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Abstract

The genetic consequences of population fragmentation and isolation are major issues in
conservation biology. In this study we analyse the genetic variability and structure of the
Iberian populations of Mioscirtus wagneri, a specialized grasshopper exclusively
inhabiting highly fragmented hypersaline low grounds. For this purpose we have used
seven species-specific microsatellite markers to type 478 individuals from 24 localities and
obtain accurate estimates of their genetic variability. Genetic diversity was relatively low
and we detected genetic signatures suggesting that certain populations of M. wagneri have
probably passed through severe demographic bottlenecks. We have found that the
populations of this grasshopper show a strong genetic structure even at small geograph-
ical scales, indicating that they mostly behave as isolated populations with low levels of
gene flow among them. Thus, several populations can be regarded as independent and
genetically differentiated units which require adequate conservation strategies to avoid
eventual extinctions that in highly isolated localities are not likely to be compensated for
with the arrival of immigrants from neighbouring populations. Overall, our results show
that these populations probably represent the ‘fragments’ of a formerly more widespread
population and highlight the importance of protecting Iberian hypersaline environments
due to the high number of rare and endangered species they sustain.
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. et al. 2008). Further, these populations are also likely to
Introduction . . .

suffer a considerable loss of genetic variation due to a
Numerous species show highly fragmented distribu-

tions due to recent human induced habitat destruction,

combination of inbreeding and random genetic drift
particularly when these processes are not compensated

as a consequence of a natural patchy distribution of
adequate habitats (e.g. oceanic islands) or due to histor-
ical climatic/geological events which have disjointed an
originally continuous or more widespread population
(Saunders et al. 1991; Lindenmayer & Fischer 2006).
Small population size and isolation can result in
increasing genetic differentiation and strong geographic
structure of genetic variability due to limited connectiv-
ity with other populations and reduced gene flow
(Martinez-Cruz et al. 2007, Coulon et al. 2008; Tzika
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by the ‘rescuing’ effect of immigration (Frankham 1996;
Vila et al. 2003; Johnson et al. 2009). This can compro-
mise the long-term viability of these populations if low
genetic diversity diminishes their ability to respond to
selection and adapt to novel and changing environmen-
tal conditions (Frankham 2005; Willi et al. 2006; Pertoldi
et al. 2007). For these reasons, the genetic consequences
of population fragmentation and isolation are major
issues in conservation biology (Saunders ef al. 1991;
Frankham 1995; Fahrig 2002).

Inland hypersaline environments in the Western
Mediterranean are habitats characterized by an
extreme natural fragmentation (Abellan et al. 2007;
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Cordero et al. 2007; Mufioz et al. 2008). According to
pollen records, these habitats were much more wide-
spread during the Messinian saline crisis when differ-
ent climatic/geological events resulted in the
desiccation of most of the Mediterranean basin and
allowed the expansion of fauna and flora adapted to
the arid and saline environments predominating in
that period (Blanco et al. 1997; Ribera & Blasco-Zumeta
1998; Blondel & Aronson 1999; Krijgsman et al. 1999).
The Pliocene flooding of the Mediterranean basin with
the last opening of the Gibraltar strait around 5.33 Ma
together with Pleistocenic climatic change probably
contributed to the progressive fragmentation of these
habitats (Krijgsman et al. 1999; Valero-Garcés et al.
2000). Although these habitats are still predominant in
certain areas of Central Asia and North Africa, inland
hypersaline environments are much more fragmented
in other regions where they are still present such as
the Iberian Peninsula (Abellan et al. 2007; Cordero
et al. 2007). This makes them threatened habitats of
great conservation concern due to the high number of
endemic species and relict populations they sustain
(Ribera & Blasco-Zumeta 1998; Abellan et al. 2007).
Although the patchy distribution of these inland hy-
persaline environments has been mainly driven by the
natural and historical processes above mentioned,
human activities have strongly contributed to their
increasing fragmentation in recent times (Gémez et al.
2005; Cordero et al. 2007). Fortunately, most of these
habitats have been protected or proposed for protec-
tion in recent years when environmental authorities
have progressively focussed on their unique plant and
animal communities (Mufoz 2007). Thus, these habi-
tats and their associated communities offer an interest-
ing model system to analyse a number of interesting
questions on the genetic consequences of population
fragmentation which also have direct implications for
the conservation of these threatened habitats (Abellan
et al. 2007; Muioz et al. 2008; Ortego et al. 2009).
Mioscirtus wagneri (Orthoptera: Acrididae) is a highly
specialized grasshopper exclusively inhabiting hypersa-
line low grounds with patches of Suaeda vera, the halo-
philic plant on which it exclusively depends for food
(Cordero et al. 2007). This grasshopper shows a classical
Mediterranean-Turanian disjunct distribution whose
populations have probably become progressively frag-
mented from late Tertiary (Ribera & Blasco-Zumeta
1998; Ortego et al. 2009). Its current distribution pattern
suggests the existence of an originally more widespread
and expanding population during the Messinian saline
crisis at the end of the Miocene (5.3 Mya; Krijgsman
et al., 1999). Contraction of favourable habitats after the
Messinian saline crisis probably reduced their popula-
tions which may have persisted through the Pleistocene

© 2009 Blackwell Publishing Ltd

to present days only constituting relict populations with
different degree of isolation (Ribera & Blasco-Zumeta,
1998; Sanmartin, 2003). In contrast to North Africa and
the Near East, Iberian hypersaline environments are less
extensive and show a highly patchy distribution which
results in extremely fragmented populations of M. wag-
neri (Cordero et al. 2007; Ortego et al. 2009). Thus, the
Iberian populations of this grasshopper show an ‘inland
island-like’ distribution consisting of several isolated
populations with similar habitat requirements as many
other co-distributed organisms (Ribera & Blasco-
Zumeta, 1998). Accordingly, a recent study based on
mitochondrial DNA (mtDNA) sequences has revealed a
marked phylogeographical structure in this area of the
species distribution range which suggests a complete
lack of gene flow between main Iberian population clus-
ters from the Early Pleistocene (Ortego et al. 2009).
However, cryptic genetic structure at small spatial
scales would have gone unnoticed and adequate analy-
ses of genetic variability require the resolution offered
by nuclear markers such as microsatellites (Aguirre
et al. in press).

In this study we analyse the genetic variability and
structure of the Iberian populations of Mioscirtus wag-
neri. For this purpose, we have used seven species-spe-
cific microsatellite markers to type 478 individuals from
24 localities and obtain accurate estimates of their
genetic variability. In particular we tested the following
predictions: (i) due to the fragmented and patchy distri-
bution of the particular habitats required by M. wagneri,
we would expect low gene flow and strong genetic dif-
ferentiation and structure between most analysed popu-
lations/subpopulations. We would expect a pattern of
genetic structure concordant with that obtained in a
previous mtDNA-based study (Ortego et al. 2009),
although we expected that the higher resolution of mi-
crosatellite markers in comparison with mtDNA
sequences reveals cryptic genetic structure at smaller
geographical scales; (ii) we also expected that genetic
differentiation between populations increases with geo-
graphical distance (i.e. isolation by distance) due to
(2.1) historical serial colonization/population fragmenta-
tion and genetic drift at large geographical scales (Ra-
machandran et al. 2005, Mills et al. 2007) and (2.2)
migration-drift equilibrium at local scales (Hutchison
and Templeton 1999); (iii) we predicted that population
genetic variability increases with gene flow with other
populations and decreases with spatial isolation; (iv)
finally, the study populations are likely to show differ-
ential genetic signatures of population size reductions
due to recent (human induced) and historical (climate
change/geological events) factors contributing to the
progressive contraction of the particular habitats
required by the study species.
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Methods

Sampling and study area

During 2006-2007, we sampled 24 populations of M.
wagneri. We are confident these populations cover the
entire species distribution range in the Iberian Penin-
sula, as several other potentially adequate habitats for
M. wagneri (i.e. saline/hypersaline lagoons and low
grounds) have been extensively prospected without any
record of the species (Cordero et al. 2007; Ortego et al.
2009). We collected 11-31 adult individuals per popula-
tion and specimens were preserved whole in 1500 pL
ethanol 96% at —20 °C until needed for genetic analy-
ses. Population code description and further informa-
tion on sampling locations are given in Table 1.

Microsatellite genotyping

We genotyped individuals using seven polymorphic
microsatellite markers isolated and characterized from a

genomic library of a M. wagneri specimen from ‘Las Ye-
guas’ locality (MwGTC8, MwGTD9, MwGTGI12,
MwGTA6, MwGTC12, MwGTC11, MwGATABI11; Agu-
irre et al. in press). Probably due to the marked phylo-
geographical structure and genetic divergence among
M. wagneri populations within the Iberian Peninsula
(Ortego et al. 2009), some microsatellite loci did not
amplify in certain populations strongly differentiated
from the population from which the genomic library
was constructed. Microsatellite GTC11 did not amplify
in southwest populations (TIN, CAS) whereas GTA6
failed to do so in southwest (TIN, CAS) and northeast
populations (UTX, SAL, CHI, GRA). Thus, we typed
individuals at five to seven microsatellite markers
depending on their population of origin. To make com-
parable data between populations with a different num-
ber of typed markers, all population genetic parameters
and analyses (see below) were also performed only
considering the five microsatellite loci (MwGTCS,
MwGTD9, MwGTG12, MwGTC12, MwGATABI11) that
worked in all populations. We used NucleoSpin Tissue

Table 1 Estimates of genetic variability for Mioscirtus wagneri populations. N, sample size; Agr, mean standardized allelic richness;
Apriv, mean number of private alleles; M-ratio, mean Garza-Williamson index. All statistics are shown for all typed loci at each local-

ity and only considering the five loci that amplified in all populations

All typed loci

Five shared loci

Locality Code N Ar Apriv M Ar Apriv M
Northeast
Pantano de Utxesa UTX 20 5.67 0.99 0.53 531 0.98 0.50
Laguna Salada SAL 20 3.96 0.22 0.62 3.74 0.27 0.59
Laguna de Chiprana CHI 18 3.96 0.01 0.55 3.47 0.00 0.52
Laguna Salada Grande GRA 20 4.88 0.21 0.79 4.33 0.22 0.78
Central-Southeast
Saladar de Ocafia-Aranjuez OCA 20 6.79 0.46 0.70 6.87 0.69 0.64
Saladar de Huerta HUE 20 5.69 0.11 0.63 5.86 0.02 0.64
Saladar de Villasequilla VIL 20 6.88 0.27 0.70 7.09 0.41 0.70
Laguna del Cerrillo CER 20 5.83 0.00 0.65 5.49 0.00 0.66
Laguna del Altillo ALT 20 5.64 0.00 0.67 5.33 0.00 0.70
Laguna de Longar LON 20 5.66 0.09 0.57 5.25 0.14 0.57
Laguna Larga LAR 20 548 0.00 0.61 5.23 0.00 0.62
Laguna de Tirez TIR 20 6.13 0.00 0.69 5.72 0.00 0.73
Laguna de Pefia Hueca PEN 20 5.51 0.02 0.59 5.82 0.03 0.63
Laguna de Quero QUE 23 5.68 0.00 0.66 5.34 0.01 0.66
Laguna de la Sal LSA 20 5.42 0.12 0.68 5.23 0.18 0.67
Laguna de las Yeguas YEG 20 5.55 0.10 0.63 5.47 0.15 0.60
Laguna de Salicor SCO 31 4.63 0.08 0.59 4.54 0.03 0.64
Laguna de Alcahozo ALC 20 4.09 0.00 0.56 3.74 0.00 0.53
Laguna de Manjavacas MAN 18 3.89 0.00 0.57 3.77 0.00 0.58
Saladar de Cordovilla COR 20 6.36 0.65 0.56 6.66 0.95 0.58
Saladar de Agramén AGR 11 4.86 0.18 0.66 5.20 0.26 0.66
Saladar del Margen MAR 20 6.58 0.68 0.60 6.34 0.88 0.59
Southwest
Rio Tinto TIN 17 6.57 1.53 0.57 6.57 1.53 0.57
Castro Marin CAS 20 4.18 0.53 0.60 4.18 0.53 0.60
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(Macherey-Nagel, Diiren, Germany) kits to extract and
purify genomic DNA from a hind leg of each individ-
ual. Amplifications were conducted in 10 pL reaction
volumes containing 5 ng of template DNA, 1X reaction
buffer (67 mM Tris-HCl, pH 8.3, 16 mM (NH4),SO,,
0.01% Tweenty-20, EcoStart Reaction Buffer, Ecogen),
2 mM MgCl,, 0.2 mM of each dNTP, 0.15 uM of each
dye-labelled primer (FAM, PET, NED or VIC) and 0.1
U of Tag DNA EcoStart Polymerase (Ecogen). All reac-
tions were carried out on a Mastercycler EpgradientS
(Eppendorf) thermal cycler. The PCR programme used
was 9 min denaturing at 95 °C followed by 35 cycles of
30 s at 94 °C, 45 s at the annealing temperature (Aguir-
re ef al. in press) and 45 s at 72 °C, ending with a 5 min
final elongation stage at 72 °C. Amplification products
were run on an ABI 310 Genetic Analyser (Applied Bio-
systems) and genotypes were scored using GENEMAPPER
3.7 (Applied Biosystems).

Genetic diversity estimates

Microsatellite genotypes were tested for departure from
Hardy-Weinberg equilibrium within each population at
each locus using an exact test (Guo & Thompson 1992)
based on 900 000 Markov chain iterations as imple-
mented in the program ARLEQUIN 3.1 (Excoffier et al.
2005). We also used ARLEQUIN 3.1 to test for linkage
equilibrium within each pair of loci and population
using a likelihood-ratio statistic, whose distribution was
obtained by a permutation procedure (Excoffier et al.
2005). Measures of allelic richness (Ag) and number of
private alleles (Apy;,) were standardized for sample size
using the program HP-Rare (Kalinowski 2005).

A significant population size reduction (i.e. bottle-
neck) can produce distinctive genetic signatures in the
distributions of alleles and expected heterozygosity
(Cornuet & Luikart 1996; Luikart & Cornuet 1998; Gar-
za & Williamson 2001). In populations that have experi-
enced a significant reduction in size, the number of
alleles is reduced faster than the heterozygosity because
of the rapid loss of rare alleles. A heterozygosity excess
relative to the level expected at mutation—drift equilib-
rium for the number of alleles present can then indicate
a genetic bottleneck (Cornuet & Luikart 1996). Each
study population was tested for heterozygosity excess
in order to detect recent population bottlenecks using
the program BorTLENECK 1.2.02 (Cornuet & Luikart 1996;
Piry et al. 1999). We run BotTLENECK under the two-
phase model (TPM) that is supposed to fit microsatellite
evolution better than other methods (Dirienzo et al.
1994). We used 1000 replications, assuming 10% of the
infinite allele model and 90% of the stepwise mutation
model. Statistical significance was assessed with a two-
tailed Wilcoxon signed rank test, the most powerful
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and robust statistics when using fewer than 20 poly-
morphic loci (Piry ef al. 1999). We also investigated the
distribution of the allele frequencies using the mode
shift test also implemented in the program BOTTLENECK
(Piry et al. 1999). For each locus and locality we calcu-
lated the M-ratio, defined as the ratio of the number of
alleles to the range of allele sizes, a statistic that can
detect reductions in population sizes (Garza & William-
son 2001). M-ratios were calculated as follows: M = k/7,
the ratio of the number of alleles to the range of allele
sizes, where k = the number of alleles and 7 = the num-
ber of possible alleles sizes between the smallest and
the largest observed alleles (Garza & Williamson 2001).
A declining population will have a smaller M-ratio than
a stable one because k is expected to decrease faster
than r in small populations due to genetic drift causing
loss of rare alleles (Garza & Williamson 2001). We cal-
culated mean M-ratios across all loci for each popula-
tion and this mean value was compared with M = 0.68,
the threshold value below which a population can rea-
sonably be assumed to have undergone a reduction in
population size (Garza & Williamson 2001).

Population genetic structure

We investigated population genetic structure among
sampling locations calculating pairwise Fsr values and
testing their significance with Fisher’s exact tests after
10 000 permutations as implemented in ARLEQUIN 3.1
(Excoffier et al. 2005). To visualize the genetic relation-
ship among the sampling localities we performed a
multivariate ordination using Pcacen (http://www.
unil.ch/izea/softwares/pcagen.html) with 10 000 ran-
domization steps. We also studied the spatial genetic
structure using STRUCTURE 2.2, a Bayesian model-based
clustering method which assigns individuals to popula-
tions based on their multilocus genotypes (Pritchard
et al. 2000). STRUCTURE 2.2 accounts for genotype ambigu-
ities such as the possible presence of null alleles (Falush
et al. 2003). For K population clusters, the program esti-
mates the probability of the data [Pr(XI1K)] and the
probability of individual membership in each cluster
using a Markov chain Monte Carlo (MCMC) method.
We ran STRUCTURE assuming correlated allele frequencies
and admixture, and conducted five independent runs
for each value of K to estimate the true number of clus-
ters with 10° MCMC cycles, following a burn-in period
of 100 000 iterations. The simulated values of K ranged
from 1 to 25 when pooling individuals from all locali-
ties and from 1 to 5 when using individuals from a sub-
set of localities previously grouped into a single cluster
based on the first global analysis. The number of popu-
lations best fitting the data set was defined both using
log probabilities [Pr(X|K)] and AK, as described in
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Evanno et al. 2005. Thus, the estimated number of sub-
populations is taken to be the value of K at which
Pr(X 1K) plateaus.

The possible occurrence of an isolation-by-distance
pattern was assessed comparing pairwise matrices of
genetic (Fsr) and Euclidean geographical distances. For
this purpose, we used BDWs version 3.16, which per-
forms a Mantel test and a Reduced Major Axis (RMA)
regression analysis (Jensen ef al. 2005). The significance
of Mantel test was assessed by 10 000 randomizations
of the genetic distance matrix. The test was one-tailed
as only a positive correlation between geographical and
genetic distances is expected (e.g. Gomez et al., 2007).

Results

Genetic diversity

A total of 167 alleles were observed across all popula-
tions of M. wagneri over the seven analysed loci. Aver-
age allelic richness (Ag) calculated considering all typed
loci was strongly correlated with Ag calculated consid-
ering the five loci that amplified in all populations
(r =0.969; P < 0.001; Table 1). Similar correlations were
observed for the number of private alleles (Apyy;
r=0.978; P <0.001) and M-ratios (r = 0.915; P < 0.001)
calculated using the two different sets of marker loci
(Table 1). Ag estimated considering all loci ranged from
3.89 to 6.88 alleles in MAN and VIL localities, respec-
tively (Table 1). Only considering the five loci that
amplified in all populations, average allelic richness
ranged from 3.47 to 7.09 alleles in CHI and VIL locali-
ties, respectively (Table 1). With the exception of some
localities in Central Spain, all populations exhibited pri-
vate alleles (Table 1). Absence of private alleles in cer-
tain localities (CER, ALT, LAR, TIR, QUE, ALC, and
MAN) from central Spain was probably due to the high
number of sampled populations in this geographical
area which showed relatively low levels of genetic dif-
ferentiation among them (see below). This is likely to
have reduced the probability of finding private alleles
in this intensively sampled area. After adjusting for
multiple comparisons, significant departures from HWE
were observed in 6 out of 160 population-locus combi-
nations. Such deviations involved the locus MwGTD9
(TIN locality), MwGTA6 (OCA, HUE, PEN, MAR locali-
ties) and MwGTC12 (TIN locality). We found no evi-
dence of linkage disequilibrium among loci, indicating
that the analysed markers can be treated as indepen-
dent from each other.

Reduced inter-population gene flow and random
genetic drift can erode genetic variability of isolated
populations (Crow & Kimura 1970; Frankham 1996).
Here, we estimate gene flow and population isolation:

(i) calculating the distance to the nearest population; (ii)
calculating average genetic differentiation of each local-
ity with all other studied populations (estimated on the
basis of pair-wise Fgr values; Table 2). Then, we
explored the possible association between these two
variables and standardized allelic diversity (Ag) to
study the relationship between gene flow/population
isolation and genetic variability. The precision of
genetic diversity estimates could be different because
sample sizes (i.e. the number of analysed individuals)
used for their estimation slightly varied between locali-
ties. So, we used sample size to give observations dif-
ferent weights in a weighted least-squares analysis.
Considering all studied populations, standardized alle-
lic diversity (Agr) was negatively associated with aver-
age population genetic differentiation (Student’s t-test;
t =-2.92; P =0.008; Fig. 1) but we found no significant
correlation with population isolation (Student’s t-test;
t = 0.404; P = 0.690).

Wilcoxon signed-rank tests did not reveal any signifi-
cant excesses of heterozygosities under the TPM, sug-
gesting that the studied populations of M. wagneri have
not experienced a recent and/or strong population bot-
tleneck. Similar results were obtained when only the
five loci that amplified in all populations were consid-
ered or using different percentage (20% and 30%) of
multistep mutations in the TPM. The mode shift test
neither showed any modal shift in allele frequency dis-
tribution characteristic of a population bottleneck. By
contrast, M-ratios suggested that bottlenecks had
occurred in several populations. Across all sites and
loci, the M-ratio ranged from 0.53 to 0.79 including all
typed loci and from 0.50 to 0.78 when only those loci
that amplified in all populations were considered
(Table 1). Only six populations (GRA, OCA, VIL, ALT,
TIR and SAL) showed values higher than the critical
value of 0.68 proposed by Garza and Williamson (2001)
(Table 1).

Genetic structure

Population scores from Principal Component Analysis
(PCA) were plotted on two axes (PC1 and PC2) which
cumulatively explained 55.8% of the total genetic vari-
ability (PC1: 42.2%, P =0.005; PC2: 13.8%, P = 0.353;
Fig. 2). A similar pattern was obtained when only the
five loci that amplified in all populations were consid-
ered (PC1: 49.4%, P < 0.001; PC2: 13.7%, P = 0.037). A
more detailed analysis only considering the populations
from La Mancha region (Central Iberia) showed three
main clusters grouping north, central and south popula-
tions (see also STRUCTURE analyses below). In this case,
population scores were also plotted on two principal
axes (PC1 and PC2) which cumulatively explained
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Fig. 1 Relationship between standardized allelic richness (Ag)
and average population differentiation with all other studied
populations.

52.9% of the total genetic variability (PC1: 34.5%,
P =0.001; PC2: 18.4%, P = 0.010). Pairwise Fgr values
indicated high levels of genetic differentiation and all
non-significant pair-wise comparisons corresponded to
some close localities from La Mancha region (Table 2).
Accordingly, STRUCTURE analyses revealed the presence
of a strong genetic structure within the Iberian Penin-
sula and indicated an optimal clustering into eight dis-
tinct groups (Figs 3 and 4a). One group corresponds to
northeast populations and included UTX, SAL, CHI,
and GRA localities. Another group was mainly consti-
tuted by OCA and HUE populations. A third—fourth
cluster grouped most populations from central Iberia
which became progressively differentiated southward
into a fifth cluster particularly patent in MAN and ALC
localities. Finally, the highly distant populations from

~10 000+ 50
00006909
@Q oo B o@go
o0 Bg
~11 0001 0 o @@
98 o
~12 000
o
<
= -13000- o
o
=
~14.000
@]
—15 0001 o
—16 000 - - - - : -
0 5 10 15 20 25 30
K

Fig. 3 Results of Bayesian clustering analysis for 478 Mioscir-
tus wagneri collected in 24 sample localities across the Iberian
Peninsula. For each number of population clusters tested (K),
Pr(X 1K) is the probability of the data.

COR-AGR, MAR, and CAS-TIN grouped in three other
distinct clusters (Fig. 4a). STRUCTURE analyses based on
the five loci that worked in all populations resulted in a
similar pattern but some clusters revealed in the analy-
sis considering all typed loci joined (data not shown).
Finally, we re-analysed the data from the main clusters
obtained in the above analyses to detect possible subtle
genetic structure not revealed when all localities are
pooled (e.g. Tzika et al. 2008). We found that some
localities that appeared clustered in the global analysis
including all populations split into different genetic
clusters after such detailed STRUCTURE analyses (Fig. 4b).
Northeast populations split into three clusters (UTX,
SAL, and CHI-GRA) whereas COR-AGR and CAS-TIN
populations also showed considerable genetic differenti-
ation (Fig. 4b). By contrast, populations from La Man-

Fig. 2 PCA showing the genetic rela-
tionship among Mioscirtus wagneri sam-

Central- Northeast pling localities. Locations within each
Southeast lberia ellipse represent main population clus-
Iberia ters identified on the basis of mtDNA

haplotypes (solid ellipses; Ortego et al.
2009) and clusters/sub-clusters obtained
from microsatellite-derived STRUCTURE

A .
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l\\, -

PCA axis 2
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analyses (dotted ellipses) (see Fig. 4).
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Fig. 4 Results of the genetic assignment of individual Mioscirtus wagneri based on the Bayesian method implemented in the program
STRUCTURE. Panel (a) represents the output from a global analysis pooling data from all populations (with K = 8) whereas panel (b)
shows the result derived from more detailed analyses focused on the clusters obtained in the global analysis. Each individual is rep-
resented by a thin vertical line, which is partitioned into coloured segments that represent the individual’s probability of belonging
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cha presented a pattern similar to the above reported
for the global analysis considering all populations
(Fig. 4b).

Isolation-by-distance analyses revealed a significant
positive correlation between genetic and geographic dis-
tances (Z =284.19, r = 0.828, one-sided P < 0.001 from
10 000 randomizations) and a value of r*=0.685 for
RMA regression analysis (Fig. 5). A similar pattern was
obtained when only the five loci that worked in all pop-
ulations were considered (Z =296.74, r = 0.839, one-
sided P < 0.001 from 10 000 randomizations; RMA
7 = 0.704) We re-analysed the data only considering the
intensively sampled populations from La Mancha (Cen-
tral Spain) and we also found a highly significant posi-
tive correlation between genetic and geographic
distances (Z = 33.74, r = 0.606, one-sided P < 0.001 from
10 000 randomizations; RMA #* = 0.367).

Discussion

In this study we have found that Iberian populations of
M. wagneri show an ‘inland island-like’ distribution,
with a strong spatial genetic structure and a marked
population differentiation. STRUCTURE analyses consider-
ing all populations revealed eight genetic clusters corre-
sponding with the main geographical areas which often
split in other clusters after more detailed analyses. A
previous study based on mitochondrial DNA (mtDNA)
sequences showed a strong genetic structure at a large
geographical scale, with three main clades correspond-
ing with populations located in northeast, central-
southeast and southwest Iberia which probably evolved

0.60
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0.30 1

Genetic distance (Fg;)
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Geographic distance (km)
Fig. 5 Correlation between genetic (Fsr) and geographic dis-

tance for the Iberian populations of Mioscirtus wagneri.
Reduced Major Axis (RMA) regression line is showed.

in allopatry (Ortego et al. 2009). Although microsatellite
and mtDNA phylogeographical analyses were mostly
comparable, the pattern of genetic structure at finer spa-
tial scales remained unresolved using mitochondrial
gene sequences (Fig. 2). For instance, data on mtDNA
showed a genetic uniformity for all central-southeast
populations which has now resulted in six-seven
genetic clusters. Thus, the obtained pattern of genetic
subdivision revealed by nuclear markers suggests the
presence of barriers to dispersal not only among the
three genetic clusters (main geographical areas)
obtained in the previous mtDNA based study but also
at smaller spatial scales (Figs 2 and 4). Past natural
habitat reduction is likely to be responsible for the gen-
eral phylogeographical pattern observed at both mito-
chondrial and microsatellite markers, whereas subtle
genetic differentiation observed at smaller spatial scales
(e.g. within main population clusters; Fig. 4b) are more
likely to have resulted from current anthropogenic habi-
tat destruction (Ortego et al. 2009). As above mentioned,
M. wagneri is a highly specialist grasshopper which has
been exclusively found in hypersaline low grounds
with patches of the halophilic plant Suaseda vera on
which it entirely depends for food and refuge (Cordero
et al. 2007, Ortego et al. 2009). The densities of this
grasshopper sharply decline at low covers of S. vera
and it virtually disappears few meters beyond the
patches of this plant (P. ]J. Cordero, unpublished). Thus,
both historical and recent fragmentation of hypersaline
environments are likely to have decisively contributed
to reduce gene flow between populations and would
have favoured a rapid genetic differentiation at local
spatial scales.

We have also found a highly significant pattern of
isolation by distance which is difficult to interpret as
indicative of migration—drift equilibrium in a system
with such a marked genetic structure (Hutchison and
Templeton 1999). Rather, the observed pattern is likely
to have been generated through serial colonization from
nearby populations and subsequent genetic drift, i.e. as
consequence of persistent founder effects (Ramachan-
dran et al. 2005; Mills et al. 2007). Alternatively, a histor-
ical pattern of isolation by distance in a supposedly
continuous population could have persisted after a pro-
gressive habitat fragmentation despite strong genetic
drift and differentiation. By contrast, the pattern of iso-
lation by distance observed at smaller spatial scales
(e.g. within La Mancha region) could be also compatible
with a migration—drift equilibrium scenario as is sug-
gested by the relatively high admixture levels revealed
by STRUCTURE analyses in certain localities (Fig. 4b). The
lower levels of genetic differentiation observed between
close localities at such smaller spatial scale also suggest
that gene flow and immigration from nearby popula-
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tions may be relatively frequent. Thus, different scenar-
ios could explain the patterns of isolation by distance
observed at large and local spatial scales which are also
likely to reflect progressive fragmentation at different
temporal scales, i.e. past natural habitat reduction and
recent human induced habitat fragmentation.

Genetic diversity was relatively low and the observed
M-ratios suggested that several M. wagneri populations
have probably passed through a population size reduc-
tion. This may be explained by the small-size patches of
adequate habitats in most localities which often sustain
small and discontinuous populations of this grasshop-
per. It is worth mentioning the case of Manjavacas
locality which showed the lowest levels of both genetic
diversity and M-ratios among all analysed populations.
Manjavacas locality probably sustains the smallest pop-
ulation of M. wagneri here studied: we could only find
it in a very small patch of Suaeda vera (lower than Y2
hectare) remaining with a particularly low population
density (P. J. Cordero, unpublished). However, despite
the low M-ratio value observed in both this and several
other localities we have found no significant heterozy-
gote excess or shift in allele frequency distribution in
any studied population. A population bottleneck is
expected to have a long-lasting genetic signature on M-
ratios whereas heterozygosity excess and allele fre-
quency distribution are likely to recover relatively
quickly (Garza & Williamson 2001). Thus, these tests
are expected to provide evidence of population decline
and recovery over different time scales and this may
also help to explain the history of the studied popula-
tions (Garza & Williamson 2001). Our results suggest
that the current genetic composition of the studied pop-
ulations of M. wagneri has been primarily influenced by
past population declines probably characterized by
recurrent demographic bottlenecks during a progressive
fragmentation of a supposedly more widespread popu-
lation.

Standardized allelic diversity was negatively corre-
lated with average genetic differentiation with all other
populations, suggesting that long term isolation and
reduced gene flow have probably contributed to erode
genetic variability in certain populations (Brede et al.
2008). By contrast, we have found no significant associa-
tion between genetic variability and population isola-
tion. Population geographic isolation is likely to be a
less accurate estimator of gene flow than observed aver-
age pair-wise Fsp values. This may explain why dis-
tance to the nearest population does not correlate with
population genetic variability. Alternatively, such con-
trasting patterns may reflect population isolation at dif-
ferent time scales. Long-term isolation could have
caused population genetic differentiation and reduced
genetic variability, a pattern which may not be revealed

© 2009 Blackwell Publishing Ltd

by the current degree of geographical isolation esti-
mated by distance to the nearest population. In any
case, additional information on the species population
dynamics is necessary to get a better understanding of
the factors influencing current levels of genetic diver-
sity. Further studies should include information on the
area of favourable habitat available in each locality, sys-
tematic censuses and detailed data on population densi-
ties necessary to estimate current population sizes. This
information together with analyses on fine-spatial scale
genetic structure would help to determine the species
dispersal potential and the current levels of gene flow
both within and between neighbour populations (e.g.
Double et al. 2005; Ortego et al. 2008a,b).

The results here reported have important implications
for the conservation of both the study species and sev-
eral other co-distributed organisms with similar habitat
requirements. On one hand, data on spatial genetic
structure indicate that several populations should be
regarded as independent and genetically differentiated
units which may show local adaptations to particular
environmental conditions (Ortego et al. 2009). On the
other hand, the strong genetic structure observed sug-
gests that several studied populations mostly behave as
isolated populations with low levels of gene flow
between them. Particularly some isolated and geograph-
ically restricted populations (e.g. the genetic clusters of
MAR or COR-AGR localities) probably represent the
‘remains’ of a formerly more widespread population
that once extinct may not re-colonize (Frankham et al.
2002). Thus, this spatial population structure together
with the small size of suitable patches makes these pop-
ulations particularly vulnerable to human alterations.
Although the small-size patches of these relict habitats
have an important natural component, human activities
have also contributed to their further fragmentation and
size reduction in recent times. These habitats have been
often fragmented through extensive ploughing whereas
intensive livestock grazing and the input of fresh water
or urban wastes have greatly contributed to alter their
natural dynamics (Valero-Garcés et al. 2000; Cordero
et al. 2007). Although most of these habitats are now
protected, conservation strategies have frequently
neglected their less conspicuous arthropod communities
(Cordero et al. 2008). For instance, managers have often
supported the input of water to certain hypersaline
lagoons to favour popular avian communities, a prac-
tice that disrupts the natural hydric dynamics of these
temporal wetlands and also results in a continuous
flooding of the halophile vegetation ring used by M.
wagneri and several other species exclusively inhabiting
this habitat (Cordero et al. 2008).

In conclusion, our analyses indicate that Iberian pop-
ulations of M. wagneri show a deep genetic structure
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and strong differentiation even at small geographical
scales. On the other hand, the studied populations show
different levels of genetic diversity, some of them with
particularly low variability and marked genetic signa-
tures of past population size reductions. Overall, these
results indicate that hypersaline environments consti-
tute island-inlands of relict habitats which offer an
interesting model system to study the genetic conse-
quences of population fragmentation and isolation.
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