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Abstract We present broadband antireflective microstructures (AMSs) for high-perfor-

mance imaging systems in mid- and far-infrared wavelength ranges. Diffraction efficien-

cies of AMSs on ZnS substrates were calculated using a rigorous coupled wave analysis

method. The results show the effect of height, period, and shape of AMSs on the reflection

characteristics. We also discuss the optimum geometry of AMSs by considering fabrication

tolerances.
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1 Introduction

Fresnel reflection due to refractive index mismatch at the interface between two different

media can significantly deteriorate the performance of many optic components (lens, op-

tical fibers, windows, etc.) and optoelectronic devices (solar cells, photodetectors, light

emitting diodes, etc.). Conventional thin-film antireflection coatings (ARCs) exhibit re-

duced reflection by their interference principle, however, it can only works in a limited

wavelength range. For mid-infrared (IR) or far-IR applications, this fact becomes a strong
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obstacle. Most of the materials that are appropriate for infrared applications, such as

germanium (Ge), zinc sulfide (ZnS), and zinc selenide (ZnSe), have much higher refractive

indices than that of transparent glasses/polymers, which give rise to high Fresnel reflection

losses. For broadband antireflection in the IR region, multilayer stacks with thickness of

few micrometers are needed (Phillips et al. 2008; Ghosh and Bandyopadhyay 2005), which

causes increased fabrication time and cost. Moreover, thin film technology has inherent

problems such as adhesion, thermal mismatch, and the stability of the thin film stacks

(Lalanne and Morris 1996).

As an alternative to thin film coatings, the studies on biomimetic subwavelength

structures, originally inspired by the excellent antireflective capability of corneal of night

active insects, have been developing rapidly. The basic idea is that the nanostructured

coating-materials are capable of creating a gradient refractive index profile due to their

tapered morphology, and consequently forms their unique broad wavelength antireflection

property (Fig. 1). In recent years, various nanofabrication techniques and new antireflec-

tive materials have emerged (Kanamori et al. 1999; Yu et al. 2003; Striemer and Fauchet

2002; Song et al. 2010, 2011). Nevertheless, reported works mainly focus on the AR

properties in the visible and near-IR wavelength ranges. It is known that the tapered

structures with a taller height and a shorter period are desirable for broadband AR prop-

erties. From this point of view, nanotip arrays with a high aspect ratio ([20) are ideal,

however, it causes complicated fabrication procedure. Hence, it is mandatory to determine

an optimum geometry of AR structures within a reasonable aspect ratio. In this study, we

have calculated the diffraction efficiency of the antireflective microstructures (AMSs) on

ZnS substrates with different heights and periods. Optimum geometries are discussed in

terms of reflectance and grating structures.

2 Simulation results and discussion

Figure 1b show schematic illustrations of AMSs on a silicon substrate. In this calculation,

we used a crystalline ZnS substrate as an infrared window material. Because ZnS is

transparent in the wavelength ranges of 0.4–12 lm, it is commonly used as a window

materials for mid-IR (3–5 lm) and far-IR (8–14 lm) applications. In general, the 8–14 lm

band is preferred for high performance thermal imaging because of it higher sensitivity to

ambient temperature objects and its better transmission through mist and smoke. On the

other hand, the 3–5 lm band may be more appropriate for hotter object, or if sensitivity is

less important than contrast (Rogalski and Chrzanowski 2002). The theoretical calculations

(a) (b)

Fig. 1 Schematic illustrations of light reflection a at a flat surface and b at antireflective micro-structures
(AMSs) on ZnS substrates
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of reflectance were done by using a rigorous coupled wave analysis (RCWA) method

(Moharam 1988) and materials dispersion was considered. To enhance the AR properties,

parabola shape with a sixfold hexagonal symmetry, which provides linear graded refractive

index profile, was used.

Figure 2 shows the contour map of reflectance variation of AMSs as a function of height

(0–5 lm) and wavelength (1–5 lm) for a period of (a) 1 lm and (b) 5 lm. As expected,

the flat surface (height = 0 lm) of ZnS substrate exhibits the reflectance of *15 % for

single surface. As the height increases, the reflectance tends to decrease. This can be

explained by the fact that the effective refractive index is gradually changed. At the height

of 5 lm, the AMSs with parabola shape provide an average reflectance of less than 1.0 %

in both cases. In case of 1 lm period, very low reflectance can be obtained in whole mid-

IR ranges while the AMSs with 5 lm period have higher order diffraction losses at shorter

wavelength ranges. The parabola shaped AMSs with 1 lm period can be fabricated by

laser interference lithography, thermal reflow, and subsequent pattern transfer process

(Song et al. 2010). The thermal reflow of photoresist patterns enlarges the packing density

as well as convert the geometry from rod to lens, which enables closely packed parabola

structures. If the AMSs need few-micron periods, conventional photolithography can be

applied.

Figure 3 shows the influence of the height of the array on the reflectance as a function of

the period and wavelength (1–15 lm). When the grating period is near one micron, the

height of 1 lm is reasonable to cover whole mid-IR ranges, as depicted in Fig. 3a. If the

height increases from 1 to 3 lm, the AR band is extended to far-IR ranges ([12 lm), as

depicted in Fig. 3b. Because the aspect-ratio of 1–5 is acceptable in the dry etch process,

we can choose the period and height from this contour plot by considering the target

applications/spectra. In this case, the optical bandwidth is in the range of 1–5 and 8–14 lm,

which covers whole atmospheric transmission bands (Loubere 2012). This bandwidth can

be tuned by changing the periods and heights. The white dashed lines in Fig. 3a, b indicate

the border lines between the diffraction orders. Even though the structure with period of

3 lm and height of 3 lm exhibits low reflection, it generates higher order transmission

(Fig. 3c), while the structure with period of 1 lm provide only zeroth order diffraction

(Fig. 3d).
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Fig. 2 Contour plot of the variation of reflectance of AMSs with a period of a 1 lm and b 5 lm,
respectively, as a function of height and wavelength
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Other IR materials, such as Ge, ZnSe, and silicon (Si), are also commonly used for

imaging devices or photodetectors in the mid- and/or far-IR ranges. Since the diffraction

efficiency of grating structures is strongly dependent on the refractive index of media, it is

worthwhile to investigate the reflection maps for different IR materials. As indicated in

Fig. 4a, the refractive indices of four different materials are nearly flat in IR spectral

ranges. Figure 4b–d shows a straightforward tendency between the gradient of border line

and the refractive index. Because the Ge has higher index compared to that of other

materials, higher order diffraction occurs at shorter period. In other words, tolerance in

period of the higher index material is narrow than that of lower index material.

The geometry of AMSs is crucial to determine the diffraction efficiency. It is well

known that the parabola shape has superior AR properties in a broader wavelength range

due to their linearly graded index profile. In some case, however, precise fabrication

procedure is needed to generate ideal shape. Figure 5 shows the effect of AMSs’ geometry

on the reflection characteristics. The shape of AMS is changed from cylindrical rod to

paraboloid with 20 steps, as depicted in Fig. 5. The cylindrical rods have ripple patterns on

the reflectance curve, because the pattern acts as a single layer antireflection coating. As

the shape of AMS goes to tapered shape, the reflectance fluctuation is released and it shows

broadband AR properties. It is noted that the AR performance of AMSs with parabolic

ratio of *80 % provides comparable to that of ideal paraboloid.
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Fig. 3 a, b Contour plot of the variation of reflectance of AMSs with a height of a 1 lm and b 3 lm,
respectively, as a function of period and wavelength. c, d Electrical field intensity distributions of AMSs
with height of 3 lm and period of c 3 lm and d 1 lm, respectively, at 4 lm incident wavelength
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Fig. 4 a Refractive index curves of four different semiconductor materials (i.e., ZnS, ZnSe, Si, and Ge) in
the wavelength range of 1 to 15 lm. b, d Contour maps of reflectance for b ZnSe, c Ge, and d Si,
respectively, versus period and wavelength
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Fig. 5 Contour plot of the variation of reflectance of AMSs with different shapes. The shape is changed
from cylindrical rod (bottom) to paraboloid (top), continuously. The period and height was fixed to 1 and
3 lm, respectively
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3 Conclusion

By considering the fabrication procedure and tolerance, we investigated optimum ge-

ometry of ZnS AMSs with parabola shape for mid- and far-IR applications. From the

contour plots, the effects of the heights and periods on the reflectance were also analyzed.

The ZnS AMSs with optimized geometry can be used to applications including night

vision, thermal imaging, motion sensors, astronomy, and forward looking infrared (FLIR)

technology (Rowan 2013; Miller 1994). Furthermore, it can be extended for other appli-

cations such as photovoltaics (Li et al. 2014) and electromagnetic wave sensing (Zhang

et al. 2014) by using different materials and changing the periods and heights.
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