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ABSTRACT: In streamlined multipurpose applications for light
management and protection, encapsulants are merged with
photonic crystal structures into solar modules. We present an
edge-located 1D grating, attachable polymer on the top of a
photovoltaic module to provide a strategy for capturing solar
light and improving cell efficiency. Large-area solar arrays suffer
from space utilization problems due to nonactive area. The
introduction of periodically patterned gratings with specific
geometric range is highly preferred to redirect the light toward
photovoltaic active areas. To realize optimized broadband light
diffraction for solar devices, the theoretical analysis of one-
dimensional line patterned diffraction gratings was performed
through wave-optic-based simulation. Based on the experimental
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results, the replica molding-based patterning method was adopted to fabricate the grating polymer for low-cost thin-film
production. Also, we demonstrated enhanced light collection by grating patterned encapsulants with improved current density

in comparison to the performance of a flat surface.
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B INTRODUCTION

Although mankind’s energy production still depends on fossil
fuels containing hydrocarbon, such as primary coal, crude oil,
and natural gas with limited minable resources, the develop-
ment of alternative energy resources is attracting enormous
interest due to the increasing global energy demand and
environmental problems associated with fossil fuels.' > As an
alternative source of energy, photovoltaic (PV) devices are
widely used to produce electricity utilizing incident sunlight.*®
Among the different solar cell types, multijunction solar cells
have excellent lifetime/stability and energy conversion
efficiency over a broadband solar spectrum with their wide
range of terrestrial and space applications.”'" In this
substantial solar cell industry, the proper approach to protect
solar cells from various threats in the external environment,
such as chemicals, UV rays, and dust, must be feasibly
integrated into the construction of modules. Typically,
encapsulants play a key role in solar modules to serve as a
protective barrier."'~'* Moreover, for enhancing solar harvest-
ing, encapsulation materials can be sophisticatedly structured
to manage light transmission and deliver light into the active
area of solar cells. So far, structural approaches, such as the use
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of prisms, beer steering coatings, blazed phase gratings, TiO,
xerogel diffraction gratings, and nanocone arrays, have been
reported to improve conversion efficiencies with encapsu-

15-31
lants."

Contrary to fundamental changes in solar cell
structures, since encapsulation is the final step in the
modularization of solar cells, simple structure and fabrication
are required to be close to commercialization. Typically, the
diffraction grating structure is one of the candidates meeting
this demand, but for practical applications, it is necessary to
optimize the grating parameters with diffraction orders and to
consider the angular change of the incident light.****~°
Furthermore, for the commercial installation of solar modules,
large-scale array formation is inevitable. The conventional
module layout consists of a cell array, which generates a blank
region that causes power degradation per unit module area.
For spatial efficiency, large-area solutions regarding the spacing
between PV cell arrays should also be considered.””
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Figure 1. (a) Schematic representation of edge-located 1D grating polymer (ELG) on a photovoltaic cell. (b) Schematic views and photograph
images of a w/o ELG and w/ELG on a TJ solar cell. (c) Photograph images of ELG polymer under sunlight and cross section views of SEM image.
(d) Zeroth-order transmittance spectra of ELG with periods of 1000, 1400, and 1800 nm. (e) E-field distributions of ELG polymer at 500, 1000,

and 1500 nm wavelengths.

Here, we report on an edge-located photonic polymer to
capture the unused light that reaches blank areas where
electron—hole pair recombination does not take place.
Significantly increased optical energy conversion was observed
by integrating an edge-located grating polymer that is ultrathin
and lightweight. Numerical simulations based on wave optics
were performed to determine the spectral properties with three
different periodic gratings varying geometric parameters.

In addition, we evaluated the grating diffraction with
variation of the grating period to determine the optimal
structure for photovoltaic applications. According to theoreti-
cal analysis, the edge-located grating is suitable for the light
trapping toward solar cell active area which generates
electricity. This reduced dead area addresses the solar cell
cost issue with light trapping features. Also, our ELG layer can
be applicable to other light-capturing structures that have thin
and transferable properties.

B EXPERIMENTAL SECTION

Optical Simulation. The electric-field intensity and absorption
profiles were calculated by employing the finite-difference time-
domain (FDTD) modeling. Simulation results for gratings and
multijunction solar materials were obtained at a perfectly matched
layer boundary with grid spacing of 5 nm in the x—z plane. In the
rigorous coupled-wave analysis (RCWA), fifth diffraction order was
used to obtain the transmittance spectra and diffracted angle for the
PDMS gratings by using RSoft software (Diffract MOD, FullWave,
USA). Numerical simulations were conducted with the consideration
of material dispersions to calculate wavelength dependencies for the
refractive index and extinction coefficients as a function of wavelength
(i-e, polydimethylsiloxane polymer and semiconductor materi-
als).*>*" Furthermore, Monte Carlo ray-tracing simulations were
also performed for the navigation of light rays from the air to the solar
cell using ZEMAX Optic Studio software (Radiant Zemax LLC,
USA).?

Optical Characterization. The transmittance spectra for three
different grating polymers were obtained with a spectrometer

(Agilent-Varian Cary 500, USA), and 1D grating morphologies
were achieved by using a scanning electron microscope (SEM, Hitachi
S$-4700, Japan).

B RESULTS AND DISCUSSION

The edge-located 1D grating polymer (ELG) stacked on a PV
solar module is illustrated in Figure la. The ELG polymer
stacked on the top, which provides diffracted light to utilize the
unused light on the PV cell array spacing. The conventional PV
module consists of a solar cell module covered with silicon
resin and transparent grating polymer (Figure 1b, left), and the
figure below provides a photograph of it. An ELG layer was
stacked onto the solar cell cover to generate diffracted light
into the solar cell. The photograph shows that light is
diffracted onto the solar cell active area by the ELG layer
(Figure 1b, right). To fabricate the line-patterned PDMS
polymer, the replica molding method was adopted for low-cost
thin-film production. Photographs of the fabricated polymer
are presented in the top part of Figure 1c. The thin layer of the
structure makes the device flexible and stackable.”*>** Figure
Ic, bottom, shows the representative top-view SEM image of
the ELG layer. The grating polymer exhibits a low trans-
mittance values in the specific wavelength ranges measured by
specular transmittance measurement, which provides the
tunable diffraction wavelength by adjustment of the period of
the grating structure. (Figure 1d). We note that the polymer
with the period of 1800 nm is well matched with the solar
spectrum to diffract light with high solar intensity. The dips
shift with increasing period. Figure le shows the electric field
distribution for 1800 nm periodicity obtained by the FDTD
method at the 500, 1000, and 1500 nm wavelengths to confirm
the enhanced/reduced light intensity over the x-axis. The E-
field profiles for the other period of 1000 and 1400 nm are also
plotted in Figure S1. The PML boundaries in FDTD help to
determine the grating effect individually. The electric-field
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Figure 2. (a) Photographs of fabricated ELG layer and transfer processes onto solar cell device. (b) Fabrication schemes for grating PDMS. (c) 40°
tilted SEM images of silicon master mold. (d) Top-view SEM images of the grating patterned PDMS layer.
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Figure 3. (a) Schematic illustration of a grating PDMS under unpolarized light. (b) Contour plots of zeroth-order transmittance spectra with
various filling fractions, heights, and periods. (c) Average zeroth-order transmittance from results calculated in (b). (d) Diffraction angle in the
400—1800 nm wavelength ranges and period from 400 to 2400 at S00 nm wavelengths. (e) Transmitted power versus x-axis for diffracted light
according to wavelengths of 500, 1000, and 1500 nm. (f) Absorption profiles for triple-junction solar cell. (g) Absorption enhancement factor

compared to with and without the ELG layer.

intensity under the grating area is dramatically reduced when
strong diffraction occurs at a wavelength of 500 nm. These
results show the diffracted light intensities peak at the low
zeroth-order transmittance. Thus, the light harvesting at a
specific wavelength range can be maximized by designing our
proposed structure geometry.

Figure 2a shows the transferring process onto the PV
module; we cut the edge of the ELG layer with a razor blade
and applied it onto the PV solar module. Figure 2b shows the
manufacturing processes for the silicon grating mold. To

fabricate the silicon mold, first, a silicon wafer was annealed to
form an ~200 nm thick SiO, layer. Then, SiO, line arrays with
periods of 1000, 1400, and 1800 nm were patterned by the 248
nm wavelength KrF excimer laser scanner (Nikon Inc. NSR-
S203B, Japan). The reactive ion etching method was used to
anisotropically etch the silicon until ~700 nm height with a
grating patterned SiO, mask (RIE, Oxford Plasmalab 133,
UK). The fabricated mold was dipped and rinsed with
hydrofluoric acid (HF) and deionized (DI) water, respectively,
to remove oxide residues. SEM images showing cross section
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Figure 4. (a) Schematic illustration of measurement set up for light area induced by ELG layer. (b) Photographs of diffracted light according to the
grating period. (c) Relative light intensity from CCD camera results. (d) Photographic images of diffracted laser light (wavelength = 450, 532, and
635 nm) passed through the ELG layers. (e) Diffraction angle and efficiency with various grating periods.

views of the fabricated grating silicon with various periods are
shown in Figure 2c. After the grating mold was formed, the
mold was coated by a release agent to peel off a polymer layer
for maintaining grating structure. The base and curing agent of
PDMS polymer (Sylgard 184, Dow Corning Corporation,
USA) were mixed at a ratio of 5:1. The PDMS mixture was
placed onto the vacuum chamber for 30 min for removing
entrained air in the polymer, and then the mixture was coated
by a spin-coater for 60 s with a speed of 500 rpm on the silicon
grating mold. The PDMS layer was cured at 150 °C for 5 min
by using a hot plate including natural curing for 3 h at room
temperature. Finally, the grating patterned PDMS was peeled
off from the mold (Figure 2d). The triple-junction solar cells
consisted of 0.7 ym thick InyGay P and 3.65 ym of GaAs on
150 pm of a p-type Ge substrate with three different bandgap
energies (i.e., 1.86 eV of InGaP/1.42 eV of GaAs/0.67 eV of
Ge). The AllnP window layer was deposited for 30 nm
thickness. TiO, (50 nm)/Al,O4 (50 nm) is coated on top of
the solar cell as an antireflective layer (Solapoint Co. Ltd,
China). The cell with active area 0.3025 cm” was encapsulated
by the borosilicate glass (Borofloat33, Schott, Germany) using
silicone (Dow DOWSIL 1-2620, Dow Corning, USA) for
protective coating. After that, the silicone resin was cured at
150 °C for 30 min. Finally, the PDMS layers were transferred
onto encapsulated solar module devices.

Figure 3a shows a one-dimensional grating PDMS polymer
for optical calculation. First, the structure geometrical
parameters were defined with the period (p), height (h), and
filling fraction (F = 1 — w/p X 100%) to examine the enhanced
absorption and diffraction characteristics of the various grating
structures. The light diffraction and solar cell absorption of
each grating structure were spectrally and spatially investigated
(Figure 3b—g). Figure 3b shows the zeroth-order trans-
mittance to find the standard gratings for the broadband
wavelength diffraction (400—1800 nm). The filling fraction,
period, and height were simulated for the PDMS grating

(refractive index, nppys ~ 1.44) to find the optimized
structures for maximizing the light diffraction in the broadband
wavelength ranges. The zeroth-order transmittance values were
low when the incident light was diffracted. However, the light
proceeds mostly in the zeroth order in the case of a
subwavelength structure.**~*® These transmittance calculations
were conducted by varying the geometric parameters as a
function of wavelength as follows. The filling fraction was
varied from 0 to 100% with fixed period (1800 nm) and height
(700 nm). The filling fraction is a crucial factor for diffraction;
an F of 40—60% was required to diffract light with broadband
wavelengths. We also calculated the height as a function of
wavelength which had fixed parameters (i.e., period = 1800 nm
and filling fraction = 50%). The low transmittance region
(white region) gradually shifted toward longer wavelengths
when the height (1) was increased. The 1000 and 1400 nm
periodic grating were additionally calculated according to h
and F. Furthermore, the high refractive index enables
diffraction of a broader optical spectrum (see Figure S2).
Then, the period (p) was varied from 400 to 2400 nm with a
filling fraction of 50% and a height of 700 nm. The period has
to be more than 1400 nm to consider broadband light
diffraction. As seen in Figure le, the spectral irradiance has the
highest values at about 500 nm wavelength light in the
standard solar spectra, AM 1.5G direct. To consider solar
spectra, the height of grating has to be over 600 nm. The filling
fraction had relatively low transmittance values from 20% to
60%. Figure 3c shows the averaged transmittance results from
Figure 3b to find grating structures with low average
transmittance. The average transmittance values were low
when the period was greater than 1400 nm, the height was
greater than 700 nm, and the filling fraction was between 23%
and 60%. Then, we fixed the grating geometrical parameters
such that the period was 1800 nm, the height was 700 nm, and
the filling fraction was 50% (Figure 3d—g). The diffraction
angle depending on the light wavelength and grating period
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Figure S. (a) Current density—voltage curves of the triple-junction solar modules and grating PDMS polymers with different periods. (b) Angle of
illumination dependencies: short-circuit current J;. (left) and conversion efficiency 7 (right).

was calculated. The first and second diffraction orders were
observed, and the diffraction angle increased proportionally
with increasing wavelength (Figure 3d, top). The angle
characteristic simulation results are shown in Figure 3d for
the grating period at the wavelength of 500 nm with the
highest solar irradiance value. When the wavelength had a
period similar to the structure, the first order exhibited the
highest diffraction efliciency. As the period became larger, the
diffraction angle of the light was reduced (see Figure S3). With
a small period, only the zeroth order was observed. The
diffracted light intensity reached in the solar cell was calculated
for wavelengths of 500, 1000, and 1500 nm. The reference
light intensity is represented by the dotted line. In the grating
area, the light intensity was reduced by the grating structure,
and the amount of reduced light was diffracted toward the
active area. The enhanced captured light position shifted
according to their wavelength. To optimize the grating based
on optogeometrical aspect, we simulate the ray-tracing
simulating. The ray-tracing simulation results provided the
light path in the silicone and PDMS which are attached on the
solar cell. The light source was placed outside of the solar cell
module (see Figure S4). The optimized diffraction grating for
solar cells can be achieved by considering the absorption range
of the solar cell material. The absorption profile and
enhancement factor were calculated (see Figure 3fg). In the
absorption profile, it was observed that light was absorbed in
each absorption layer according to the wavelength variation.
The absorption enhancement was increased according to the
wavelength range from 400 to 1800 nm, and the overall
absorption increased by about 8%. In addition, at a specific
wavelength of 1300 nm, the increase rate was more than 20%
compared to the conventional structure.

Figure 4a shows the configuration of the captured light
measurement for the ELG polymer. To obtain the diffracted
light distribution, a light source with a dark square was used,
which consisted of the light source, grating layer, and CCD
camera. Experiment photographs of the irradiance distribution
for various periods are shown in Figure 4b. The light with a
dark square passed the grating structure, and it could be

observed that the light intensity was further strengthened at
the corner position by the two grating structures. Figure 4d
shows the results obtained from ELG samples with periods of
1000, 1400, and 1800 nm. The diffracted beams were
generated by lasers with the three wavelengths of 450, 532,
and 635 nm. The transmissive diffraction efliciency is specified
by the intensity ratio of the diffracted beam to the initial beam,
which is determined according to the shape of the structure as
in the preceding simulation results.

To characterize the solar cell parameters such as short-
circuit current (J.), open-circuit voltage (V,.), and fill factor
(FE), the current density—voltage (J—V) measurement of the
triple-junction modules with various grating PDMS polymers
were performed by using a solar simulator with AM 1.5G
(Oriel Sol3A, USA) and 1 sun illumination (100 mW/cm?) at
25 °C (see Figure Sa). The power conversion efficiency (7)
was calculated by the following equation:

J. (mAem™) x V. (V) X FF (%)
Plight (mW Cm_z)

To ensure an accurate measurement, a mask cell was used
with the aperture size of 1 cm by 1 cm. A forward direction
scan was performed in the voltage range from 0 to 3 V (0.1
mV steps) with delaying 1000 ms after forward—reverse scan
for five times (Figure SS). The incident light intensity (Phght)
was calibrated with a Si reference cell (Oriel SRC-1000TC-
KGS5-N)."*" Furthermore, to verify the improvement of
efficiency and reliability for our proposed structure, we
averaged the measured data of five different devices (Table
S1).

The detailed solar cell performances integrated with various
ELG layers are summarized in Table 1. The measured ], was
enhanced by employing an ELS layer onto the PV module. As
a reference, the solar cell module encapsulated by flat glass was

Table 1. Averaged Solar Cell Parameters for Five Different
PV Modules”

observed that the dark regions were reduced by diffracted light.
The light coverage increased according to the grating structure
due to second-order diffraction, which is matched with the
simulation results described above (see Figure 3b). The
relative light coverages are presented in Figure 4c; the black
dotted line represents the light intensity of flat PDMS polymer
for reference data. As shown in the graph, enhanced light
intensities were observed for all grating samples. We confirmed
that all the gratings had light-capturing properties. Also, it was

device Jo (mA/cm?) V.. (V) FF (%) efficiency (%)
bare 12.19 (0.04)  2.5(0)  80.46 (0.05)  24.52 (0.07)
PDMS 12.45 (0.07) 2.5 (0) 80.5 (0.1) 25.05 (0.12)
ELG (pl1000) 12.80 (0.05)  2.5(0)  80.86 (0.09)  25.88 (0.10)
ELG (p1400) 13.33 (0.14) 2.5(0) 8142 (0.71)  27.13 (0.19)
ELG (p1800) 1341 (0.05) 2.5(0) 8096 (0.11)  27.15 (0.11)

“The standard deviations for each parameter are stated in parentheses
(see Table S1).
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measured as 12.19 mA/cm? Also, we confirmed the efficiency
1 improvement due to flat PDMS (J,. = 12.45 mA/cm?), which
is caused by the reduced difference in refractive index between
outer environment and PDMS polymer. The ], value was the
highest (13.41 mA/cm?, 9.09% higher compared to the bare
glass) with a period of 1800 nm because it exhibits the most
effective zeroth-order transmittance with a broadband
spectrum and high-order diffraction. In the optical simulation
results, the absorption increased by 1.08 times compared with
the existing structure. The efficiency of the solar cell is
dependent on the absorption in each layer.’® In the
experimental results, the efficiency increased by 1.07 times
from 24.52% to 27.15%, which is similar to the enhancement
rate of absorption in the above simulation results.

To analyze the different illumination angle dependency of
ELG layer on PV modules, the J—V characteristics were
measured in the incident angle (6) from 0 to 50°. As the 6 was
increased, the J. was gradually decreased, and the 5 was also
decreased. However, the ELG encapsulated solar cells
exhibited higher J,. and energy conversion efficiency compared
to bare glass PV module with incident angle from 0 to 50°. We
measured the stability of the efficiencies upon repeated cycle
with bare and ELG layer samples (Figure S6). The solar cell
efficiency with ELG layer was maintained higher during the
repetition compared to bare sample.

B CONCLUSIONS

In this work, the light-capturing polymers were designed and
applied to photovoltaic modules. The edge-located 1D grating
polymer was adopted for redirecting light into the active area
of solar cells. The grating periods of 1000, 1400, and 1800 nm
are used to generate a high diffraction order and optimize the
solar spectrum light intensity. The zeroth-order transmittance
for broadband light with high-order diffraction for the grating
samples are optimized at the range of filling fraction between
25% and 50%, above a height of 700 nm and a period of 1400
nm. Consequently, it was experimentally found that the
improved short-circuit current density was achieved about
~9.09% with the grating period of 1800 nm. In conclusion, the
optimized 1D grating polymer provides a higher photovoltaic
device efficiency than the bare solar cell device achieved by
simply stacking the only grating patterned thin layer without
complicated changes of conventional photovoltaic modules.
We believe that our light capturing approaches will provide
opportunities for encapsulant production of solar-energy-
harvesting devices.
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