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Real-world networks usually have community structure, that is, nodes are
grouped into densely connected communities. Community detection is one of
the most popular and best-studied research topics in network science and has
attracted attention in many different fields, including computer science,
statistics, social sciences, among others. Numerous approaches for community
detection have been proposed in literature, from ad hoc algorithms to systematic
model-based approaches. The large number of available methods leads to a fun-
damental question: whether a certain method can provide consistent estimates of
community labels. The stochastic blockmodel (SBM) and its variants provide a
convenient framework for the study of such problems. This article is a survey on
the recent theoretical advances of community detection. The authors review a
number of community detection methods and their theoretical properties,
including graph cut methods, profile likelihoods, the pseudo-likelihood method,
the variational method, belief propagation, spectral clustering, and semidefinite
relaxations of the SBM. The authors also briefly discuss other research topics in
community detection such as robust community detection, community detection
with nodal covariates and model selection, as well as suggest a few possible
directions for future research. © 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Network science is the study of networks
(or graphs) as a representation of relations

(called edges or links) between objects (called vertices
or nodes).1,2 Networks have become one of the most
common data structure. One famous example is the
Internet, which is the physical network, composed of
computers, routers and modems linked by electronic,
optical and wireless networking technologies. Other
well-known examples include online social networks
such as Facebook and LinkedIn, citation networks,
gene regulatory networks, protein–protein interaction
networks, food webs, among others. In the past

decades, network science has drawn a lot of attention
in many different branches of science and engineer-
ing, for example, computer science,3 physics,4,5

biology,6 social sciences,7,8 and economics.9 It is
worth mentioning that network analysis has also
become an active research area in statistics. A num-
ber of probabilistic and statistical models have been
proposed. Typical examples include the Erdös-Rényi
random graph model,10 exponential random graph
models,11,12 latent space models,13 stochastic block-
models (SBMs),14 the preferential attachment
model,15 among others (see Goldenberg et al.16 for a
comprehensive review).

Most networks have community structure, that
is, nodes are grouped into densely connected commu-
nities or clusters. Detection of such communities is one
of the most popular research topics in network science.
The precise definition of community is difficult to for-
malize, and even no full agreement is reached on the
general notion of community by researchers in
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different fields. We will offer some discussion on this
point after introducing SBMs in the next section. Read-
ers can also see Fortunato and Hric17 for more discus-
sion. In this article, we adopt the most commonly used
concept of community, that is, a community is a group
of nodes with many links between themselves and
fewer links to the rest of the network. Correspond-
ingly, the goal of community detection is to partition
the node set into overlapping or nonoverlapping cohe-
sive communities. We focus on nonoverlapping com-
munity detection in this article.

Classical community detection methods in the
literature can be loosely classified into three cate-
gories. Methods in the first category are algorithm-
based, such as hierarchical clustering, in which nodes
progressively agglomerate into communities accord-
ing to a certain similarity measure of nodes, and edge
removal, in which edges are progressively removed
until disconnected components appear (see New-
man18 for a more comprehensive review of
algorithm-based approaches). The second category
consists of criterion-based methods, which optimizes
some criteria over all possible network partitions.
Examples of these criteria include the ratio cut,19 the
normalized cut,20 and Newman-Girvan modularity21

(see review papers17,22 for more details). Methods in
the third category are model-based. Such methods
rely on fitting a probabilistic model for a network
with community structure, in which the community
labels are latent and to be identified. The best-studied
model for community detection is the SBM,14,23,24

which plays a central role in the theoretical analysis
of community detection. Other examples include the
degree-corrected SBM,25,26 the mixed membership
SBM,27 the latent position cluster model,28 etc. It is
worth adding two comments here before proceeding.
Firstly, there is no clear distinction among these cate-
gories. For instance, fitting a probabilistic model usu-
ally leads to a criterion to be optimized and the
optimization eventually relies on an algorithm. Sec-
ondly, community detection in networks is an anal-
ogy of cluster analysis in multivariate data. Some
community detection methods are borrowed from
classical cluster analysis. For instance, hierarchical
clustering in community detection is essentially iden-
tical to the algorithm in cluster analysis. The only dif-
ference is the definition of similarity measures, that
is, similarity measures used in community detection
are usually based on network topology while similar-
ity measures in clustering are based on distances
between data points. From the algorithmic point of
view, the normalized cut is also identical to the corre-
sponding algorithm in image segmentation,20 and
has become even more straightforward in community

detection. That is, the normalized cut in image seg-
mentation requires the construction of a similarity
matrix from image data while the algorithm can
directly use the adjacency matrix of a network as the
input. The definition of adjacency matrix will be
given in the next section.

A fundamental question of community detec-
tion is whether a proposed method is able to cor-
rectly identify the community labels in principle. Or
more precisely in statistical terminology, a fundamen-
tal theoretical question is whether a certain method
can provide consistent estimates of community labels.
Despite the conceptual similarity, community detec-
tion in networks is fundamentally different from clus-
tering in multivariate data from a theoretical point of
view. The structure of network data is unique. Unlike
multivariate data, which are typically assumed to be
independently and identically distributed, a network
is represented by a single adjacency matrix, and
thereby no replicates in the usual sense are available.
This unique data structure offers a great challenge in
theoretical studies of community detection.

The SBM provides a natural framework for the-
oretical analysis of community detection. Under the
SBM, many existing community detection methods
are better understood, and numerous new methods
have been proposed and analyzed. These are the main
focus of the current review article. The rest of this
article is organized as follows. After introducing basic
notations, we give the precise definition of the SBM.
Next, we introduce some first results on consistency
of community detection under the SBM and its var-
iants. These results study the global optimizers of cer-
tain detection criteria over all possible label
assignments. However, the global optimization of
these criteria is in principle NP hard. Therefore, many
computationally feasible methods have been pro-
posed. Mainstream approaches include the pseudo-
likelihood method, the variational method, belief
propagation, spectral clustering, and semidefinite pro-
gramming (SDP) for the SBM. Many of these methods
have been theoretically justified under the SBM and
the corresponding results will be discussed in this arti-
cle. In the last section, we will briefly discuss other
research topics in community detection, including
robust community detection, community detection
with nodal covariates and model selection, as well as
suggest a few possible directions for future research.

STOCHASTIC BLOCKMODELS

We begin by introducing basic notation. A network
or a graph can be denoted by an ordered pair
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N = (V, E), where V is the set of nodes and E is the
set of edges. Without any loss of generality, we will
assume V = {1,..., n}. A network with size n can be
represented by an n × n adjacency matrix A = [Aij],
where

Aij =
1 if there is an edge between i and j,

0 otherwise:

8<
:

Unless otherwise specified, we consider unweighted
and undirected networks, and thus A is a binary sym-
metric matrix. And we assume that there is no self-
loop in the network, i.e., Aii = 0, for i = 1,..., n.

We now formulate community detection and
give the definition of the SBM.26,29,30 The goal of
community detection is to find a disjoint partition
V = V1 [ … [ VK, or equivalently node labels
e = {e1,..., en}, where ei is the label of node i and
takes values in {1,2,..., K}. The SBM is perhaps the
most commonly used model for representing a net-
work with community structure. Under the SBM, a
network is generated in two steps:

1. The true node labels c = {c1,..., cn} are drawn
independently from Multinomial(1, π), where
π = (π1,..., πK).

2. Given the labels c, the edge variables Aij for
i < j are independent Bernoulli variables with

E Aijjc
� �

=Pcicj ; ð1Þ

where P = [Pab] is a K × K symmetric matrix.
Before we proceed to discuss detection methods

and theoretical results under the SBM, it is worth
adding several remarks on the model itself.

Firstly, the SBM can be understood as an anal-
ogy the Gaussian mixture model, for readers familiar
with model-based clustering in multivariate analy-
sis.31 But there is a crucial difference: The link proba-
bility for Aij under the SBM depends on two
community labels ci and cj, unlike the Gaussian mix-
ture model. In the author’s opinion, this ‘two-dimen-
sional’ structure is the root cause of many theoretical
and computational challenges.

Secondly, under the SBM, two nodes within a
group are stochastically equivalent in terms of their
link probabilities to other nodes.14 Or intuitively
speaking, two nodes within the same group play a
similar role in the network. This leads back to the
question of what is a community. As mentioned in the
introduction, we treat community as a group of nodes
with many links between themselves and fewer links

to the rest of the network throughout this article. But
one can also define community as a group of nodes
with similar statistical behavior. And to the best of
our knowledge, historically the SBM was introduced
by social scientists to in order to model the latter case.
In order to model communities in the usual sense, the
SBM needs constraint on parameters that the within-
group densities are larger than the cross-group densi-
ties, although many theoretical results do not require
this constraint.

Thirdly, the community labels c were treated as
either random or deterministic in different literatures
for their own technical conveniences. But practically
it makes little difference since c is unknown in either
case (either latent random variables or unknown
fixed parameters).

Fourthly, note that the edge variables Aij are inde-
pendent given the labels, and with ci = k and cj = l, Aij

are identically distributed. Therefore, the SBM essen-
tially assumes edge variables to be independently and
identically distributed. This makes the SBM a conven-
ient working model for studying asymptotic properties
of community detection as the size of the network goes
into infinity. That being said, these asymptotic results
are still highly nontrivial even under the assumptions of
the SBM, because the number of community labels to
be identified also grows with the network size.

FIRST RESULTS ON CONSISTENCY OF
COMMUNITY DETECTION

In this section, we review some early results on the
SBM and its variants. First we introduce a consist-
ency framework for community detection established
by Bickel and Chen.29 They developed general theory
for checking the consistency of a large class of com-
munity detection criteria under the SBM as the
number of nodes n grows and the number of commu-
nities K remains fixed.

For any label assignments e, let O(e) be a K ×
K matrix with entries {Okl(e)} defined by

Okl eð Þ=
X

1 ≤ i, j ≤n
AijI ei = k,ej = l
� �

;

where I is the indicator function. And define

Dk eð Þ =
XK
l = 1

Okl eð Þ, L =
X

1 ≤ i, j ≤n
Aij:

For k 6¼ l, Okl is the number of edges between com-
munities k and l; Okk is twice the number of edges
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within community k; Dk is the sum of node degrees
in community k; and L is the sum of all degrees in
the whole network.

Define nk eð Þ=
Xn

i = 1
I ei = kf g to be the number

of nodes in community k, and f(e) = (n1/n, n2/
n, …, nK/n) to be the fractions of nodes in each
community.

A large class of community detection criteria
can be written as the following general form up to a
constant:

Q eð Þ= F O eð Þ
μn

,
L
μn

, f eð Þ
� �

;

where μn =E Lð Þ. This class include many graph cut
methods mentioned in the introduction such as the
normalized cut,20 defined by

QNcut eð Þ = −
XK
k = 1

Dk−Okk

Dk
:

Newman-Girvan modularity,21 defined by

QNG eð Þ =
XK
k = 1

Okk

L
−

Dk

L

� �2

;

also has this form. Moreover, Bickel and Chen also
studied the profile likelihood of the SBM. If we treat
community labels as fixed parameters, the log-
likelihood of A is

1
2

X
1 ≤k, l ≤K

Okllog Pklð Þ + nkl −Oklð Þlog 1−Pklð Þ½ �;

where nkl = nknl if k 6¼ l and nkk = nk(nk − 1). In
order to maximize the log-likelihood, we can first fix
e and maximize it over P. By doing so, we obtain the
profile likelihood

QSBM eð Þ=
X

1 ≤k, l ≤K
nklτ

Okl

nkl

� �
;

where τ(x) = xlogx + (1 − x)log(1 − x). Bickel and
Chen stated that QSBM can also be written as the
general form.

Remark 1. The community labels ci are assumed to
be fixed when the profile likelihood QSBM is derived.
But ci will be assumed to be random variables with
Multinomial(1, π) in Theorem 1. Similar phenomena
are in fact very common in the study of community

detection. It is worth emphasizing the difference
between a model for theoretical analysis and a detec-
tion criterion for finding the partition in practice.
A detection criterion can be derived from a model
such as the SBM, or from a modified version of a
model, or may not even be motivated by any model.
In any case, it is worthwhile studying the consistency
of this criterion. Bickel and Chen provided a general
framework for this purpose.

Let ĉ = argmaxeQ(e). A natural necessary con-
dition for consistency of ĉ is that the ‘limit’ or ‘popu-
lation version’ of Q(e) should be maximized by the
correct partition. We need more notations to specify
this key condition.

Define λn = μn/n to be the average expected
degree and ρn = μn/[n(n − 1)] to be the expected
graph density. Let R be a K × K matrix with entries
{Rka} defined by

Rka =
1
n

Xn
i = 1

I ei = k,ci = að Þ:

Rka measures the fraction of nodes from community
a but classified into community k. Define Sab = Pab/ρn
for 1 ≤ a, b ≤ K. Note that Sab is independent of n.

Bickel and Chen stated the following condition:
F(RSRT, 1, R1) is uniquely maximized over

ℛ = {R : R ≥ 0, RT1 = π} by R =D πð Þ, for all (π, S)
in an open set Θ, where 1 = (1,1,..., 1)T and D πð Þ is
a diagonal matrix with π as its diagonal elements.

Remark 2. Despite its seemingly complicated form,
the key condition is very natural, following the same
principle of M-estimators. In the authors’ opinion,
not only this condition can help researchers check
the consistency of existing detection criteria, but it
also provides guidance for designing new criteria.
That is why we specify it in detail.
Theorem 1. (Theorem 1 in Bickel and Chen29)
Suppose F, S and π satisfy the above condition and
some mild regularity conditions. Suppose λn/logn
! ∞. Then up to a permutation, P[ĉ = c] ! 1.

Bickel and Chen then applied Theorem 1 to
study the consistency of the SBM profile likelihood
and Newman-Girvan modularity. And other criteria
such as the normalized cut can also be checked using
the theorem. As one may expect, the SBM profile
likelihood is consistent without additional parameter
constraints, since the underlying model is the SBM.
Even within-group densities are not required to be
larger than the cross-group densities. By contrast,
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Newman-Girvan modularity requires such conditions
to be consistent.

Remark 3. The result in Theorem 1 is called strong
consistency in statistics literature,26,30 or exact recov-
ery in computer science literature.32 It requires no
error in the estimated label vector with high proba-
bility, i.e., with probability approaching 1. During
the proof, Bickel and Chen also obtained the result
of weak consistency, that is, the fraction of misclassi-
fied nodes converging to 0, under a weaker condi-
tion λn ! ∞.

The SBM implies that nodes within a commu-
nity have the same expected degree. But high-degree
nodes, i.e., hubs do exist in many real-world net-
works.15 To address this issue, Karrer and New-
man25 proposed the degree-corrected stochastic
blockmodel (DCSBM), which allows more variation
among node degrees within a community. Specifi-
cally, link probability in Eq. (1) was replaced with
E Aijjc
� �

= θiθjPcicj , where parameter θi controls the
degree of node i. Zhao et al.26 generalized the frame-
work of Bickel and Chen29 and obtain a general the-
orem for community detection consistency under the
DCSBM.

The results26,29 require that the number of com-
munities remains as fixed. Choi et al.33 established
weak consistency of the maximum likelihood estima-
tor (MLE) under the SBM when the number of com-
munities is allowed to grow with the network size.
Specifically, weak consistency holds when the num-
ber of communities grows no faster than n1/2, the
average expected degree grows faster than (logn)3 + δ

for some δ > 0, and the minimum size of community
is proportional to n/K.

PSEUDO-LIKELIHOOD, VARIATIONAL
METHODS, AND BELIEF
PROPAGATION

Many community detection criteria have good theo-
retical properties under the framework of SBM.
However, the optimization of these criteria, including
the maximum likelihood of SBM itself, is a great
challenge in practice. As discrete optimization, find-
ing global optimizers of these criteria requires the
search over Kn possible assignments, which is compu-
tationally intractable.

The expectation-maximization (EM) algorithm
for fitting the likelihood of SBM faces the same diffi-
culty. Unlike fitting the Gaussian mixture model,
where the posterior probabilities of each cluster label

can be calculated separately, the E-step for fitting
SBM involves Kn possible assignments.30 This is due
to the ‘two-dimensional’ structure of networks as
previously mentioned. We review two methods
designed for overcoming this issue.

Amini et al.30 proposed a scalable pseudo-
likelihood method for fitting the SBM and DCSBM,
and proved consistency under the SBM with two
communities. We adopt all the notation in the previ-
ous section and define a few more in order to intro-
duce the method. Let e be an initial labeling vector.
Let bi be a vector of length K, with entries {bik}
defined by bik =

P
jAijI(ei = k). bi are the block sums

for column i. Amini et al. made the following obser-
vations: for each node i, conditional on c with ci = l:

• {bi1, bi2, …, biK} are mutually independent;

• bik is approximately Poisson with mean
λlk = nRk �P� l.

Amini et al. then proposed the pseudo-likelihood as
follows (up to a constant),

LPL bif gð Þ =
Xn
i =1

log
XK
l = 1

πle
−λl
YK
k= 1

λbiklk

 !
;

where λl =
P

kλlk. Amini et al. made several approxi-
mations to obtain the above pseudo-likelihood. First,
the dependence among {bi} is ignored, which is rea-
sonable since the dependence becomes very weak as
n grows but K remains fixed. Second, Poisson
approximation is used, which is also natural. Last,
but most importantly, note that LPL({bi}) is not a
likelihood of the original adjacency matrix A, but a
likelihood of the block sums {bi}, where bi depend on
the initial labeling e. Therefore, the performance of
this method can be sensitive to the accuracy of the
initial labeling.

LPL({bi}) is the log-likelihood of a Poisson mix-
ture model, and thereby the latent labels c can be
estimated by a standard EM algorithm. Note that
now the posterior probabilities for ci can be calcu-
lated separately and thus very fast, since bi are inde-
pendent. Once the EM algorithm converges, e is
updated to the most likely label for each node as
indicated by the EM and the procedure repeats a
fixed number of iterations. Amini et al. proposed a
pseudo-likelihood conditional on node degrees (CPL)
and developed a similar algorithm for fitting the
DCSBM.

Amini et al. proved the weak consistency of the
estimator from one-step EM of CPL for K = 2 under
the SBM. We omit the details of the estimator since it
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would require a lot more complicated notation other-
wise. True community labels c are treated as fixed
parameters. For simplicity, we only present the result
for balanced communities, i.e., each community con-
tains m = n/2 nodes. Assume the link probability
matrix P has the form

P =
1
m

a b

b a

0
@

1
A:

Let â and b̂ be some initial estimates of a and b. And
assume that the initial labeling is balanced and it
matches exactly γm labels in community 1.

Theorem 2. (Theorem 2 in Amini et al.30) The one-
step EM estimator of CPL is weakly consistent under
some mild regularity conditions and the following
main assumptions:

(C1) γ 6¼ 1/2;

(C2) â− b̂
� 	

a−bð Þ> 0;
(C3) (a − b)2/(a + b) ! ∞.

All these assumptions are intuitive and very
mild. Condition (C1) only requires the initial labeling
better than random guessing. Condition (C2) means

that the estimates â, b̂
� 	

should have the same order-

ing as true parameters (a, b). And it is easy to check
that λn ! ∞ implies (C3). On the other hand, it is
worth noting that Theorem only guarantees consist-
ency for the case of two communities. The proof is
already highly technical and relies on advanced
probability tools. It may be quite challenging to
prove or even formulate the theorem for the general
case. It is worth mentioning that Zhang and Zhou34

proved that (a − b)2/a ! ∞ is a necessary and suffi-
cient condition for weak consistency when a > b by
providing a minimax theory for community detec-
tion. This result further justifies (C3). Gao et al.35

proposed a refinement scheme by adding a majority
vote step to spectral clustering (to be introduced in
the next section) which can achieve the minimax
rate. The results were generalized into the DCSBM
by Gao et al.36

Daudin et al.37 introduced a variational
approach to overcome the computational challenge
of the EM algorithm for fitting the SBM (see Tzikas
et al.38 for a tutorial of variational approaches in
general). We again adopt the notation in the previous
section when introducing this approach. Further, Let
Z = [zik] be an n × K matrix, where zik = 1 if ci = k.

Here Zi = (zi1, zi2,..., ziK) follows Multinomial(1, π).
Let RA(Z) be a function of Z, which depends on the
adjacency matrix A. Define

T RA;π,Pð Þ = log L A;π,Pð Þ−KL RA �ð Þ,P �jA;π,Pð Þ½ �; ð2Þ

where KL denotes the KullbackLeibler divergence,
L(A; π, P) is the marginal log-likelihood of A and
P(Z|A; π, P)] is the posterior probability for commu-
nity labels. Note that if we put no constraint on RA,
then maxπ,P,RAT RA Zð Þ;π,Pð Þ =maxπ,Plog⁡L A;π,Pð Þ,
since taking RA(�) = P(�|A; π, P) makes the second
term of Eq. (2) disappear. According to this observa-
tion, the EM algorithm can be viewed as two alter-
nating maximization steps: in order to maximize
T RA;π,Pð Þ, the algorithm alternately solves for (π, P)
given RA, which is the M step, and solves for RA

given (π, P), which is the E step (see Hastie et al.39

and Tzikas et al.38 for details).
As mentioned earlier, it is intractable to com-

pute P(Z|A; π, P)]. The key idea of the variational
approach in Daudin et al.37 is to replace P(Z|A; π,
P)] by a tractable RA(Z). They constraint RA(Z)
to have the form RA(Z) =

Q
ih(Zi; τi), where

τi = (τi1,..., τiK) and h(�; τ) denotes the multinomial
distribution with parameter τ. Note that RA(Z) is a
product and is given a parametric form with
unknown parameters τi. Now, parameters τi, π and
P can be iteratively updated, following the same pro-
cedure in the last paragraph.

Celisse et al.40 established the consistency of
the variational estimators for parameters (π, P) in the
SBM, in which the expected graph density ρn is fixed.
Bickel et al.41 established the consistency and asymp-
totic normality of the variational estimators, in which
ρn can go to 0.

Belief propagation, as an algorithm for infer-
ence on graphical models, was also applied in com-
munity detection by researchers.42–46 We refer the
reader to Yedidia et al.47 for a tutorial introduction
to the classical belief propagation method for graphi-
cal models such as Bayesian networks and Markov
random fields. We now focus on a specific belief
propagation algorithm for community detection pro-
posed by Mossel and Xu.45

As mentioned earlier, label assignments, i.e., the
E step is computationally infeasible for the SBM.
Belief propagation is an alternative approach to
assigning community labels approximately but effi-
ciently given the parameters in the SBM. Mossel and
Xu45 proposed a belief propagation algorithm for the
SBM with two communities and known (π, P). When
the parameters are unknown, the algorithm can be
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used as the E step in the EM algorithm. Assume that
the link probability matrix P has the form

P =
1
n

a b

b c

0
@

1
A:

Let ∂i be the set of neighbors of i and

F xð Þ = 1
2log

e2xπ1a+ π2b
e2xπ1b + π2c

� 	
. Let d+ = π1a + π2b and d− =

π1b + π2c. At tth iteration, define

Rt
i!j =

−d + + d−

2
+
X

l2∂in jf g
F Rt−1

l!i


 �
;

which can be intuitively understood as a message
from node i to node j about which community node
j should belong to. And the belief of node u at tth
iteration Rt

u is defined as

Rt
u =

−d + + d−

2
+
X
l2∂u

F Rt−1
l!u


 �
;

which is an approximation of 1
2 log

P Ajcu = 1ð Þ
P Ajcu = 2ð Þ. And thus

label assignments can be easily determined by Rt
u.

Algorithm 1. (Belief propagation for community
detection45)

1. Set R0
i!j = 0.

2. Compute Rt
i!j for T − 1 iterations.

3. Compute RT
i for all i = 1, …, n.

4. Return ĉi = 2−I RT
i ≥ −ψ


 �
for all i = 1,..., n,

where ψ = 1
2log

π1
π2
.

We now give a brief explanation of why
Algorithm 1 works especially for sparse networks.
This algorithm gives an exact solution for tree mod-
els defined as follows.

Definition 1. (Definition 3.1 in Mossel and Xu den-
sity) For a node u, denote by (Tu, c) the following
Poisson two-type branching process tree rooted at u,
where c are the labels of the nodes of Tu. Let cu = 1
with probability π1 and cu = 2 with probability π2.
Recursively for each node i in Tu, given ci = 1, i will
have Pois(π1a) children j with cj = 1 and Pois(π2b)
children j with cj = 2; given ci = 2, i will have Pois
(π1b) children j with cj = 1 and Pois(π2c) children j
with cj = 2.

The belief Rt
u is an exact solution for

1
2 log

P Ajcu = 1ð Þ
P Ajcu = 2ð Þ if A is such a tree of depth t rooted at

node u.45 The remaining question is why A generated
by the SBM can be approximated by a tree defined
above. First, note that when A is sparse, its structure
can be similar to a tree. Second, under the SBM,
node i is connected with Bin(n − 1, π1a/n) nodes
j with cj = 1 given ci = 1. Thus according to Poisson
approximation to Binomial, node i is connected with
approximate Pois(π1a) nodes j with cj = 1, which is
consistent with the above definition. Similar results
hold for other cases. Mossel and Xu45 obtained an
asymptotic formula for the fraction of misclassified
nodes on average by Algorithm and proved that it
achieves the minimum misclassification rate.

SPECTRAL CLUSTERING APPROACHES

Both pseudo-likelihood and variational approaches
require initial values and their performance can be
sensitive to the accuracy of initial values. In this sec-
tion, we review another class of computationally fea-
sible approaches—spectral clustering, using
eigenvectors of adjacency matrices or graph Lapla-
cian matrices (defined later in this section), which do
not require initial values. Spectral clustering has a
long history. The algorithm and its variations have
been applied into different fields. We refer the reader
to von Luxburg48 for a tutorial.

Theoretical properties for variants of spectral
clustering for community detection has been studied
by a number of researchers. Rohe et al.49 studied the
asymptotic behavior of spectral clustering under the
SBM. Chaudhuri et al.50 introduced a degree-
corrected graph Laplacian for the extended planted
partition model. Qin and Rohe51 applied a regular-
ized graph Laplacian matrix into the traditional spec-
tral clustering algorithm and gave the bound for
misclassification rate under the DCSBM. Fishkind
et al.52 established the consistency of a modified spec-
tral clustering procedure, which only requires the
knowledge of an upper bound on the number of
communities. Sarkar and Bickel53 compared the
asymptotic behavior of normalized and unnorma-
lized spectral clustering for the SBM. Jin54 proposed
spectral clustering on ratios-of-eigenvectors (SCORE)
for the DCSBM. Lei and Rinaldo55 established the
consistency of spectral clustering under the SBM
where the order of the maximum expected degree is
log(n). Most spectral clustering methods are based
on the adjacency matrix or the graph Laplacian and
their variants. Besides that, other matrices are used
for spectral clustering. For instance, Krzakala et al.56
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used the nonbacktracking matrix for community
detection in sparse networks. Le and Levina57 consid-
ered the estimation of the number of communities
that uses spectral properties of the Bethe Hessian
matrix and the nonbacktracking matrix.

Next, we briefly review the methods in Rohe
et al.49 and Jin54 to provide some insight into why
spectral clustering works for community detection.

Rohe et al.49 studied spectral clustering with
the normalized graph Laplacian. Let D be a n × n
diagonal matrix with Dii =

P
jAij. The normalized

graph Laplacian is defined as L = I − D− 1/2AD− 1/2.
Rohe et al. in fact considered L = D− 1/2AD− 1/2, but
it makes no difference in eigen-analysis.

Algorithm 2. (Spectral clustering based on graph
Laplacian48,49)

1. Find the eigenvectors X1,..., XK corresponding
to the K eigenvalues of L with largest absolute
values. Define X = [X1,..., XK] by putting the
eigenvectors into the columns.

2. Treating each of the n rows in X as a point in
ℛK, denoted by X0

1, .. .,X
0
n, run k-means with

K clusters. This creates a disjoint partition of
V into K communities.

k-means is a classical clustering method in mul-
tivariate analysis (see Hastie et al.39 or other text-
books on machine learning for details), which
optimizes the following criterion

mim
m1,…,mK,V1,…,VK

XK
k= 1

X
i2Vk

kX0
i −mkk2;

where {V1,..., VK} forms a disjoint partition of V.
Spectral clustering transforms a community

detection problem to a clustering problem by eigen-
decomposition. The rationale behind this approach
can be explained by the idea of ‘population version’
mentioned in the second section. If we adopt the
notation Z introduced in the previous section, and
treat it as fixed, then the population version A is
A =ZPZT . In fact, E Aij

� �
=Aij except for the diago-

nal elements, whose effect is yet very minor. Perform
the spectral clustering on this population version A.
That is, let L be the graph Laplacian of A. Further,
let X = X1,…,XK½ �, of which columns are the eigen-
vectors corresponding to the nonzero eigenvalue of
L. It is easy to prove that there are K unique rows in
X , which implies a perfect community partition in
the sense of population version.49 Furthermore, one

can expect that the rows of the ‘noisy version’
X concentrate around the K centroids and hence can
be clustered by k-means. Rohe et al. gave a bound
for the number of misclassified nodes under the
SBM. In particular, Rohe et al. studied the planted
partition model with equal sized communities as an
example. The planted partition model, denoted by
G n,p,qð Þ, is a special case of the SBM, where the
diagonal elements of P are a constant p and the off-
diagonal elements are another constant q. Rohe
et al. showed that under the planted partition model
with equal sized communities, the misclassification
rate is o(n− 1/4) almost surely, when k = O(n1/4/logn)
and p, q remain as fixed.

Jin54 proposed the SCORE which is designed
for DCSBM. First find the eigenvectors correspond-
ing to the K eigenvalues of A with largest absolute
values:
η̂1 = η̂11,…, η̂1n½ �, η̂2 = η̂21,…, η̂2n½ �,…, η̂K = η̂K1,…, η̂Kn½ �.
And Let R̂* be an n × (K − 1) matrix with entries
defined by

R̂*
ik =

R̂ik ifjR̂ikj ≤ log n,

log n if R̂ik > log n,

− log n if R̂ik

< − log n,

0
BB@

where R̂ik = η̂Ki=η̂ki. Finally, run k-means on rows of
R̂* to obtain community labels. Jin proved that the
SCORE is weakly consistent under the DCSBM when
K remains fixed.

Remark 4. When proving consistency, both Rohe
et al.49 and Jin54 in fact considered the global opti-
mizer of k-means. However, the global optimization
of k-means is NP-hard. Lei and Rinaldo55 considered
an approximate k-means algorithm solvable in poly-
nomial time58 and proved the consistency of spectral
clustering with this algorithm under the SBM.

Spectral clustering based on the standard graph
Laplacian is known to perform poorly on sparse
graphs,30,59–61 i.e., graphs with link probabilities of
order 1/n. The problem lies with low-degree nodes
that can cause irregular behavior of the graph Lapla-
cian. A regularized graph Laplacian was proposed by
Amini et al.30 and studied in several articles.62,63 Spe-
cifically, we replace the adjacency matrix A with
Aτ = A + (τ/n)11T and construct the graph Laplacian
using Aτ, where τ is a quantity with the same order
of the average expected degree. Le et al.63 proved
that for the planted partition model G n,a=n,b=nð Þ,
spectral clustering with the regularized graph
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Laplacian correctly estimates the communities up to
at most εn misclassified nodes, if (a − b)2 > Cε(a + b)
where Cε is a constant depending on ε.

SEMIDEFINITE PROGRAMMING FOR
THE SBM

As shown in the previous section, spectral clustering
algorithms are usually neat and easy to implement.
And their theoretical performance was also
justified in literature. Therefore, spectral clustering
approaches are very promising from both a theoreti-
cal and computational point of view, as pointed out
by Bickel et al.41 On the other hand, some limitation
of spectral clustering was pointed out by very recent
literature.59–61 These authors argued that spectral
clustering works well for dense networks but may fail
for sparse networks. Besides, some spectral clustering
algorithms can be viewed as nonconvex relaxations
of certain graph cut criteria,20,64 and usually rely on
k-means as the final step to get discrete labels. As
mentioned in the previous section, the global optimi-
zation of k-means is however NP-hard and the com-
monly used algorithm can only guarantee local
solutions. Therefore, some researchers are interested
in convex relaxations, more specifically, SDP relaxa-
tions for these criteria.

Recently, SDP approaches to fitting the SBM or
its variants have been proposed in the
literature.32,59–67 Guédon and Vershynin68 developed
a general method to prove consistency of SDP by
Grothendieck’s inequality and proved that various
SDP methods can recover the community structure
up to an arbitrarily small fraction of misclassified
nodes in sparse graphs.

Here we review some neat results in a very
recent published article.32 Abbe et al.32 was inter-
ested in sharp threshold for exact recovery of com-
munities under the SBM. In particular, they
considered the simplest case of the SBM—the planted
partition model (defined in the previous section) with
two equal sized communities, denoted by G n,p,qð Þ.
Letting α = pn/logn and β = qn/logn, and assuming
α, β are constant and α > β, Abbe et al. proved the
following result:

Theorem 3. (Theorems 1 and 2 in Abbe et al.32) If
α + βð Þ=2−

ffiffiffiffiffiffi
αβ

p
> 1, then the MLE of G n,p,qð Þ exactly

recovers the communities (up to a permutation), with
high probability.

Conversely, if α + βð Þ=2−
ffiffiffiffiffiffi
αβ

p
< 1, then for suffi-

ciently large n, the MLE fails in recovering the com-
munities with probability bounded away from zero.

Therefore, α + βð Þ=2−
ffiffiffiffiffiffi
αβ

p
is a sharp threshold

for exact recovery by the MLE. This result is stronger
than the one in Bickel and Chen29 in the sense that it
allows the average expected degree λn to have order
logn, while Bickel and Chen29 requires λn/logn ! ∞.
On the other hand, Bickel and Chen29 allows an
arbitrary number of communities K.

As mentioned earlier, solving the MLE of the
SBM is computationally infeasible. Abbe et al. then
proposed an SDP approach which can exactly
recover the communities when λn = Θ(logn). Define
g = (g1, …., gn)

T, where gi = + 1 if node i belongs to
the first community and gi = − 1 if node i belongs to
the second community. Further, define B as an n × n
matrix with zero diagonal whose off-diagonal ele-
ments Bij = 2Aij − 1. The following criterion aims to
find two communities such that the number of
within-community edges minus the cross-community
edges is maximized:

max
g

gTBg

s:t: gi = �1: ð3Þ

Abbe et al. proposed the following SDP relaxation
for Eq. (3), which can be solved in polynomial time.

max
X2Rn×n

Tr BXð Þ

s:t: Xii = 1 ð4Þ

X�0; ð5Þ

where X�0 means that X is positive-semidefinite.
Abbe et al. proved the following result:

Theorem 4. (Theorem 3 in Abbe et al.32) If
α−βð Þ2 > 8 α + βð Þ + 8

3 α−βð Þ, the following holds with
high probability: Eq. (4) has a unique solution which
is given by the outer-product of g 2 {�1}n whose
entries corresponding to the first community are
1 and to the second community are −1.

A related but different concept is weak discov-
ery, also called detection. Weak discovery only
requires the algorithm to find a partition which is
positively correlated with the true communities with
high probability. Decelle et al.69 made a remarkable
conjecture on the threshold of weak discovery for the
planted partition model based on deep ideas from
statistical physics. Specifically, let a = pn and b = qn.
Then Decelle et al.69 conjectured that it is possible to
develop a polynomial-time algorithm to achieve weak
discovery if (a − b)2 > 2(a + b) and is impossible if
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(a − b)2 < 2(a + b). The conjecture for the case of
two symmetric communities was proved independ-
ently by Massoulié70 and Mossel et al.71 Physi-
cists72,73 also considered the threshold of weak
discovery for networks with arbitrary degrees.

OTHER TOPICS ON COMMUNITY
DETECTION

In this section, we briefly review other topics on com-
munity detection related to consistent detection meth-
ods under the SBM. These research fields are nascent
compared to the study of the SBM. Therefore, some
of the methods introduced in this section may have
been developed intuitively without theoretical
justification.

ROBUST COMMUNITY DETECTION

The SBM makes strong assumptions on networks,
that is, every node is assumed to belong to a homoge-
neous block. However, many real-world networks
contain ‘outliers,’ that is, nodes that do not fit in with
any of the communities. Therefore, robust commu-
nity detection methods are desirable in real applica-
tions. The term of robust community detection is not
well defined, and there is no agreement on its scope.
We focus on detection methods robust to outliers as
described above. Zhao et al.74 proposed a sequential
approach called community extraction, which
extracts one community at a time, allowing for arbi-
trary structure in the remainder of the network. At
each step, the extraction criterion looks for a cohe-
sive group with more links within itself than to the
rest of the network, but ignores links within its com-
plement. Cai and Li59 proposed the generalized SBM
that allows for outliers to be connected with the
other nodes in the network in an arbitrary way, and
fitted the model by SDP. The notion of outliers in
Cai and Li59 is different from the one in Zhao
et al.74: the link pattern between a community and
outliers is also arbitrary. Another class of robust
methods is local community detection.75–79 Instead
of partitioning the entire network into communities,
local community detection methods seek a single
community of nodes concentrated around a few
given seed nodes, based on certain criteria measuring
cohesiveness of a group such as conductance.78 This
technique is particularly useful when the network is
not completely known and only local information is
available. To the best of our knowledge, no theoreti-
cal framework has been established for local

community detection, which is a possible direction
for future research.

COMMUNITY DETECTION WITH
NODAL COVARIATES

Traditional community detection approaches only
use the adjacency matrix, i.e., the network itself as
the input. However, additional information on the
nodes is usually available in addition to network
topology. Thus a natural question is how or whether
we can improve community detection by using node
features, when presumably these features are corre-
lated to community structure. Recently there have
been a number of works on community detection
with nodal covariates. Binkiewicz et al.80 modified
spectral clustering with the help of nodal covariates
and justified the proposed method under the so-called
node-contextualized SBM. Zhang et al.81 proposed a
joint community detection criterion that uses both
the adjacency matrix and nodal covariates by weigh-
ing edges according to nodal similarities. Yan and
Sarkar67 combined a similarity matrix based on
nodal covariates with the adjacency matrix in a SDP
problem. Furthermore, likelihoods of link probabil-
ities incorporating auxiliary nodal information were
proposed in literature.28,82–85 In the author’s opin-
ion, a particular challenge in community detection
with nodal covariates is how to assess whether or not
covariates are correlated with the community struc-
ture induced by the adjacency matrix. Sometimes,
covariates and the network showed different commu-
nity structures. Even when they are correlated, it is
not clear whether combining them is necessarily bet-
ter than using only one source. Yan and Sarkar67

provided an answer along this line of thinking. But
clearly more research can be conducted for this
question.

DETERMINING THE NUMBER OF
COMMUNITIES

Most of the methods we discussed so far require
prior knowledge of the number of communities K.
Even though, many asymptotic results allow the
number of communities K to grow with n, it is chal-
lenging to estimate this number in practice. Some
methods have been proposed in recent years. Zhao
et al.74 sequentially extracted communities until the
rest of the network performed like an Erdös-Rényi
random graph based on a hypothesis test. Bickel and
Sarkar86 designed a hypothesis test for the SBM
based on the principal eigenvalue of a standardized
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adjacency matrix. Lei87 proposed a goodness-of-fit
test for the SBM based on the largest singular value
of a residual matrix obtained by subtracting the
estimated block mean effect from the adjacency
matrix. The two approaches above rely on deep
results in random matrix theory. Furthermore, BIC
based approaches have been proposed in
literature.88–90

FUTURE RESEARCH

We close our discussion with suggestions for future
research. Firstly, current theoretical studies on com-
munity detection mainly focus on the SBM and its

variants. According to the author’s personal experi-
ences, the SBM is not robust to ill-behaved nodes
despite its theoretical convenience. Building theoreti-
cal frameworks for other models such as latent space
models could be of interest to researchers. In particu-
lar, it seems to be natural to incorporate nodal cov-
ariates into latent space models. Secondly,
community detection for weighted networks is an
open problem. Lots of graph cut criteria can be
applied to weighted networks. But model-based
approaches with theoretical justification are desira-
ble. Thirdly, developing community detection meth-
ods robust to outliers deserves further research
efforts.
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