· is close toVj·. Since
Fij = Ui·V

′
j·, this assumption is equivalent to saying if both pairs of

endpoints are similar, the link probabilities on these two pairs should also
be close, which is the key assumption made in (4).

It is worth noticing that this “pair similarity” assumption isdifferent
from the “node similarity” assumption used by many unsupervised link
prediction approaches and is more general. The node similarity assum-
ption is that a link is more likely to exist if two nodes are similar. By
assuming pair similarity, two nodes can possibly have high link probabi-
lities even they are not similar according toW . We believe that the pair
similarity assumption is in particular more valid for biological networks.
For instance, predators are not similar to their preys in a food web. But
a lion and a tiger may have similar preys since these two animals have
similar characteristics and both are at the top of the food chain.

Note that (4) is also based on the pair similarity assumption, in a more
explicit way in fact. The difference is that sinceF is decomposable in (3),
we can penalize the differences of two endpointsUi· andVj· separately,
avoiding the complicated summation term in (4).

Another advantage of (3) is that we can safely remove the penalty
unless the similarity matrixW does provide extra useful information.
Unlike (4), (3) is still a valid criterion function for link prediction even
without the penalty term, i.e., settingλ = 0. That is also part of the rea-
son that we only useW based on external information on nodes in this
article, sinceW created by network topology is not very reliable if the
missing rate of links is high. Therefore, we would suggest notinclude the
penalty term in (3) if no useful node covariates are available.

By modifying (5), we can also propose a criterion for the second
subtype problem in link prediction – fill in the missing components of
a partially observed adjacency matrixY . Let S = [Sij ] be ann × n

matrix, whereSij = 1 if Yij is observed, andSij = 0 otherwise. In this
case, we propose the following criterion:

argmin
U,V

Q2 =
n
∑

ij

Sij(Yij − Fij)
2

+ λ
∑

i<j

Wij‖Ui· − Uj·‖
2 + λ

∑

i<j

Wij‖Vi· − Vj·‖
2,

(5)

Since (5) only involves a partial sum of the loss function terms, we will
refer to (5) as the partial-sum criterion and (3) as the full-sum criterion
for the rest of the article, as in Zhaoet al. (2017).

The partial sum criterion is also closely related to the firstsubtype
problem. Suppose that some examples are certainly true positives or true
negatives, that is, someYij may be known to be true 1’s and true 0’s,
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while others may be uncertain. If there exist sufficient amountof true
positives and true negatives, it makes sense to only include such certain
information in the criterion. Therefore, when using the partial sum crite-
rion, we require that the observedYij contain no error. That is,Sij = 1

only if it is known thatYij = Y True
ij , and 0 otherwise. If this require-

ment is not satisfied, then the second subtype problem can be easily put
into the framework of the first subtype by settingYij = 0 for all (i, j)
with Sij = 0. Therefore, due to the availability of extra information,
the partial-sum criterion (5) presumably performs better than the full-sum
criterion (3). On the other hand, the termsSij bring extra difficulty to the
algorithm design and we will explain the details in Section 3.

So far we focus on the link prediction criteria for directed networks.
The link prediction criteria for undirected networks can beeasily obtained
if we makeF symmetric, i.e.,U = V in (3) and (5). Then the full-sum
criterion for undirected networks is

argmin
U

Q3 =
n
∑

ij

(Yij − Fij)
2 + 2λ

∑

i<j

Wij‖Ui· − Uj·‖
2, (6)

whereU ∈ R
n×K andF = UUT . Similarly, the partial-sum criterion

for undirected network is

argmin
U

Q4 =
n
∑

ij

Sij(Yij − Fij)
2 + 2λ

∑

i<j

Wij‖Ui· − Uj·‖
2,

(7)

whereSij = 1 if it is known thatYij = Y True
ij , and 0 otherwise.

3 Algorithm

3.1 Optimizing full-sum criteria by solving Lyapunov
equations

We begin with the full-sum criterion for directed networks.By some
simple matrix algebra,Q1 can be written as the following matrix form,

Q1 =Tr(V UTUV T − 2Y TF + Y TY ) + λTr(UTDU − UTWU)

+ λTr(V TDV − V TWV ),

whereD is a diagonal matrix withdii =
∑

j Wij . By taking the par-
tial derivatives with respect toU andV , one can show that the optimal
solution(Û , V̂ ) of the full-sum criterion (3) must satisfy

Û V̂ T V̂ − Y V̂ + λ(D −W )Û = 0, (8)

V̂ ÛT Û − Y T Û + λ(D −W )V̂ = 0. (9)

Naturally, we optimize the objective function by solving (8)and (9) ite-
ratively. Specifically, we updatêU in (8) with V̂ fixed and updatêV in
(9) with Û fixed. Both (8) and (9) can be written as a general form called
Lyapunov equation (Bartels and Steward, 1972) as follows,

LZ + ZR = C, (10)

whereL, R andC and known matrices andZ is unknown. For example,
for (8),L = λ(D −W ), R = V̂ T V̂ andC = Y V̂ .

First, note that (10) is essentially a system of linear equations ofZ.
By vectorizing both sides of (10), we obtain

(IK ⊗ L+RT ⊗ In)vec(Z) = vec(C), (11)

where vec(·) denotes the transformation of a matrix column by column to
a column vector, and⊗ is the Kronecker product. The solution of (10) is
the matrix form of the solution of this system of linear equations.

However, directly solving (11) may be time-consuming when
n is large, especially as one iteration in the whole procedure. A
commonly-used approach to solve Lyapunov equation is based oneigen-
decomposition, which we describe in details as follows.

Since bothL andR are symmetric matrices, they can be diagonalized.
LetL = PΛ1PT andR = QΛ2QT , whereΛ1 andΛ2 are the diagonal
matrices. Then (10) becomes

PΛ1P
TZ + ZQΛ2Q

T = C.

By multiplyingPT from left andQ from right on both sides of the above
equation, we obtain

Λ1P
TZQ+ PTZQΛ2 =PTCQ.

Let Z̃ = PTZQ. Then Z̃ can be solved elementwisely by the for-
mulaZ̃ij = [PTCQ]ij/(Λ1ii +Λ2jj), sinceΛ1 andΛ2 are diagonal.
Finally we can easily getZ back byZ = PZ̃QT .

In general, the method of eigen-decomposition is much more faster
than solving a system of linear equations directly. More interestingly and
importantly, this method can be further accelerated in our scenario accor-
ding to the following observation. The most time-consuming part of this
procedure is eigen-decomposition ofL andR. In our problem,ÛT Û ,
V̂ T V̂ andD − W require eigen-decomposition. ButD − W remains
unchanged for all the iterations, and thus requires eigen-decomposition
only once. On the other hand, botĥUT Û andV̂ T V̂ areK × K matrix.
Typically, K is chosen to be a small number compared withn, in which
case eigen-decomposition of these matrix is trivial.

The full-sum criterion for undirected networks (6) can be solved by a
similar approach. Note that (6) is equivalent to the following constrained
optimization problem,

argmin
U,V

n
∑

ij

(Yij − Fij)
2

+ λ
∑

i<j

Wij‖Ui· − Uj·‖
2 + λ

∑

i<j

Wij‖Vi· − Vj·‖
2,

(12)

subject toU = V.

Empirically, we found that if we start from an initial value satisfying
the symmetry constraint, then the solutions (8) and (9) for each iteration
also satisfy that constraint. Therefore, (6) can be optimized by directly
applying the method above with an initial valueU(0) = V (0).

3.2 Optimizing partial-sum criteria by imputation

With terms Sij , the derivatives of the partial-sum criterion (5) with
respect toU andV cannot be written as a form of (8) and (9), and thus
cannot be optimized directly by solving Lyapunov equations.However,
(5) can be solved by optimizing a sequence of full-sum criteria (3), if we
apply the idea of imputation.

Clearly, the partial-sum criterion (5) is equivalent to thefollowing
optimization problem with augmented variablesŶ ,

argmin
F,Ŷ

n
∑

ij

Sij

n
∑

ij

(Yij − Fij)
2 +

n
∑

ij

(1− Sij)(Ŷij − Fij)
2

+ λ
∑

i<j

Wij‖Ui· − Uj·‖
2 + λ

∑

i<j

Wij‖Vi· − Vj·‖
2,

(13)

subject toŶij = Yij , for Sij = 1.

We can updateF andŶ iteratively. WithŶ being fixed, (13) now beco-
mes a standard full-sum criterion, and thus can be solved by the method
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introduced in the previous subsection. WithF fixed, Ŷ can be obtai-
ned by imputing the values ofFij for all Sij = 0. In summary, the
augmented optimization problem (13) can be solved by the following
steps iteratively.

• Optimization: Optimizing a full-sum criterion witĥY as the observed
network.

• Imputation:

Ŷij =

{

Yij if Sij = 1,
Fij if Sij = 0.

4 Simulation studies

In this section, we evaluate the performance of the full-sum and partial-
sum criteria on several simulated scenarios. In all simulation studies, the
size of each network is fixed withn = 500. And nodei contains cova-
riatesXi which are independently generated from a multivariate normal
distributionNp(0, Ip) with p = 5. EachY True

ij is generated indepen-
dently, with logitPij = f(Xi, Xj). We consider the following four
functionsf(Xi, Xj) in simulation studies.

(a)
∑

k

(Xik −Xjk), (a′)
∑

k

(Xik −Xjk)− 8,

(b) 2XT
i Xj/‖Xj‖, (b′) 2XT

i Xj/‖Xj‖ − 4,

Among them(a) is a linear function;(b) is the well-known projection
model proposed in Hoffet al. (2002), under which the logit of link pro-
bability Yij is the projection ofXi onto the direction ofXj . (a′) and
(b′) are obtained by subtracting a constant within the logit linkin (a) and
(b), respectively.(a′) and(b′) will generate sparser networks, which will
allows us to evaluate the performance of our methods for both dense and
sparse networks.

Next we generate indicatorsSij ’s as independent Bernoulli variables
with success probability 0.5, and defineYij = SijY

True
ij . In this setting,

all the observed edges are true positives but the missing edges may or
may not be true negatives. The partial-sum criterion only uses correct
information, i.e.,Yij ’s on the pairs withSij = 1. By contrast, the full-
sum criterion use all theYij ’s as responses, so it will include half of
absent edges as false negatives.

We define the similarity matrixW by the Gaussian Kernel,

Wij = exp

{

−
‖Xi −Xj‖

2

σ2

}

,

where we chooseσ = 1
4

median{‖Xi−Xj‖, i = 1, ..., n, j = 1, ..., n}.
We optimize the full-sum and partial-sum criteria withK = 5 andλ

chosen by 5-fold cross-validation.
The performance of link prediction is evaluated by ROC curves. Now

we give the details of the evaluation procedure, because oursetting is
slightly different from the classical supervised learning, especially for the
full-sum criterion. In each simulation, we evaluate the performance of
both criteria on the same test set{(i, j) : Sij = 0} for fair comparison.
The ROC curves are determined by the rankings ofF̂ij estimated by the
full-sum or the partial-sum criterion on the test set. Specifically, let Rij

be the ranking of̂fij on the test set in descending order. For any integer
k, false positives are pairs(i, j) ranked within topk but without links in
the true network (Y True

ij = 0), and true positives are pairs ranked within
top k with Y True

ij = 1. Then the true positive rate (TPR) and the false

positive rate (FPR) are defined by

TPR(k) =
|{(i, j) : Sij = 0, Rij ≤ k, Y True

ij = 1}|

|{(i, j) : Sij = 0, Y True
ij = 1}|

,

FPR(k) =
|{(i, j) : Sij = 0, Rij ≤ k, Y True

ij = 0}|

|{(i, j) : Sij = 0, Y True
ij = 0}|

.

Figure 1 shows the performance of the full-sum criterion and partial-
sum criterion for the four simulation settings by ROC curves and the
corresponding AUCs (Area under a curve). Each curve and the corre-
sponding AUC are the average of 50 replicates. We also provide the ROC
curves constructed from truePij ’s as a benchmark for comparison.

Both the full-sum and the partial-sum criteria perform wellin all simu-
lation settings. As expected, the partial-sum criterion always provides
better results since it assumes more information and only uses correct true
positives and true negatives. But the performance of these two criteria is
quite comparable; sometimes, the gaps between ROC curves cannot be
clearly seen from the figures and can only be identified by the numerical
values of AUCs. The criteria performs better for linear modelsthan latent
space models, which is also expected because of the simplicityof linear
models.

5 Applications to a gene regulatory network of E.
coli

In this section, we analyze a gene regulation dataset of E. coli, com-
piled by Faithet al., 2007. This dataset includes of a gene regulatory
network and expression data. The regulatory network consists of 3293
experimentally confirmed links between 1209 genes, which makesthe
network very sparse (average degree≈ 2.72). Figure 2 shows this netw-
ork. The expression data consist of 445 E. coli Affymetrix Antisense2
microarray expression profiles for those genes. The similarity matrixW
is created from the gene expression data by the same Gaussian kernel as
in simulation studies.

To evaluate the performance of our prediction methods, we generate
indicatorsSij ’s as independent Bernoulli variables with success probabi-
lity α, and setYij = SijY

True
ij . We test our criteria on two different

values ofα, α = 0.2, 0.5, corresponding to different proportions of the
available true positives. We fixK = 5 and selectλ by cross-validation.
ROC curves are plotted to evaluate the performance of the full-sum and
partial-sum criterion on pairs withSij = 0.

From Figure 3, both criteria perform quite well even for a small sam-
ple rateα = 0.2. The distinction between the full-sum and partial-sum
criteria become more apparent compared with the simulation studies,
since this gene regulatory network is a challenging datasetfor the pur-
pose of link prediction due to its sparsity. Moreover, the similarity matrix
W plays an important role in link prediction for this example. Infact,
settingλ = 0 will result in low accuracy of prediction for both full-sum
and partial-sum criterion, that is, the AUCs for both criteria drop below
0.7 withoutW . This suggests that the expression data are not only highly
relevant to link existence in the regulatory network, but also provide auxi-
liary information beyond the matrix decomposition based on observed
topology.

6 Summary and future work

In this article, we propose a novel link prediction approachfor both
directed and undirected networks based on matrix decomposition. This
method naturally incorporates structural information of thenetwork as
well as node covariates. By assuming that the latent probability matrix
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Fig. 1. ROC curves over 50 replicates.

Fig. 2. Gene regulatory network of E. coli, prepared by Pajek.

can be decomposed into two low-rank matrices and applying eigen-
decomposition for Lyapunov equations, this new approach significantly
reduces the model complexity, and thus improves algorithmic efficiency
and reliability of the existing methods.

In the future, we would like to investigate the theoretical properties of
link prediction by our method. Recently, Du and Zhao, 2017 studied the
consistency of the classical semi-supervised learning and suggested the
estimator of the regression function is inconsistent when the tuning para-
meterλ is non-zero. Similarly, we conjecture that it would be unrealistic
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Fig. 3. ROC curves for gene regulatory network of E. coli.

to expect the consistency of the estimator of the probabilitymatrix in the
link prediction problem since it can be viewed as a generalization of the
classical semi-supervised learning. On the other hand, since the perfor-
mance of link prediction is usually evaluated by ROC curves, it would be
more natural to investigate the asymptotic behavior of the corresponding
AUCs (Area under the curve), which is potentially challenging because it
requires novel theoretical tools for rank consistency.

We also plan to further study the algorithm for the partial-sum cri-
terion. Unlike the full-sum version, the partial-sum criterion cannot be
directly optimized by solving Lyapunov equations iteratively, and thus
the proposed algorithm relies on an imputation technique. More analytic
work is needed to better understand the principle of imputation used in
the current algorithm.
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