

From Concept to Process: E. coli Metabolic Engineering for Production of Glucosamine and N-Acetylglucosamine

Bio-Technical Resources (BTR)

www.biotechresources.com

1035 S 7th Street, Manitowoc, WI 54220

Phone: (920) 684-5518

Fax: (920) 684-5519

Email: info@biotechresources.com

Glucosamine

- Dietary supplement for the treatment of arthritis
- Increasing market: >\$350 MM/year in the US
- Current manufacture by hydrolysis of chitin from shellfish
- Raw material supply limitation and shellfish allergy problem
- Fermentation process developed by Bio-Technical Resources

Glucosamine Pathway in *E. coli*

Metabolic Engineering Strategy to Produce Glucosamine

Production of Glucosamine in *E. coli*

Genotype	Glucosamine, mg/L			
Shake Flask:				
Host strain (Δnag manXYZ DE3	3) 4			
T7-glmS plasmid	37			
T7-glmS:: $\Delta lacZ$ (integrant)	75			
<u>Fermentor</u> :				
T7- glmS:: $\Delta lacZ$ (integrant)	400			

Inhibition of GlcN6P Synthase

- ❖ The biosynthesis enzyme GlcN6P Synthase (GlmS) is product-inhibited
- ❖ Activity is lowered to ~20% at 6 mM GlcN6P
- Directed Evolution was undertaken to generate and select for variants resistant to product inhibition

Generation of Mutant glmS Alleles

Error-prone PCR to generate mutations in the *E. coli glmS* gene

Library of expression/integration plasmids in the production host

Screening for improved enzymes by cross-feeding plate assay

Integration of the mutant *glmS* genes

Product Inhibition of the WT GImS and Evolved Variants

Glucosamine Production Using End Product-Resistant Mutants

Glucosamine (g/L)

Evolved enzymes lead to greatly improved production

Properties of GlcN6P Synthase in Mutant Strains

Strain	Mutations	Glucosamine Production ¹	Specific Activity	Product Resistance ²	Thermal Stability ³
2123-12	none	0.3	0.39	20	95
2123-49	I4T I272T S450P	4.6	0.38	65	8
2123-54	A39T R250C G472S	7.2	0.42	61	4
2123-124	L469P	5.3	0.008	77	101
2123-149	G472S	0.6	0.49	45	78

¹Glucosamine production: g/L

²Percent activity with 10 mM glucosamine-6-phosphate

³Percent activity after 30 minutes at 50°C

Locations of *glmS* Mutations and Invariant Residues

Mutations in the GlmS Isomerase Domian

Lactose-Induced Glucosamine Production

- Protocols for lactose induction of GlcN production were established in one-liter fermentors
- GlcN production reached 17 g/L, \sim 4,000-fold improvement over the wild type *E. coli* strain
- Titer was still far below the target for commercialization of 50 g/L

Glucosamine Degradation at Different pH

Growth Inhibition by Glucosamine at Different Concentrations

How to Overcome the Challenges? Glucosamine Degradation and Toxicity

N-Acetylglucosamine as a Fermentation Product

- Favorable fermentation product characteristics
 - Stable over a range of pH values
 - Non-inhibitory to growth
 - Readily converted to glucosamine by hydrolysis
- Straightforward to modify the pathway

Over-Expression of a Yeast GNA1 Gene

GIcN-6-P

GIcNAc-6-P

Metabolic Engineering to Produce N-Acetylglucosamine

Metabolic Engineering to Produce N-Acetylglucosamine

➤ GlcNAC: accumulated in the medium as the only amino sugar product

➤ GlcN: not detectable

NAG Fermentation with a GNA1 Plasmid

Process Parameters for N-Acetylglucosamine Fermentation

Physical

• Temperature: 30°C

• pH: 6.9 (controlled with ammonia)

• Oxygen: 20% or higher

Process

• Medium: Defined, minimal salts + glucose and NH₃

• Protocol: Bi-phasic (growth and production phases)

Induction: Lactose

• Cell Density: 25 g/L

Lactose-Induced *N*-Acetylglucosamine Production

N-Acetylglucosamine Hydrolysis to Glucosamine

Glucosamine

CH₂OH OOH HOH H

- Increasingly used nutraceutical to treat arthritis
- Current manufacture by hydrolysis of chitin/chitosan from shellfish

N-Acetylglucosamine

- Many nutraceutical, pharmaceutical and cosmetic applications
- Current manufacture by chemical N-acetylation of glucosamine
- Raw material supply limitation and shellfish allergy problem
- Fermentation processes developed by Bio-Technical Resources

Technology Development Time Line

Phase I

- Metabolic engineering feasibility
- Generation of improved GlmS enzyme

Phase II:

- Glucosamine process improvement
- Identification of the key problem: glucosamine degradation
- Concept of NAG fermentation

Phase III:

- Modification of the pathway for NAG production
- Development of a high-performance NAG process

Acknowledgments

Phase I:

Rich Burlingame, Alan Berry, Jim Millis, Kathy Nielsen, Chris Pynnonen, Bonnie Walsh, Cheryl Barrett, Fernando Sanchez-Riera

Phases II and III:

Ming-De Deng, Sarah Wassink, Candice Leanna, Kathy Nielsen, Al Grund, Jeff Running, Linsheng Song, Dave Severson, Brian Huckins, Bonnie Walsh, Troy Lutze, Reinhardt Rosson

References:

- Deng MD, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, Running JA, Kunesh CA, Song L, Jerrell TA and Rosson RA. Metabolic Engineering of *Escherichia coli* for industrial production of glucosamine and *N*-acetylglucosamine. Metabolic Engineering 7:201-214 (2007)
- ❖ Deng MD, Grund AD, Wassink SL, Peng SS, Nielsen KL, Huckins BD, Walsh BL and Burlingame RP. Directed evolution and characterization of *Escherichia coli* glucosamine synthase. Biochimie, 2006, 88:419-429