Random Walks and \sqrt{N}

The Brownian motion you have seen through a microscope can be simply modelled as a 1-D 'random walk'. There is a simple rule to describe how far you typically get from the origin (your root-mean-square displacement) after N moves of such a walk, which is:

$$d_{rms} \propto \sqrt{N}$$

This is <u>not</u> the same as saying that the particle's <u>mean</u> displacement must be zero: an RMS value is not the same as a mean value. If you want more detail, there is an extensive proof here: <u>galileo.phys.virginia.edu/classes/152.mf1i.spring02/RandomWalk.htm</u>.

But how accurate is this rule in practice?

Experiment

1) **Equipment:** One unbiased coin, one counter, one walkway (PTO)

2) Method

- a) Place the counter at the origin of the walkway
- b) Toss the coin. If heads, move the counter one place to the right; if tails, move one to the left.
- c) Repeat for 20 coin tosses (i.e. N = 20)
- d) Record the final displacement (d) of the counter from the origin after the 20 moves (e.g. if it ends one place to the left of the origin, d = -1).
- e) Repeat steps a) d) a number of times until you have a few (probably different) values of d after 20 moves
- f) Record some other people's results and calculate the rms value of d for the whole class's results. According to theory, this should equal $\sqrt{20} \approx 4.5$.
- g) If you have time, repeat for other values of N and see if $d_{rms} = \sqrt{N}$ each time.

3) Results

a) My results for N = 20

Trial number	Final displacement of counter after 20 moves (d)
1	
2	
3	
4	
5	
RMS value	

b) Other results for N = 20

Person	$d_{ m rms}$
Whole class average d_{rms}	

10
6
8
<u>L</u>
9
5
4
3
2
1
0
-1
-2
-3
4-
-5
9-
7-
8-
6-
-10