EDIBLE AGROFORESTRY DESIGN TEMPLATES
ACKNOWLEDGEMENTS
Produced by Backyard Abundance
P.O. Box 1605
Iowa City, IA 52244
info@BackyardAbundance.org
www.BackyardAbundance.org
www.facebook.com/BackyardAbundance
twitter.com/ICBYA
Funding: Iowa Department of Agriculture and Land Stewardship Specialty Crop Block Grant
Revised: February 2015

License: Creative Commons Attribution 4.0 International

This document is the result of collaborative efforts of many individuals and organizations. It builds upon dozens of excellent books and publications for which we are extremely grateful.

Primary Authors
- Fred Meyer, Backyard Abundance
- Melissa Sharapova, Backyard Abundance

Special thanks to these people for invaluable input and feedback:
- David Granatstein, Washington State University
- Roxane Mitten, Backyard Abundance
- Randall Scheiner
- Grant Schultz, Versaland Farm
- Dale Secher, Carandale Farm
- David Sliwa, Sliwa Meadow Farm
- Mark Vitosh, Iowa Department of Natural Resources
- Tom Wahl, Red Fern Farm

Figure 1. Cover
Shiitake mushroom (Lentinula edodes), ginseng (Panax quinquefolius), and hazelnut (Corylus americana) are all high-value agroforestry crops.
Photos by dominik18s, Priya Jaishanker, Fred Meyer / CC BY ND

Figure 2. Above
Once established, the Chinese chestnut (Castanea mollissima) tree will yield food and habitat for decades.
Photo by Otto Phokus
TABLE OF CONTENTS

1 Introduction .. 5
2 Goals .. 7
3 Design Steps .. 9
4 Organizing Patterns .. 11
5 Crop Yields and Harvest Times .. 16
6 Establishment and Management ... 18

AGROFORESTY DESIGNS

7 Alley Crop Orchard .. 21
8 Edible Forest Edge ... 28
9 Shady Edible Forest ... 33
10 Edible Riparian Buffer .. 38
11 Edible Windbreak ... 44
12 Homestead Orchard .. 49

REFERENCES

Figure 3. Pawpaw
The pawpaw (Asimina triloba) is a mid-sized understory tree that yields potato-sized fruit in part shade or full sun.

Photo by Fred Meyer
Figure 4. Elderberries
Elderberry shrubs (Sambucus canadensis) yield fruit in full sun or part shade and prefer moist, well-drained soil.

Photo by Andy Rogers / CC BY SA
Agroforestry is the growing of a combination of crops (plants, animals, fungi) and trees in forest-inspired agricultural systems. These systems benefit human communities through a greater connection to landscapes, improved stewardship of resources, and enhanced economic opportunities.¹

Current edible agroforestry research is extensive, but specific planting layouts are sparse and typically focus on only a handful of species and techniques. Without design examples of best-practices, it is difficult for growers to overcome the significant time commitments, monetary investments, and risk associated with researching planting configurations, estimating implementation costs and payback, and experimenting with planting techniques.

This document provides design templates of edible agroforestry practices to aid growers with the design, implementation, and management of environmentally-beneficial ecosystems that support personal income and community needs. Much information is summarized from existing resources; please examine references and endnotes for additional exploration of topics.

Figure 5. Aronia Berry
The black aronia berry shrub (Aronia melanocarpa) yields nutritious berries in a wide variety of soil types.

Photo by Fred Meyer
Introduction
About the Designs
These design templates are meant to be implemented on common landscapes. While they use temperate climate species that grow in the northern hemisphere (hardiness zones 4-7), documentation about underlying patterns is provided so substitutions can be made for different growing conditions and desired yields.

Alley Crop Orchard. Grow agricultural crops between strips of food-bearing trees and shrubs.

Edible Forest Edge. Maximize food growth potential at the edge of an existing forest.

Shady Edible Forest. Incorporate edibles and medicinals under the canopy of a forest.

Edible Riparian Buffer. Protect waterways from pollution and erosion with an edible low-land habitat.

Edible Windbreak. Protect crops, livestock, and buildings with a linear planting of edible trees and shrubs.

Homestead Orchard. Increase the value and yield of the land around a home with intensively managed edible landscaping.

Silvopasture. Silvopasture, the practice of combining forestry and animal grazing, is addressed in all designs. Most research separates silvopasture from other agroforestry practices, but given the maintenance value provided by animals across many settings, specialized techniques are described in each design.

Figure 6. Realistic Designs
Locations on Versaland Farm were used to provide realistic designs and plant selections. Versaland is located in eastern Iowa in hardiness zone 5b.
Each design template attempts to meet a variety of important goals to ensure it maximizes value to the grower and the landscape.

Figure 7. Chestnut and Aronia Berry Tour
Tom Wahl, co-owner of Red Fern Farm, hosts educational field day tours of their family-owned tree nursery near Wapello, Iowa.

Photo by Fred Meyer
LOW MAINTENANCE
An established agroforestry system requires some management even if it was designed to mimic self-renewing, self-fertilizing, and self-maintaining properties of a diverse woodland. Leaving energy-intensive maintenance (seeding, planting, weeding, fertilizing, watering) to plant, insect, and animal allies frees up time for additional harvesting, processing, and resting. The grower’s role is management—not maintenance—of the ecosystem, guiding it in a desired direction through periodic disturbances of mowing, thinning, pruning, and harvesting. Through these methods, growers become an integrated working part of nature, catalyzing healthy ecosystems that improve over time without constant oversight.

HIGH YIELDS
Food and profit often receive the most emphasis when designing and managing an agricultural landscape. Maximizing long-term success, however, means designing for additional yields that come from the development of an entire system, not just a single element.2,3

Agroforestry emulates nature’s processes and patterns to decrease labor and financial inputs. While the food productivity of a single plant is considered, yields are additionally measured in terms of the entire system: labor saved, soil fertility increased, weeds suppressed, habitat created, carbon sequestered, beauty enjoyed.

For example, planting chives (Allium spp.) and gooseberries (Ribes uva-crispa) under the light shade of a pear tree (Pyrus spp.) creates a system of cumulative yields: chives accumulate calcium and potassium in the soil for use by the gooseberry and pear while also supporting pollinators and confusing pests with a strong smell, the pear protects the gooseberries from scorching sunny days, and the thorny gooseberry can help deter some animals from browsing the pear. These yields could not be achieved if the elements were planted separately.

Growing food and increasing environmental health are typically considered to be separate endeavors, but by holistically viewing the landscape as a system, edible agroforestry demonstrates that achieving both goals is possible on a single plot of land. The following yields can be realized and greatly increased through the integration of plants, wildlife, insects, and humans.

Food
Integrating a food-bearing plant into a polyculture may decrease its food yield due to competition with other plants for nutrients, water, and sunlight. A thoughtful layout can minimize this competition and promote collaboration so that the entire polyculture produces a crop that is greater than the individual plant. Forage for livestock is also a valuable yield that can be incorporated.

Money
Profit is obviously important but can be difficult to estimate due to many factors: seasonal weather patterns, maturity of perennial crops, soil fertility over time, fluctuations in regional market demand, value-added processing. Establishing annual crops in and around maturing perennial patches may help mitigate these factors.

For information about effective economic planning, see Economic Considerations in the Center for Agroforestry’s Training Manual for Applied Agroforestry Practices.4

Soil Fertility
Industrialized agricultural systems assume soil will degrade over time and therefore attempt to simply minimize losses. Agroforestry systems seek to build new soil, mimicking nature’s processes to indefinitely increase tilth and nutrient-holding capacity.

Water Management
Perennial plants are better than annuals at conserving water on the landscape. The persistent canopy created by trees and shrubs holds water for wildlife and insects while slowing rain impacts on soil. Perennial plant roots slow water flow year-round and turn soil into a moisture-retaining sponge. These features help create a drought-resistant landscape that eliminates erosion problems.

Materials
Food-bearing plants and their supporting species can have valuable secondary yields of materials. The trunk of a honey locust (Gleditsia triacanthos) can provide rot-resistant lumber and can serve as a living fence post when thoughtfully placed. Hazelnut (Corylus americana) wood can be used for basketry or burned for charcoal.

Habitat and Pest Management
The majority of insects and wildlife benefit perennial crops. Without birds and insects the expensive and time-consuming burden of pollinating and protecting crops falls exclusively on growers. Through proper plant selection and layout, we can provide homes and support for beneficial helpers while discouraging severe crop herbivory.5

Climate Change Mitigation
Pulling atmospheric carbon into soil and plants helps mitigate climate change. Perennial crops sequester vastly more carbon than annual crops due to their longer growing period and minimal soil disturbance.6

EFFICIENT HARVEST
Patches of the site are designed to accommodate a planned harvesting schedule with accessible pathways and physical “windows” into vegetation. Plant varieties are grouped based upon a common ripening period to minimize the fuel consumption and the time required to move through the site. Plants are spaced based upon equipment requirements to make reaching a patch and harvesting within it as efficient as possible.

RESILIENCY AND STABILITY
Mimicking a woodland’s vegetation layers, density, and diversity is fundamental to creating resiliency and stability. Left unmanaged, the yields and functions of a well-designed agroforestry site stabilize or improve over the years even when faced with extreme drought, herbivory, wind, and other external stresses.

Your long-term livelihood may depend upon a crop system functioning and continuing to yield under stress over an extended time period. The system’s stability can directly equate to more economic stability.
3 DESIGN STEPS

Designing a landscape that is based upon ecological principles requires thought, patience, and adherence to a good design process.

When designing your landscape, we encourage you to follow these steps using the documentation in this guide for ideas and assistance.
1. Articulation of goals
2. Base mapping
3. Inventory and assessment
4. Concept designs
5. Plant list
6. Master plan

All design templates were created following this process.

Figure 8. Drawing
Tracing paper on top of a base map is an inexpensive and effective method of creating landscape drawings from a variety of viewpoints.
Photo by Fred Meyer
ARTICULATION OF GOALS
What do you want from your land? What does the land need? Write down your priorities, short- and long-term goals, site and resource limitations, available time, and skills. Consider economics, ethics, and personal goals of spending time with family and friends. Refer to these goals throughout the design process to help stay focused and on track.

BASE MAPPING
Create a scaled map of the site, identifying elements that can and cannot be removed. Use tracing paper laid on top of the base map to complete subsequent steps.

INVENTORY AND ASSESSMENT
Identify and document existing site elements for a thorough understanding of all limiting factors, landforms, water flow and erosion patterns, circulation paths, vegetation, wildlife and insects, life, microclimates, frost pockets, wind speed and direction, pesticide drift, buildings, soil fertility, soil texture and drainage, aesthetics, sun and shade, and surrounding ecosystems. Define usage zones to understand how frequently areas are visited.

Assess this inventory analysis by asking, “Why does this element matter?” and rigorously document your insights. During the design steps, these careful assessments will help place the right plant in the right place which will greatly improve chances for success while lowering maintenance chores.

Species Inventory
It is important to inventory and understand the function of existing vegetation on your landscape, including all weeds, native species and exotic species. For each plant, note sunlight conditions, soil types, common plant groups, and amount of shelter. Use this research to guide the search for desired plants that have attributes similar to thriving plants on your land. This approach will greatly increase plant establishment, yields, disease resistance, pest tolerance, and drought-tolerance.

You may discover existing plants that are edible and marketable; for example, ginseng (Panax quinquefolius) or black cohosh (Actaea racemosa) may already be growing in an existing forest. Helping these plants expand or establishing higher-yielding varieties can greatly increase chances of success.

Water Flow Patterns
The more precisely you identify the contours of your landscape, the better you will understand how to minimize drought. County agencies often provide contour maps that can be used for initial planning and design. Detailed maps can be created using a variety of low-tech and high-tech methods.

Eroded areas often represent high-priority opportunities for catching and impounding large amounts of water for the benefit of nearby plants.

Limiting Factors
Understanding a site’s limiting factors and resources is key to designing resilient polycultures that produce high yields at desired times. Latitude, annual precipitation, landform, and biome are factors that cannot be easily changed. Matching plants to the site is much less expensive and time-consuming than attempting to alter the site so desired plants will thrive on it.

Minimize competition between plants for limited moisture, nutrients, or sunshine by using limitations to guide initial plant selections. On a sandy site, for example, narrow species selections to those with high drought tolerance or deep taproots, or both, so that plants will not compete for scarce moisture.

Your availability to harvest crops could be another limitation. Identify your time windows for harvesting throughout the seasons and then select species and varieties that accommodate your schedule.

CONCEPT DESIGNS
Describe your desired landscape in one or two present-tense paragraphs writing down how you interact with it and how it feels, looks, and sounds.

Sketch initial designs using free flowing bubble-like shapes and loose lines. Fill the entire landscape with functional areas using your inventory and assessment to inform this brainstorming. Each area should have a specific purpose that helps fulfill your goals. Identify the ecosystem of each area to help define plant communities: forest, woodland, shrubland, prairie, wetland. Define pathways between areas to create an elegant flow throughout the landscape. Create beneficial relationships between elements to increase their value; for example, use a roadway ditch on contour to hold and infiltrate rainwater. Experiment with different concept designs until one feels right.

PLANT LISTS
Create a desired plant list. Identify the mature size of each plant, its optimal growing conditions, and its functions. Specifically look for plants that suppress weeds (i.e., ground covers), fix nitrogen in the soil, accumulate nutrients, and/or attract beneficial insects and birds. Including these highly functional plants in your landscape means less maintenance because plants, animals, and insects perform this maintenance.

For each area in the concept design, divide up desired plants into individual plant lists using the designated ecosystem, desired functions, and limiting factors to guide decisions.

MASTER PLAN
For each area in the concept design, draw infrastructure elements, trees, and shrubs first and then place herbaceous plants and ground covers. Use the area’s plant list to place plants based upon desired harvesting schedules. Define exact sizes of buildings, beds, pathways, and other features. Draw trees and shrubs based upon their mature size to minimize future competition for sunlight.

Use tracing paper to adjust your placement of plants and other elements until everything fits seamlessly together. This will take time and patience: plan to recycle many sheets of tracing paper.

Several master plans may need to be created for different periods to show growth over time. For example, an alley crop may contain many annual plants during its initial establishment. After 3-5 years, the widening tree canopy may show the replacement of annuals with understory perennials.

For additional information about developing a successful work plan, site assessment, and market plan, follow guidelines provided in the Center for Agroforestry’s Training Manual for Applied Agroforestry Practices.
Each agroforestry design template shares an underlying framework of patterns that aid in the maintenance, yield consistency, stability, and resiliency of the system. Understanding these patterns allows plant substitutions and design changes to be made for different growing conditions and desired yields.

Figure 9. Ostrich Fern Fiddlehead
Young shoots of the ostrich fern (Matteuccia struthiopteris) are edible and can be prepared like asparagus.

Photo by Priya Jaisanker / CC BY ND
WATER MANAGEMENT AND LANDSCAPE CONTOUR

Plants need water to thrive, so a critical first step is to carefully create a water management plan. Consider topography, current soil moisture levels, annual rainfall, and each plant’s water needs and then create a plan that distributes and infiltrates rainwater at specific locations. Establishing swales and ponds, keyline plowing, and placing pathways and plants on a landscape’s contour are water management techniques that will form a strong foundation for crops. See The Keyline Plan for information about keyline design and plowing to create a drought-resistant landscape.11

PATHWAYS

Decreasing management time requires that site designs accommodate tractors with plows, trucks, wheel barrows, and other equipment. Set path widths and turn-around headlands (space at the end of a field) based upon existing and future equipment.

WOODLAND ECOSYSTEM

Achieving the many goals of an edible agroforestry system requires a high input of energy. This energy can come from our labor and a declining supply of fossil fuels or we can place a majority of the burden onto Mother Nature’s strong shoulders. Understanding the ecological niche of plants is key to leveraging nature’s free benefits.

Most orchard crops originated in woodlands. All design templates, therefore emulate a woodland ecosystem as a design foundation to ensure the broadest array of these crops will reside in familiar biological communities with desired sun, soil, nutrient, and water needs fulfilled. This ecosystem has a high level of ecological productivity, giving plants a home in which they will inherently thrive and maximize food yields without constant oversight.

NATIVES AND ECOLOGICAL ANALOGS

Whenever possible, select species native to your area to take advantage of their inherent ability to adapt to regional stresses and provide desired habitat for local wildlife and insects. If a native cannot appropriately fulfill a needed function or fit within a space, attempt to find an ecological analog: a species or variety that has a high degree of similarity with the native species. For example, the native saskatoon (Amelanchier arborea) may be too tall to grow alongside a semi-dwarf fruit tree in a Midwest polyculture so the shorter Regent variety of the Amelanchier alnifolia species could be selected instead.

When selecting any species, especially non-natives, carefully research the plant’s replication methods which can vary depending upon the region and site conditions. Avoid highly dispersive and expansive species.
VEGETATION LAYERS

The vertical structure of a woodland is defined by several vegetation layers, all of which are capable of yielding food. Each layer interacts with the other layers to keep the entire system functioning. Resiliency in the woodland is increased with more vegetation layers due to redundant functions and additional availability of species niches.

The soil of healthy woodlands is composed of mycorrhizal fungi due to the constant presence of woody trees and shrubs. Therefore, to help orchard crops thrive, a fungal-dominated soil must be encouraged by establishing a large number of trees and shrubs with undiseased debris from regular pruning dropped directly to the ground. Interplanting species that can be exclusively used for mulch is recommended, such as the fast-growing, nitrogen-fixing black alder (Alnus glutinosa).

Tall Tree

Some woodlands may not have a tall tree layer or may only have only a few tall trees. The overstory defines the amount of sunlight available to lower layers and consumes the most nutrients and water in the woodland. Due to this fact, great consideration must be given to the amount of food yield desired in lower layers; a sparse overstory will increase food yields in lower layers (see “High-Yielding Upper Canopy” on page 13). Examples: sugar maple (Acer saccharinum), chestnut (Castanea mollissima), heartnut (Juglans ailantifolia).

Low Tree

Understory trees are often shade tolerant, but fruit yields increase with more sun. Trees in this layer can be designed to replace tall trees from accidental or purposeful disturbances. Examples: pawpaw (Asimina triloba), pear (Pyrus spp.), apple (Malus spp.), saskatoon (Amelanchier alnifolia), hickory (Carya ovata).

Shrub

Just like understory trees, shrubs are often shade tolerant and add diversity and yields to the system. Examples: aronia berry (Aronia melanocarpa), gooseberry (Ribes uva-crispa), bush cherry (Prunus japonica), hazelnut (Corylus americana).

Herb

In addition to providing food and medicine, the flowers and vegetation of perennial herbs often support a wide variety of insects that assist in the pollination and protection of the system. Examples: ginseng (Panax quinquefolius), anise hyssop (Agastache foeniculum), purple coneflower (Echinacea purpurea), comfrey (Symphytum x uplandicum), rhubarb (Rheum x cultorum).

Ground

Low-growing, spreading perennials help suppress weeds and conserve moisture. Huge amounts of nutrients are stored and cycled in the herb and ground layers. Examples: Dutch white clover (Trifolium repens), garden strawberry (Fragaria ananassa), yarrow (Achillea millefolium), mushrooms.

Root

Plant roots can help condition poor soil sometimes to great depths. Examples: Jerusalem artichoke (Helianthus tuberosus), alfalfa (Medicago sativa).

Vine

Vines can grow in any layer using other layers for structural support. Pruning may be required to ensure they do not suffocate other vegetation. Examples: grape (Vitis spp.), hardy kiwi (Actinidia arguta), maypop (Passiflora incarnata).

VEGETATION DENSITY

A woodland tree canopy ranges from 40% to 99% coverage (a forest has 100% coverage). Most orchard crops yield more food with increased sunlight. The density of a woodland’s upper canopy, therefore determines the amount of food that can be expected to grow in lower layers.

High-Yielding Upper Canopy

To maximize food yields in the upper canopy, space trees so their mature crowns touch, but do not interlock. This design keeps the most sunlight in the upper canopy which may decrease yields in lower layers.

High-Yielding Understory

To maximize food yields in lower layers, focus first on providing required sunlight to understory plants and then integrate upper canopy trees. For example, space understory shrubs so their mature crowns do not interlock and then surround or bookend them with trees ensuring mature tree crowns do not shade the shrubs.

Increase Yields in New Orchards

Far more sunlight is available to the lower layers of a newly planted orchard. Establish fast-yielding crops between trees to provide yields while trees mature; for example, annual vegetables, French sorrel (Rumex acetosa), rhubarb (Rheum x cultorum), aronia berry (Aronia melanocarpa), and bush cherry (Prunus japonica) often provide food within two years after planting. As the canopy closes, sun-loving species can be replaced with shade-tolerant plants; for example, gooseberry (Ribes uva-crispa), and elderberry (Sambucus canadensis).
VEGETATION DIVERSITY
Physical and functional diversity in a woodland increases the ecosystem’s stability, resilience, and self-maintenance.13 Competition between plants with similar resource needs decreases yields. You can therefore maximize resiliency and yields by using a variety of diverse plants which encourages harmony and cooperation.

Resource Partitioning
Vary plant heights to minimize competition for sunlight. Include plants with roots of varied depths to partition the soil for nutrients and water; for example, taprooted comfrey (\textit{Symphytum x uplandicum}), dandelion (\textit{Taraxacum officinale}), and French sorrel (\textit{Rumex acetosa}) are unlikely to sap resources from a nearby shallow-rooted fruit tree.

Polycultures
A well-designed, intercropped mix of plant species provides several benefits:
• Food yields increase due to decreased competition for similar sunlight, water, and nutrient resources.
• Disease problems decrease because parasites cannot jump as easily between different species.
• Herbivory is decreased because it is more difficult for pests to find desired plants.

Integrated pest management strategies often suggest avoiding monocultures of long rows and large masses of the same species.14 When designing blocks or short rows of plants, try to increase harvest ease by keeping species with similar ripening times in the same patch.

Uneven Structure
Resist the temptation to create a woodland with a level canopy height. Create plantings of varied dimensions throughout all layers to promote air circulation, increase sunlight availability, and increase niches for beneficial insects, birds, and soil organisms.15 Intermixing varieties of the same species may create varied heights and widths while also increasing disease and pest resistance. Within rows, slightly offset plants rather than planting in a straight line.

Redundancy
To increase system resiliency, similar functions are fulfilled multiple times in different ways. For example, if deer nibble all fragrant false indigo (\textit{Amorpha nana}) to the ground, a backup ground cover of perennial Dutch white clover (\textit{Trifolium repens}) exists to replace its nitrogen-fixing function.

FUNCTIONALLY INTERCONNECTED POLYCUlTURE
Maximizing food yields is a primary focus, but to remain stable, resilient, and self-maintaining, a woodland ecosystem requires that its inhabitants fulfill many other functions, not just producing food. In every patch, try to build soil, suppress weeds, cycle nutrients, support pollinators, and resist pests by leveraging inherent functions of plants and attracted animals. Elements in the ecosystem all work in an interdependent web of relationships, each fulfilling each other’s needs and caring for one another. Ideally, a single plant, insect, or animal will provide multiple functions to the system, increasing chances for redundancy and other yields.

Soil Building Nutrient Accumulators
Free yourself from purchasing and distributing fertilizers by including plants that generate biomass filled with nutrients accumulated from subsoil or gathered from topsoil detritus. Comfrey (\textit{Symphytum x uplandicum}), dandelion (\textit{Taraxacum officinale}), French sorrel (\textit{Rumex acetosa}), and Roman chamomile (\textit{Chamaemelum nobile}) are excellent examples of plants that build soil and reduce leaching losses by accumulating nutrients and then releasing them through root and foliage decomposition.

\textbf{Figure 13. Strawberry and Garlic Polyculture} This polyculture of strawberries and garlic yields more food per square foot together than it would if the plants were separated. The different leaves and root structures do not compete for sunlight or water. Photo by Fred Meyer

\textbf{Figure 14. Comfrey} The deep roots of comfrey bring up nutrients from the subsoil and do not compete with surrounding plants. Photo by Fred Meyer
Place nutrient accumulators near the dripline of the mature outer canopy of food-bearing plants where feeder roots are commonly located.

Nitrogen Fixers
Nitrogen is often the least available soil nutrient, but one that all plants need. Nitrogen-fixing plants sequester atmospheric nitrogen and then release (“fix”) it into the soil where it can be used by surrounding plants. Good examples include leadplant (Amorpha canescens), lupines (Lupinus spp.), alfalfa (Medicago sativa), and clovers (Trifolium spp.).

Just as with nutrient accumulating plants, place nitrogen fixers near the mature outer canopy of food-bearing plants where feeder roots are commonly located.

Ground Cover Weed Suppressors
Ground covers can form a thick mat under crops and in pathways to make it difficult for weeds to gain a foothold. Ideal ground covers are low-growing, provide habitat for beneficial insects and soil organisms, do not harbor pests, eliminate erosion, do not compete with crop plants for water and nutrients, and decrease or eliminate mulching and mowing maintenance. Achieving all these goals can be difficult and that trade-offs are often needed.

Vegetation under crop plants can yield soil development, pollinator habitat, and reduced maintenance, but may sacrifice some food yields due to competition for nutrients and water. Decide which yields from the entire system are most important and then try to design that balance. For example, food yields can be maximized by replacing vegetation under crop plants with grass mulch that is blown from mowed pathways. This strategy requires more mowing whereas permanent vegetation under crop plants would reduce mowing, but may also reduce food yields.

When designing a ground cover mix, fill all weed niches by planting 2-4 species with both clumping and running habits in the same area. After a few years, the clumpers will appear to be islands in a sea of runners.

- Running species spread indefinitely, weaving among other plants filling in soil and sunlight gaps. Examples: dwarf yarrow (Achillea tomentosa), wild strawberry (Fragaria virginiana), sweet woodruff (Galium odoratum), peppermint (Mentha spicata), apple mint (Mentha suaveolens).
- Clumping species grow to only a specific width and typically spread slowly. Clumpers should be tall enough to ensure they are not overtaken by runners. Examples: creeping thyme (Thymus serpyllum), oregano (Vulgare hirtum), chives (Allium spp.), Roman chamomile (Chamaemelum nobile), self-heal (Prunella vulgaris).

See Washington State University’s Orchard Floor Management publications for additional information and research about weed management strategies.

Slow-Growing Grass Mix
The shallow, dense roots of conventional turfgrass rob young orchard crops of nutrients and water. A slow-growing, lower-competition grass mix for pathways and mowed areas under tree crops includes: 17

- Creeping red fescue (Festuca rubra ssp. rubra).
- Chewings fescue (Festuca rubra ssp. commutata) and/or hard fescue (Festuca longifolia).
- Dutch white clover (Trifolium repens).

Deter Voles
Eliminating vole habitat is important as these rodents can girdle and kill trees by eating bark. Voles will take up residence in most tall ground covers and deep woodchip mulch. They prefer to eat white clover so avoid planting it under crop trees with high vole activity, especially if no other deterrent is present.

Deter voles by mixing gravel with the soil at the base of trees, painting trunks with white latex paint mixed with sand, installing gravel cloth around trunks, encouraging predator activity, and establishing vole-repelling plants, such as sweet woodruff. Providing habitat for predatory snakes and birds will also help manage rodent population.

Nectaries
Flowers blooming throughout the growing year provide support for beneficial insects and birds that in turn provide pollination and pest-management services. Lean toward native flowers that bloom early or late in the season or have blooms for 2-4 months. Include plants with short and long nectar tubes to encourage insect diversity.

Most flowers serve as food sources for “generalist” insects, but also select plants that attract “specialist” predatory insects that will help control pests. All plant lists in this document designate nectary plants as generalists (G), specialists (S), or both (GS).

Long-blooming examples include anise hyssop (Agastache foeniculum), purple coneflower (Echinacea purpurea), blanket flower (Gaillardia aristata), fennel (Foeniculum vulgare), aster (Aster spp.), mint (Mentha spp.) and yarrow (Achillea millefolium).

Pest Confusers
Strong-scented plants can confuse pests and reduce their ability to find crops. Good aromatic plants include anise hyssop (Agastache foeniculum), yarrow (Achillea spp.), bee balm (Monarda fistulosa), broadleaf sage (Salvia officinalis), and mint (Mentha spp.).

Crop Tree Size and Setting

<table>
<thead>
<tr>
<th>Pathway ground cover</th>
<th>Crop ground cover</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow-growing grass mix with alfalfa.</td>
<td>Mulch of mowed grass and alfalfa blown from pathway.</td>
<td>Young trees grow faster in mulch with no competition from ground covers.</td>
</tr>
<tr>
<td>Slow-growing grass mix with Dutch white clover.</td>
<td>Woodchip mulch.</td>
<td>Due to weak root systems, crop yields from dwarf trees decrease when ground covers are present.</td>
</tr>
<tr>
<td>High vole activity.</td>
<td>Chives, mint, sweet woodruff.</td>
<td>Successfully using mowed and blown grass as mulch requires narrow crop rows.</td>
</tr>
<tr>
<td>Large area.</td>
<td>Slow-growing grass mix.</td>
<td>For settings completely covered by grass, trees spaced evenly in a grid pattern will improve mowing efficiency.</td>
</tr>
<tr>
<td>Medium to small area.</td>
<td>Chives, dwarf yarrow, wild strawberry, Dutch white clover, creeping thyme, oregano, Roman chamomile, self-heal.</td>
<td>Dropped fruit may be difficult to harvest in tall ground covers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotating geese or other animals can keep grass low while cleaning up fallen fruit.</td>
</tr>
</tbody>
</table>

Use the tree size and setting to inform a mix of ground covers that will maximize crop yields while suppressing weeds.
Crop yields and harvest times are influenced by hardiness zone, sunlight and water availability, soil conditions, competition from other plants, pruning regimes, rootstock, variety, and plant age.
Approximate crop harvest times and yields for which data was available is shown in Figure 16. Use this information plants to inform decisions on which crops to grow. Harvest labor may be reduced by grouping crops with similar harvest times.

<table>
<thead>
<tr>
<th>Form</th>
<th>Common Name</th>
<th>Genus / Species</th>
<th>Hardiness Zones</th>
<th>Crops</th>
<th>Crop Yield</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vine</td>
<td>Grape, Fox</td>
<td>Vitis labrusca</td>
<td>5-8</td>
<td>Fruit</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Apple, Dwarf</td>
<td>Malus spp.</td>
<td>4-8</td>
<td>Fruit</td>
<td>48.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Cherry, Sour Dwarf</td>
<td>Prunus cerasus</td>
<td>4-8</td>
<td>Fruit</td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Cherry, Sweet Dwarf</td>
<td>Prunus avium</td>
<td>5-8</td>
<td>Fruit</td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Chestnut, Chinese</td>
<td>Castanea mollissima</td>
<td>4-8</td>
<td>Nuts</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Crabapple, Siberian</td>
<td>Malus baccata</td>
<td>3</td>
<td>Fruit</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Mulberry</td>
<td>Morus spp.</td>
<td>5-9</td>
<td>Berries</td>
<td>17.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Pawpaw</td>
<td>Asimina triloba</td>
<td>4-8</td>
<td>Fruit</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Peach, Dwarf</td>
<td>Prunus persica</td>
<td>4-8</td>
<td>Fruit</td>
<td>57.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Pear, Asian</td>
<td>Pyrus pyrifolia</td>
<td>4-9</td>
<td>Fruit</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Pear, European Dwarf</td>
<td>Pyrus communis</td>
<td>4-9</td>
<td>Fruit</td>
<td>27.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Persimmon, American</td>
<td>Diospiros virginiana</td>
<td>5-9</td>
<td>Fruit</td>
<td>27.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Plum, American Standard</td>
<td>Prunus americana</td>
<td>3-8</td>
<td>Fruit</td>
<td>122.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Plum, European Dwarf</td>
<td>Prunus domestica</td>
<td>4-8</td>
<td>Fruit</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Plum, Japanese</td>
<td>Prunus salicina</td>
<td>6-10</td>
<td>Fruit</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Walnut, Black</td>
<td>Juglans nigra</td>
<td>4-7</td>
<td>Nuts</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Aronia Berry, Black</td>
<td>Aronia melanocarpa</td>
<td>3-9</td>
<td>Berries</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Beach Plum</td>
<td>Prunus maritima Ecos</td>
<td>3-6</td>
<td>Fruit</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Blueberry, Half-High</td>
<td>Vaccinium corymbosum</td>
<td>3-7</td>
<td>Berries</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Blueberry, Lowbush</td>
<td>Vaccinium angustifolium</td>
<td>2-6</td>
<td>Berries</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Cherry, Bush</td>
<td>Prunus japonica</td>
<td>4-8</td>
<td>Fruit</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Currant, Black</td>
<td>Ribes nigrum</td>
<td>3-7</td>
<td>Berries</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Currant, Red</td>
<td>Ribes silvestre</td>
<td>3-7</td>
<td>Berries</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Elderberry</td>
<td>Sambucus canadensis</td>
<td>3-10</td>
<td>Berries</td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Gooseberry</td>
<td>Ribes uva-crispa</td>
<td>3-8</td>
<td>Berries</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Hazelnut</td>
<td>Corylus americana</td>
<td>4-9</td>
<td>Nuts</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Nanking Cherry</td>
<td>Prunus tomentosa</td>
<td>3-7</td>
<td>Fruit</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Raspberry</td>
<td>Rubus idaeus</td>
<td>4-8</td>
<td>Berries</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Saskatoon</td>
<td>Amelanchier alnifolia</td>
<td>2-7</td>
<td>Berries</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Asparagus</td>
<td>Asparagus officinalis</td>
<td>2-9</td>
<td>Shoots</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Blackberry, Thornless</td>
<td>Rubus fluticosus</td>
<td>5-8</td>
<td>Berries</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Rhubarb</td>
<td>Rheum x cultorum</td>
<td>1-9</td>
<td>Stalk</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Strawberry, Garden</td>
<td>Fragaria ananasana</td>
<td>4-9</td>
<td>Berries</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 17. Approximate Crop Yields and Harvest Times

Yields and harvest times may vary greatly based upon site conditions. Estimates are provided from several sources.
Establishing an edible agroforestry system may take weeks or decades depending upon weather, soil conditions, the size of the site, and the amount of pressure from undesired weeds and animals. After completing your design, create a realistic establishment strategy that is within your available time, resources, and budget.

Figure 18. Woodland Medicinal Starter Beds
Raised beds can help keep weeds from intermixing with these newly planted medicinal herbs.

Photo by Katie Trozzo / CC AT ND
Weed Management

It is very important to create a weed management strategy before planting begins. The selected strategy can heavily influence the site layout, plant selection, mowing regime, use of animals, and needed equipment. Most design templates demonstrate a “sandwich system” of grass pathways between wide strips of orchard crops with perennial ground covers.

If vigorous and persistent weeds exist on the site, patiently taking one or more years to eliminate the weeds prior to planting may be prudent; it is exponentially more difficult to eliminate weeds around existing plants. Landscape fabrics that biodegrade in a year may be a good option for eliminating weeds.

See “Ground Cover Weed Suppressors” on page 15 for information about designing polycultures to manage weeds.

Soil Development

For all plants, identify desired soil pH range, drainage, texture (sand, silt, clay), and organic matter. If soil conditions do not match plant needs, then the soil must be remediated prior to planting.

Instant Succession

Succession is the observed process of change in the species structure of an ecological community over time. A woodland normally takes a very long time to establish as it linearly goes from bare ground through successive stages of annual herbs, perennial forbs and grasses, pioneer shrubs and trees, to hardwood trees. By thoughtfully establishing high-functioning herbs, shrubs, and trees all at the same time, all layers of the woodland instantly begin growing. This strategy bypasses natural stages, greatly accelerating succession and yields while suppressing weeds.

Limiting factors may greatly influence resource needs and succession speed. For example, a low-nutrient sandy site may require immense amounts of compost or an emphasis on temporary soil-developer plants in early years. As nutrient levels increase, the soil-developers can be replaced with permanent plants.

Due to the large amounts of resources, labor, plants, and energy that may be required, this strategy is likely best suited to small plots.

Islands that Merge

When resources and labor are low and weed competition is high, consider establishing small islands of plantings that slowly expand and eventually merge. These islands keep weeds at bay using wide, temporary barriers of landscape fabric and/or heavy mulch. When weeds surrounding the islands are thoroughly suppressed by the barrier, and ground covers within the islands are established, expand the barrier and propagate plants into the weed free area.

Over Planting

Over planting trees and shrubs and then thinning them as they reach maturity allows several varieties or species to be evaluated to find the most resilient, highest yielding plants in a specific area of the landscape. After several years, low-yielding plants can be removed and fragile plants may die. New plants may need to be planted if large gaps emerge where plants once stood.

Maintaining sunlight in lower layers may require removing perfectly good plants if preferred resilient species are planted too close. Consider a staggered planting pattern to help minimize this situation.

Animals

Domestic animals can be used to prepare the land for permanent plantings, depending on the condition of the site and its vegetation. For lightly vegetated land prone to erosion, use a movable poultry tractor to quickly remove the tops of weeds and lay down a light coat of manure. Pigs, goats or cattle can initially prepare land crowded with weeds when the area is too rough for poultry.

To clear weed trees and brush before planting, surround the area with electric mesh fencing to contain animals. Goats, for example, can initially graze tall, thick weeds, followed by poultry which spread manure and interrupt parasite life cycles. A pig tractor can be used to remove deeply rooted woody weeds. Pigs can also be rotated seasonally to clean up crop wastes or fallen fruit.

Animal tractor systems can be very effective for ground cover maintenance and work well with orchard or tree crops. In an orchard animal tractor system, the animals are rotated through the orchard, either in movable pens or in a series of fixed paddocks. When at the proper density, the animals clean the area between and under the trees of grasses, weeds, and weed seeds, scavenge wastes and windfall fruits, and eat insects and their larvae. At the same time, the animals add their manure to help fertilize the crops. When the pen area has been cleared and fertilized by the animals, they are moved on to the next section of orchard. With the appropriate combination of animals and crop trees, this system has been effective with chickens, guinea fowl, turkey, pheasant, quail, sheep, and pigs.

On a healthy mixed diet from the orchard, animals tend to have less disease problems. Lighter animals such as chickens or other poultry can be rotated permanently through an orchard system. Geese can be employed to control grasses in orchards.

Young saplings are susceptible to animal damage while the orchard is being established. Once perennial plantings, including ground covers, are established small breeds of chicken can be introduced to the orchard. The chickens will eat insects and the fruit that falls to the ground, stopping pests from gathering, and fertilize the soil. This can be done at a ratio of about 100 chickens per acre. When the orchard is 3-7 years old pigs can be introduced, after 7 years, sheep. When the orchard is 15 years old cattle can be allowed to periodically graze in the orchard.

Consider food safety issues when giving animals access to cropland.

When animal grazing is not possible, brush-hogs, tractors, winches, chainsaws, and other tools can be effective for removing undesired plants.

Pest Management

Periodically inspect crops to detect and manage pests. Use fencing or other means to protect tree seedlings from animal browsing. Insects and diseases can be significant factors in reducing the health and vigor of crops. Corrective actions should minimize negative impacts on beneficial insects.
Red Fern Farm is a family-owned nursery near Wapello, Iowa that grows a variety of tree crops.

Photo by Fred Meyer
Alley cropping is broadly defined as the planting of two or more sets of single or multiple rows of trees or shrubs at wide spacings, creating alleys within which agricultural, horticultural, or forage crops are cultivated.27

Figure 20. Alley Crop Orchard
Walnut trees surround an alley of corn in this agroforestry planting.
Courtesy of USDA National Agroforestry Center
INVENTORY AND ASSESSMENT

Identify the contours of the site and use them as a design foundation for long strips of plantings. If no nearby source of water exists for irrigation during establishment, then the plantings should follow the contour of the land to maximize rainwater catchment and reduce erosion.

Identify sunlight availability, soil types, frost pockets, and warm microclimates throughout the area.

Note the direction of prevailing summer and winter winds. Determine if chemicals drift from neighboring fields.

Consider the required path width and turnaround space required by machinery for management and harvesting.

Identify the travel routes of local wildlife and note where young plantings will need protection.

Figure 21. Alley Crop Orchard Base Map
Contour lines help form the foundation for the design.
CONCEPT DESIGN
Rows of woody perennials are placed at intervals across the crop field, either on the contour or perpendicular to prevailing and damaging winds. Determine the width of the alleys between the rows of trees or shrubs by considering slope length, field width, crop sunlight requirements, and equipment width. An east-west orientation of tree rows will maximize the sunlight received by the alley crop, provided the topography permits this arrangement. On flat land where soil erosion and rain catchment are not concerns, trees may be planted off contour if prevailing winds may have a negative influence on crop health and yields.

Blocks of plants can be organized strategically based on harvest times. These polycultures also help reduce pest pressure.

Figure 22. Alley Crop Orchard Concept Design
A wide row and narrow row of perennial crops surround a 60’ wide row of annual crops.
Competition and Cooperation

Trees compete with companion crops for sunlight, moisture, and nutrients. Attention must be given to the root type and size of neighboring plants within the design to minimize competition. For example, root systems associated with warm season forages are typically deeper than cool season grasses. This makes them an excellent choice for controlling erosion and protecting subsurface water from leached pesticides and nutrients. These warm season grasses will be less competitive in the early spring when many trees are beginning their annual growth. However, warm season forages grow vigorously in the hot summer months which may put them in competition with trees and other woody vegetation at a time of the year when water is possibly the most limited resource. Compatibility—even seasonal compatibility—must be considered when selecting trees, shrubs, grasses, and crops for an alley cropping practice.

Allelopathy is the negative biochemical influence exerted by one plant on the growth of nearby plants; for example, roots of black walnut trees produce juglone, a compound that can inhibit the growth of nearby plants.

Annual or perennial alley crops can have positive influences on tree crops by suppressing weeds, providing nutrients, and creating microclimates. For example, many legumes fix nitrogen that can benefit nearby fruit trees while deterring weeds. Corn or sunflowers can speed tree growth by creating a greenhouse effect for trees. Chemical interactions can be controlled by choosing plant combinations that work together.

Also consider that herbicide drift from annual crops may damage trees.

Multiple Rows

Multiple rows of trees and shrubs provide the same benefits as a single row of perennials, but allow structure and species diversity to be increased through vertical and horizontal vegetative layering. Water and nutrient loss can also be improved by using multiple rows.

To enhance the growth of trees and shrubs in multiple-row plantings, stagger the plants between adjacent rows. This will permit maximum crown development by providing more room to grow. In addition, competition for sunlight between plants can be reduced through offset row configurations.

Row Spacing

Wider row spacing is preferred for nut production. Closer spacing will provide better erosion control. Sixty-foot spacing within the alleys will generally allow crop production (for example, corn, soybeans, cereals) for 5-10 years. Eighty to 120 foot spacing will allow production for up to 20 years or more. As the shade increases over the life of the trees, it may be necessary to change the companion crop being grown in the alleyway. As the alleyways become more shaded, shade tolerant species can be grown.
PLANT SELECTION

When selecting a tree species, consider the sunlight needs of the alley crop throughout its growth cycle. Small tree leaves and light shade is often preferable to heavy shade.

A thorny hedge of roses, such as dog rose (*Rosa canina*) or rugosa rose (*Rosa rugosa*), can be planted around the perimeter of an orchard to contain and shelter free ranging chickens.

Red clover (*Trifolium pratense*) produces hormone-like compounds (oestrogens) that can interfere with livestock breeding. Consider establishing Dutch white clover (*Trifolium repens*), instead of red clover, in areas where forage crops are harvested and fed to livestock during the breeding season.

Hickories (*Carya* spp.), walnuts (*Juglans* spp.), oaks (*Quercus* spp.), persimmons (*Diospyros* spp.), and honeylocust (*Gleditsia triacanthos*) are recommended trees for North American systems.31

<table>
<thead>
<tr>
<th>Form</th>
<th>Common Name</th>
<th>Genus / Species</th>
<th>Hardiness Zones</th>
<th>Height</th>
<th>Width</th>
<th>Light</th>
<th>Water</th>
<th>Crops</th>
<th>Materials</th>
<th>Nitrogen Fixer</th>
<th>Nutrient Accumulator</th>
<th>Ground Cover</th>
<th>Nectary</th>
<th>Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>Chestnut, Chinese</td>
<td>Castanea mollissima</td>
<td>4-8</td>
<td>40'</td>
<td>40'</td>
<td>Full Sun</td>
<td>Nuts</td>
<td>Lumber</td>
<td>K, P, Ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Locust, Honey, Thornless</td>
<td>Gleditsia triacanthos</td>
<td>3-8</td>
<td>50-75'</td>
<td>50-75'</td>
<td>Full Sun</td>
<td>Seeds</td>
<td>&</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Pawpaw</td>
<td>Asimina triloba</td>
<td>4-8</td>
<td>20-30'</td>
<td>20-30'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Persimmon, American</td>
<td>Diospyros virginiana</td>
<td>5-9</td>
<td>15-75'</td>
<td>15-50'</td>
<td>Full Sun</td>
<td>Nuts</td>
<td>Lumber</td>
<td>K, P, Ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>SERVICEBERRY, DOWNTY</td>
<td>Amelanchier arborea</td>
<td>4-9</td>
<td>15-25'</td>
<td>15-25'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Walnut, Black</td>
<td>Juglans nigra</td>
<td>4-7</td>
<td>50-70'</td>
<td>30-50'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Aronia Berry, Black</td>
<td>Aronia melanocarpa</td>
<td>3-9</td>
<td>5-6'</td>
<td>5-6'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Hydric</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Elderberry</td>
<td>Sambucus canadensis</td>
<td>3-10</td>
<td>6-12'</td>
<td>6-12'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Hydric</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Gourni</td>
<td>Elaeagnus multiflora</td>
<td>5-8</td>
<td>6-8'</td>
<td>6-8'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Hazelnut</td>
<td>Corylus americana</td>
<td>4-9</td>
<td>12-20'</td>
<td>12-15'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Saskatoon</td>
<td>Amelanchier alnifolia</td>
<td>2-7</td>
<td>5-15'</td>
<td>5-15'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Sea Buckthorn</td>
<td>Hippophae rhamnoides</td>
<td>3-8</td>
<td>10-20'</td>
<td>10-20'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Clover, Dutch White</td>
<td>Trifolium repens</td>
<td>4-8</td>
<td>4-10'</td>
<td>6-36'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Clover, Miniclover</td>
<td>Trifolium repens</td>
<td>4-8</td>
<td>4'</td>
<td>6-36'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Corfrey</td>
<td>Symphytum x uplandicum</td>
<td>4-9</td>
<td>3-5'</td>
<td>3-5'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 24. Alley Crop Orchard Plant List

Figure 25. Harvesting Pawpaws
Pawpaw trees (*Asimina triloba*) grown from seed begin yielding fruit in 4-8 years depending on seed quality, suitability of the location, the care the tree receives, and the species.

Photo by Fred Meyer
This design depicts row crops of nuts and fruits with alleyways for annual crops. The top row, which is downslope, is comprised of a black walnut (*Juglans nigra*) polyculture of complementary plants. Plants were chosen that tolerate the juglone compound that is produced by black walnuts in seed husks, leaves, and roots. The polyculture was placed downslope to avoid complications with other rows containing crops that are sensitive to juglone.

Nitrogen Fixers

Nitrogen fixing plants include rows of alternating sea buckthorn (*Hippophae rhamnoides*) and goumi (*Elaeagnus multiflora*) with white clover (*Trifolium repens*) in the ground cover.

Pollinators

Plants that support pollinators and beneficial predatory insects include white clover, goumi, aronia berry (*Aronia melanocarpa*), American elderberry (*Sambucus canadensis*), saskatoon (*Amelanchier alnifolia*), and comfrey (*Symphytum x uplandicum*). The saskatoon alternates with aronia berry for pest interruption.

Harvest Strategy

Since walnuts, persimmons (*Disospiros virginiana*), chestnuts (*Castanea mollissima*), and pawpaws (*Asimina triloba*) are harvested by hand, the shrub understory will not interfere with harvesting. Trees are spaced to allow access to the shrubs for harvesting.

Competition Considerations

Sun-loving saskatoon, hazelnut, and sea buckthorn shrubs were placed on southern rows while shade-tolerant goumi, elderberry, and aronia were placed north of trees. Wide spacing between shrubs reduces competition while easing harvesting and management.

Alleyway Crops

Crops chosen for the alleyways are determined by farm needs and the age of the perennial plantings. When trees are young, sun-loving annual crops can be planted. Annual crops provide an immediate income while perennial plantings mature to bearing age. As the trees mature, shade-tolerant perennials can be introduced into the alleys such as hazelnuts, elderberries, and aronia berries. Another option is planting forage crops to be harvested for animal fodder. Forage grasses are tolerant of dappled shade as trees reach maturity.

Figure 26. Alley Crop Orchard Master Plan
ESTABLISHMENT AND MANAGEMENT

For tree rows, weeds must be minimized for the first 3-5 years in a band about 3 feet on each side of the trees. Nothing will improve the growth of trees and shrubs like the control of competing grasses.

Properly thinning trees within rows can maintain semi-open crowns. Maintained through regular thinning, these openings can help continue the vigorous growth of shade intolerant companion crops. Pruning basal branches before they reach 1” in diameter improves future wood quality and thins the depth of the canopy permitting more sunlight to reach understory crops.

If trees are shallow rooted, roots can be severed using a Ripper, Coulter, or Chisel Plow to decrease competition with annual crops. Begin when trees are young and annually or biennially rip lateral roots to decrease their presence in the plow zone. Remaining roots will be active deeper in the soil profile.32

As tree crops mature, less of the alley crop will thrive due to shading. Annual alley crops could be replaced with shade-tolerant perennials.

As a system matures, it begins to propagate itself and expand. Consider allowing volunteer mulberries, raspberries, and grapes to thrive and provide yields provided they do not interfere with the rest of the system.

Figure 27. Tree Planting
A tractor-pulled tree planter can greatly increase planting efficiency and speed for large areas.
Photo by Fred Meyer
Shady forests often end abruptly when meeting annually cultivated crops and lawns. Orchard crops, beneficial insects, and wildlife can thrive in this sunny and partially protected environment while creating a beautiful and natural-looking transition of open woodland to dense forest.

Bees are important pollinators for many agriculture crops, but cultivated plants rarely provide their required nectar year round. Forest edges with large diversities of flowering plants can help support pollinators. In addition, the increased number of birds in forest edges help manage agricultural pests.33

Figure 28. Extending a Forest Edge
The edge of this forest is extended with newly planted fruit trees on the contour of the landscape.
Photo by Paul Trieu
INVENTORY AND ASSESSMENT

When assessing a forest edge take note of existing tree canopy, sun exposure, soil type, and the slope of the land. Sun exposure is a major factor in determining species location in the forest edge habitat. The more deeply shaded forest areas share organic matter, shade, protective cover, and a fungal-driven soil. The sunnier grassland areas share sun, wind, openness, and bacterial-driven soil.34

When identifying existing species, note if they are desirable or if they must be removed.

The slope of the land will determine irrigation needs and ease of access during harvesting.

Figure 29. Edible Forest Edge Base Map
Contour lines help form the foundation for the design.
CONCEPT DESIGN

Full access to crops may be hampered by forested areas, so carefully plan paths to crops for ease of maintenance and harvesting. Possible patterns for edge design include: zigzag, keyhole, sinuous, suntrap, crenellated, or gently curved.35

Consider livestock when placing and designing a forest edge planting. You can enhance meat quality of livestock by enriching the fodder base with fruits, leaves, and branches by including forest edge planting near grazing areas.36

Figure 30. Edible Forest Edge Concept Design
Pathways extend through the forest edge to ease maintenance and harvesting.
PLANT SELECTION

Edible forest edge designs favor canes, shrubs, and small to mid-sized trees.\(^{37}\)

Herbs also appreciate the fungal dominated soils of the forest edge. Marketable herbs such as thyme, lavender, and marjoram can be grown beneath the light shade of trees.\(^ {38}\)

Most annual root vegetables (carrots, beets, etc.) require at least 6 hours of sunlight and leafy vegetables (lettuce, spinach, kale, collards etc.) need at least 4 hours of sunlight.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Genus / Species</th>
<th>Hardiness Zones</th>
<th>Height</th>
<th>Width</th>
<th>Light</th>
<th>Water</th>
<th>Crops</th>
<th>Materials</th>
<th>Nitrogen Fixer</th>
<th>Nutrient Accumulator</th>
<th>Ground Cover</th>
<th>Nectary</th>
<th>Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crabapple, Siberian</td>
<td>Malus baccata</td>
<td>3</td>
<td>30'</td>
<td>25'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogwood, Cornelian Cherry</td>
<td>Cornus mas</td>
<td>4-8</td>
<td>20'</td>
<td>20'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic</td>
<td>Berries</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pawpaw</td>
<td>Asimina triloba</td>
<td>4-8</td>
<td>20-30'</td>
<td>20-30'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic</td>
<td>Fruit</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pear, Asian</td>
<td>Pyrus pyrifolia</td>
<td>4-9</td>
<td>25-30'</td>
<td>25'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perdlimon, American</td>
<td>Diospyros virginiana</td>
<td>5-9</td>
<td>15-30'</td>
<td>15-30'</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Fruit</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elderberry</td>
<td>Sambucus canadensis</td>
<td>3-10</td>
<td>8-12'</td>
<td>8-12'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Hydric</td>
<td>Berries</td>
<td>GS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gooseberry</td>
<td>Ribes uva-crispa</td>
<td>3-8</td>
<td>3-5'</td>
<td>3-5'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazelnut</td>
<td>Corylus americana</td>
<td>4-9</td>
<td>12-20'</td>
<td>12-15'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Nuts</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jostaberry</td>
<td>Ribes x culverwallii</td>
<td>4-7</td>
<td>4-8'</td>
<td>4-8'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raspberry</td>
<td>Rubus idaeus</td>
<td>4-8</td>
<td>4-6'</td>
<td>Indef.</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackberry, Thornless</td>
<td>Rubus fruticosus</td>
<td>5-8</td>
<td>4-9'</td>
<td>3-4'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clover, Dutch White</td>
<td>Trifolium repens</td>
<td>4-8</td>
<td>4-10'</td>
<td>6-36'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clover, Miniclover</td>
<td>Trifolium repens</td>
<td>4-8</td>
<td>4'</td>
<td>6-36'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornfrey</td>
<td>Symphytum x uplandicum</td>
<td>4-9</td>
<td>3-5'</td>
<td>3-5'</td>
<td>Full Sun - Full Shade</td>
<td>Xeric - Mesic</td>
<td>x</td>
<td>x</td>
<td>K, P, Ca, Cu, Fe, Mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jerusalem Artichoke</td>
<td>Helianthus tuberosus</td>
<td>2-10</td>
<td>6-12'</td>
<td>Indef.</td>
<td>Full Sun - Part Shade</td>
<td>Mesic</td>
<td>Tubers</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strawberry, Wild</td>
<td>Fragaria virginiana</td>
<td>3-8</td>
<td>4-12'</td>
<td>Indef.</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yarrow, Dwarf Wolly</td>
<td>Achillea tomentosa</td>
<td>4-8</td>
<td>6-15'</td>
<td>Indef.</td>
<td>Full Sun - Part Shade</td>
<td>Xeric</td>
<td>Leaves (Tea)</td>
<td>K, P, Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 31. Edible Forest Edge Plant List

Figure 32. Gooseberries

Many varieties of gooseberries produce high yields of sweet berries.

Photo by Fred Meyer
This design depicts pawpaws (*Asimina triloba*) and persimmons (*Disospiros virginiana*) at the existing tree line with an understory planting organized by harvest times.

Design Strategy

In the southernmost row, berries tolerant of part-shade are planted on the north side of fruit trees. Daffodils (*Narcissus*) and chives (*Allium* spp.) planted around the trees confuse pests and provide a crop. Bulbs planted at the drip line of trees also help keep spreading grasses from competing with tree roots. Dutch white clover (*Trifolium repens*) and wild strawberries (*Fragaria virginiana*) complete the ground cover polyculture. The hedge of raspberries (*Rubus idaeus*) is surrounded by mowed pathways to contain their spread.

Harvest Strategy

Persimmons are harvested late in October into November. Pawpaws are harvested by hand in mid-September after elderberries (*Sambucus canadensis*) are harvested in late August.

The ground cover of winter squash, which thrives in a fungal woodland soil, is harvested as vines die. The integrated Jerusalem artichokes are dug before the ground freezes. Many culinary and medicinal herbs also prefer a fungal soil and would be a good alternate crop to rotate with winter squash.

ESTABLISHMENT AND MANAGEMENT IDEAS

Brush-hogs, tractors, winches, chainsaws, and other tools may be needed to clear weed trees and brush before planting a forest edge.

Animals contained within movable electric mesh fencing can also help prepare a forest edge. Goats can clear vegetation ahead of chickens, relying on the poultry to spread the manure and disrupt parasite cycles. The rooting behavior of pigs can remove deeply rooted woody weeds. Movable pig tractors can prepare a new area or can be rotated seasonally to clean up crop wastes or fallen fruit.

Elderberries grown for market are cut to the ground after the ground freezes to prevent mites from overwintering in the buds.
Forest farming is the cultivation of high-value specialty crops under the protection of a forest canopy that has been modified to provide the correct shade level. Most shade-loving plants benefit from consistently moist soil and some direct or dappled sunlight. Thinning the upper canopy, removing underbrush, and removing entire trees may be required to provide the correct environment for forest crops to thrive.

Figure 34. Medicinal Herbs
Cultivated medicinal herbs can contribute to the health of a forest.

Photo by Forest Farming / CC BY ND
INVENTORY AND ASSESSMENT

Focus on areas with ideal sunlight and soil moisture. Carefully observe and map sunlight levels throughout the day. Most forest plants thrive only in part shade to full shade environments. Search for areas where soil is consistently moist, but well-drained.

Direct Sunlight Levels
Full Sun: 6 or more hours
Part Sun: 2-6 hours
Part Shade: 2-4 hours
Full Shade: Less than 2 hours

Vegetation Layers
Identify missing vegetation layers in the forest. A lack of shrubs, ground covers, vines, or herbs can provide an opportunity for opportunistic weeds to gain a foothold. Look for saplings of desired canopy trees—these important young trees are the next generation in the stand awaiting a disturbance to fill in canopy gaps.

Mushrooms
Logs and woodchips inoculated with mushroom spawn are a popular medium because fungi requires almost no sunlight. If mushroom cultivation is desired, identify flat, protected areas where logs could be stacked or leaned between trees.

When mushrooms are fruiting, daily misting and harvesting may be necessary to ensure freshness and prevent damage from insects. For this reason, growing mushrooms may only be practical at locations that have water access and are visited frequently such as near the home.

Figure 35. Shady Edible Forest Base Map
Contour lines help form the foundation for the design.
CONCEPT DESIGN

Sunlight is likely the greatest limiting factor in a forest design: too much or too little sun and plants will wither. Use sunlight levels to identify planting areas then group plants based upon desired harvesting periods and growing conditions. For example, tall plants could be used to fully shade mushroom logs and protect them from drying winds.

Figure 36. Shady Edible Forest Concept Design
Three plant groups are defined, each performing different functions.
PLANT SELECTION

Select and organize plants based upon their desired sunlight needs and moisture requirements. Identify trees and shrubs that may help modify sunlight conditions or block wind.

<table>
<thead>
<tr>
<th>Form</th>
<th>Common Name</th>
<th>Genus / Species</th>
<th>Hardiness</th>
<th>Height</th>
<th>Width</th>
<th>Light</th>
<th>Water</th>
<th>Crops</th>
<th>Materials</th>
<th>Nitrogen</th>
<th>Nutrient</th>
<th>Ground</th>
<th>Nectary</th>
<th>Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>Pawpaw</td>
<td>Asimina triloba</td>
<td>4-8</td>
<td>20-30'</td>
<td>20-30'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic</td>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Walnut, Black</td>
<td>Juglans nigra</td>
<td>4-7</td>
<td>50-70'</td>
<td>30-50'</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Nuts</td>
<td>Lumber</td>
<td>K, P, Ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Elderberry</td>
<td>Sambucus canadensis</td>
<td>3-10</td>
<td>6-12'</td>
<td>6-12'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Hydric</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Gooseberry</td>
<td>Ribes uva-crispa</td>
<td>3-8</td>
<td>3-5'</td>
<td>3-5'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Oregon Grape</td>
<td>Mahonia aquifolium</td>
<td>5</td>
<td>3-6'</td>
<td>3-6'</td>
<td>Full Sun - Full Shade</td>
<td>Xeric - Hydric</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Bloodroot</td>
<td>Sanguinaria canadensis</td>
<td>3-8</td>
<td>6'</td>
<td>Indef.</td>
<td>Part Shade</td>
<td>Mesic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Cohosh, Black</td>
<td>Actaea racemosa</td>
<td>3-8</td>
<td>4-6'</td>
<td>2-4'</td>
<td>Part Shade - Full Shade</td>
<td>Mesic</td>
<td>Root</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Cohosh, Blue</td>
<td>Caulophyllum thalictroides</td>
<td>3-8</td>
<td>1-2'</td>
<td>6-12'</td>
<td>Part Shade - Full Shade</td>
<td>Mesic</td>
<td>Root</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Comfrey</td>
<td>Symphytum x uplandicum</td>
<td>4-9</td>
<td>3-5'</td>
<td>3-5'</td>
<td>Full Sun - Full Shade</td>
<td>Xeric - Mesic</td>
<td>K, P, Ca, Cu, Fe, Mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Fern, Ostrich</td>
<td>Matteuccia struthiopteris</td>
<td>2-8</td>
<td>2-6'</td>
<td>Indef.</td>
<td>Part Shade - Full Shade</td>
<td>Mesic - Hydric</td>
<td>Shoots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Ginseng</td>
<td>Panax quinquefolius</td>
<td>4-7</td>
<td>18'</td>
<td>18'</td>
<td>Full Shade</td>
<td>Mesic</td>
<td>Root</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Goldenseal</td>
<td>Hydrastis canadensis</td>
<td>3-8</td>
<td>0'</td>
<td>1'</td>
<td>Part Shade</td>
<td>Mesic</td>
<td>Root</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Mayapple</td>
<td>Podophyllum peltatum</td>
<td>3-8</td>
<td>12-18'</td>
<td>Indef.</td>
<td>Part Shade - Full Shade</td>
<td>Mesic</td>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Ramps</td>
<td>Allium tricoccum</td>
<td>4-8</td>
<td>6-10'</td>
<td>Indef.</td>
<td>Part Shade - Full Shade</td>
<td>Mesic</td>
<td>Shoots, Root</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Solomon's Seal</td>
<td>Polygonatum biflorum</td>
<td>3-7</td>
<td>2-4'</td>
<td>2'</td>
<td>Part Shade - Full Shade</td>
<td>Xeric - Mesic</td>
<td>Shoots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Trillium</td>
<td>Trillium grandiflorum</td>
<td>4-6</td>
<td>12-18'</td>
<td>Indef.</td>
<td>Part Shade - Full Shade</td>
<td>Mesic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Wild Ginger</td>
<td>Asarum canadense</td>
<td>3-8</td>
<td>4-5'</td>
<td>Indef.</td>
<td>Part Shade - Full Shade</td>
<td>Mesic</td>
<td>Root</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td>Mushroom, Garden Giant</td>
<td>Stropharia rugoso annulata</td>
<td>6-18'</td>
<td>1-2'</td>
<td>1-2'</td>
<td>Full Shade</td>
<td>Hydric</td>
<td>Fructing body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td>Mushroom, Oyster</td>
<td>Pleurotus ostreatus</td>
<td>6'</td>
<td>4-10'</td>
<td>4-10'</td>
<td>Full Shade</td>
<td>Hydric</td>
<td>Fructing body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td>Mushroom, Shitake</td>
<td>Lentinula edodes</td>
<td>6'</td>
<td>4-10'</td>
<td>4-10'</td>
<td>Full Shade</td>
<td>Hydric</td>
<td>Fructing body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 37. Shady Edible Forest Plant List

Figure 38. Stacked Mushroom Logs
The "log cabin" stacking style is a common method of managing logs inoculated with mushrooms.

Photo by Catherine Bukowski / CC BY ND
MASTER PLAN

This design depicts two rows of plantings: Plants in the row at the forest edge desire part shade while plants further inside the forest desire full shade. Pawpaws (Asimina triloba) provide fruit while shading beds of goldenseal (Hydrastis canadensis). Medicinal herb beds are aligned slightly off-contour to capture rain water, but stay well-drained.

A large amount of woodchip mulch inoculated with mushrooms may provide a harvest while suppressing weeds, retaining moisture, and enriching soil. Once fruiting begins, constant vigilance and daily harvests may be necessary to ensure freshness and prevent insect and rodent damage.

An edible forest ground cover grows through stacked logs that are inoculated with mushrooms. The plants help logs retain moisture and are short enough to not interfere with the mushroom harvest.

ESTABLISHMENT AND MANAGEMENT IDEAS

Several popular understory medicinal plants—ginseng (Panax quinquefolius), goldenseal (Hydrastis canadensis), black cohosh (Actaea racemosa), bloodroot (Sanguinaria canadensis)—require 3-6 years of growth before they are usable or marketable. Interplanting these areas with fast-yielding mushrooms, gooseberries (Ribes uva-crispa), and elderberries (Sambucus canadensis) can provide crops and build soil while the roots of these plants mature.

Oftentimes, thinning the canopy improves the health of the forest by allowing dappled sunlight to reach the forest floor. The resulting woody debris can be used to outline beds, cultivate mushrooms, and create woodchips for use around plants and for pathways. For more information about canopy thinning, see the Iowa State University Extension publication Woodland Improvement and Crop Trees in Iowa.41

Once mushroom fruiting begins, constant vigilance and daily harvests may be necessary to ensure freshness and prevent insect and rodent damage. Logs can be moved to a location that is frequently visited with ideal conditions, such a protected and shady area near your home. Woodchip pathways inoculated with mushrooms will likely need to be remulched every year to remain productive. Visit the Cornell University Forest Mushroom Cultivation website42 for research and best-practices for mushroom cultivation.
Riparian forest buffers are ecosystems made up of tree, shrub, and grass plantings adjacent to watercourses and within floodplains. They buffer watercourses from pollution, stabilize stream banks against erosion, protect sensitive aquatic environments, enhance wildlife habitat, trap sediments, recharge groundwater, reduce flooding, and increase biodiversity. Few food crops tolerate the wet conditions along watercourses and in floodplains, but many ornamental and biomass plants thrive in this lowland environment.

Figure 40. Bear Creek

Multiple rows of trees and shrubs, as well as a native grass strip, combine in a riparian buffer to protect Bear Creek in Story County, Iowa. Few (if any) plants are edible at Bear Creek, but it still serves as an excellent example of a properly designed buffer.

Photo by Lynn Betts, USDA NRCS
INVENTORY AND ASSESSMENT

The conditions of watercourses and floodplains are heavily influenced by weather and climate fluctuations. Rigorous observation over many years may be required to thoroughly understand an area.

Examine general flow patterns for the entire watershed to understand sources of water flowing through the landscape. Look far upstream to identify sources of pollution that may need to be mitigated.

Many landscapes and streams have been designed to rapidly move water off properties. This design approach often causes erosion and degrades the health of watercourses. Straight streams, gullies, exposed tree roots, and areas reinforced with loose stone often indicate opportunities for design improvements.

Accurately map contours and detailed water flow patterns for the area.

Observe and document tiling drainage pipe flow rates, surface runoff, and stream flow during light showers, heavy rains, and springtime snow melt. Carefully identify areas of erosion, scouring, deep sediment, flooding, stream blockages, and bank undercutting.

Dig holes in several areas and carefully document water table depths throughout the seasons. Lowland areas could be very dry during summer months which will inform plant selections. The holes can also identify compacted soil—often caused by heavy machinery—which will reduce water infiltration.

During flooding periods, document the water height for all areas to understand where to locate crop plants so they are not submerged. Record the length of time areas are under water—even some water-loving plants cannot tolerate lengthy wet conditions.

Areas where soil is frequently scoured by fast-moving water and/or covered by sediment will require very durable plants.

Figure 41. Edible Riparian Buffer Base Map
Contour lines help form the foundation for the design.
CONCEPT DESIGN

Three zones are typically defined in a riparian buffer, each with a specific width, function and design. A total buffer width of 66 to 100 feet is generally recommended, but can vary greatly depending upon topographical features and goals. Width guidelines are provided here, but use the USDA Conservation Buffers publication for detailed specifications on determining exact buffer widths. When in doubt, design wider buffers to ensure effectiveness.

Riparian Buffer Zone Functions

<table>
<thead>
<tr>
<th>Functions</th>
<th>Plant Characteristics</th>
<th>Management and Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1: Bank Stabilization - 20’ strip along stream bank edge</td>
<td>• Bank stabilization • Shade to moderate water temperature • Enhance aquatic habitat with organic matter • Reduce velocity of flood waters</td>
<td>• Fast-growing • Full sun to full shade • Water loving • Resprout when cut • Along the bank, herbaceous rushes and sedges have flexible stems and creeping roots • Trees and shrubs have deep and wide roots</td>
</tr>
<tr>
<td>Zone 2: Infiltration - 30’ strip next to Zone 1</td>
<td>• Maximize infiltration • Uptake, storage, and breakdown of nutrients and pollution • Reduce velocity of flood waters • Trap flood debris to keep it out of nearby crops</td>
<td>• Mixed growth rates • Full sun to part shade • Water loving or flood tolerant</td>
</tr>
<tr>
<td>Zone 3: Flow Control - 20’ strip next to Zone 2</td>
<td>• Slow surface runoff • Trap sediment and debris from surface runoff • Uptake of nutrients and pollution</td>
<td>• Fast-growing • Full sun • Warm season grasses and forbs • Tolerate wet soil</td>
</tr>
</tbody>
</table>

In heavily polluted landscapes, research crops to be sure pollutants do not accumulate in their edible parts. Widen zone 3 and create another zone 2 buffer in front of edibles to help ensure pollution does not reach the crops.

A buffer strip of undulating widths along the length of the stream will likely be required, with wider areas mitigating concentrated surface runoff due to high slopes or drainage tile pipes. A wetland area may be created within a buffer where tile drains; 1 acre of wetland is recommended for every 100 acres of row cropland drained. Avoid deep-rooted plants near drainage tiles.

Begin by sketching each zone starting from the stream and working outward. Widen zones beyond recommended minimums to mitigate higher flow rates in specific areas. Once zones are sketched, identify harvesting pathways and zones. Ensure crop plants are located where their edible parts will not be submerged.

Figure 42. Edible Riparian Buffer Concept Design

Four plant groups and three riparian zones create a matrix of plant blocks with different harvesting times.
PLANT SELECTION

To maximize effectiveness, buffers on both sides of the stream are composed of diverse woody and herbaceous plants that have stiff stems, are tolerant of wet soils and high nutrient levels, and have high root biomass. Begin by dividing desired plants between each zone and then group them based upon harvesting strategies.

Tips
- To maximize sunlight in zone 2, select medium-sized or short trees and shrubs for planting next to watercourses. Large bottomland trees such as silver maple, cottonwood, and box elder are typically recommended for streamside riparian plantings. Once established, debris from these fast-growing trees can contribute to aquatic habitat, but without significant and frequent pruning, their deep shade will greatly reduce food and ornamental crop yields.
- Some willow species may rapidly expand from zone 1 into crops located in zone 2. Carefully research willows and their growth habits. A wide, mowed pathway between zone 1 and 2 may help contain expansive willow growth.
- Seed mixes can be purchased that accommodate specific soil and sunlight conditions in each zone. Additional seed for desired cut flower species can augment mixes.
- Avoid nitrogen-fixing plants, such as clovers and legumes, which could contribute to water nitrification.
- Watercourses can quickly distribute plants and seeds. Use native plants and avoid plants with highly dispersive or expansive characteristics.
- If soil is dry during summer months or droughts, ensure plants can tolerate these conditions; do not simply select water-loving plants.
- Avoid cool-season grasses (brome and fescue); their flexible stems will not trap sediment.
- To decrease the amount of bare soil exposed between plants, consider overseeding a rhizomatous native perennial herb in zone 2 and 3, such as slender mountain mint (Pycnanthemum tenuifolium).
- Always include 3 or more grasses in zone 3 to utilize their soil-stabilizing, fibrous roots and to increase diversity. Switchgrass (Panicum virgatum) is an exception: it is an excellent choice for highly erodible soil, but mixing it with other grasses is not recommended as it will eventually out compete them.
- Kernza wheatgrass (Thinopyrum intermedium) is an edible, perennial grain under development at The Land Institute. By 2022, the wheat may be suitable for planting in zone 3 in areas without pollution.

Figure 43. Native Prairie
Native prairie plants in zone 3 of a riparian buffer can help slow surface runoff and trap sediment. Emphasize plants with deep, fibrous root systems. Selecting beautiful flowers that can be used for cuttings may provide additional income. Photo by Fred Meyer
Riparian Zone Form Common Name Genus / Species Hardiness Zones Height Width Light Water Crops Materials Nitrogen Fixer Nutrient Accumulator Ground Cover Nectary Medicine

Stream Bank

<table>
<thead>
<tr>
<th>Herb</th>
<th>Baltic rush</th>
<th>Juncus balticus</th>
<th>3-7</th>
<th>1-3'</th>
<th>Indef</th>
<th>Full Sun</th>
<th>Hydric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herb</td>
<td>Bottlebrush sedge</td>
<td>Carex comosa</td>
<td>3-6</td>
<td>1'-2'</td>
<td>0'-1'</td>
<td>Full Sun</td>
<td>Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Dark green bulrush</td>
<td>Scirpus atrovirens</td>
<td>3-9</td>
<td>3'-5'</td>
<td>3'-4'</td>
<td>Full Sun</td>
<td>Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Fringed sedge</td>
<td>Carex crinita</td>
<td>3-8</td>
<td>2'-5'</td>
<td>Indef</td>
<td>Full Sun - Full Shade</td>
<td>Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Hop sedge</td>
<td>Carex lupulina</td>
<td>3-8</td>
<td>1'-4'</td>
<td>1'-2'</td>
<td>Full Sun - Part Shade</td>
<td>Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Lurid sedge</td>
<td>Carex inundata</td>
<td>3-8</td>
<td>1'-3'</td>
<td>1'-2'</td>
<td>Full Sun</td>
<td>Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Prairie coneflower</td>
<td>Sparta pectinata</td>
<td>4-9</td>
<td>3'-6'</td>
<td>Indef</td>
<td>Full Sun</td>
<td>Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Wild Rye, Riverbank</td>
<td>Elymus riparius</td>
<td>3-8</td>
<td>3'-4'</td>
<td>1'-2'</td>
<td>Part Shade</td>
<td>Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Wool grass</td>
<td>Elymus canadensis</td>
<td>4-8</td>
<td>3'-5'</td>
<td>Indef</td>
<td>Full Sun</td>
<td>Hydric</td>
</tr>
</tbody>
</table>

Stream Bank, Zone 1-2

| Herb | Wild Rye, Virginia | Elymus virginicus | 3-8 | 2'-4' | 2'-5' | Full Sun - Part Shade | Xeric - Hydric |

Zone 1

<table>
<thead>
<tr>
<th>Shrub</th>
<th>Dogwood, Red-Osier</th>
<th>Cornus sericea</th>
<th>3-8</th>
<th>9'-15'</th>
<th>9'-15'</th>
<th>Full Sun - Part Shade</th>
<th>Mesic - Hydric</th>
<th>Woody Florals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrub</td>
<td>Dogwood, Yellow Twig</td>
<td>Cornus sericea</td>
<td>3-8</td>
<td>6'-9'</td>
<td>6'-12'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic - Hydric</td>
<td>Woody Florals</td>
</tr>
<tr>
<td>Shrub</td>
<td>Willow, Basket</td>
<td>Salix viminalis</td>
<td>4-8</td>
<td>6'-10'</td>
<td>4'-6'</td>
<td>Full Sun - Full Shade</td>
<td>Mesic - Hydric</td>
<td>Woody Florals</td>
</tr>
<tr>
<td>Shrub</td>
<td>Willow, Black</td>
<td>Salix nigra</td>
<td>4-9</td>
<td>50'-70'</td>
<td>30'-50'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic - Hydric</td>
<td>Biomas</td>
</tr>
<tr>
<td>Shrub</td>
<td>Willow, Corkscrew</td>
<td>Salix matsudana</td>
<td>5-8</td>
<td>25'-28'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic - Hydric</td>
<td>Woody Florals</td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Willow, Pussy</td>
<td>Salix discolor</td>
<td>4-8</td>
<td>15'-20'</td>
<td>10'-15'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic - Hydric</td>
<td>Woody Florals</td>
</tr>
<tr>
<td>Shrub</td>
<td>Willow, Sandbar</td>
<td>Salix interior</td>
<td>2-8</td>
<td>30'-70'</td>
<td>20'-30'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic - Hydric</td>
<td>Biomas</td>
</tr>
<tr>
<td>Shrub</td>
<td>Willow, Shining</td>
<td>Salix lucida</td>
<td>5-8</td>
<td>25'-30'</td>
<td>20'-25'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic - Hydric</td>
<td>Biomas</td>
</tr>
</tbody>
</table>

Zone 1-2

<table>
<thead>
<tr>
<th>Herb</th>
<th>Aster, New England</th>
<th>Aster novae-angliae</th>
<th>4-8</th>
<th>3'-6'</th>
<th>2'-5'</th>
<th>Full Sun</th>
<th>Mesic - Hydric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herb</td>
<td>Culver’s Root</td>
<td>Veronicastrum virginicum</td>
<td>3-8</td>
<td>4'-7'</td>
<td>2'-4'</td>
<td>Full Sun</td>
<td>Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>Golden Alexanders</td>
<td>Zizia aurea</td>
<td>3-8</td>
<td>3'-9'</td>
<td>2'-4'</td>
<td>Full Sun</td>
<td>Mesic - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Goldenrod, Grass-Leaved</td>
<td>Solidago graminifolia</td>
<td>3-8</td>
<td>3'-4'</td>
<td>2'-3'</td>
<td>Full Sun</td>
<td>Mesic - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Goldenrod, Riddell’s</td>
<td>Solidago riddellii</td>
<td>3-7</td>
<td>3'-4'</td>
<td>2'-3'</td>
<td>Full Sun</td>
<td>Mesic - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Goldenrod, 2g Zg</td>
<td>Solidago flexicaulis</td>
<td>3-7</td>
<td>1'-3'</td>
<td>1'-3'</td>
<td>Full Sun - Full Shade</td>
<td>Mesic - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Hyssop, Purple Giant</td>
<td>Agastache scrophulariaefolia</td>
<td>4-8</td>
<td>6'-9'</td>
<td>3'-5'</td>
<td>Full Sun</td>
<td>Mesic - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Inweave</td>
<td>Vernonia fasciculata</td>
<td>4-8</td>
<td>9'-10'</td>
<td>4'-6'</td>
<td>Full Sun</td>
<td>Mesic - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Prairie Blazing Star</td>
<td>Liatris pycnostachya</td>
<td>3-9</td>
<td>4'-5'</td>
<td>3'-5'</td>
<td>Full Sun</td>
<td>Mesic - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Slender Mountain Mint</td>
<td>Pycnanthemum tenuilobum</td>
<td>3-8</td>
<td>2'-3'</td>
<td>1'-2'</td>
<td>Full Sun - Full Shade</td>
<td>Xeric - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Vanian, Blue</td>
<td>Verbena hastata</td>
<td>3-8</td>
<td>3'-5'</td>
<td>2'-3'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Wild Rye, Canada</td>
<td>Elymus canadensis</td>
<td>3-8</td>
<td>5'-7'</td>
<td>3'-4'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Blackberry, Thornless</td>
<td>Rubus fruticosus</td>
<td>3-8</td>
<td>4'-5'</td>
<td>3'-4'</td>
<td>Full Sun</td>
<td>Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>St. John’s Wort</td>
<td>Hypericum perforatum</td>
<td>3-8</td>
<td>1'-3'</td>
<td>1'-2'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic - Xeric</td>
</tr>
<tr>
<td>Shrub</td>
<td>Aronia Berry, Black</td>
<td>Aronia melanocarpa</td>
<td>3-9</td>
<td>5'-6'</td>
<td>4'-6'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic - Hydric</td>
</tr>
<tr>
<td>Shrub</td>
<td>Elderberry</td>
<td>Sambucus canadensis</td>
<td>3-10</td>
<td>6'-12'</td>
<td>6'-12'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Hydric</td>
</tr>
<tr>
<td>Shrub</td>
<td>Gooseberry</td>
<td>Ribes uva-crispa</td>
<td>3-8</td>
<td>3'-5'</td>
<td>3'-5'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
</tr>
<tr>
<td>Shrub</td>
<td>Hazelnut</td>
<td>Corylus americana</td>
<td>4-9</td>
<td>12'-20'</td>
<td>12'-15'</td>
<td>Full Sun</td>
<td>Mesic</td>
</tr>
<tr>
<td>Shrub</td>
<td>Saskatoon</td>
<td>Amelanchier alnifolia</td>
<td>2-7</td>
<td>5'-15'</td>
<td>5'-15'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic - Hydric</td>
</tr>
<tr>
<td>Shrub</td>
<td>Serviceberry, Downy</td>
<td>Amelanchier arborea</td>
<td>4-9</td>
<td>15'-25'</td>
<td>15'-25'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic</td>
</tr>
<tr>
<td>Shrub</td>
<td>Walnut, Black</td>
<td>Juglans nigra</td>
<td>4-7</td>
<td>35'-70'</td>
<td>30'-50'</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
</tr>
<tr>
<td>Shrub</td>
<td>Bee Balm</td>
<td>Monarda fistulosa</td>
<td>3-10</td>
<td>3'-4'</td>
<td>2'-3'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>Big Bluestem</td>
<td>Andropogon gerardii</td>
<td>4-9</td>
<td>7'-9'</td>
<td>4'-7'</td>
<td>Full Sun</td>
<td>Xeric - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Black-Eyed Susan</td>
<td>Coreopsis tinctoria</td>
<td>3-8</td>
<td>4'-6'</td>
<td>3'-4'</td>
<td>Full Sun</td>
<td>Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>Blanket Flower</td>
<td>Gallardia aristata</td>
<td>3-10</td>
<td>6'-12'</td>
<td>1'-2'</td>
<td>Full Sun</td>
<td>Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>Boneweed</td>
<td>Eupatorium serotinum</td>
<td>3-8</td>
<td>4'-6'</td>
<td>3'-4'</td>
<td>Full Sun</td>
<td>Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>Hyssop, Anise</td>
<td>Agastache foeniculum</td>
<td>4-9</td>
<td>2'-4'</td>
<td>1'-2'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>Indian Grass</td>
<td>Sorghastrum nutans</td>
<td>4-9</td>
<td>6'-9'</td>
<td>3'-5'</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>Joe Pye Weed</td>
<td>Eupatorium maculatum</td>
<td>4-9</td>
<td>5'-8'</td>
<td>3'-4'</td>
<td>Full Sun</td>
<td>Xeric - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Joe Pyeweed, Sweet</td>
<td>Eupatorium purpureum</td>
<td>4-9</td>
<td>4'-7'</td>
<td>3'-5'</td>
<td>Full Sun</td>
<td>Xeric - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Little Bluestem</td>
<td>Schizachyrium scoparium</td>
<td>3-8</td>
<td>3'-4'</td>
<td>2'-3'</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>Prairie Wild Rose</td>
<td>Rosa arkansana</td>
<td>3-8</td>
<td>3'-5'</td>
<td>2'-3'</td>
<td>Full Sun</td>
<td>Xeric - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Purple Loosestrife</td>
<td>Lythrum salicaria</td>
<td>3-8</td>
<td>3'-4'</td>
<td>1'-2'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>Side-Oats Grama</td>
<td>Bouteloua curtipendula</td>
<td>4-9</td>
<td>2'-3'</td>
<td>1'-2'</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>Swampgrass</td>
<td>Panicum virgatum</td>
<td>5-8</td>
<td>4'-6'</td>
<td>3'-4'</td>
<td>Full Sun</td>
<td>Mesic - Hydric</td>
</tr>
<tr>
<td>Herb</td>
<td>Yarrow</td>
<td>Achillea millefolium</td>
<td>3-8</td>
<td>2'-3'</td>
<td>1'-2'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
</tr>
<tr>
<td>Herb</td>
<td>Plum, European Semi-Dwarf</td>
<td>Prunus domestica</td>
<td>3-8</td>
<td>12'-15'</td>
<td>10'-15'</td>
<td>Full Sun</td>
<td>Mesic</td>
</tr>
</tbody>
</table>

Figure 44. Edible Riparian Buffer Plant List

Plants are grouped by riparian zone and form.
MASTER PLAN
This design accommodates a fast-moving stream and areas with high surface runoff. These conditions require an open, woodland canopy so sunlight can stimulate low-growing herbaceous plants that will stabilize soil. The open canopy can be created by thinly planting trees and shrubs or through frequent cutting of dense plantings. If the area had slower moving water, such as floodplain, the canopy could have 100% cover.

Elderberries (*Sambucus canadensis*) are interplanted with walnuts due to their ability to thrive in part shade and tolerate juglone.

In zone 1, next to the stream, willows and dogwoods with beautiful branches are planted near the pathway to ease harvesting access. Less ornamental species (shining willow and sandbar willow) that will not be harvested are planted near the stream. The mowed pathway will help contain the expansive growth of willows.

In zone 2, plant groups A and B are shown with and without blackberries to demonstrate two different planting patterns.

ESTABLISHMENT AND MANAGEMENT IDEAS
Pathways will likely need to be mowed prior to food harvests.

For streambank bioengineering and extensive planting details, see *Developing Water Trails in Iowa, Chapter 4: Land and Stream Management* by the Iowa Department of Natural Resources.\(^5\)
Windbreaks are planned and managed as part of a crop and/or livestock operation to enhance production, shelter livestock, protect buildings, provide wildlife habitat, and control soil erosion. A thoughtfully designed windbreak that incorporates crop-bearing plants can provide a primary or secondary income while increasing property value.

Field windbreaks protect a variety of wind-sensitive row, cereal, vegetable, orchard and vine crops, control wind erosion, and increase bee pollination and pesticide effectiveness.

Livestock windbreaks help reduce animal stress and mortality, reduce feed consumption, and help reduce visual impacts and odors. Livestock protected by a windbreak will use more feed for weight gain and less to maintain body heat. Windbreaks also can provide protection for feedlots, pastures, calving areas, and confinement buildings. An outdoor “living barn” strategically located in open pasture can be helpful during calving and lambing season. Primary windbreaks around farmsteads with secondary windbreaks around livestock facilities may provide optimum benefits.

Living snowfences keep roads clean of drifting snow and increase driving safety. They can also spread snow evenly across a field, increasing spring soil moisture.

Building windbreaks can reduce heating and cooling bills by decreasing the speed of summer and winter winds.

Figure 46. Windbreak
This multi-row farmstead windbreak in Pocahontas County, Iowa, includes shrubs, conifers, and deciduous trees. Few (if any) plants are edible, but it still serves as an excellent example of a properly designed windbreak.

Photo by Lynn Betts, USDA NRCS
INVENTORY AND ASSESSMENT

Carefully assess these properties on the site:

- Area of desired protection, the desired wind speed in the area, and its distance from the future windbreak
- Prevailing wind direction and speed throughout all seasons
- Existing and future locations of plantings, roads, livestock grazing areas, and all buildings
- Soil types and drainage
- Sunlight
- Topography
- Property lines
- Overhead and underground utilities
- Neighboring farms’ pesticide use
- Existing wildlife habitat
- Beneficial insects, birds, native pollinators that need support
- Alternate host plants for diseases, such as cedar-apple rust

Figure 47. Edible Windbreak Base Map

Wind direction and the desired area of protection help form a foundation for the design.
CONCEPT DESIGN

Several factors must be simultaneously considered to design an effective windbreak.

Height
The windbreak height primarily determines the amount of protection received downwind; the taller the windbreak the greater zone of protection. Use the distance between the middle of the windbreak and the end of the area of protection to determine the windbreak height. Also consider the reduction of wind speed desired. For example, wind speed is reduced by 78% at a distance of 5 times the windbreak height. In this design, the distance between the middle of the windbreak and the end of the protected area is 200 feet. To achieve an 78% reduction in wind speed, the tallest trees must reach at least 40 feet (40 feet tall x 5 = 200 feet). See the Iowa State University Extension publication *Farmstead Windbreaks: Planning* for additional calculations for wind speed reductions.

Length
Extend the planting beyond the protected area by at least 10 times the height of the windbreak to reduce turbulence at the ends. In this example, the 40 foot tall windbreak must extend at least 400 feet north and east.

Density
Allowing some air to pass through a windbreak reduces wind speed over the greatest distance. The most effective windbreaks are 50% permeable. With a permeable windbreak, some wind slips through to form layers of air. This blanket of layered air helps to keep blustery winds aloft after passing over the top of the windbreak. Very little protection from wind is provided with windbreaks below 30% density.

Windbreak Density

- **60-80%**: Winter protection of structures, livestock, farmsteads, and roads as well as noise and visual screens.
- **40-60%**: Crop and soil protection.
- **25-30%**: Snow distribution.

To achieve a density of 60% or more, plant at least three rows of trees and shrubs with at least one row being conifers. The standard arrangement is a row of shrubs with two rows of conifers. The function, durability, and longevity of a windbreak improves with each additional row up to 10 rows.

Tips
- Windbreaks are most effective when oriented at right angles to prevailing or troublesome winds.
- Eliminate all gaps. Breaks in a windbreak become funnels that concentrate and accelerate wind velocity.
- Establish crop plants on the downwind side of a windbreak to increase yields.

![Figure 48. Edible Windbreak Concept Design](image_url)

Each windbreak row contains specific plant types.
PLANT SELECTION

Windbreaks can increase the biological control of crop insect pests by incorporating specific plants that provide habitat for beneficial wildlife. Identify desired insects and birds and then choose plant species that support that wildlife. Larger windbreaks will support more wildlife.

Forage tree legumes can be planted as “fodder banks” along property or fence lines. Foliage from these trees is usually harvested under a cut-and-carry system and can be a principal source of high quality fodder to supplement lower quality crop residue fodder.

Avoid alternate plant hosts of diseases, such as cedar-apple rust.

Evergreen trees and shrubs are valuable in the windbreak for their winter function. Consider species of conifers that yield crops, other than their value as lumber trees, such as pine nuts and medicinal oils.

Table: Edible Windbreak Plant List

<table>
<thead>
<tr>
<th>Form</th>
<th>Common Name</th>
<th>Genus / Species</th>
<th>Hardiness Zones</th>
<th>Height</th>
<th>Width</th>
<th>Light</th>
<th>Water</th>
<th>Crops</th>
<th>Materials</th>
<th>Nitrogen Fixer</th>
<th>Nutrient Accumulator</th>
<th>Ground Cover</th>
<th>Nectary</th>
<th>Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>Crabapple, Siberian</td>
<td>Malus baccata</td>
<td>3</td>
<td>30'</td>
<td>25'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td></td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Dogwood, Cornelian Cherry</td>
<td>Cornus mas</td>
<td>4-8</td>
<td>20'</td>
<td>20'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Fir, White</td>
<td>Picea glauca</td>
<td>2-6</td>
<td>20-40'</td>
<td>10-15'</td>
<td>Full Sun</td>
<td>Mesic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Serviceberry, Downy</td>
<td>Amelanchier arborea</td>
<td>3-5</td>
<td>15-25'</td>
<td>15-25'</td>
<td>Full Sun - Part Shade</td>
<td>Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Juniper, Common</td>
<td>Juniperus communis</td>
<td>2-7</td>
<td>2-4'</td>
<td>3-5'</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Nanking Cherry</td>
<td>Prunus sibirica</td>
<td>3-7</td>
<td>6-10'</td>
<td>6-8'</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Pear, Siberian</td>
<td>Caragana arborescens</td>
<td>2-7</td>
<td>8-20'</td>
<td>12-18'</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Saskatoon</td>
<td>Amelanchier alnifolia</td>
<td>2-7</td>
<td>5-15'</td>
<td>5-15'</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Clover, Dutch White</td>
<td>Trifolium repens</td>
<td>4-8</td>
<td>4-10'</td>
<td>6-36'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Clover, Miniclover</td>
<td>Trifolium repens</td>
<td>4-8</td>
<td>4'</td>
<td>6-36'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Comfrey</td>
<td>Symphytum x uplandicum</td>
<td>4-8</td>
<td>3-5'</td>
<td>3-5'</td>
<td>Full Sun - Full Shade</td>
<td>Xeric - Mesic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Goldenseal</td>
<td>Hydrastis canadensis</td>
<td>3-5</td>
<td>1'</td>
<td>1'</td>
<td>Part Shade</td>
<td>Mesic</td>
<td>Root</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Purple Coneflower</td>
<td>Echinacea purpurea</td>
<td>3-8</td>
<td>3-4'</td>
<td>1-2'</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Strawberry, Wild</td>
<td>Fragaria virginiana</td>
<td>3-8</td>
<td>4-12'</td>
<td>Indef.</td>
<td>Full Sun - Part Shade</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 49. Edible Windbreak Plant List

Figure 50. Purple Coneflower

The stiff, upright stems of purple coneflower (Echinacea purpurea) can decrease wind speed and accumulate snow in a windbreak. The flowers, leaves and roots can be sold as medicinals.

Photo by Fred Meyer
MASTER PLAN

This design depicts 3 offset rows of conifer and fruit trees with an understory of shrubs and herbs that can provide marketable products.62

- Black Hills spruce (Picea glauca) provides bud tips that can be sold for medicine and brewing.
- White fir (Abies concolor) yields lumber and medicinal essential oil.
- Juniper (Juniperus communis) berries are used to flavor gin.
- Siberian peashrub (Caragana arborescens) fixes nitrogen and has edible seeds.
- Siberian crabapple (Malus baccata), saskatoon (Amelanchier alnifolia), Nanking cherry (Prunus tomentosa), cornelian cherry (Cornus mas) and aronia berry (Aronia melanocarpa)

can be used for fruit preserves and juice in addition to being a nectar source for beneficial insects.
- Purple coneflower (Echinacea purpurea) can be harvested for seed, mulch, floral arrangements, and medicine while also providing nectar and building soil with its deep roots.
- Goldenseal (Hydrastis canadensis) is harvested for medicine, serves as a ground cover, and thrives under the shade of trees.
- Comfrey (Symphytum x uplandicum) serves many ecological functions: nectar source, ground cover, mulch, nutrient accumulator, and invertebrate shelter.

The middle row of conifers will eventually grow up to 40 feet high which will decrease wind speed 200 feet away by 78%.

ESTABLISHMENT AND MANAGEMENT IDEAS

The first 1-3 years of growth are very important to the long-term vitality of the windbreak. Plants will likely require weed and grass control, supplemental irrigation, replanting, animal protection, pest and disease control, pruning, and fertilization.

Planting conifers too closely is a common mistake which causes their lifespan to be reduced as they grow into one another. Use the mature canopy size of every plant to guide spacing. For earlier protection, consider over-planting and then thinning as plants mature. Christmas tree species, for example, could be established between permanent plants, possibly providing a holiday income for a few years in very large windbreaks.

Information about funding for windbreaks may be provided by the National Resources Conservation Service, the USDA Farm Service Agency, Soil and Water Conservation Districts, and foresters at cooperative extension services.

See the Producing Marketable Products from Living Snow Fences publication from the University of Minnesota Extension Service for detailed lists of per-acre establishment costs and revenue for selected windbreak plants.63

Figure 51. Edible Windbreak Master Plan
The middle row of conifers will eventually grow up to 40 feet high which will decrease wind speed 200 feet away by 78%.
Edible landscaping near a home works well for crops requiring continuous harvests or intensive management regimes that cannot be easily accomplished with large machinery. It may be a good place to experiment with new plants and designs on a small scale before establishing plantings in a larger setting. Crops bothered by deer, rabbits, and other pests can be better protected near a home using fencing, lighting, dogs, and human activity.

Figure 52. Asian Pear
Asian pear trees (*Pyrus pyrifolia*) typically have fewer disease and pest problems than European species.

Photo by Sage Ross / CC BY SA
INVENTORY AND ASSESSMENT

Accurately map contours and water flow patterns. Consider how water from downspouts and sump pumps could be routed into rain barrels and swales to lower water bills and watering chores. Also locate spigots and consider where plants that require frequent watering could be placed.

Identify utility lines above and below ground that may require protection from tree canopies and plant roots.

Identify frequently traveled pathways and gathering areas. These may be good candidates for high-maintenance plantings.

Highlight good views from inside the house and gathering areas.

Find microclimates created by the house and existing plantings. Protected areas of elevated warmth or coolness may be ideal for sensitive crops that will not grow elsewhere. Observing snowmelt in wintertime is a good way to discover microclimates.

Identify wind patterns and areas that may need protection from high winds.

Figure 53. Homestead Orchard Base Map
Contour lines help form the foundation for the design.
CONCEPT DESIGN

When creating a home landscape concept design, a good first step to lower maintenance is to place plants near frequently travelled areas based upon the required maintenance of each plant. For example, annual vegetables that need constant weeding, watering, and harvesting are very close to the house while perennial fruits with short harvest windows are further away.

Place pathways and beds on the landscape’s contour to maximize rainwater capturing potential. Space in planting beds can be maximized and easily accessed with thoughtfully designed pathways that enter the bed, but do not go all the way through it. The paths of these “keyhole beds” also hold rainwater well.

When possible, locate compost areas near the kitchen. Placing bins on the uphill side of the garden decreases the energy needed to move finished compost to beds.

Chickens and other small livestock can be located near the garden to help with weeding chores.

Consider planting windbreaks around growing beds to increase yields.
A broader selection of plants is often available in a home landscape. Desired growth conditions can be more easily created in these smaller, intensively managed beds than can be created in larger, remote fields.

Plant Selection

<table>
<thead>
<tr>
<th>Form</th>
<th>Common Name</th>
<th>Genus / Species</th>
<th>Hardiness Zones</th>
<th>Height</th>
<th>Width</th>
<th>Light</th>
<th>Water</th>
<th>Crops</th>
<th>Materials</th>
<th>Nitrogen Fixer</th>
<th>Nutrient Accumulator</th>
<th>Ground Cover</th>
<th>Nectary</th>
<th>Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vine</td>
<td>Hardy Kiwi</td>
<td>Actinidia arguta</td>
<td>4-8</td>
<td>20-100’</td>
<td>20-200’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td>K</td>
<td></td>
<td></td>
<td>G</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Apple, Dwarf</td>
<td>Malus spp.</td>
<td>4-8</td>
<td>5-12’</td>
<td>5-12’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Cherry, Sour Dwarf</td>
<td>Prunus cerasus</td>
<td>4-8</td>
<td>8-10’</td>
<td>8-10’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Peach, Dwarf</td>
<td>Prunus persica</td>
<td>4-8</td>
<td>12-15’</td>
<td>12-15’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Pear, Asian Dwarf</td>
<td>Pyrus pyrifolia</td>
<td>4-9</td>
<td>8-10’</td>
<td>6-7’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Pear, European Dwarf</td>
<td>Pyrus communis</td>
<td>4-9</td>
<td>8-15’</td>
<td>8-15’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Plum, European Dwarf</td>
<td>Prunus domestica</td>
<td>4-8</td>
<td>10-12’</td>
<td>10-15’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td>Serviceberry, Downy</td>
<td>Amelanchier arborea</td>
<td>4-9</td>
<td>15-25’</td>
<td>15-25’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Aronia Berry, Black</td>
<td>Aronia melanocarpa</td>
<td>3-9</td>
<td>5-6’</td>
<td>5-6’</td>
<td>Full Sun - Mesic</td>
<td>Hydric</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Cherry, Bush</td>
<td>Prunus japonica</td>
<td>4-8</td>
<td>3-4’</td>
<td>3-4’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Currant, Black</td>
<td>Ribes nigrum</td>
<td>3-7</td>
<td>3-5’</td>
<td>4-5’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Currant, Clove</td>
<td>Ribes odoratum</td>
<td>4-8</td>
<td>6-12’</td>
<td>6-8’</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Currant, Red</td>
<td>Ribes silvestre</td>
<td>3-7</td>
<td>3-5’</td>
<td>4-5’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Dyer’s Greenwood</td>
<td>Genista tinctoria</td>
<td>4-7</td>
<td>2-3’</td>
<td>2-3’</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Gooseberry</td>
<td>Ribes uva-crispa</td>
<td>3-8</td>
<td>3-5’</td>
<td>3-5’</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Honeyberry</td>
<td>Lonicera caerulea var. edulis</td>
<td>2-8</td>
<td>4-5’</td>
<td>4-5’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Jostaberry</td>
<td>Ribes x clevelandii</td>
<td>4-7</td>
<td>4-8’</td>
<td>4-8’</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Nanking Cherry</td>
<td>Prunus tomentosa</td>
<td>3-7</td>
<td>6-10’</td>
<td>6-8’</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>New Jersey Tea</td>
<td>Ceanothus americanus</td>
<td>3-9</td>
<td>3-4’</td>
<td>3-6’</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Raspberry</td>
<td>Rubus idaeus</td>
<td>4-8</td>
<td>4-6’</td>
<td>Indef.</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Saskatoon</td>
<td>Amelanchier alnifolia</td>
<td>2-7</td>
<td>5-15’</td>
<td>5-15’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Aster, Sky Blue</td>
<td>Aster c. var. edulis</td>
<td>4-9</td>
<td>2-3’</td>
<td>2’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>GS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Clovers, Onion</td>
<td>Allium schoenoprasum</td>
<td>3-9</td>
<td>18’</td>
<td>1’</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Clover, Dutch White</td>
<td>Trifolium repens</td>
<td>4-8</td>
<td>4-10’</td>
<td>6-36’</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Clover, Mincloever</td>
<td>Trifolium pratense</td>
<td>4-8</td>
<td>4’</td>
<td>6-36’</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Lavender</td>
<td>Lavandula angustifolia</td>
<td>3-9</td>
<td>4-8’</td>
<td>4-8’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Oregano</td>
<td>Origanum vulgare hirtum</td>
<td>5-10</td>
<td>8-10’</td>
<td>1-4’</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Rhubarb</td>
<td>Rheum x cultorum</td>
<td>1-9</td>
<td>3-5’</td>
<td>3-5’</td>
<td>Full Sun</td>
<td>Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Sorrel, French</td>
<td>Rumex acetosa</td>
<td>3-7</td>
<td>1-3’</td>
<td>10-12’</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Thyme, Creeping</td>
<td>Thymus serpyllum</td>
<td>4-8</td>
<td>4-6’</td>
<td>Indef.</td>
<td>Full Sun</td>
<td>Xeric - Mesic</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb</td>
<td>Yarrow</td>
<td>Achillea millefolium</td>
<td>3-9</td>
<td>2-3’</td>
<td>Indef.</td>
<td>Full Sun</td>
<td>Xeric</td>
<td>Berries</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 55. Homestead Orchard Plant List
Begin by sketching primary and secondary paths into growing areas. Make primary paths 3-5’ wide and secondary paths 2-4’ wide. Lean toward wider paths for easier access and the inevitable narrowing that happens over the years. Design beds to be 3-5’ wide depending upon the length of the grower’s reach.

Place trees first, spacing them according to desired sunlight in the understory. This design maximizes understory sunlight by leaving wide gaps between the mature canopy of trees. After placing the trees, add shrubs, then herbs.

Keep turfgrass out of growing beds by installing landscape edging. If you are starting with bare soil, non-rhizomatous, bunching grass can be seeded to minimize infiltration into beds.

A fence around the beds can help keep out deer and other pests.

Comfrey (Symphytum x uplandicum), chives (Allium spp.), and French sorrel (Rumex acetosa) planted at the base of established trees make excellent weed barriers. They also help deter pests and attract beneficial insects.
ESTABLISHMENT AND MANAGEMENT IDEAS

If orchard crops are a new endeavor, a home edible landscape may be an ideal place to begin learning. Create the master plan, but implement the design in small phases using the Islands that Merge strategy explained on page 19. Establish highly desired plants first and then expand beds as your time and budget allows. Several varieties can be planted in one location (or grafted to one rootstock) to test their resiliency, growth habits, and taste.

Chickens and other small livestock can help with weeding and cleanup chores especially in early spring and late fall when there is little concern about protecting crops.
The high-yielding heartnut tree (*Juglans ailantifolia* var. *cordiformis*) yields nuts that are easy to crack.

Photo by Fred Meyer
References

41. Woodland Improvement and Crop Trees in Iowa, (Iowa State University Extension and Outreach, 2005), http://store.extension.iastate.edu/Product/Woodland-Improvement-and-Crop-Trees-in-Iowa
42. Forest Mushroom Cultivation at Cornell, (Cornell.edu), http://www.cornellmushrooms.org
43. USDA National Agroforestry Center website, (2014), http://nac.unl.edu
50. Developing Water Trails in Iowa, Chapter 4: Land and Stream Management. (Iowa Department of Natural Resources, 2014), http://www.iowawm.gov
57. Windbreaks for Iowa, (Iowa State University Extension, 2014), http://www.extension.iastate.edu/forestry/planning/windbreaks.htm
63. Producing Marketable Products from Living Snow Fences, (University of Minnesota Extension Service, 2014), http://www.extension.umn.edu