ASTRO総会 話題提供最新活動紹介

- 2017.10.29 南 善成
Another Collimation Mechanism of Astrophysical Jet

Yoshinori Minami
Advanced Science-Technology Research Organization (Formerly NRC Space Development Division), 35-13, Higashi-hocho-Chou, Nishioku, Yokohama 222-0062, Japan

Abstract: The acceleration mechanism of astrophysical jet and the collimation mechanism narrowing down to a long distance have been examined so far. It is a collimation problem of how to narrow the astrophysical jet narrowly. Further, the model of the astrophysical jet acceleration mechanism is required to solve this collimation problem at the same time as well as its acceleration. At the present time, the magnetic force model (magnetic centrifugal force and magnetic pressure) is regarded as the most dominant theory which solves the two problems of astrophysical jet acceleration and collimation at the same time. In addition to the present astrophysical jet narrow collimation mechanism by magnetic tension (pinch) force, in this article, another collimation mechanism which narrows down an astrophysical jet is newly introduced. That is, since a curvature is generated in the space around the astrophysical jet by magnetic field, a kind of pressure equivalent to the gravitational effect is generated in the direction of the interior of the jet as well as the pinch force from the outer circumferential surface of the astrophysical jet.

Key words: Astrophysical jet, accretion disk, black hole, collimation mechanism, acceleration mechanism, magnetic field, continuum, curvature, space-time, cosmology.

1. Introduction

The astrophysical jet is a narrow jetted plasma jet at high speed (100 km/s) that exits in both directions vertically from accretion disk around the compact central object such as a neutron star or black hole. Its length is an enormous, long and narrow jet reaching from 1 light year—10 light years—1 million light years. A jet propagating at a speed close to the speed of light is called a relativistic jet.

The acceleration mechanism of the astrophysical jet and the collimation mechanism narrowing down to a long distance have been examined so far. They are due to thermal gas pressure, light radiation pressure, and magnetic field pressure. Currently, Radiative Acceleration model accelerated by the radiation field of the accretion disk and Magnetic Acceleration model accelerated by magnetic field penetrating the accretion disk are representative models. The high velocity, highly collimated gas streams—jets—raise two major problems, namely how the jet material is accelerated, and how it is collimated (Fig. 1a).

It is a collimation problem of how to narrow the jet narrowly, and the model of the jet acceleration mechanism is required to solve this collimation problem at the same time as well as acceleration. At the present time, the magnetic force model (magnetic centrifugal force and magnetic pressure) is regarded as the most dominant theory which solves the two problems of jet acceleration and collimation at the same time. That is, the accretion disk generates a helical magnetic field by twisting the magnetic field lines, accelerates by magnetic force, and narrows the jet by magnetic tension (pinch). The self-pinching force of magnetic field twisted by the rotation occurs naturally as a force to collimate the jet thinly (Fig. 1b) [1-5].

However, there are also controversies among researchers as follows: 1) the global magnetic field cannot be MHD (magnetohydrodynamic) jet due to...
Another Collimation Mechanism of Astrophysical Jet
Interstellar Travel by Hyper-Space Navigation System

Yoshinari Minami

Abstract

An interstellar travel within a human lifetime is considered as utopian impossible. The interstellar travel using Special Relativity is utopian too. However, there exists the problem of the unknown parame tor. In addition, although space war using wormhole is also well-known, the size of the wormhole is smaller than the atom, and moreover the wormhole is predicted to fluctuate theoretically due to instabilities. Assuming Hyper-Space as being characterized by imaginary time, it is shown that the limitations due to the extremely long time required to achieve travel are removed. The Hyper-Space navigation theory assumes here would allow a spaceship to sail at any time and from any place for an interstellar travel to the furthest star systems, the whole mission time being within human lifetime.

This newly added paper introduces a realistic method of the interstellar travel (i.e., Hyper-Space navigation) based on the concept published as far as by author [1-5].

Keywords

Interstellar travel, Space-time, Imaginary time, Hyper-Space, Wormhole, Special Relativity, Time

Introduction

As is well known in astronomy, sixty thousand systems exist respectively within the range of 18 and 50 light years from our Solar System. For instance, Alpha Can taurus is the nearest star from Earth, and the star Sirius, which is the seventh nearest star, is 8.7 light years from Earth, while the Pleiades star cluster is 410 light years from us. According to Einstein’s Special Relativity, sail ing a spaceship into a star system at a distance longer than several hundred light years would take for an extremely long time even if the spaceship would travel at the speed of light. For instance, assuming that the spaceship is striking to the Pleiades star cluster at a speed of 0.99999c, it will arrive at the Pleiades 1.8 years later and, in the case of immediately starting of the return travel, it would be back to Earth 3.6 years after leaving for the Pleiades. But this would be just for the docks of the astronauts on board the spaceship for that mission. For people on Earth, the whole time period would be 820 years, with ponderous consequences as to the feasibility of a mission such as this. The first solution of the above-stated problem to obtain a breakthrough to propulsion science. However, from the standpoint of propulsion theory using not only momentum thrust but also pressure thrust, there is no propulsion theory which exceeds the speed of light, even if we use the field propulsion theory. Accordingly, the propulsion theory alone is not enough to establish the reality of interstellar travel, thereby requiring a navigation theory as a secondary solution.

Concerning interstellar travel, the method using a wormhole is well-known, relying on space warps such as for instance Wheeler-DeWitt Wormholes, Kerr metric, Schwarzschild metric, Morris-Thorne Field, Rapidly Wormhole based on the solutions of equations of General Relativity [7]. However, since the size of wormhole is smaller than the atom size i.e., a...
Due to the lack of space propulsion technology and space navigation technology that can accelerate at high speed in a short time, it is well known that mankind does not currently have technology to realize a journey to the star system.

This book explains the galaxy exploration by combining the field propulsion based on the physical structure of space-time and new navigation theory.

From the physical and engineering point of view, the propulsion principle and propulsion theory of field propulsion are explained. As a typical example of field propulsion, space drive propulsion system including its theory, registered patent, the latest development from the viewpoint of cosmology and astrophysics are also discussed.

Next, for galaxy exploration, navigation technology such as a wormhole that bypasses the wall of light speed is indispensable. A method for overcoming the “light barrier” (the seeming “wall-of-light” in 4-D space-time), that is, a hyperspace navigation theory to “jump the light-barrier” is explained.

The reader will not only get a good introduction to the science and technology of field power and propulsion physics, but also to the possibility of interstellar navigation.
FIELD PROPULSION PHYSICS AND INTERGALACTIC EXPLORATION

AUTHORS: Yoshinari Mitami (Advanced Science-Technology Research Organization (Formerly NEC Space Development Division)) and Herman David Froting (Flight Unlimited, Retired)

SERIES: Space Science, Exploration and Policies, 2017

RETAIL PRICE: $160 Special Price: $128

BOOK DESCRIPTION: Due to the lack of space propulsion technology and space navigation technology that can accelerate at high speeds in a short time, it is well-known that mankind does not currently have technology to realize a journey to other star systems. This book explains galaxy exploration by combining field propulsion based on the physical structure of space-time and a new navigation theory. A field propulsion system is propelled without mass expulsion. The propulsive force as a pressure that arises from the interaction of space-time around the spaceship itself. This causes the spaceship to propel against the space-time structure. Firstly, from the physical and engineering point of view, the propulsion principle and propulsion theory of field propulsion are explained. As a typical example of field propulsion, the space drive propulsion system includes the theory, the registered patent, and the latest development from the viewpoints of cosmology and astrophysics. Secondly, for galaxy exploration, navigation technology based on a wormhole that bypasses the wall of light speed, not propulsion technology, is indispensable. A method for overcoming the "light barrier" (the seeming "wall-of-light" in 4-D space-time), or a hyperspace navigation theory to "jump the light barrier", is explained. Combining the space propulsion system and the navigation system makes it possible to perform a realistic galaxy exploration.

TABLE OF CONTENTS:
Chapter 1. Introduction to Field Propulsion (Yoshinari Mitami)
Chapter 2. Energy for Spacetime Power and Propulsion from Space Itself (Herman D. Froting Jr.)
Chapter 3. The Evolution of Field Propulsion from a Much Slower-than-Light to Much Faster-than-Light Speed (Herman D. Froting Jr.)
Chapter 4. Space Drive Propulsion: A Typical Field Propulsion System (Yoshinari Mitami)
Chapter 5. Astrophysical Propulsion (Yoshinari Mitami)
Chapter 6. Galaxy Exploration: An Attempt to Begin with an Initiative for Intergalactic Flight (Yoshinari Mitami)
Chapter 7. Rapid Transit by Field Propulsion to Distant Stars (Herman D. Froting Jr.)
Chapter 8. Hyper-Space Navigation (Yoshinari Mitami)
Conclusion

To place an order, please call (631)-299-0024, send an email to Billing.Central@NovaPublishers.com with the code L.eaflet20 in the subject line or fill out the form below:

Name: __ Address: __

ISBN: 978-1-53612-554-2 Number of copies: __________

Send Proforma Invoice: ☐ Pay by Check: ☐

Credit Card Number: ___________________________ Expiration Date: (Mo) _______ (Yr) _______

Authorized Signature: __

400 Over Avenue, Suite 1600, Hauppauge, NY 11788-3619, USA
Phone: (631) 231-7269 Fax: (631) 231-8175
Email: nova.main@novapublishers.com www.novapublishers.com
5章Astrophysical Propulsionの章で、ブラックホールの降着円盤や宇宙ジェットを含む最新の天体物理学を駆使した宇宙推進について紹介。
Title of Invention

Space drive propulsion device

Application No 9226804.4

Date of Filing 23.12.1992

Priority Data

(31) 022956189
(32) 24.12.1991
JP

Application published 30.08.1993

Domestic classification

H2A AK53 AK121 AJ125
AB225 FS 5G B7G C43A

Documents cited

JP6300733302 A

Field of Search

As for published application 2252694 A viz:
UK CL/Edition 13 BYG H2A
AKMR AKMS AKS3 AKS4
IRE CLH MOO 53/09 97/00,
J RO2N 11/00
Online databases: WPI,
CLAIMS, INSEPC
updated as appropriate
特許2936858 (1999.6.11)
UK Patent GB2262844B (1995.08.16)
Space drive propulsion device
Filing:1992.12.23
Application published:1993.6.30
図18
初期磁場

レーザ光

特許2936858

black hole
accretion disk
event horizon
inter-stellar magnetic field lines
poloidal magnetosphere
A Journey to the Stars: Space Propulsion Brought About by Astrophysical Phenomena Such as Accretion Disk and Astrophysical Jet

Yoshinari Minami*

Advanced Science-Technology Research Organization, Formerly NEC Space Development Division, Japan

*Corresponding author: Yoshinari Minami, Advanced Science-Technology Research Organization, Formerly NEC Space Development Division, Japan, Tel: 0222776611; E-mail: y-minami@mtj.biglobe.ne.jp

Received: Jul 04, 2016; Accepted: Jul 27, 2016; Published: Aug 04, 2016

Copyright: © 2016 Minami Y. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Travel to the Space in 21st century

At the present stage of space propulsion technology, the only practical propulsion system is chemical propulsion system and electric propulsion system, which are based on expulsion of a mass to induce a momentum thrust. Since the maximum speed is limited by the product of the gas effective exhaust velocity and the natural logarithm of mass ratio, its speed is too slow for the spaceship to achieve the interplanetary travel and interstellar travel. Thus the breakthrough of the propulsion system is needed for the journey in the space in the 21 century.

Space Propulsion Brought About by Astrophysical Phenomena

Here, astrophysical phenomena refer mainly accretion disk and astrophysical jet around black holes. Accretion disk is rotating gaseous disk with accretion flow, which form around gravitating object, such as white dwarfs, neutron stars, and black holes. At the present day, owing to the development of observational technology, it is believed that accretion disk causes the various active phenomena in the universe.
The Role of Magnetic Field in Astrophysics and Its Application

1. Application for Acceleration and Collimation Mechanism of Astrophysical Jet

2. Application for Gravitational Wave Generation
 1989.4月講演、2016.5月Journal

3. Application for Space Propulsion System