Integer Operations

Name:

What Is the Best Way To Become an Astronaut?

Choose the correct answer for each exercise and circle the number-letter pair next to it. Write the letter in the matching numbered box at the bottom of the page.

Set 1. Simplify.

a.
$$12 + (5 - 9)$$

b.
$$-7(-1 + 8)$$

e.
$$16 - (-3 - 8)$$

c.
$$20 - (-3) + 15$$

c.
$$20 - (-3) + 15$$
 f. $[-2 - (-9)] + 75$

Set 1 Answers

Set 2. Simplify.

a.
$$(-3 \cdot 4) + (-4 \cdot 3)$$

a.
$$(-3 \cdot 4) + (-4 \cdot 3)$$
 d. $100 - (-50) + (-25)$

2 • 0 -125

b.
$$(21 - 30)(-12 + 1)$$
 e. $(-30 - 30) \div (-5)$

c.
$$(-5)^3(-1)^{10}$$

f.
$$(-64 \div 8) + (-81 \div 9)$$

Set 3. Simplify.

a.
$$\frac{-13+5}{13-15}$$

d.
$$\frac{-140}{14} + \frac{140}{-10}$$

b.
$$(-2)^4(-10)^2$$

e.
$$5(-3)^3$$

c.
$$\frac{(-8)(-8)}{-8 + (-8)}$$

f.
$$\frac{-77}{-7}$$
 - $\frac{99}{-99}$

Set 4. Evaluate if a = -5, b = -8, and c = 2.

d.
$$2b - (-c)$$

d.
$$2b - (-c)$$

$$\mathbf{e}$$
. $cb^2 + a$

c.
$$\frac{-a^2+1}{4c}$$

f.
$$\frac{(ac)^3}{5b}$$