Infection Prevalence in Three Lowland Species of Harlequin Toads from the Threatened Genus Atelopus

Atelopus, a species-rich Neotropical genus within the family Bufonidae (Lötters 1996), is distributed from Costa Rica south to Bolivia and eastward into the Guayas (La Marca et al. 2005). Despite declines and disappearances of Atelopus species occurring before Batrachochytrium dendrobatidis (hereafter, Bd) was described (Longcore et al. 1999), Bd has been implicated in losses (La Marca et al. 2005; Lampo et al. 2006). The majority of these species occur in the Andes Range above 1500 m, and are considered one of the most threatened genera of amphibians worldwide. At least 71% (69 of 97) of Atelopus species are listed as Critically Endangered or Extinct (IUCN 2015). Still, many species have uncertain conservation status because they remain undescribed (Coloma et al. 2010) or because they require systematic revision (Lötters et al. 2011). The most affected species within the genus occur along mid-to-high elevation streams with nearly 75% of those species facing serious declines (La Marca et al. 2005). Colombia harbors the highest number of Atelopus species (Lötters 1996) and, similar to other parts of its distribution, nearly all species that occur in the mid-to-high elevations have declined sharply (Rueda-Almonacid et al. 2005). In the Colombian lowlands, however, species still persist at altitudes ranging from 0–600 m and there are no reported declines in this group (Rueda-Almonacid et al. 2005). This difference in survival is usually attributed to Bd not being able to survive well at lower elevations, which in the tropics usually means higher and less variable environmental temperatures. In order to evaluate whether Bd can be considered as a potential threat for Atelopus species, we assessed Bd prevalence and infection intensity on three lowland species that occurring between 5–115 m elevation, examining live animals during contemporary field surveys in 2007 to 2012 and archived museum specimens collected between 1968 and 2000.

We studied three Atelopus species occurring in three different localities in the coastal forests of Colombia (Fig. 1). We visited each site 3–5 times between 2007 and 2012 (Table 1). Atelopus aff. elegans, from Gorgona Island (2.966667°N, 78.166667°W; 6–115 m elev.) was sampled three times (July 2007, July 2010, and June 2012). Atelopus spurrelli, in the municipality of Arúsí (5.566667°N, 77.5°W; 90 m elev.) on the Pacific coast was sampled five times (May and November 2009, June and September 2011, and June 2012). Atelopus aff. limosus, an undescribed species occurring near the municipality of Capurgnúá (8.6°N, 773333°W; 150 m), close to the border between Panama and Colombia, was sampled three times (September 2008, October 2009, and July 2012).

Survey teams composed of 2–5 people conducted field trips to each locality for 2–8 days per trip. To maximize capture success, we surveyed along streams and along forest trails using visual encounter surveys (Heyer et al. 1994). For each animal we collected the following information to look for potential...
patterns in Bd occurrence: sex and life-stage (male, female, adult, juvenile), snout–vent length (mm), and weight (g). To examine the hypothesis that lowland conditions may be unsuitable for Bd occurrence, body temperature was measured using an infrared thermometer (OAKTON ® InfraPro) with a resolution of 0.2°C. From a distance of 50 cm, we pointed the laser to the frog’s dorsal surface or the exact place where the individual was perched before handling.

To determine infection status and to avoid cross contamination, animals were collected using clean, decontaminated equipment, individually handled with fresh disposable gloves, and placed in individual bags prior to obtaining the skin swab samples. Each animal was sampled by running a synthetic cotton swab (MWE 113) over the ventral surface, inner thighs, abdomen, and between the toes for a total of 30 strokes. DNA was extracted using Prepman Ultra. Each sample was run in triplicate by using qPCR assay following Boyle et al. (2004) using an Applied BioSystems 7300 Real Time PCR System (to quantify zoospore loads). For the qPCR, DNA was extracted using Prepman and Boyle et al. (2004). Amplifications were performed in an MJ Research Peltier Thermal Cycler (PTC-200), as follows: an initial 2 min denaturation at 95°C, followed by 35 cycles of DNA amplification (45 sec at 95°C, 1 min at 55°C, and 1 min at 72°C), and a final extension at 72°C for 10 min completed the amplifications. Each reaction consisted of 0.45 mL of each primer (1 μM), 3.0 μL of doubly distilled DNA-free water, 6 μL of GoTaq® Green Master Mix (1X; Promega) and 2 μL of the DNA extract. The amplified fragments were separated by electrophoresis in 1% agarose gels. The qPCR assay was performed using a BIO-RAD PCR machine (to diagnose) and an Applied BioSystems 7300 Real Time PCR System (to quantify zoospore equivalents, ZE) on each animal.

For end-point PCR, DNA was extracted using GeneReleaser® (Bioventures Inc., Carlsbad, California, USA). We used the primers developed by Annis et al. (2004) to amplify the ITS1-ITS2 region specifically in B. dendrobatidis: Bd1a (5’-CAGTGTTGCATATGTTCAG-3’) and Bd2a (5’-CATGGTTATATGTTCAG-3’). Amplifications were performed in an MJ Research Peltier Thermal Cycler (PTC-200), as follows: an initial 2 min denaturation at 95°C, followed by 35 cycles of DNA amplification (45 sec at 95°C, 45 sec at 55°C, and 1 min at 72°C), and a final extension at 72°C for 10 min completed the amplifications. Each reaction consisted of 0.5 μL of each primer (1 μM), 3.0 μL of MGB Probe and 5 mL of the DNA template. To quantify infection intensity we used standards of known concentrations and negative controls.

To determine the historical presence of Bd, we swabbed museum specimens of A. spurrelli and A. aff. elegans. Specimens for A. aff. limosus were not available (Table 2). We used the molecular methods and protocols described by Cheng et al. (2011). In order to decrease the chances of contamination we rinsed each frog with 70% EtOH and we used fresh gloves for each frog handled. We ran a synthetic cotton swab (MWE 113) over the ventral surface, inner thighs, abdomen, and between toes for a total of 30 strokes. DNA was extracted using Prepman Ultra. Each sample was run in triplicate by using qPCR assay following Boyle et al. (2004) using an Applied BioSystems 7300 Real Time PCR System.
We analyzed skin swabs from a total of 658 individuals collected during the field surveys, including 308 A. aff. elegans, 178 A. aff. limosus, and 172 A. spurrelli (Table 1). We analyzed for Bd presence with 384 samples (end-point PCR and qPCR), and Bd zoospore equivalents or infection intensity with 274 swabs (qPCR assay). In total we detected Bd in 6 (3.5%) A. spurrelli and 27 (8.7%) A. aff. elegans. We have infection intensity data for four samples taken in 2012: one male A. spurrelli (16.9 ZE), two males (63 and 65490 ZE) and one juvenile (726 ZE) A. aff. elegans. Per sample date, the prevalence of the infection (i.e., the number of infected animals out of the total number of individuals sampled) was very low, ranging from 1–11% in A. spurrelli and from 2–19% in A. aff. elegans (no Bd-positive A. aff. limosus). From 2007 to 2012, the prevalence of Bd in A. aff. elegans dropped steadily (Table 1) (G-test of independence with Williams’ correction, $\chi^2_{a.e.d.} = 19.792$, $P = 5.037 \times 10^{-5}$); conversely, there was not a discernible pattern in the prevalence of Bd in A. spurrelli during that same time frame (G-test, $\chi^2_{a.e.d.} = 2.325$, $P = 0.6762$) (Fig. 2). Visual checks of animals that were released after capture did not reveal any signs of chytridiomycosis in any species. We found that Bd prevalence was not influenced by body size (N = 658, $Z = 1.067$, $P = 0.286$). However, in A. aff. elegans the prevalence was higher for males ($\bar{x}^2 = 11.412$, $df = 2$, $P = 0.003$). Frog body temperatures ranged between 23.2–28.2°C ($\bar{x} = 25.1°C$) in A. aff. elegans, 22.6–29.3°C ($\bar{x} = 25.2°C$) in A. aff. limosus, and 22.5–28.5°C ($\bar{x} = 25.4°C$) in A. spurrelli. We detected differences in body temperature among surveys only for A. aff. limosus ($F = 136.5$, $P < 0.01$). To provide a retrospective view of Bd emergence, we swabbed available museum specimens: 128 formalin-preserved specimens of A. spurrelli collected between 1968 and 1983 and 137 A. aff. elegans collected between 1968 and 2000 (Table 2). We detected Bd presence in three (12%) A. aff. elegans collected in 2000.

Visual encounter surveys showed that from 2009 to 2012, A. spurrelli were encountered at a much lower rate. We spent approximately 414 h (person hours) surveying for individuals of A. aff. elegans, and 168 h and 468 h for individuals of A. aff. limosus and A. spurrelli, respectively. By the end of the study, A. spurrelli were difficult to find despite intense effort (Table 1). Our findings suggest a decrease in abundance of A. spurrelli during the course of our study. We first detected Bd in one of 74 frogs sampled in 2009 in the wild, then in the following surveys (2009–2012), A. spurrelli became increasingly harder to find. Although we acknowledge that we did not conduct systematic population abundance monitoring, we did not detect chytridiomycosis and Bd prevalence from our samples was low, we hypothesize that Bd may have contributed to the apparent decline. We cannot rule out the possibility that this drop in abundance over the time frame sampled might be due to other factors, including natural population variation (Pechmann et al. 1991). The apparent decline of A. spurrelli is puzzling due to the presence of cutaneous bacteria with antifungal properties (Flechas et al. 2012), the fact that these frogs occur in an environment with relatively high temperatures (22.6–29.3°C) which may be unsuitable for optimal Bd growth (Johnson et al. 2003; Piotrowski et al. 2004), and no observed habitat degradation or other stressors. Based on our retrospective study of museum specimens, we found no evidence of Bd presence in this species before the first positive record in 2009. Unfortunately, the lack of systematic population surveys makes it hard to compare abundances between years, which would allow for detecting gradual versus sudden population collapse. Other species of Atelopus have declined due to habitat destruction and not Bd (Tarvin et al. 2014), but we found no indication of habitat alteration or disturbance in our study area. Therefore we suggest that systematic surveys (population monitoring and disease diagnostics) be conducted to assess the current status of A. spurrelli from Arusi in order to more accurately estimate future trajectories for this population.

A recent study conducted on the same three Atelopus species that are the focus here revealed that A. aff. elegans, the species that we found to be most common despite Bd infection, harbors the highest proportion of bacterial isolates with anti-Bd activity; these bacteria also exhibited the strongest anti-Bd effect (Flechas et al. 2012). An alternative explanation for species survival when exposed to lethal strains of Bd could be an environmental effect that limits Bd growth (Rowley and Afiford 2007; Bastamante et al. 2010; Zumbado-Ullete et al. 2014). Various studies have proposed the existence of climatic refugia from chytridiomycosis-driven amphibian declines (Puschendorf et al. 2011; 2013) as a mechanism to allow susceptible species to persist despite infection (Puschendorf et al. 2005). Our three study species occur in tropical coastal forests that exhibit high temperatures, above the optimal physiological range of the pathogen (Johnson et al. 2003; Piotrowski et al. 2004). This temperature regime might limit Bd growth causing a decrease in zoospores production, thereby slowing transmission rates and allowing individuals the time to mount an immune response or simply tolerate the pathogen. However, we suggest that when the pathogen first arrives it could cause high mortality in the naïve populations.

Knowing the relative time frame of the emergence of a pathogen in host populations is important for understanding present-day disease dynamics (Briggs et al. 2010; Vredenburg et al. 2010). For example, host pathogen dynamics can move from unstable dynamics soon after pathogens emerge in naïve host populations (e.g., epizootic state) to more stable dynamics long after emergence events (e.g., endemico-epizootic state). As part of our study, we provide a retrospective view of Bd emergence in two of our
three study species (specimens were not available for the third species). We sampled museum specimens using a molecular technique that has been shown to accurately reflect *Bd* presence or absence in specimens collected up to a century ago (Cheng et al. 2011; Rodríguez et al. 2014). We first detected *Bd* in three of 25 individuals of *A. aff. elegans* collected in 2000. Since there is a lack of sampling between 1987 and 2000, we cannot discard the possibility that *Bd* arrived to the island earlier. The elapsed time could fit an enzootic pattern of host/pathogen dynamic, where *A. aff. elegans* populations remain stable despite the presence of the pathogen.

A. aff. limosus, our third study species, occurs near the border between Colombia and Panamá. This species is believed to have a wider distribution in the Darién region of Panamá (R. Ibáñez, pers. comm.), and this area was considered until recently one of the last *Bd*-free areas in Central America (Rebollar et al. 2014). Our data from 2008 to 2012 did not find any evidence of *Bd* supporting the idea that the pathogen has not arrived to Capurganá. However, the situation is critical because *Bd* was detected in 2012 in the Darién Province in Panamá (Rebollar et al. 2014) very close to (~50 km) to our study site in Colombia. We predict that *Bd* will spread across the Colombian border very soon. The fact that this is a *Bd*-naïve area and the high infection susceptibility reported for the genus, we believe that *Bd* may have a considerable impact on the *Atelopus aff. limosus* population. However, we also expect that the suboptimal environmental conditions (i.e., high temperatures) will limit *Bd* growth and colonization rate, which may allow for host tolerance of the infection or evolution of host resistance allowing for coexistence between host and pathogen.

Acknowledgments.—For assistance in the field we thank A. Batissta, L. Barrientos, G. Corredor, A. J. Crawford, T. Escovar, C. Guarino, M. González, J. A. Hernández, J. Méndez, A. Muñoz, A. Paz, A. Rodríguez, P. Rodríguez, C. Sarmiento, C. Silva, F. Vargas-Salinas, and B. Velásquez. We would like to thank J. D. Lynch at the Instituto de Ciencias Naturales – Universidad Nacional de Colombia for allowing us to swab museum specimens under his care, and A. J. Crawford, V. Ramírez, and C. Sarmiento for their assistance in swabbing. We thank C. Sarmiento and S. Ellison for assistance in the laboratory and A. Paz for creating the distribution map. We would like to thank the personnel at Parque Nacional Natural Gorgona for logistic support. This study was completed with financial support from US Fish & Wildlife Service – Wildlife without Borders (96200-0-G228), Association of Zoos and Aquariums – Conservation Endowment Fund (08-836), Conservation International Critically Endangered Species Fund, and National Science Foundation (IOS-1258133). Procedures for capture and handling of live animals in the field were approved by the Colombian National Parks Authority and the Ministry of the Environment, under permits DTSO 019-09, DTSO 001-09 and Nº 10 March 7, 2012. We would like to thank D. Olson, S. Lötters, and an anonymous reviewer for helpful comments and suggestions that greatly improved this manuscript.

Literature Cited

Ranavirus Detected in *Lithobates clamitans* and *L. catesbeianus* in Indiana

Ranaviruses are an emerging group of pathogens that threaten populations of all three classes of ectothermic vertebrates, especially amphibians (Gray and Miller 2013; Duffus et al. 2015). Infections have now been documented on six continents and in more than 175 species, and are very likely under documented (Duffus et al. 2015). The pathogenicity and broad host range of ranaviruses make them serious threats to both wild and captive populations of ectothermic vertebrate species worldwide. Despite an increased awareness and study of ranaviral infection, much remains unknown about many aspects of their ecology, including geographic distribution.

To date, the distribution of ranavirus in Indiana, USA, is poorly known. Only two studies have tested wild amphibian and reptile populations for the presence of ranavirus (Currylow et al. 2014; Winzeler et al. 2015). In south-central Indiana, Currylow et al. (2014) found PCR evidence of ranavirus in Eastern Box Turtles (*Terrapene carolina carolina*) and larval amphibians (*Ambystoma* sp and unidentified anuran larvae). Overall, ranavirus infections were detected in 2.2% of larval amphibians and 3.0% of Eastern Box Turtles sampled. However, Winzeler et al. (2015) found no SYBR quantitative realtime PCR (qPCR) evidence of ranavirus in Green Frog (*Lithobates clamitans*) tadpoles at five sites distributed across Indiana. In a third study, Kimble et al. (2014) report the presence of ranavirus in a wild-caught, newly captive population of Eastern Box Turtles that was likely initially infected in the wild. Although these studies provide some evidence that ranaviruses are present within Indiana, there is a need for broader surveillance to improve our understanding of ranavirus distribution. Our objective was to test for ranavirus infections in larval Green Frogs and American Bullfrogs (*L. catesbeianus*) from 15 sites distributed across Indiana.

In 2013 and 2014, the Indiana Department of Natural Resources collected live larvae in an ad hoc manner using dipnets or seines from 15 public areas distributed across the state (Table 1, Fig. 1). Field equipment was disinfected between sites with 0.75% Nolvasan (2% chlorhexidine diacetate; Fort Dodge Animal Health, Fort Dodge, Iowa; Bryan et al. 2009). Individuals were euthanized with a 30-minute soak in a 3% solution of neutral-buffered tricaine.

Table 1. Sites sampled for ranavirus in larval Green Frogs (*Lithobates clamitans*) and American Bullfrogs (*L. catesbeianus*).

<table>
<thead>
<tr>
<th>Site</th>
<th>State</th>
<th>County</th>
<th>Species</th>
<th>Ranavirus Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IN</td>
<td>Brown</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>B</td>
<td>IN</td>
<td>Vigo</td>
<td>L. clapitans</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>IN</td>
<td>Marion</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>D</td>
<td>IN</td>
<td>Tippecanoe</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>E</td>
<td>IN</td>
<td>Cass</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>IN</td>
<td>Marshall</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>G</td>
<td>IN</td>
<td>Boone</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>H</td>
<td>IN</td>
<td>Hendricks</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>I</td>
<td>IN</td>
<td>Bartholomew</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>J</td>
<td>IN</td>
<td>Parke</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>K</td>
<td>IN</td>
<td>Wabash</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>L</td>
<td>IN</td>
<td>Lawrence</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>M</td>
<td>IN</td>
<td>Elkhart</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>IN</td>
<td>Elkhart</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>O</td>
<td>IN</td>
<td>Elkhart</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>P</td>
<td>IN</td>
<td>Elkhart</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>Q</td>
<td>IN</td>
<td>Elkhart</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
<tr>
<td>R</td>
<td>IN</td>
<td>Elkhart</td>
<td>L. clamitans</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Fig. 1. Map of Indiana showing sample locations for the current study (stars), that of Currylow et al. (2014; circles), Winzeler et al. (2015; triangles), and Kimble et al. (2014; diamonds). Filled symbols indicate sites where ranavirus was detected; empty symbols indicate it was not. These symbols indicate the county, not the exact sampling location.

Legend
- Star: Ranavirus positive
- Diamond: Ranavirus negative
- Circle: Current study
- Square: Currylow et al. 2014
- Triangle: Winzeler et al. 2015
- Diamond: Kimble et al. 2014

Steven J. A. Kimble

Rod N. Williams

Jason T. Hoverman

Department of Forestry and Natural Resources,

Purdue University, West Lafayette, Indiana 47907, USA

*Corresponding author; e-mail: sjkimble@gmail.com"