

Fermentation Process Development Examples

Bio-Technical Resources (BTR)

www.biotechresources.com

1035 S 7th Street, Manitowoc, WI 54220

Phone: (920) 684-5518

Fax: (920) 684-5519

Email: info@biotechresources.com

Example 1. Lactose-Induced Production of Glucosamine and *N*-Acetylglucosamine in *E. coli*

- **❖ BTR internal R&D program:** develop a robust commercial process for glucosamine production using metabolically engineered *E. coli* strains
- Program highlights:
 - Clucosamine process is prone to acetate accumulation. Trace metal addition was optimized to control growth and product formation.
 - ➤ Glucosamine titer reached 18 g/L
 - With further metabolically engineered strains, a biphasic process was developed for *N*-acetylglucosamine production
 - A single addition of lactose at a low level provided an efficient induction for gene expression and product formation
 - N-acetylglucosamine produced over 110 g/L within 60 hrs
 - Process successfully scaled up to 250-liter scale
- For more details, please see PowerPoint slide show "Fermentation Process Development for Glucosamine and *N*-Acetylglucosamine Production"

Example 2. Fermentation Optimization for Expression of a Soluble Protein

❖ BTR internal R&D program: produce and partially purify 50 grams of linoleate isomerase protein using recombinant *E. coli* for bioconversion of linoleic acid

Program highlights:

- Recombinant isomerase (55 kDa) expressed at high level in *E. coli*, but almost all sequestered in inclusion bodies (IB) as inactive enzyme under standard conditions
- Developed a defined mineral salts-based medium supplemented with N-Z amine
- ➤ Level of active enzyme improved by ~370 fold compared to LB medium-based process
- For more details, please see PowerPoint slide show "<u>E. coli</u> <u>Fermentation Process Development for a Soluble Recombinant</u> Protein"

Example 3. Fermentation Process Development for Protein Expression and Secretion in *Bacillus subtilis*

Client needs

- Develop and optimize fermentation process to produce proteins for pharmaceutical applications
- Scale up and demonstrate the process

Development Program

- Optimized fermentation medium and operation conditions
- Substantially increased product titer
- > Process scaled up to 14-liter and 60-liter scales
- Developed a scalable purification process
- Prepared several grams of purified protein to enable Client's clinic trials

Example 4. Pharmaceutical Biomass Product

Client needs

- A proprietary fermentation process, based on non-animal ingredients, to produce an anaerobic microorganism
- Develop a recovery protocol

Development program

- > Bottle studies to define appropriate culture medium
- > Fermentation process development and demonstration at 1-L scale
 - Final fermentation process $\geq 10^9$ viable cells/mL
- Developed partial purification process
- Biomass short and long-term stability verification
- **Development time: 9 months (in three phases)**

Example 5. *E. coli* Fermentation Process Development and Product Recovery

Client needs

- ➤ Define and optimize a fermentation process for production of an active recombinant protein (requiring external cofactor) in *E. coli* for pharmaceutical applications
- > Scale up and demonstrate the process at 250-liter scale

Development Program

- > Developed a defined medium free of animal ingredients, using readily available, consistent raw materials
- Optimized medium, induction, co-factor feeding and operations to maximize productivity
- > Substantially improved titer
- > Process scaled up to 14-liter scale
- Successfully demonstration at 250-liter scale
- Prepared a package for technology transfer to the manufacturing site

Additional Examples of Fermentation Process Development

- ❖ Increased the fermentation yield of a therapeutic protein while identifying a mutation and correcting the gene sequence
- Led the technology transfer of a generic antibiotic process, doubled the yield through process development, and successfully scaled the new process in our client's production facilities
- ❖ Increased the yield of an enzyme by 600% and assisted in identifying three new market opportunities
- Conducted a complete technical and economic assessment of an enzyme transformation which was used to determine feasibility, set technical goals, establish a budget, and develop time frames and work schedules for commercialization