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ABSTRACT
Link prediction is one of the fundamental problems in network analysis. In many applications, notably in
genetics, a partially observed network may not contain any negative examples, that is, edges known for
certain to be absent, which creates a difficulty for existing supervised learning approaches. We develop a
newmethod that treats the observed network as a sample of the true networkwith different sampling rates
for positive (true edges) and negative (absent edges) examples. We obtain a relative ranking of potential
links by their probabilities, using information on network topology as well as node covariates if available.
Themethod relies on the intuitive assumption that if twopairs of nodes are similar, the probabilities of these
pairs forming an edge are also similar. Empirically, themethodperformswell undermany settings, including
when the observed network is sparse. We apply the method to a protein–protein interaction network and
a school friendship network.

1. Introduction

A variety of data in many different fields can be described by
networks. Examples include friendship and social networks,
food webs, protein–protein interaction and gene regulatory
networks, the World Wide Web, and many others. One of the
fundamental problems in network science is link prediction,
where the goal is to predict the existence of a link between two
nodes based on observed links between other nodes as well
as additional information about the nodes (node covariates)
when available (see Getoor and Diehl 2005; Liben-Nowell and
Kleinberg 2007; Lu and Zhou 2010; Hasan and Zaki 2011 for
recent reviews). Link prediction has wide applications. For
example, recommendation of new friends or connections for
members is an important service in online social networks
such as Facebook. In biological networks, such as protein–
protein interaction and gene regulatory networks, it is usually
time-consuming and expensive to test existence of links by
comprehensive experiments; link prediction in these biological
networks can provide specific targets for future experiments.

There are two different settings under which the link predic-
tion problem is commonly studied. In the first setting, a snap-
shot of the network at time t , or a sequence of snapshots at times
1, . . . , t , is used to predict new links that are likely to appear in
the near future (at time t + 1). In the second setting, the net-
work is treated as static but not fully observed, and the task is
to fill in the missing links in such a partially observed network.
These two tasks are related in practice, since a network evolving
over time can also be partially observed and a missing link may
emerge in the future. From the analysis point of view, however,
these settings are quite different; in this article, we focus on the
partially observed setting and do not consider networks evolv-
ing over time.

CONTACT Yunpeng Zhao yzhao@gmu.edu Department of Statistics, George Mason University, Fairfax, VA , USA.

There are several types of methods for the link prediction
problem in the literature. The first class of methods consists of
unsupervised approaches based on various types of node simi-
larities. These methods assign a similarity score s(i, j) to each
pair of nodes i and j, and higher similarity scores are assumed
to imply higher probabilities of a link. Similarities can be based
either on node attributes or solely on the network structure,
such as the number of common neighbors; the latter are known
as structural similarities. Typical choices of structural similar-
ity measures include local indices based on common neigh-
bors, such as the Jaccard index (Liben-Nowell and Kleinberg
2007) or the Adamic–Adar index (Adamic and Adar 2003), and
global indices based on the ensemble of all paths, such as the
Katz index (Katz 1953) and the Leicht–Holme–Newman Index
(Leicht, Holme, and Newman 2006). Comprehensive reviews
of such similarity measures can be found in Liben-Nowell and
Kleinberg (2007) and Lu and Zhou (2010).

Another class of approaches to link prediction applies super-
vised learning methods that use both network structures and
node attributes. These methods treat link prediction as a binary
classification problem, where the responses are {1, 0} indicating
whether there exists a link for a pair, and the predictors are
covariates for each pair, which are constructed from node
attributes. A number of popular supervised learning methods
have been applied to the link prediction problem. For example,
Ben-Hur and Noble (2005) and Bleakley, Biau, and Vert (2007)
used the support vector machine with pairwise kernels, and
Hasan et al. (2006) compared the performance of several super-
vised learning methods. Menon and Elkan (2011) proposed a
criterion optimizing AUC (area under the curve) to address
the imbalance problem of positive and negative examples.
Kashima et al. (2009) and Raymond and Kashima (2010) used
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semisupervised learning approaches for link prediction. Other
supervised methods use probabilistic models for incomplete
networks to do link prediction, for example, the hierarchical
structure models (Clauset, Moore, and Newman 2008), latent
space models (Hoff, Raftery, and Handcock 2002), latent vari-
able models (Hoff 2007; Miller, Griffiths, and Jordan 2009),
stochastic relational models (Yu et al. 2007), multi-relational
influence propagation (Yang et al. 2012), etc.

Our approach falls in the supervised learning category, in
the sense that we make use of both the node similarities and
observed links. However, one difficulty in treating link predic-
tion as a straightforward classification problem is the lack of
certainty about the negative and positive examples. This is par-
ticularly true for negative examples (when we know for certain
no edge exists between a pair of nodes. In biological networks
in particular, there may be no negative examples at all (Ben-Hur
and Noble 2006). For instance, in a protein–protein interaction
network, a pair with no observed edge may not mean that
there is no interaction between the two proteins—instead, it
may indicate that the experiment to test that interaction has
not been done, or that it did not have enough sensitivity to
detect the interaction. Positive examples could sometimes also
be spurious—for example, high-throughput experiments can
yield a large number of false positive protein–protein interac-
tions (von Mering et al. 2002). Here, we propose a new link
prediction method that allows for the presence of both false
positive and false negative examples. More formally, we assume
that we observe the true network with independent observation
errors, that is, with some true edges missing and other edges
recorded erroneously. The error rates for both kinds of errors
are assumed unknown, and in fact cannot be estimated under
this framework. However, we can rank potential links in order
of their estimated probabilities, for node pairs with observed
links as well as for node pairs with no observed links. These
relative rankings rather than absolute probabilities of edges are
sufficient in many applications. For example, pairs of proteins
without observed interactions that rank highly could be given
priority in subsequent experiments. To obtain these rankings,
we use node covariates when available, and/or network topology
based on observed links.

We note that statistical analysis of networks with edge errors
has also recently been studied in other settings. For instance,
Priebe et al. (2015) considered the node classification problem
on networks with observation errors. Balachandran, Airoldi,
and Kolaczyk (2013) and Balachandran, Kolaczyk, and Viles
(2014) focused on inference problems of certain summary statis-
tics on noisy networks. To the best of our knowledge, the current
article is the first one to study the link prediction problem on
networks with observation errors.

The rest of the article is organized as follows. In Section 2,
we specify our (rather minimal) model assumptions for the net-
work and the edge errors. We propose link ranking criteria for
both directed and undirected networks in Section 3. The algo-
rithms used to optimize these criteria are discussed in Section
4. In Section 5, we test the performance of proposed criteria on
simulated networks. In Section 6, we apply our methods to link
prediction in a protein–protein interactionnetwork and a school
friendship network. Section 7 concludes with a summary and
discussion of future directions.

2. The NetworkModel

A network with n nodes (vertices) can be represented by an n×
n adjacency matrix A = [Ai j], where

Ai j =
{
1 if there is an edge from i to j,
0 otherwise.

We will consider the link prediction problem for both undi-
rected and directed networks. Therefore, A can be either sym-
metric (for undirected networks) or asymmetric (for directed
networks).

In our framework, we distinguish between the adjacency
matrix of the true underlying network A, and its observed ver-
sion Ã. We assume that each Ai j follows a Bernoulli distribution
with P(Ai j = 1) = Pi j. Given the true network, we assume that
the observed network is generated by

P(Ãi j = 1|Ai j = 1) = αi j, P(Ãi j = 0|Ai j = 0) = βi j,

where αi j and βi j are the probabilities of correctly recording a
true edge and an absent edge, respectively. Then we have

P̃i j ≡ P(Ãi j = 1) = (αi j + βi j − 1)Pi j + (1− βi j). (2.1)

2.1. The Simple Case: Constant Sampling Rates

We first assume that αi j = α and βi j = β are constants and do
not depend on i, j, or Pi j. Note that if the values of α, β , and Pi j
were known, then the probabilities of true edges conditional on
the observed adjacency matrix could have been estimated as

P(Ai j = 1|Ãi j = 1) = αPi j
P̃i j

, (2.2)

P(Ai j = 1|Ãi j = 0) = (1− α)Pi j
1− P̃i j

. (2.3)

It is easy to check that both (2.2) and (2.3) aremonotone increas-
ing functions of Pi j. Taking (2.1) into account implies that they
are also increasing functions of P̃i j as long as α + β > 1. This
gives us a crucial observation: if the goal is to obtain relative
rankings of potential links, it is sufficient to estimate P̃i j, and it
is not necessary to know α, β , and Pi j.

An important special case in this setting is β = 1. Then all
the observed links are true positive examples, for example, in
a protein–protein interaction network, all observed links have
been verified by experiments. In that case, we only need to pro-
vide a ranking for node pairs without observed links. This can be
applied in recommender systems, for example, for recommend-
ing possible new friends in a social network. Another special
case is when α = 1, which corresponds to all unobserved edges
being true negatives. This setting can be used in the problem of
investigating reliability of observed links, for example, in a gene
regulatory network inferred from high-throughput gene expres-
sion data.

2.2. The General Case: Nonconstant Sampling Rates

Note that (2.2) and (2.3) still hold when α and β are noncon-
stant, with α and β replacedwith αi j and βi j, respectively. If both
(2.2) and (2.3) are monotone increasing functions of Pi j, and P̃i j
is alsomonotone increasing in Pi j, then again, conditional on the
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observed adjacency matrix, relative rankings of potential links
can be obtained from an estimate of P̃i j without knowing αi j and
βi j.

Now suppose that αi j and βi j are differentiable functions of
Pi j. By taking derivatives with respect to Pi j in (2.1), (2.2), and
(2.3), it is straightforward to show that the following conditions
ensure the required monotonicities:

αi j + βi j − 1+ α′i jPi j − β ′i j(1− Pi j) ≥ 0,

βi j(1− αi j)+ (αi jβ
′
i j − α′i jβi j − β ′i j)Pi j(1− Pi j) ≥ 0,

(1− βi j)αi j + (αi jβ
′
i j − α′i jβi j + α′i j)Pi j(1− Pi j) ≥ 0,

where α′i j and β ′i j denote derivatives of αi j and βi j with respect
to Pi j , respectively. These conditions seem complicated, but they
cover a wide range of possibilities. For example, when βi j is
a constant, for example, βi j = 1, and αi j is a power function
of Pi j, that is, αi j = u+ vPw

i j with u, v,w ≥ 0 and u+ v ≤ 1
(which implies that links with high probability of appearing in
the true network are alsomore likely to be observed, a fairly nat-
ural assumption), the above conditions are satisfied. Similarly,
when αi j is a constant, for example, αi j = 1, and βi j is a power
function of Pi j, that is, βi j = u+ v(1− Pi j)w with u, v,w ≥ 0
and u+ v ≤ 1 (which implies that links with low probability of
appearing in the true network are more likely to be recorded as
absent edges), the above conditions are also satisfied.

These results imply that for a wide range of scenarios, con-
ditional on the observed adjacency matrix, an estimate of the
matrix P̃ provides rankings for potential links, and thus we focus
on estimating P̃ for the rest of the article.

3. Link Prediction Criteria

In this section, we propose criteria for estimating the proba-
bilities of edges in the observed network, P̃i j, for both directed
and undirected networks. The criteria rely on a symmetric
matrix W = [Wij], 0 ≤Wij ≤ 1, which describes the similar-
ity between nodes i and j. The similarity matrix W can be
obtained from different sources, including node information,
network topology, or a combination of the two. We discuss pos-
sible choices forW in Section 3.3.

3.1. Link Prediction for Directed Networks

First, we consider directed networks. The key assumption we
make is that if two pairs of nodes are similar to each other,
the probability of links within these two pairs are also similar.
Specifically, in Figure 1, Pi j and Pi′ j′ are assumed close in value
if node i is similar to node i′ and node j is similar to node j′.

Figure . Pair similarity for directed networks.

For directed networks, wemeasure similarity of node pairs (i, i′)
and ( j, j′) by the productWii′Wjj′ , which implies two pairs are
similar only if both pairs of endpoints are similar. This assump-
tion should not to be confusedwith a different assumptionmade
by many unsupervised link prediction methods, which assume
that a link is more likely to exist between similar nodes (i.e.,
highWij corresponds to high Pi j , instead of our assumption of
highWii′Wjj′ corresponding to small |Pi j − Pi′ j′ |). This assump-
tion is applicable to networks with assortative mixing, which are
common—a typical example is a social network, where people
tend to be friends with those of similar age, income level, race,
etc. However, there are also networks with disassortative mix-
ing, in which the assumption that similar pairs are more likely
to be connected is no longer valid—for example, predators do
not typically feed on each other in a food web. Our assumption,
in contrast, is equally plausible for both assortative and disassor-
tative networks, as well as more general settings, as it does not
assume anything about the relationship between Pi j andWij.

Motivated by this assumption of similar probabilities of links
for similar node pairs, we propose to estimate P̃i j = E(Ãi j) by

F̂ = argmin
F

1
n2

n∑
i j

(Ãi j − Fi j)2 + λ

n4

n∑
ii′ j j′

Wii′Wjj′ (Fi j − Fi′ j′ )2,

(3.1)
where F is a real-valued n× nmatrix, and λ is a tuning param-
eter. The first term is the usual squared error loss connecting
the parameters with the observed network. The minimizer of
its population version E(Ãi j − Fi j)2 is P̃i j. The second term
enforces our key assumption, penalizing the difference between
Fi j and Fi′ j′ proportionately to the similarity between node
pairs (i, i′) and ( j, j′). The choice of the squared error loss is
not crucial, and other commonly used loss functions could be
considered instead, for example, the hinge loss or the negative
log-likelihood. The main reason for choosing the squared error
loss is computational efficiency, since it makes (3.1) a quadratic
problem; see more details on this in Section 4.

In some applications, we may have additional information
about true positive and negative examples, that is, some Ãi j ’s
may be known to be true 1’s and true 0’s, while others may
be uncertain. This could happen, for example, when validation
experiments have been conducted on a subset of a gene or pro-
tein network inferred from expression data. If such information
is available, it makes sense to use it, and we can then modify cri-
terion (3.1) as follows:

argmin
F

1∑n
i j Ei j

n∑
i j

Ei j(Ãi j − Fi j)2

+ λ

n4

n∑
ii′ j j′

Wii′Wjj′ (Fi j − Fi′ j′ )2, (3.2)

where Ei j = 1 if it is known that Ãi j = Ai j, and 0 otherwise. This
is similar to a semisupervised criterion proposed in Kashima
et al. (2009). However, Kashima et al. (2009) did not consider the
uncertainty in positive and negative examples, nor did they con-
sider the undirected case which we discuss next. Since (3.2) only
involves a partial sum of the loss function terms, we will refer to
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4 Y. ZHAO ET AL.

Figure . Pair similarity for undirected networks.

(3.2) as the partial-sum criterion and (3.1) as the full-sum crite-
rion for the rest of the article. It is worth noting that the partial-
sum criterion (3.2) can be further generalized for networks with
epistemic certainty on edges, that is, Ei j can take a continuous
value from 0 to 1, which reflects the certainty about the edge or
nonedge status between i and j.

3.2. Link Prediction for Undirected Networks

For undirected networks, our key assumption that Pi j and Pi′ j′
are close if two pairs (i, i′) and ( j, j′) are similar needs to take
into account that the direction no longer matters; thus the pairs
are similar if either i is similar to i′ and j is similar to j′, or if
i is similar to j′ and j is similar to i′ (see Figure 2). Thus, we
need a new pair similarity measure that combinesWii′Wjj′ and
Wij′Wji′ . There are multiple options, for example, two natural
combinations are

S1 =Wii′Wjj′ +Wij′Wji′ and S2 = max(Wii′Wjj′ ,Wij′Wji′ ).

Empirically, we found that S2 performs better than S1 for a range
of real and simulated networks. The reason for this can be easily
illustrated on the stochastic block model. The stochastic block
model is a commonly used model for networks with communi-
ties, where the probability of a link only depends on the commu-
nity labels of its two endpoints. Specifically, given community
labels c = {c1, . . . , cn}, Ai j’s are independent Bernoulli random
variables with

Pi j = Bcic j , (3.3)

where B = [Bab] is a K × K symmetric matrix, and K is the
number of communities in the network. Suppose we have the
best similarity measure we can possibly hope to have based on
the truth,Wij = I(ci = c j), where I is the indicator function. In
that case, (3.3) implies Pi j = Pi′ j′ if max(Wii′Wjj′ ,Wij′Wji′ ) = 1,
whereas the sum of the weights would be misleading.

Using S2 as the measure of pair similarity, we propose esti-
mating P̃i j for undirected networks by

argmin
F

1
n2

n∑
i< j

(Ãi j − Fi j)2

+ λ

n4

n∑
i< j,i′< j′

max(Wii′Wjj′,Wij′Wji′ )(Fi j − Fi′ j′ )2. (3.4)

Similarly to the directed case, if we have information about true
positive and negative examples, we can use a partial-sum crite-
rion instead,

1∑n
i< j Ei j

n∑
i< j

Ei j(Ãi j − Fi j)2

+ λ

n4

n∑
i< j,i′< j′

max(Wii′Wjj′ ,Wij′Wji′ )(Fi j − Fi′ j′ )2, (3.5)

where Ei j = 1 if it is known that Ãi j = Ai j, otherwise Ei j = 0.

3.3. Node SimilarityMeasures

The last component of themethodwe need to specify is the node
similarity matrix W . If we have available node covariates and
reasons to believe that they are related to the structure of the
network, it is natural to use covariate information to construct
Wij. Though more complicated formats do exist, node covari-
ates are typically represented by an n× pmatrix X where Xik is
the value of variable k for node i. ThenWij can be taken to be
some similarity measure between the ith and jth rows of X . For
example, if X contains only numerical variables and has been
standardized, we can use the exponential decay kernel,

Wij = exp
{
−‖Xi· − Xj·‖2

σ 2

}
,

where ‖ · ‖ is the Euclidean vector norm.
When node covariates are not available, node similarityWij is

usually obtained from the topology of the observed network Ã,
that is,Wij is large if i and j have a similar pattern of connections
with other nodes. For undirected networks, a simple choice of
Wij could be

Wij =
|{k : Ãik = Ã jk}|

n
, (3.6)

where | · | denotes cardinality of a set. This particular measure
turns out to be not very useful: since most real networks are
sparse,most entries of any kth columnwill be 0, and thusmost of
Wii′ ’s would be large. A more informative measure is the Jaccard
index (Liben-Nowell and Kleinberg 2007),

Wij = |N(i) ∩ N( j)|
|N(i) ∪ N( j)| , (3.7)

where N(i) = {k : Ãik = 1} is the set of neighbors of node i.
Note that the Jaccard index is particularly useful in sparse net-
works, since when using the Jaccard index, two nodes i and j
would have a high similarity only if they share many neighbors,
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that is, Ai. and Aj. share many 1’s. By contrast, i and j will not
be considered as similar only because the corresponding rows of
the adjacency matrix share many 0’s, which is often the case in
sparse networks.

The directed network case is similar, except we need to count
the “in” and the “out” links separately. The formulas correspond-
ing to (3.6) and (3.7) become

Wij =
|{k : Ãik = Ã jk}|

2n
+ |{k : Ãki = Ãk j}|

2n
,

Wij = |N1(i) ∩ N1( j)|
2|N1(i) ∪ N1( j)| +

|N2(i) ∩ N2( j)|
2|N2(i) ∪ N2( j)| , (3.8)

where N1(i) = {k : Ãik = 1} and N2(i) = {k : Ãki = 1}.

4. Optimization Algorithms

The proposed link prediction criteria are convex and quadratic
in parameters, and thus optimization is fairly straightforward.
The obvious approach is to treat the matrix f as a long vec-
tor with n2 elements (or n(n− 1)/2 in the undirected case),
and solve the linear system obtained by taking the first deriva-
tive of any criterion above with respect to this vector. However,
solving a system of linear equations could be challenging for
large-scale problems (Boyd and Vandenberghe 2004); the num-
ber of parameters here isO(n2), and so the linear system requires
O(n4) memory. However, ifW is sparse, or sparsified by apply-
ing thresholding or some other similar method, then solving the
linear system is the efficient choice.

If the W matrix is not sparse, an iterative algorithm with
sequential updates that only requiresO(n2)memory would be a
better choice than solving the linear system.We propose an iter-
ative algorithm following the idea of block coordinate descent
(Hildreth 1957; Warga 1963). A block coordinate descent algo-
rithm partitions the coordinates into blocks and iteratively opti-
mizes the criterion with respect to each block while holding the
other blocks fixed.

First, we derive the update equations for directed networks.
Note that the objective functions in (3.1) and (3.2) can bewritten
in the general form

Q = 1
n2

n∑
i j

Vi j(Ãi j − Fi j)2 + λ

n4

n∑
ii′ j j′

Wii′Wjj′ (Fi j − Fi′ j′ )2,

(4.1)
whereVi j ≡ 1 for (3.1) andVi j = Ei j for (3.2). Note that for sim-
plicity of further derivations, we replaced the denominators in
(3.1) and (3.2) by n2 and n4, respectively, absorbing the terms
with Vi j into the tuning parameters. For any matrix M, let Mi·
be the ith row ofM. We treat Fi· as a block, and update Fi· itera-
tively. DefineVi = diag(Vi·). Then∑

i j

Vi j(Fi j − Ãi j)
2 =

∑
i

(Fi· − Ãi·)TVi(Fi· − Ãi·). (4.2)

Let D be the n× n diagonal matrix with Dii =
∑

j Wi j. Then∑
j j′

Wjj′ (Fi j − Fi′ j′ )2 = FT
i· DFi· − 2FT

i· WFi′· + FT
i′ ·DFi′ · (4.3)

Plugging (4.2) and (4.3) into (4.1), and taking the first derivative
of Q with respect to Fi·, we obtain

∂Q
∂Fi·
= 2

n2
Vi(Fi· − Ãi·) (4.4)

+λ
4
n4

⎡⎣Wii(DFi· −WFi·)+
∑
i′ 	=i

Wii′ (DFi· −WFi′·)

⎤⎦ .

Setting ∂Q
∂Fi·
= 0 and solving for Fi·, we obtain the updating

formula

F (t+1)
i· ←

(
n2Vi + 2λ

∑
i′

Wii′D− 2λWiiW

)−1

×
⎛⎝n2ViÃi· + 2λ

∑
i′ 	=i

Wii′WF (t )
i′·

⎞⎠ , (4.5)

where F (t )
i· is the value of Fi· at iteration t .

This update is fast to compute but its derivation relies on the
product form ofWii′ andWjj′ , and thus is not directly applicable
in the undirected case, where S2 is used as the similarity mea-
sure. However, we can still approximate S2 with a product, using
the fact that for x ≥ 0, y ≥ 0, limq→∞ q

√
xq + yq = max(x, y).

Thus, for sufficiently large q, we have

[max(Wii′Wjj′ ,Wij′Wji′ )]q ≈ (Wii′Wjj′ )
q + (Wij′Wji′ )

q. (4.6)

Further, Wq is a monotone transformation of W and can also
serve as a similarity measure. Based on (4.6), we propose to sub-
stitute the following approximate objective function for undi-
rected networks,

Q = 1
n2

n∑
i< j

Vi j(Ãi j − Fi j)2 (4.7)

+ λ

n4

n∑
i< j,i′< j′

((Wii′Wjj′ )
q + (Wij′Wji′ )

q)(Fi j − Fi′ j′ )2,

whereVi j ≡ 1 for the full sum criterion andVi j = Ei j for the par-
tial sum criterion. By symmetry,

n∑
i< j,i′< j′

((Wii′Wjj′ )
q + (Wij′Wji′ )

q)(Fi j − Fi′ j′ )2

= 1
2

n∑
i 	= j,i′ 	= j′

Wq
ii′W

q
j j′ (Fi j − Fi′ j′ )2.

This is now in the same form as (4.1), with each term in the sum
containing a product of Wii′ and Wjj′ , and therefore (4.7) can
be minimized by block coordinate descent with an analogous
updating equation as that in the directed network case. Note that
since in general Q is strictly convex, the proposed coordinate
descent algorithm has a linear convergence rate (Luo and Tseng
1992), that is,

‖F (k) − F‖F ≤ ‖F (0) − F‖Fγ k,

where γ ∈ (0, 1) and F (k) denotes the estimate after k updating
cycles.

In practice, we found that when W is sparse or truncated
to be sparse, solving the linear system can be much faster than
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6 Y. ZHAO ET AL.

the block coordinate descent method; however, when W is
dense and the number of nodes is reasonably large, the block
coordinate descent method dominates directly solving linear
equations.

5. Empirical Evaluation on Simulated Networks

In this section, we test the performance of our link prediction
methods on simulated networks. We focus on the setting where
β = 1, that is, there is no false positive link in the network. In
all cases, each network consists of n = 1000 nodes, and node
i’s covariates Xi are generated from a Gaussian mixture distri-
bution with 20 components. Specifically, we first generated 20
independent centers μk, k = 1, . . . , 20, with μk ∼ N(0, η2Ip),
p = 5. Then for each center μk, we generated 50 independent
nodes, with Xi ∼ N(μk, Ip). We generated each Ai j indepen-
dently from the distance model in (Hoff, Raftery, and Handcock
2002), which has the form

logit(Pi j) = −‖Xi − Xj‖ + c, (5.1)

where ‖ · ‖ is the Euclidean norm, and c (depending on the value
of η) was chosen such that the average degree of the generated
network is about 20. The above generative model is based on the
intuition that nodes close to each other (in terms of their posi-
tions, that is,Xi’s in the “social space”) are more likely to become
linked. Note that the proposed method does not need such an
assumption.Nevertheless, the above formula can be used to gen-
erate both directed andundirected networks; for undirected net-
works, we set Ai j = Aji.

We also generated indicators Ei j’s as independent Bernoulli
variables taking values 1 and 0, with P(Ei j = 1) = αi j, and set
Ãi j = Ei jAi j. This setup corresponds to βi j = 1 and the “par-
tially observed” network of the title, where all the observed edges
are true but the unobserved edges may or may not be true 0’s.
We consider two scenarios for the sampling rate: (1) αi j = 0.8,
which is a constant, and (2) αi j = Pw

i j , wherew was chosen such
that the overall sampling rate is about 0.8. Note that the sec-
ond scenario implies that if two nodes are likely to be linked,
then the chance that the true edge is correctly recorded is also
high.

Since we have node covariates affecting the probabilities
of links in this case, we define the similarity matrix W
by

Wij = exp
{
−‖Xi − Xj‖2

σ 2

}
,

where we choose σ = 1
4median{‖Xi − Xj‖, i, j = 1, . . . , n}.

Further, we also include the case of the network-based sim-
ilarity matrix W , as in (3.7) and (3.8), which is the only
option if node covariates are not available. We optimize all
criteria by solving linear equations, with λ chosen by five-
fold cross-validation. Specifically, in each fold, we set 20%
of Ai j’s to 0. The tuning parameter λ is then selected such
that the overall predictive AUC on the set of selected pairs is
maximized.

The performance of link prediction is evaluated on the
“test” set S = {(i, j) : Ei j = 0}. We report the area under the
ROC curve (AUC), which only depends on the rankings of the

Table . Directed network: mean and standard error of predictive AUC for model
(.) based on  replications.

Wi j Wi j
(using node covariates) (using network topology)

(η2, c) αi j Partial-sum Full-sum Partial-sum Full-sum

(1,−0.3) . . . . .
(.) (.) (.) (.)

P0.05i j . . . .
(.) (.) (.) (.)

(4, 1) . . . . .
(.) (.) (.) (.)

P0.04i j . . . .
(.) (.) (.) (.)

(9, 2) . . . . .
(.) (.) (.) (.)

P0.03i j . . . .
(.) (.) (.) (.)

(16, 3) . . . . .
(.) (.) (.) (.)

P0.025i j . . . .
(.) (.) (.) (.)

estimates F̂i j rather than their numerical values. The AUC is
defined as

AUC =∑
(i, j),(i′, j′ )∈S

(
1
(
F̂i j > F̂i′ j′

)+ 1
2 1
(
F̂i j = F̂i′ j′

))
1
(
Ai j = 1,Ai′ j′ = 0

)∑
(i, j),(i′, j′ )∈S 1

(
Ai j = 1,Ai′ j′ = 0

) .

The results are shown in Tables 1 and 2. Overall, there is little
difference between the partial-sum and full-sum criteria. As
expected, as η increases, the centers of the node covariates, that
is, μk’s, become more separated, and the nodes become more
“clustered,” consequently the difficulty of the problem decreases,
and the performance of the proposed method improves. Also as
expected, using node covariates to define the similarity matrix
always performs better than using the observed network topol-
ogy, as according to the simulation setup, the link probabilities
are directly affected by node covariates. Further, when node
covariates are used to compute the similarity matrix, there is
little difference between directed network models and their

Table . Undirected network: mean and standard error of predictive AUC for gen-
erative model (.) based on  repetitions.

Wi j Wi j
(using node covariates) (using network topology)

(η2, c) αi j Partial-sum Full-sum Partial-sum Full-sum

(1,−0.3) . . . . .
(.) (.) (.) (.)

P0.05i j . . . .
(.) (.) (.) (.)

(4, 1) . . . . .
(.) (.) (.) (.)

P0.04i j . . . .
(.) (.) (.) (.)

(9, 2) . . . . .
(.) (.) (.) (.)

P0.03i j . . . .
(.) (.) (.) (.)

(16, 3) . . . . .
(.) (.) (.) (.)

P0.025i j . . . .
(.) (.) (.) (.)
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Table . Directed network: mean and standard error of predictive AUC for model
(.) based on  replications (with %missing rate in theW matrix).

Wi j Wi j
(using node covariates) (using network topology)

(η2, c) αi j Partial-sum Full-sum Partial-sum Full-sum

(1,−0.3) . . . . .
(.) (.) (.) (.)

P0.05i j . . . .
(.) (.) (.) (.)

(4, 1) . . . . .
(.) (.) (.) (.)

P0.04i j . . . .
(.) (.) (.) (.)

(9, 2) . . . . .
(.) (.) (.) (.)

P0.03i j . . . .
(.) (.) (.) (.)

(16, 3) . . . . .
(.) (.) (.) (.)

P0.025i j . . . .
(.) (.) (.) (.)

undirected versions. However, when network topology is used
to define the similarity matrix, the performance for directed
networks is better than for undirected ones, especially when η is
relatively small; this is probably because the network topology-
based similarity is more reliable for the directed networks than
for the undirected ones. Comparing the two sampling rates, the
performance under nonconstant sampling rate is slightly better.
This is probably because with this nonconstant sampling rate,
recorded links are more reliable than in the constant scenario
(the higher the probability, the more likely a true edge is cor-
rectly recorded). Overall, we observe that with enough links
the proposed method performs well, and using covariate-based
similarity generally improves prediction.

Further, since in many applied contexts one would expect
to see missing values with node similarities, we also test our
proposed method when entries of the similarity matrixW are
missing. Specifically, we randomly sample 10% entries of theW
matrix and replace them by 0. The results are shown in Tables 3
and 4. Comparing with the results whenW is complete, we see
that the average performance of the proposed method is not
significantly affected; however, the standard error of the AUC
increases due to the missingness inW . In addition, we have also
considered the case when 20% entries ofW are missing at ran-
dom (results not shown in the article). Again, we observed that
the average AUC decreases a little, but not much, while the stan-
dard error of the AUC increases.

6. Applications

6.1. The Protein–Protein Interaction Network

Our first application is to an undirected network containing
yeast protein–protein interactions fromvonMering et al. (2002).
This network was edited to contain only highly reliable inter-
actions supported by multiple experiments (Bleakley, Biau, and
Vert 2007), resulting in 984 protein nodes and 2438 edges, with
the average node degree about 5. We take this verified network
to be the true underlying network A. Bleakley, Biau, and Vert

Table . Undirected network: mean and standard error of predictive AUC for gen-
erativemodel (.) based on  repetitions (with %missing rate in theW matrix).

Wi j Wi j
(using node covariates) (using network topology)

(η2, c) αi j Partial-sum Full-sum Partial-sum Full-sum

(1,−0.3) . . . . .
(.) (.) (.) (.)

P0.05i j . . . .
(.) (.) (.) (.)

(4, 1) . . . . .
(.) (.) (.) (.)

P0.04i j . . . .
(.) (.) (.) (.)

(9, 2) . . . . .
(.) (.) (.) (.)

P0.03i j . . . .
(.) (.) (.) (.)

(16, 3) . . . . .
(.) (.) (.) (.)

P0.025i j . . . .
(.) (.) (.) (.)

(2007) also constructed amatrixmeasuring similarities between
proteins based on gene expression, protein localization, phylo-
genetic profiles, and yeast two-hybrid data, which we use as the
node similarity matrixW for link prediction.

Here, we compare the full-sum criterion (3.4), the partial-
sum criterion (3.5), and the latent variable model proposed and
implemented in the R package eigenmodel by Hoff (2007).
Specifically, the latent variable model assumes

P(Ai j = 1 | xi j, ui, uj) = 	(μ+ β�xi j + u�i 
uj),

where 	 is the CDF of the standard normal distribution, 
 is a
k× k diagonal matrix, and ui ∈ R

k are unobserved latent vari-
ables, and the model is fitted using Markov chain Monte Carlo
(MCMC). Note that the model is flexible and can be fitted either
with or without node similarities. To test prediction, we gen-
erate indicators Ei j’s as independent Bernoulli variables taking
value 1 with probability αi j, and set Ãi j = Ei jAi j. Similarly to the
simulation study, we consider two scenarios for αi j: (1) αi j is a
constant, and we set αi j = 0.5 and 0.8, corresponding to differ-
ent amounts of available information, and (2) αi j = f̂ w

i j , where
f̂i j were obtained by applying the proposed method to the com-
plete data and w was chosen such that the overall sampling rate
is about 0.5 or 0.8.

We use the block coordinate descent algorithm proposed in
Section 4 to approximately optimize (3.4) and (3.5), with q = 10.
The tuning parameter λ is selected by five-fold cross-validation
as in Section 5.

The latent variable model depends on a tuning parameter K,
the dimension of the latent space. We fix K = 5 since larger val-
ues of K do not significantly change the performance in this
example. We again use predictive AUC to evaluate the link pre-
diction performance on the set {(i, j) : Ei j = 0}.

The results are reported in Table 5. The latent variable model
performs better when using node similarities, but overall is out-
performed by our method in most cases. Both models perform
better under the nonconstant sampling rate, but the latent vari-
able model not usingW is more sensitive to the sampling rate
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8 Y. ZHAO ET AL.

Table . Mean and standard error of predictive AUC for the protein–protein inter-
action data based on  repetitions.

Latent model Latent model
αi j Partial-sum Full-sum (withoutW ) (usingW )

. . . . .
(.) (.) (.) (.)

f̂0.03i j . . . .
(.) (.) (.) (.)

. . . . .
(.) (.) (.) (.)

f̂0.08i j . . . .
(.) (.) (.) (.)

Table . Mean and standard error of predictive AUC for the protein–protein inter-
action data based on  repetitions (with %missing rate in theW matrix).

Latent model Latent model
αi j Partial-sum Full-sum (withoutW ) (usingW )

. . . . .
(.) (.) (.) (.)

f̂0.03i j . . . .
(.) (.) (.) (.)

. . . . .
(.) (.) (.) (.)

f̂0.08i j . . . .
(.) (.) (.) (.)

αi j, since a low sampling rate may substantially distort the over-
all network topology. On the other hand, when the node similar-
ity matrixW is used, the impact of the sampling rate is virtually
gone. Similar as in simulation studies, we also test the proposed
method when 10% entries of theW matrix are missing, and the
results are shown in Table 6. Once again, we observe that the

average performance of the proposedmethod is not significantly
affected, while the standard error of the AUC increases.

6.2. The School Friendship Network

This dataset is a school friendship network from the National
Longitudinal Study of Adolescent Health, previously studied by
Hunter, Goodreau, and Handcock (2008). This network con-
tains 1011 high school students and 5459 directed links connect-
ing students to their friends, as reported by the students them-
selves. The average degree of this network is also around 5. In
addition to the link information, the dataset also includes infor-
mation on the student’s grade, gender, and race. We construct
two node similarity matrices, one using the Jaccard index (3.7)
and the other based on node covariates,

Wij = (1{gradei=grade j} + 1{genderi=gender j} + 1{racei=race j})/3.

To test our two link prediction criteria, we use the same
settings for Ei j as in the previous example, and apply block
coordinate descent to minimize the criteria with λ chosen by
cross-validation, and report the average predictive AUC over
20 realizations of Ei j’s. We also compare with a latent variable
model for directed networks by Hoff (2009) (implemented in
the R package amen). The model is flexible and can be fitted
either with or without node similarities.

The results are reported in Tables 7 and 8. First, it can be seen
that node covariates are not very helpful for link prediction in
this case; this is probably because the node covariates here are
discrete and the similarities they provide are too coarse. Further,
note that when covariates are taken to define node similarities,

Table . Mean and standard error of predictive AUC for the school friendship data based on  repetitions.

Wi j Wi j
(using network topology) (using node covariates)

Latent model Latent model
αi j Partial-sum Full-sum Partial-sum Full-sum (withoutW ) (usingW )

. . . . . . .
(.) (.) (.) (.) (.) (.)

f̂0.02i j . . . . NA∗ NA∗

(.) (.) (.) (.)
. . . . . . .

(.) (.) (.) (.) (.) (.)
f̂0.065i j . . . . NA∗ NA∗

(.) (.) (.) (.)

NOTE: ∗The MCMC iterations were interrupted and “NAs produced”were returned.

Table . Mean and standard error of predictive AUC for the school friendship data based on  repetitions (with %missing rate in theW matrix).

Wi j Wi j
(using network topology) (using node covariates)

Latent model Latent model
αi j Partial-sum Full-sum Partial-sum Full-sum (withoutW ) (usingW )

. . . . . . .
(.) (.) (.) (.) (.) (.)

f̂0.02i j . . . . NA∗ NA∗

(.) (.) (.) (.)
. . . . . . .

(.) (.) (.) (.) (.) (.)
f̂0.065i j . . . . NA∗ NA∗

(.) (.) (.) (.)

NOTE: ∗The MCMC iterations were interrupted and “NAs produced”were returned.
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a simple average of the three covariates is used, while ideally,
the performance may be improved if a weighted average is used
to construct node similarities. However, this approach would
introduce weights as unknown parameters and it is beyond the
scope of this article. When the network topology is used to con-
struct node similarities, both the partial-sum and the full-sum
criteria perform fairly well and outperform the latent variable
model, which failed to converge in the nonconstant sampling
rate case, whereas our method improves when the sampling rate
is nonconstant.

7. Summary and FutureWork

We have proposed a new framework for link prediction that
allows uncertainty in observed links and nonlinks of a given
network. Our method can provide relative rankings of potential
links for pairs with and without observed links. The proposed
link prediction criteria are fully nonparametric and essentially
model-free, relying only on the assumption that similar node
pairs have similar link probabilities, which is valid for a wide
range of network models. One direction we would like to
explore in the future is to combine more specific parametric
network models with our nonparametric approach, with the
goal of achieving both robustness and efficiency. We are also
investigating consistency properties of our method, which is
challenging because it requires developing a novel theoretical
framework for evaluating consistency of rankings. Ultimately,
we would also like to incorporate the general framework of
link uncertainty into other network problems, for example,
community detection.
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