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Abstract—Motor babbling allows an agent sampling trajectory
data without a priori knowledge about self-body dynamics. We
discuss about the efficiency of motor babbling through the
example of drawing task. We propose an exploitation babbling
and ϵ-greedy babbling. In order to implement the proposed
babblings, we developed dynamics learning tree (DLT). DLT
is an online incremental learning algorithm that has constant
calculation order O(1). The proposed exploitation babbling and
ϵ-greedy babbling improved the rate of effective data at 8 and 7 %
from previous babbling respectively. ϵ-greedy babbling converged
its prediction error fastest among the three babblings. Using
ϵ-greedy babbling, a humanoid robot with wired flexible hand
successfully drew a figure without a priori knowledge about the
dynamics among self-body, pen, and pen tablet.

I. INTRODUCTION

Motor babbling is an important factor of cognitive devel-
opment [1], [2]. Through motor babbling, infant tries learning
the relationship between joint inputs and resulting motions. In
this paper, we discuss exploration and exploitation in motor
babbling through constructive approach [1].

Saegusa et al. developed the humanoid robot that learns
reaching motions through artificial motor babbling [3].
Schillaci et al. modeled the dynamics of a robot arm [4].
Dawood et al. and Grimes et al. developed the robots that
imitate motions [5], [6]. Especially, Mochizuki et al. developed
the humanoid robot that learns the dynamics of its arm and
a grabbed pen using Tani’s artificial neural network (NN)
[7], [8]. Nishide et al. improved its performance by setting
stopping/pausing sequences in training data [9]. Nishide’s
theory is supported by several researches [10], [11]. In these
researches, natural motor babbling has been modeled without
considering exploitation.

On the improvement of motor babbling, Dearden et al. com-
bined multiple forward models [12]. Baranes et al. proposed
competence based intrinsic motivation that drives a robot to
goals [13]. Rolf et al. introduced goal directed exploration
[14]. Takanishi et al. proposed motor babbling in task space
[15]. In these researches, motor babbling exploits previously
acquired knowledge in order to sample new data effectively.
However, the balance of exploration and exploitation has not
been considered.
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In the field of reinforcement learning, the balance of ex-
ploration and exploitation has been a popular issue. In the
exploration process, an agent explores better action set through
a random action selection strategy. In the exploitation process,
an agent tries its best performance. In order to assure good
learning performance, these processes must be mixed. In
authors’ insight, we must solve similar problem in motor
babbling in order to obtain better learning performance.

In this paper, we propose an exploitation babbling and ϵ-
greedy babbling. ϵ-greedy babbling combines exploration bab-
bling and exploitation babbling seamlessly using the concept
of ϵ-greedy method [18].

The definitions of exploration and exploitation babblings are
as follows:

1) Exploration babbling: random babbling that is open
loop. No knowledge is reused.

2) Exploitation babbling: random babbling that reuses ac-
quired body knowledge.

We validated the proposed babblings in drawing task, which
has predecessors in engineering approach. Kudoh et al. de-
veloped a robot system that extracts 3D model of a real
object using a stereo camera [19]. The extracted model is
drawn by a robot arm. Kulvicius et al. proposed a motion-
primitive jointing method. Motion primitives are modified to
highly precise trajectories [20]. Yokoyama et al. developed
a motion sensing robot system that captures professionals’
drawing motion. The captured motion was regenerated by a
robot arm [21]. Giorelli et al. applied neural network for a soft
robot arm in order to handle its inverse statics without motor
babbling [16]. Compared with motor babbling, these methods
more depend on a priori task and/or platform knowledge. In
order to relax the dependency, we tried this task using motor
babbling.

As Luquet mentioned [22], drawing motion development
is illustrated with following 5 phases: Scribbling (1-3 years),
Fortuitous Realism (2-4 years), Failed Realism (3-7 years), In-
tellectual Realism (4-8 years), and Visual Realism (8+ years).
In Scribbling, infant tries motor babbling in order to learn
the relationship between its joint inputs and resulting drawn
lines. In this phase, it does not concern about the meaning
of the drawn lines. In Fortuitous Realism, children gradually
understand the relationship between real objects and drawing.
They enlarge their imitative motivation. In Failed Realism,
children make a push to draw a real object. But, this trial
fails because of insufficient capability. In Intellectual Realism,
children draw imaginary things. In Visual Realism, perfect



imitation is achieved. In this paper, we focuses on Scribbling
and Fortuitous Realism. Although this developmental process
is researched in [7], [9], [17], it is not completed. In the
previous work, their babbling models do not take into account
the balance of exploration and exploitation. This balance can
be seen clearly in the development of human behavior. In
this paper, we obtained an evidence that the balance in motor
babbling enhances the learning efficiency of drawing task.

II. ϵ-GREEDY BABBLING

We can see a transition from random exploration to ordered
exploration in the developmental process of human. After an
infant grows to a child, his/her behavior is not just random
already. For example, when a child is trying to open a bottle,
the child may try random manipulation around the bottle. But,
in this case, motor babbling is not completely random in joint
input level, because he/she keeps his/her hand close to the
bottle. For another example, when a child is trying to draw
something on a canvas, the child may try to move a pen ran-
domly on the canvas. As same as the first case, the child’s joint
input is not completely random, because the pen tip position is
controlled on the canvas. In the above mentioned examples, the
child is exploiting his/her knowledge in order to keep his/her
hand/pen tip position around the bottle/canvas, while keeping
the exploration (random babbling) of manipulation/drawing
motion.

In order to realize the transition, we propose an exploitation
babbling and ϵ-greedy babbling. Fig. 1 shows the flow of an
exploration babbling (naive motor babbling). In this babbling,
joint input is decided at first. An action is taken using the input.
Finally, the relationship between the joint input and the action
result is learned. In previous work [7], [9], neural network was
employed for the learning process. This action does not take
any constraint from previously learned self-body knowledge.

Fig. 2 shows the proposed exploitation babbling (Proposed
Babbling 1) that uses forward prediction. After deciding joint
input, the action result of the joint input is predicted by
an online incremental learning algorithm. According to the
prediction result, taking the action or not is judged. If the
prediction result is accepted, the joint input (action) is taken.
Finally, the actual result is feedbacked in order to improve the
prediction of the online incremental learning algorithm.

The learning algorithm of Proposed Babbling 1 should have
online and incremental characteristics, in order to enhance its
knowledge directly after observing a new action result, because
the judgment process does not work correctly when the learn-
ing system returns poor prediction (especially when directly
after starting its learning). On the other hand, starting from
poor prediction is inevitable because the learning algorithm is
not able to learn anything before observing some actual action
results. For the implementation, we developed a new learning
algorithm, dynamics learning tree (DLT).

The proposed exploitation babbling is able to keep con-
straints by rejecting the inputs that do not meet the constraints.
But simultaneously, this motor babbling makes sticky actions
around predictable body states (well learned actions). In the

Fig. 1. Previous babbling (naive exploratory babbling)
In previous motor babbling, the action result of random joint input was learned by an
offline learning algorithm.

Fig. 2. Proposed babbling 1 (proposed exploitation babbling)
In Proposed Babbling 1, a result of an action is predicted using a learning algorithm
before taking action. When the prediction satisfies the criteria of the judgment process,
the action is taken. Directory after taking the action, the online incremental learning
system is updated.

proposed ϵ-greedy babbling (Proposed Babbling 2), one of
exploration and exploitation processes is selected using pa-
rameter ϵ in order to balance these processes.

III. DYNAMICS LEARNING TREE

In order to implement Proposed Babbling 1 and 2, we need
to employ an online incremental learning algorithm. We devel-
oped Dynamics learning Tree (DLT) for the implementation.

DLT [27], [28] is the world first supervised learning al-
gorithm that is based on smithing/hammering process. In
smithing process, a mister forms arbitrary shaped metal by
hitting it with a hammer. The features of smithing process are
as follows:

1) The shape of metal monotonically and quickly converges
to a target shape.

2) Every hammering is done independently (suitable for
online calculation).

The characteristics of DLT is listed in Table III. Although
DLT is not suitable to handle ’large volume input data like
image data’, it is able to perform high latencies (around several

TABLE I
COMPARISON OF LEANRNING ALGORITHMS

DLT: Dynamics Learning Tree, NN: Neural Network, NNA: the algorithms that use
Nearest Neighbor Algorithm.
Det: Deterministic, Rand: Randomized.
*1: Depends on the number of iterations
*2: Depends on the algorithm
A ≥ B ≥ C ≥ D

Specifications DLT NN NNA
Available C A B
Input Data
Volume
Generalization B A B

Learning A - ≤A
Latency O(1) *1 ≥O(1)
Prediction A A B
Latency O(1) O(1) ≥O(log(n))
Parameter A D ≤A
Adjustment
Proof of A B A
Convergence
Online A C A
Learning
Incremental A D B
Learning
Computation Det Rand *2



Fig. 3. Forming a function through smithing consept

µs) in both learning and prediction processes under constant
calculation order O(1). Also, it is free from complex parameter
adjustment, because its monotonic convergence is guaranteed.
DLT supports fine online and incremental learning that handles
every training record with same weight regardless of data
order. Moreover, DLT’s computation is deterministic. Thus,
its computational process is governed by some rigid rules
completely.

In previous researches, neural network was employed for
the learning. However, supporting effective online incremental
learning using NN is difficult because of the problem of
catastrophic interference/forgetting [23], [24]. French et al.
showed the forgetting problem (catastrophic forgetting) that
occurs in online incremental learning of neural network [24].
Catastrophic forgetting is the phenomenon in that already
learned knowledge on NN disappears rapidly by the online
incremental learning of new training data. French et al. showed
the actual example that a small weight change on a synapse
erases a large amount of learned knowledge from NN. Ans et
al. and Robins et al. proposed consolidation learning (CL),
which applies BP method after mixing new and pseudo
training data obtained from NN [25], [26]. CL is effective
to avoid catastrophic forgetting. However, forgetting problem
in online incremental learning is not completely avoided.

DLT realizes similar function update as smithing process.
In Fig. 3, f̂ is the function that is represented by a supervised
learning algorithm, dk = ik, ok is new training data, ik is
training input data, ok is training output data. We determine
f as a background function of the data.

In this update, f̂(ik) must be updated to ok. If ok does
not include any noise the update rate should be 1. Also, the
output of f̂ around ik should be updated close to ok when we
hypothesize that f is continuous function against its I/O.

In the analogy with smithing process, we want to reshape
the bulge f̂(ik) of metal plate f̂ to dk. Thus, we hammer point
ik until point f̂(ik) moves to dk (update rate = 1). In smithing
process, the metal that surrounds (ik, f̂(ik)) gets the impact
of the hammering. Thus, the metal takes replacement within
the length between 0 and dk − f̂(ik) (0 ≤ update rate ≤ 1).

In our smithing based update algorithm, we apply a mono-
tonically decreasing update function that takes maximum (1)
at the center (ik). We call this update and update function as
’Smithing Update (SU)’ and ’Smithing typed Update Function
(SUF)’ respectively. For DLT, we used a specific SUF that
is determined by the input space representation of a tree
structure.

Dynamics learning tree is a tree typed multi-layered learning

Fig. 4. DLT (N Layer 2 Dim. 2-ary).
The tree type data structure of DLT (left) represents the division of input space (right).
In the Layer 1, assigned numbers 1-4 in the tree correspond the numbers 1-4 of the
divisions of the input space. In this figure, all of the branches are illustrated, although
these branches are incrementally created in the actual learning process.

Fig. 5. Input space and DLT
This figure shows the data structure (left) and represented state space (right) of DLT
when two data records are learned. The colors of nodes (left) correspond to those of
partition (right). When a data record comes, DLT makes partitions around the input data
of the record.

algorithm. Fig. 4 shows the example of DLT with N layer
2 sub-layers (dimensions) 2-ary tree. DLT’s root node corre-
sponds the whole region of n dimensional input space. Each
main layer has n sub-layers (dimensions) with d-ary. The leaf
nodes represent the divided sub-space as numbers 1-4 in Fig. 4.

The example of its learning is shown in Fig. 5. When input
data is given as the circle, a sub-space is created according to
the input, so that the input data is in the sub-space. According
to the position-on-the-tree of the node that represents the sub-
space, A sequence of nodes are created from Root. Resulting
tree of DLT is shown in Fig. 5 upper left. In these figures Cell
1 and Cell 2 are corresponding to Node 1 and 2 respectively.
In every node of DLT, an average output vector was retained
using following update functions:

ÔCell n ← (NCell n×ÔCell n+O)/(NCell n+1) (1)
NCell n ← NCell n+1 (2)

where NCell n is the learned number of output data in Cell n,
ÔCell n is the average vector learned by Cell n, O is training
output vector. DLT cancels Gaussian noise around the training
output vectors by the averaging process. These equations are
characterized by online incremental update processes statis-
tically. Also, its averaging process assures the same weight
of learning between previously and currently learned training
data. This update function is applied to a sequence of nodes
from Root to the leaf node that corresponds to training output
vector O. In this tree, the nodes that are close to the root (far
cells from the input of the training data) retain larger NCell n

than those close to leaf. Thus, the total update of the above
mentioned update for a cell results in SU. The results of the
learning process do not depend on the order of training data



Fig. 6. Used humanoid robot and pen tablet
In order to validate the proposed babbling models, we used a humanoid robot, NAO,
which has flexible fingers. This robot must learn a nonlinear relationship between its
joint angles and pen tip position/pressure in order to draw a precise figure.

records.
In the prediction process of DLT, DLT returns the averaged

output vector of the node that represents the partition of the
input space in that input data is placed. Thus, when the
number of learned training input data is sparse around the
new input data, DLT’s output is calculated using shallow
nodes in the tree. On the other hand, when it is dense, deep
nodes are used. Intuitively, DLT is controlling its output-
complementation method against a new input according to the
density of the training input data.

Compared with Gaussian process, DLT provides au-
tonomous learning without kernel and hyper parameter tun-
ings. Compared with regression tree, which requires offline
statistics, DLT allows online and incremental learning.

IV. EXPERIMENT

We conducted three experiments. In Experiment 1, the
three babblings are compared in a drawing task in order to
validate the effectiveness. In Experiment 2, Scribbling and
Fortuitous Realism were examined using the three babblings.
In Experiment 3, we validated the drawing capability of
Proposed babbling 2 in another configuration.

A. Settings
1) Experiment 1: We validated the proposed babblings

using the 5 right arm joints of a humanoid robot NAO (Fig. 6).
We obtained the position and pressure of the pen grabbed by
NAO using a pen tablet.

We obtained pen pressure values from the pen tablet in the
range of [0,1] (0: without pressure). The value is 0 when the
pen is far from the tablet. On the pen tablet, 1 pixel is about
0.25 [mm].

DLT with 6 layer 5 dim. 3-ary was employed. The input
and output of DLT were set at 5 joint angles and pen tip
information respectively. The pen tip information is composed
of x, y coordinate on the pen tablet and pen tip pressure. We
made two categories for the pen tip data in order to implement
the judgment function of exploitation babbling. The first is
effective data that was sampled when pen tip is on the tablet.
The second is ineffective data that was sampled out of the
tablet. When pen tip position was y > 500 or pen pressure is
0 or 1, the input was rejected. The data whose pen pressure is
1 was rejected exceptionally, because the pen was too strongly
fitting on the tablet in this state. Also, for the initialization of
the learning system of the proposed babbling models, 100 data

Fig. 7. Answer
We used this figure for the validation of the learning. After the robot learned the
relationship between its joint angles and pen tip information, the robot tried tracking
the figure using the pen. The drawing direction was the same among all experiments.
The robot started from the upper left. Then, it tried moving the pen to upper right.

records were sampled using previous babbling model. We set
ϵ = 0.5.

2) Experiment 2: In order to realize Scribbling and Fortu-
itous Realism, we conducted an imitation experiment. A figure
was copied by NAO.

We generated the data of the original figure using the
technique of stopping/pausing sequences [9]. The predicted
figures were given by the rehearsal of DLT that was trained in
Experiment 2. The procedure of this rehearsal is as follows:

1) DLT got a target pen tip position from the original data
2) 1000 sets of random joint angles were inputted to DLT

in order to predict resulting pen tip state.
3) A set of joint angles that give the most close pen tip

position as the target was selected from the 1000 sets.
4) Go to 1) again.

In the drawing the joint angles that were calculated by the
rehearsal were used as target joint angles of the robot. In the
actual implementation, the rehearsal and drawing were done
simultaneously. Thus, the prediction was included in the online
control process of the robot.

3) Experiment 3: We examined ϵ-greedy babbling (Pro-
posed babbling 2) in another configuration that has the feed-
back of error (E) between an actual drawing point and the
target figure. In this paper, we defined E using Euclidean
distance on the pen tablet.

In this experiment, we used two joints of the left arm of
NAO, named LShoulderRoll and LElbowRoll. The random
joint angles of the motor babbling was decided using the
following equations:

θ = θC +∆θ(Ē) (3)

where θ is random joint angle, θC is current joint angle,
∆θ(Ē) is randomized feed amount that depends on average
error Ē.

We examined two formulations for ∆θ(Ē).

∆θ(Ē) =

{
U(βĒγ/δγ) (Ē < δ)

U(β) (Ē ≥ δ)
(4)

where U(◦) is uniform distribution between minus ◦ to ◦, β is
constant base width of the uniform distribution, δ is constant
threshold of the base.

This formulation controls the magnitude of exploration in
motor babbling. In this experiment, we used β = 0.25 rad,



TABLE II
RATE OF EFFECTIVE DATA

Model Sampled Effective Rate
data data (ED) of ED[%]

Previous (Exploration) 5000 4192 84
Proposed 1 (Exploitation) 5000 4614 92
Proposed 2 (ϵ-greedy) 5000 4574 91

(1) (3)

(2)

Fig. 8. Sampled pen tip positions
(1)–(3) show sampled pen tip positions of Previous babbling (exploration), Proposed
babbling 1 (exploitation), and Proposed babbling 2 (ϵ - greedy) respectively. The
humanoid robot NAO was placed on the top of the figures. It moved a pen using its
right hand. The result data of Proposed Babbling 1 has a bias compared with the others.
Proposed Babbling 1 has sticky tendency to repeat already known (trustable) actions.

δ = 20 pixel. We used 100 error average for Ē. We examined
the effectiveness of γ = 2 using the procedure in Experiment
2.

B. Results

1) Experiment 1: Proposed Babbling 1 and 2 sampled
larger number of effective data compared with previous bab-
bling (Table II).

Figs. 8 show the pen tip positions that were used for the
data sampling. Proposed Babbling 1 generated the sampling
positions with a bias. The region of distributed data in Fig. 8
(2) lacks upper left part compared with the others.

By using 1268 test data records that were sampled by
previous babbling, the prediction error values of the three
babbling models were validated. For the test data set, the data
records that have pen pressure values in the range of (0,1) were
used. Fig. III shows the prediction error. Proposed babbling 2
converged the fastest.

2) Experiment 2: Figs. 10 (1)-(3) show the original, pre-
dicted, and actually drawn figures of three babblings. Figs. 10
(4)-(6) show the error between ’original and prediction’,
’prediction and drawn’, and ’drawn and original’ of them.
Table III shows the average prediction error that was calculated
from the data of Figs. 10 (4)-(6).

From Figs. 10 (4)-(6), the error between ’original and
prediction’ is not so large, but the others. Even if the learning
models’ prediction is on the original figures, their actual results
have large error in some cases. Among the three models,
Proposed Babbling 2 showed smallest error between drawn
and original. This means that the prediction of Proposed
Babbling 2 is more trustable than the others. As in Figs. 10

(1) x axis (3) pen pressure

(2) y axis

Fig. 9. Prediction error
Proposed Babbling 2 converged its error the fastest among the three babbling models.

(1) (4)

(2) (5)

(3) (6)

Fig. 10. Results of imitation
Figs. (1)-(3) show the error of Previous Babbling (Exploration), Proposed Babbling 1
(Exploitation), and Proposed Babbling 2 (ϵ-greedy), respectively. Figs. (3)-(6) show the
trajectories of these methods on the tablet respectively.

(1)-(3), the drawn lines of Proposed Babbling 2 is closest to
the original.

3) Experiment 3: The final error between predicted posi-
tions and answer was 13.0 pixel in 20 trial average of the
same task. Fig. 11 shows the drawing result after finishing the
learning.

TABLE III
AVERAGE ERROR OF IMITATION TASK (SINGLE TRIAL)

Model Original & Prediction & Drawn &
prediction drawn original

Previous (Exploration) 19.49 131.52 157.63
Proposed 1 (Exploitation) 31.61 210.58 212.70
Proposed 2 (ϵ-greedy) 23.00 114.19 137.01



Fig. 11. Examination after finishing learning
After finishing 1000 data learning, motor babbling was stopped in order to examine the
best performance of the current robot. The robot precisely drew a figure.

V. DISCUSSION

A. Validation of exploitation babbling
From Table II, exploitation babbling (Proposed Babbling 1)

sampled the largest number of the effective data in that pen
tip position is on the tablet. The number of ineffective data
was about the half of that of Previous Babbling. Proposed
Babbling 1 successfully learned how to keep the constraint
that was defined by the judgment process simultaneously with
maintaining babbling.

B. Validation of ϵ-greedy babbling
From the results of Experiment 1 and 2, the learning

performance of ϵ-greedy babbling always exceeded the other
babblings. This reason might be as follows. Previous Babbling
does not sample data efficiently, because it does not keep
constraint. Thus, it wastes the number of sampling trials to
sample not required data that is out of the constraint. Proposed
Babbling 1 samples data on the constraint. However, it sticks
around the confidential pen tip positions that were already
learned. As a result, Proposed Babbling 1 lacks its exploration
capability, and makes lack of data like in Fig. 8 (2). Proposed
Babbling 2 relaxes the sticky tendency of Proposed Babbling 1
by using Previous Babbling probabilistically. While Proposed
Babbling 2 is performed, the pen tip position was almost
in the constraint. Therefore, while Previous Babbling was
performed, small exploration of a new pen tip position was
examined around the constraint. Thus, in Proposed Babbling 2,
the explored region does not expand too far from the constraint
like Previous Babbling.

C. Similarity with Scribbling and Fortuitous Realism
As in Experiment 2, Proposed Babbling 2 realized better

imitation than the others. We could confirm the following sim-
ilarity (1-4) with above mentioned Scribbling and Fortuitous
Realism of Luquet [22]. In Scribbling and Fortuitous Realism,
children learn how to move their body through drawing trials.
This learning is characterized by online incremental improve-
ment of their prediction for pen tip movement (1. online
incremental learning). Also, before the learning, children do
not know even how to keep constraint of the canvas (2.
inexistence of pre-knowledge for the task). The constraint
keeping and motion prediction are learned simultaneously
(3. simultaneous learning for constraint and motion). Once
knowledge for the prediction is learned, the knowledge is

used for the imitation task (Fortuitous Realism) that is first
experience without additional learning (4. acquired knowledge
is applicable to a variety of tasks). Also, even in the first
experience task, Proposed Babbling 2 can improve its predic-
tion from the sampled data using online incremental learning
process. Especially, the characteristics of 1 and 3 have not
been realized in previous babbling models.

VI. CONCLUSION AND FUTURE WORK

We proposed two motor babblings, an exploitation babbling
and ϵ-greedy babbling. Both proposed babblings successfully
sampled more number of effective training data than previous
exploration babbling. The sampled training data of ϵ-greedy
babbling effectively improved the learning performance of
DLT. Using ϵ-greedy babbling, the drawing learning that was
closer to Scribbling and Fortuitous Realism than previous
researches was realized. The robot learned how to draw a
figure without a priori knowledge about drawing dynamics
using a specific configuration of ϵ-greedy babbling. The theory
of ϵ-greedy babbling has much potential to be applied to a
variety of tasks and a variety of robots than drawing.
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