Habitat filtering determines the functional niche occupancy of plant communities worldwide

1Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
2State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
3School of Plant Biology, University of Western Australia, Perth, WA, Australia
4Institute for Land, Water and Society, Charles Sturt University, Albury, NSW, Australia
5Institute of Geography, Federal University of Uberlândia – UFU, Uberlândia, Brazil
6Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
7Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
8Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
9Department of Evolution and Ecology, University of California, Davis, CA, USA
10Department of Biology, Algoma University, Marie, OA, Canada
11Department of Biology, University of California Riverside, Riverside, CA, USA
12CNRS UMR 6553, ECObio, Université de Rennes 1, Rennes, France
13Department of Botany, University of Wyoming, Laramie, WY, USA
14Landcare Research, Lincoln, New Zealand
15Department of Botany, University of South Bohemia, Ceske Budejovice, Czech Republic
16Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
17Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
18Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
19Department of Biology, Lund University, Lund, Sweden
20INRA, USC 1339 (Centre d’étude biologique de Chizé – CNRS), Villiers en Bois, France
21Centre d’étude biologique de Chizé, UMR 7372 CNRS – Université de La Rochelle, Villiers en Bois, France
22Landcare Research, Hamilton, New Zealand
23Departamento de Ecología, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
24UMR Ecosystème Prairial, INRA, VetAgroSup, Clermont-Ferrand, France
25Institute for the Advanced Study of Sustainability, United Nations University, Shibuya, Japan
26Graduate School of Life Sciences, Tohoku University, Sendai, Japan
27Department of Biology, Faculty of Science, Chiba University, Chiba, Japan

Paper previously published as Standard Paper
1. INTRODUCTION

Understanding the processes that drive the assembly of local communities from a regional species pool has been a fundamental goal in ecology for decades (Diamond, 1975; Hubbell, 2001; Jung, Violle, Mondy, Hoffmann & Muller, 2010; Keddy, 1992; Kraft, Valencia & Ackerly, 2008; Ricklefs & Travis, 1980; Weiher & Keddy, 1999). Recent advances suggest that variation in the patterns of biodiversity results from multiple assembly processes varying in relative importance (Maire et al., 2012; Spasojevic & Suding, 2012; Takahashi & Tanaka, 2016). For instance, niche-based processes such as habitat filtering (Diaz, Cabido & Casanoves, 1998; Keddy, 1992) and limiting similarity (MacArthur & Levins, 1967) may be the main determinants of biodiversity in some communities, while stochastic processes (Hubbell, 2001) may dominate in others. One classical approach for assessing the relative importance of different assembly processes involves mapping all species of a community onto an n-dimensional niche space (Hutchinson, 1957), quantifying the niche occupancy structure, and investigating how it varies from species-poor to species-rich communities (Hutchinson, 1978; Litván & Hansell, 1990). However, this

Abstract

1. How the patterns of niche occupancy vary from species-poor to species-rich communities is a fundamental question in ecology that has a central bearing on the processes that drive patterns of biodiversity. As species richness increases, habitat filtering should constrain the expansion of total niche volume, while limiting similarity should restrict the degree of niche overlap between species. Here, by explicitly incorporating intraspecific trait variability, we investigate the relationship between functional niche occupancy and species richness at the global scale.

2. We assembled 21 datasets worldwide, spanning tropical to temperate biomes and consisting of 313 plant communities representing different growth forms. We quantified three key niche occupancy components (the total functional volume, the functional overlap between species and the average functional volume per species) for each community, related each component to species richness, and compared each component to the null expectations.

3. As species richness increased, communities were more functionally diverse (an increase in total functional volume), and species overlapped more within the community (an increase in functional overlap) but did not more finely divide the functional space (no decline in average functional volume). Null model analyses provided evidence for habitat filtering (smaller total functional volume than expectation), but not for limiting similarity (larger functional overlap and larger average functional volume than expectation) as a process driving the pattern of functional niche occupancy.

4. Synthesis. Habitat filtering is a widespread process driving the pattern of functional niche occupancy across plant communities and coexisting species tend to be more functionally similar rather than more functionally specialized. Our results indicate that including intraspecific trait variability will contribute to a better understanding of the processes driving patterns of functional niche occupancy.

KEYWORDS

community assembly, determinants of plant community diversity and structure, habitat filtering, intraspecific trait variability, limiting similarity, niche occupancy, species richness
FIGURE 1 Functional niche occupancy with (a) and without (b) intraspecific trait variability. In case (a), each species occupies a specific functional volume (a coloured circle), then functional niche occupancy can be described by: the total functional volume (T, union of the circles), the functional overlap (O, sum of intersections among the circles) and the average functional volume per species (A, the average volumes of circles). In case (b), each species is represented by a single point based on the species mean trait values. Total functional volume (e.g. convex hull of all species’ points as solid lines) and degree of species packing (mean nearest neighbour distance between species’ points as dotted lines) were usually used to describe functional niche occupancy (Ricklefs & Miles, 1994; Swenson & Weiser, 2014)

approach has been hindered by the practical limitations of measuring resource niche axes for a large number of species in natural communities.

Trait-based ecology offers an alternative approach for investigating niche occupancy structure in functional space (Mason, de Bello, Doležal & Lepš, 2011; Mouillot et al., 2005). An n-dimensional functional space is defined analogously to Hutchinson’s (1957) n-dimensional niche space, except that the axes represent functional traits rather than resources (Rosenfeld, 2002). The vector of n trait values possessed by a single individual defines its position in this functional space and the projection of all individuals of a species represents the functional volume occupied by this species. When all species of a community are mapped onto the functional space, the functional niche occupancy structure of the community can be described by three metrics (Figure 1a): the total functional volume of the community (T), the functional overlap between species within the community (O) and the average functional volume per species (A). There is an underlying relationship (Equation 1; see deviation in Appendix S1), given here for the first time, between species richness (S) and the three niche occupancy metrics:

\[S = \frac{T + O}{A} \]

Equation 1 is a mathematical identity (is true by definition), not an empirical hypothesis that requires testing. The importance of Equation 1 is that it not only specifies the logically possible responses of the niche occupancy metrics as species richness increases, but also makes explicit the fact that all three components of niche occupancy (T, O and A) must be quantified in order to completely explain variation in species richness (Figure 1).

Even though Equation 1 applies to communities driven by any assembly process, different responses of the three metrics to species richness may reveal the relative importance of different community assembly mechanisms (Figure 2): (1) neutrality, (2) habitat filtering, (3) limiting similarity, and (4) a combination of habitat filtering and limiting similarity. Neutral theory assumes functional equivalence of species (Hubbell, 2001), and thus the pattern of functional niche occupancy in observed communities should be similar to that obtained by randomly assigning species from the regional species pool to local communities (Figure 2a). As species are randomly sampled, some species would overlap with the pre-existing ones while others would fill empty space, resulting in increases T and O, and without changes in A (Figure 2a). Habitat filtering excludes species with inappropriate trait combinations for given abiotic and biotic conditions, leading to trait convergence (Diaz et al., 1998; Keddy, 1992). Here, we used a broad definition of habitat filtering, including both abiotic and biotic (e.g. competitive displacement) filters, because these processes often lead to similar patterns of functional niche occupancy (Kunstler et al., 2012). Limiting similarity reduces the likelihood of co-occurrence of species that overlap too much in their niche occupancy, leading to trait divergence (Jung et al., 2010; MacArthur & Levins, 1967; Stubbs & Bastow, 2004). If habitat filtering prevails in communities (Figure 2b), T should be smaller than the null (neutral) expectation, while O and A could be larger or smaller than the null expectations, as long as they together satisfy Equation 1. If limiting similarity prevails in communities (Figure 2c), then O should be smaller than the null expectation, while T and A could be larger or smaller than the null expectations, as long as they together satisfy Equation 1. Finally, if habitat filtering and limiting similarity jointly drive the functional niche occupancy (smaller T and O than the null expectations), then species should on average occupy smaller functional volume s (A) to satisfy Equation 1 (Figure 2d).

No study, to our knowledge, has empirically measured all three components of niche occupancy by incorporating intraspecific trait variability in natural communities. Early studies investigated the
Figure 2. Predicted patterns of functional niche occupancy under different processes of community assembly: (a) pure neutral process, (b) only habitat filtering, (c) only limiting similarity, (d) both habitat filtering and limiting similarity. Different colored circles represent the functional spaces occupied by different species within a community. Grey dashed and red solid lines represent relationships between niche occupancy metrics (T, O and A) and species richness (S) for null and observed communities, respectively. T for total functional volume, O for functional overlap, A for average functional volume.

Relationship between niche occupancy in morphological space and species richness for animal communities containing a few species (reviewed by Ricklefs & Miles, 1994). Most of these studies found a positive relationship between the morphological volume (similar to T) and species richness, and a non-significant relationship between the degree of niche packing and species richness (reviewed in Ricklefs & Miles, 1994; but see Ricklefs, 2009). Recently, Lamanna et al. (2014) and Swenson and Weiser (2014) investigated functional niche occupancy for tree communities and found that the total functional volume (T) increased with species richness but was always lower than the null expectation, which was consistent with habitat filtering (Figure 2b). Swenson and Weiser (2014) further pointed out that the degree of niche packing increased with increasing species richness, but species were less packed in functional space than the null expectation, suggesting limiting similarity. Despite the progress made by these studies (Lamanna et al., 2014; Ricklefs & Miles, 1994; Swenson & Weiser, 2014), no study has included intraspecific trait variability (necessary for the estimation of O and A) and explicitly measured all three niche occupancy components. Instead, each species was positioned, by its mean trait values, as single point in functional space (Figure 1b; Ricklefs & Miles, 1994; Lamanna et al., 2014; Swenson & Weiser, 2014). The functional volume was only calculated for an entire community (Figure 1b) but not for individual species within a community (Figure 1a). In this approach, it was not possible to tell whether species overlapped more within the community and/or more finely divided the functional space as species richness increased (Ricklefs & Miles, 1994; Swenson & Weiser, 2014). Moreover, these vegetation studies (Lamanna et al., 2014; Swenson & Weiser, 2014) have investigated niche occupancy only for tree communities. Therefore, more comprehensive studies, involving herbaceous and shrub communities, are necessary in order to understand the generality of global mechanisms of community assembly.

In the present study, we assembled 21 datasets from across the world consisting of 313 plant communities for which information on intraspecific trait variability was available. These plant communities spanned tropical to temperate terrestrial biomes and covered a variety of growth forms (e.g. trees, shrubs, herbs). We quantified the functional spaces using pair-wise combinations of nine of the most common traits across all datasets. We then used the hypervolume method (Blonder, Lamanna, Viole & Enquist, 2014) to calculate the niche occupancy metrics for all communities in the nine functional spaces. Finally, we related each metric to species richness, and compared them to the null expectation to test hypotheses of community assembly (Figure 2).

2 | MATERIALS AND METHODS

2.1 | Data collection

To estimate the functional niche occupancy metrics, we assembled datasets from published and unpublished studies on the basis of the following requirements (Table S1): (1) multiple traits were measured on the same plant individual, so that each individual could be placed in a functional space with its trait values as coordinates; (2) traits were measured for several individuals of a species (median of 10 individuals per species, Table S2) to estimate the functional volume occupied by each species; (3) traits were measured for all the dominant species of a community (more than 60% of total species richness was sampled, or more than 80% of total community abundance was represented by the sampled species, Table S2) to quantify the community niche occupancy. Therefore, species richness here refers to the number of species with available trait values included in the analyses (the effective species richness, Lamanna et al., 2014). Overall, we collected 21 datasets that met the above criteria (Table S1). Each dataset was located within a given geographical region and contained more than one community within the same region. A community was defined as the sampling unit (e.g. a quadrat or a plot) used within each dataset. However, we combined several neighbouring sampling units (e.g. within the same stratum, same transect or same site) as a combined community when the traits were not measured per sampling unit but at a larger scale, or when a dataset included many rare species per sampling unit (Table S2). In total, our analyses were based on 313 communities spanning temperate to tropical biomes (Figure S1) nested within the 21 datasets. Only the nine most common (of 32) traits were included...
in the analyses (vegetative height, VH; specific leaf area, SLA; leaf dry matter content, LDMC; leaf area, LA; leaf carbon concentration, LCC; and leaf nitrogen concentration, LNC; specific stem density, SSD; bark thickness, BT; diameter at ground/breast level, DGH). All trait values were log-transformed to better approximate normality, and then standardized to have zero mean and unit standard deviation (SD) to make the functional volume metrics comparable across analyses (Lamanna et al., 2014).

2.2 Quantifying the functional niche occupancy metrics within a community

The functional volume of a single species can be estimated from a set of points (individuals of that species within a community are positioned in the functional space on the basis of their trait values) using a non-parametric method based on kernel density estimation (Stine & Heyse, 2001). This approach has been applied to quantify niche breadth and niche overlap in one-dimensional space (Mason et al., 2011; Mouillot et al., 2005), and was extended to multi-dimensional space by Blonder et al. (2014). In the present study, each hypervolume (functional volume of a species) was constructed using a quantile threshold of 0.05, 1,000 Monte Carlo samples per data point, and a fixed kernel bandwidth of 0.5 SD (Blonder et al., 2014; Lamanna et al., 2014). Details about the parameter settings of the hypervolume method are given in Appendix S2. We also tested another fixed kernel bandwidth (the median intraspecific trait variation): both bandwidths gave similar results; we only report the results using bandwidth of 0.5 SD.

After calculating the functional volume of each species within a community, the three niche occupancy components were quantified (Litvak & Hansell, 1990). Total functional volume (T) was quantified as the union of all individual functional volumes, functional overlap (O) was quantified as the sum of the intersections among the functional volumes of individual plants weighted by the level of the intersection (i.e. the number of species occupying the same functional space) and the average functional volume per species (A) was calculated as the mean of the functional volume of all species (Figure 1a). The mathematical formulas for calculating the niche occupancy metrics are given in Appendix S1. The convex hull method has also been used to quantify functional volumes (Cornwell, Schwikl & Ackerly, 2006; Swenson & Weiser, 2014). However, the convex hull method is relatively more sensitive to outliers than the hypervolume method (see an example in Appendix S2) and is unable to calculate the union of multiple (more than 10) convex hulls (Baselga & Orme, 2012), and thus was not applicable for our study. A detailed comparison of different ways of estimating the niche volumes is given in Appendix S3.

A larger number of individuals per species are required to achieve a robust estimate of species’ functional volume in high-dimensional functional space (Blonder et al., 2014). To better estimate species’ functional volume and to allow the inclusion of more datasets, we restricted our analyses to two-dimensional functional spaces (LDMC ~ SLA, LA ~ SLA, SLA ~ VH, LDMC ~ VH, LA ~ LDMC, LA ~ VH, SSD ~ BT, SSD ~ DGH, LCC ~ LNC). The niche occupancy metrics were quantified for each community in each functional space.

2.3 Regressions and null model analyses

Linear mixed-effects models, using the ‘nlme’ package in R (Pinheiro, Bates, DebRoy, Sarkar & Team, 2017), were used to investigate the relationships between the niche occupancy metrics and species richness, while taking into account the variation of intercepts and slopes between datasets. In each case, we regressed a niche occupancy metric on species richness allowing for random variation in intercepts and allowing for random variation in slopes if it significantly improved the fit of the model.

We constructed null models to test whether the observed metrics (T, O and A) in each community were significantly different from the null expectations. The null models were built in five steps (see the R codes in Appendix 4). (1) For each community, we first defined its ‘regional’ species pool as consisting of all the species occurring in the dataset to which the community belonged. We did not use a ‘global’ species pool (all species occurring across datasets) because there is no doubt that trait filtering at large biogeographical scales occurs (e.g. VH is lower in grasslands than in forests), and limiting similarity due to biological interactions is only expected to occur between species that can potentially coexist. (2) Given a community containing x species and t traits, we randomly selected x species from the regional species pool for which the t traits were measured (not all species in the regional species pool are available for the t traits). (3) For each selected species, we randomly selected a community from the regional species pool containing that species (most species were present in more than one community) and assigned the t traits of the individuals from the selected community to the species (the functional volume of a species in a null community was also estimated by the t traits of individuals from one community). (4) For each null community (the x randomly selected species and randomly assigned t traits for each selected species), we calculated the functional volume of each selected species and the three niche occupancy metrics. (5) We repeated steps (2)–(4) 1,000 times to generate a null distribution of communities for each metric. Finally, to determine whether the observed metrics for each community were greater or smaller than the null expectation, we calculated the standardized effect size (SES) as the observed metric minus the mean of the null distribution divided by the SD of the null distribution. A Wilcoxon signed-rank test was used to test whether the SES value of each metric was significantly different from zero. A positive SES value indicates that the observed metric is larger than the null expectation while a negative SES value indicates that the observed metric is smaller than the null expectation. All analyses were conducted in R (R Core Team 2014).

3 RESULTS

In the nine two-dimensional functional spaces, both the total functional volume (T) and the amount of overlap between coexisting species (O) increased with increasing species richness (S), while the average functional volume per species (A) did not vary significantly or weakly increased with S (Table 1 and Figure 3). The increasing rates (slopes) of T–S and O–S varied significantly between datasets.
In most cases (Table 1), T was generally smaller than the null expectation across different communities, although not significantly so in three of nine functional spaces (Figure 4a). Both O (Figure 4b) and A (Figure 4c) were larger than the null expectations, but were not significant in the two functional spaces quantified by stem traits (BT~SSD and DGH~SSD, Figure 4b,c).

In each model, random variation in intercepts between datasets was allowed and random variation in slopes was included if it significantly improved the model (p < .05). Numbers in brackets are the SDs of slopes between datasets if applicable. Pearson correlation coefficients were measured between the pair of traits used for the axes of each functional space. Columns 'Datasets' and 'Communities' give the number of datasets and communities available for each trait combination, respectively. T for total functional volume, O for functional overlap, A for average functional volume. Traits abbreviations: vegetative height (VH), specific leaf area (SLA), leaf dry matter content (LDMC), leaf area (LA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC), specific stem density (SSD), bark thickness (BT), diameter at ground/breast level (DGH).

TABLE 1 Linear mixed-effects models for relationships between niche occupancy metrics (T, O and A) and species richness (S)

<table>
<thead>
<tr>
<th>Functional spaces</th>
<th>Correlations</th>
<th>Datasets</th>
<th>Communities</th>
<th>T Slope</th>
<th>p-value</th>
<th>O Slope</th>
<th>p-value</th>
<th>A Slope</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA~LDMC</td>
<td>-0.547</td>
<td>17</td>
<td>239</td>
<td>0.341 (0.262)</td>
<td><.001</td>
<td>2.331 (0.948)</td>
<td><.001</td>
<td>0.012 (.213)</td>
<td></td>
</tr>
<tr>
<td>LA~SLA</td>
<td>0.033</td>
<td>14</td>
<td>198</td>
<td>0.263 (0.078)</td>
<td><.001</td>
<td>2.208 (0.656)</td>
<td><.001</td>
<td>0.016 (.01)</td>
<td></td>
</tr>
<tr>
<td>VH~SLA</td>
<td>-0.277</td>
<td>14</td>
<td>160</td>
<td>0.228 (0.088)</td>
<td><.001</td>
<td>2.155 (0.494)</td>
<td><.001</td>
<td>0.004 (.06)</td>
<td></td>
</tr>
<tr>
<td>VH~LDMC</td>
<td>0.51</td>
<td>12</td>
<td>157</td>
<td>0.265 (0.121)</td>
<td><.001</td>
<td>2.257 (0.672)</td>
<td><.001</td>
<td>0.006 (.032)</td>
<td></td>
</tr>
<tr>
<td>LA~LDMC</td>
<td>0.389</td>
<td>10</td>
<td>130</td>
<td>0.342 (0.152)</td>
<td><.001</td>
<td>2.326 (0.822)</td>
<td><.001</td>
<td>0.016 (.093)</td>
<td></td>
</tr>
<tr>
<td>VH~LA</td>
<td>0.752</td>
<td>11</td>
<td>127</td>
<td>0.105</td>
<td><.001</td>
<td>1.729 (0.284)</td>
<td><.001</td>
<td>0.002 (.21)</td>
<td></td>
</tr>
<tr>
<td>SSD~BT</td>
<td>-0.019</td>
<td>3</td>
<td>44</td>
<td>0.232</td>
<td><.001</td>
<td>3.056</td>
<td><.001</td>
<td>0.015 (.001)</td>
<td></td>
</tr>
<tr>
<td>SSD~DGH</td>
<td>0.024</td>
<td>3</td>
<td>44</td>
<td>0.273 (0.212)</td>
<td>.04</td>
<td>3.152</td>
<td><.001</td>
<td>0.012 . (.001)</td>
<td></td>
</tr>
<tr>
<td>LCC~LNC</td>
<td>-0.683</td>
<td>4</td>
<td>28</td>
<td>0.083</td>
<td><.001</td>
<td>1.47</td>
<td><.001</td>
<td>0.001 .745</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 3 Scatter plots showing the relationships between niche occupancy metrics (T, O and A) and species richness (S) in two representative functional spaces (VH~SLA and LCC~LNC). The regression lines are fitted with the average slope and intercept between datasets (Table 1). T for total functional volume, O for functional overlap, A for average functional volume. Trait abbreviations: vegetative height (VH); specific leaf area (SLA), leaf carbon concentration (LCC) and leaf nitrogen concentration (LNC).
The increase in total functional volume implied that communities were more functionally diverse in species-rich communities than in species-poor communities. However, the expansion of the total functional volume associated with increasing species richness was constrained and thus lower than the null expectation across communities (Figure 4a), suggesting habitat filtering as found in previous studies (Lamanna et al., 2014; Swenson & Weiser, 2014). In other words, although larger functional volumes were occupied as species richness increased, species were still more tightly packed in functional space relative to the neutral expectation. Curiously, regressions between the SES of total functional volume and species richness indicated that species were more tightly packed (habitat filtering was stronger) in species-rich communities than species-poor communities (SES_T < 0 and decreased with S, Figure 4 and Table S3). In our study, habitat filtering was not attributed to large-scale biogeographic factors such as climate differences, because the species pool used in our null model only included species that occurred within the same geographical region. To know what and how environmental factors (e.g. soil fertility, water availability or disturbance regimes) drive habitat filtering and the pattern of functional niche occupancy (Le Bagousse-Pinguet et al., 2017), requires future studies by investigating how the pattern of functional niche occupancy varied along the environmental gradients.

Because intraspecific trait variability was included in our study, we were able to address a previously unanswered question: do species overlap more within the community and/or more finely divide the functional space as species richness increases? We found an increase in functional overlap but no decline in average functional volume with increasing species richness, indicating that species overlapped more rather than more finely divided the functional space. Moreover, the greater functional overlap (Figure 4b) and the larger average functional volume (Figure 4c) than the null expectation (Figure 4b) both suggest that limiting similarity (MacArthur & Levins, 1967) is not a fundamental processes regulating the pattern of functional niche occupancy at the spatial scales used here. Instead, our results suggest that habitat filtering alone determines the functional niche occupancy of the studied plant communities worldwide (Figure 2b).

Our results are based on the largest and most representative collection of available datasets to date, but there are some limitations that should be addressed in future studies as more extensive datasets become available. First, some habitats (e.g. tundra, desert and boreal sites) were not included or were underrepresented in our datasets. Second, although our analysis included traits that covered key plant-strategy axes (Díaz et al., 2016; Wright et al., 2004), several types of traits (e.g. secondary compounds, root, phenological and seed traits) reflecting other potentially important functional axes (Ricklefs & Marquis, 2012) on which species might be divergent, were not considered. In addition, analyses were restricted to two-dimensional functional spaces (pairwise traits combination) because estimating species’ functional volume in high-dimensional space requires larger sample size per species (Blonder et al., 2014). Third, trait sampling efforts (e.g. the percentage of species and number of individuals per species sampled, Table S2) were not consistent across studies. Hence, the influence of rare species (Umana, Zhang, Cao, Lin & Swenson, 2015) and...
the influence of trait sample size (Appendix S2) on functional niche occupancy could not be determined in our study. Finally, the spatial scale of communities varied among datasets and, in some cases, might not be fine enough to detect neighbourhood scale patterns of niche differentiation resulting from limiting similarity (de Bello et al., 2013), especially for the combined communities.

A perspective on functional niche occupancy that incorporates intraspecific trait variability provides new insights into community assembly and extends the generality of previous findings to the global scale (Lamanna et al., 2014; Swenson & Weiser, 2014). We propose that, after habitat filtering has excluded poorly adapted species from a plant community, the remaining species coexist because they are more functionally similar, rather than because they are more functionally specialized.

ACKNOWLEDGEMENTS

We thank Benjamin Blonder for the help in further developing his original method for n-dimensional hypervolume quantification. This research was funded by an NSERC Discovery grant to B.S. and by a CSC (China Scholarship Council) scholarship to Y.L. Data collection of ‘Hezuo’ was funded by National Natural Science Foundation of China (no. 31270472). ‘Panama’ was provided by Julie Messier. Data collection of ‘Saaremaa’ was funded by the European Union through the European Social Fund (MOBLITAS post-doctoral grant MJD47).

V.L.D. was supported by São Paulo Research foundation (processes: 2010/01835-0, 2013/50169-1 and 2014/06453-0). Data collection of ‘New Zealand’ was supported by Australian Research Council. A.S. was supported by the National Science Foundation (DEB-03089).

D.C.L. was funded by a grant (UOW1201) from the Royal Society of New Zealand Marsden Fund. Y.L.B.P. was supported by the EU Education for Competitiveness Operational Programme (reg. no. CZ.1.07/2.3.00/30.0006), by the European Social Fund and Czech State Budget, and the Marie Skłodowska-Curie Actions Individual Fellowship (MSCA-IF) within the European Program Horizon 2020 (DRYFUN Project 656035). N.G. was supported by the AgreenSkills+ fellowship programme, which has received funding from the EU's Seventh Framework Programme under grant agreement no. FP7-609398 (AgreenSkills+ contract). C.S. was supported by the Swiss National Science Foundation (PZ00P3_148261). Data collection of ‘Brazil’ was funded by the research network GENPAC (Geographical Genetics and Regional Planning for natural resources in Brazilian Cerrado) supported by CNpq/MCT/CAPES Brazil (563621/2010-9) and PELD/CNPq (558187/2009-9, 403833/2012-4) and FAPEG (2012102677001109). M.V.C. was supported by grant from CNPq (#306843/2012-9). M.A.B. was supported by the São Paulo Research Foundation (grant 2008/57502-0) and the Brazilian National Council for Scientific and Technological Development (grant 470653/2010-8).

AUTHORS’ CONTRIBUTIONS

Y.L. designed the project, analysed the data and wrote the manuscript with input from B.S. All other authors collected the data and contributed to the revisions of the manuscript.

DATA ACCESSIBILITY

Data deposited in the Dryad Digital Repository: https://doi.org/10.5061/dryad.cn642 (Li et al., 2017).

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.