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Abstract The study of the association between morpho-
logical and genetic divergence can provide important
information on the factors determining population differ-
entiation and gene flow at different spatiotemporal scales.
In this study we analyze the congruence between mor-
phological and genetic divergence in the Iberian popula-
tions of Mioscirtus wagneri, a specialized grasshopper
exclusively inhabiting highly fragmented hypersaline low
grounds. We have found strong morphological variation
among the studied localities and among mtDNA- and
microsatellite-based genetic clusters. However, we have
detected some cases of morphological convergence
between highly differentiated populations. By contrast,
certain genetically homogeneous populations at both
mtDNA and microsatellite markers showed significant
morphological differentiation which may be explained by
phenotypic plasticity or divergent selection pressures act-
ing at different spatiotemporal scales. Mantel tests also
revealed that morphological divergence was associated
with microsatellite- but not with mtDNA-based genetic
distances. Overall, this study suggests that morphological
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traits can provide additional information on the underlying
population genetic structure when only data on scarcely
variable mtDNA markers is available. Thus, morphology
can retain useful information on genetic structure and has
the benefit over molecular methods of being inexpensive,
offering a preliminary/complementary useful criterion for
the establishment of management units necessary to guide
conservation policies.
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Introduction

Natural or human induced habitat fragmentation can reduce
dispersal, increase genetic differentiation and erode the
genetic diversity of remnant populations (Saunders et al.
1991; Frankham 1995; Frankham 1996; e.g. Vandergast
et al. 2009). When populations become separated by effec-
tive barriers to gene flow increases the chance of phenotypic
divergence (Smith et al. 1997; Garnier et al. 2005; Smith
et al. 2005; Mila et al. 2009). Divergence can result from
random genetic drift or as consequence of differential sexual
(Panhuis et al. 2001) or natural selection (Schluter 2001)
experienced by geographically separated populations
(Barton 2001). Thus, restricted interbreeding often results in
aphenotypic gradation of populations and this can ultimately
reinforce reproductive isolation and speciation (Barton
2001; Turelli et al. 2001). For these reasons, the study of the
factors determining phenotypic/genetic divergence is a
central issue in evolutionary biology (Slatkin 1987).

The study of morphological divergence has important
implications for basic and conservation research (Garnier
et al. 2005; Nice and Shapiro 1999; Strange et al. 2008;

@ Springer


http://dx.doi.org/10.1007/s10841-011-9397-4

104

J Insect Conserv (2012) 16:103-110

Polihronakis 2009). If morphology reflects genetic differ-
entiation, preliminary morphological surveys can motivate
and guide future molecular based research on the factors
(e.g. barriers to gene flow, differential selection, etc.)
determining inter-population gene flow. If morphological
differentiation parallels genetic divergence, phenotypic
traits can also offer a valid criterion to establish manage-
ment units when molecular data are not available (Garnier
et al. 2005; Garcia et al. 2008). Finally, morphological
divergence can reveal cryptic patterns of incipient genetic
differentiation which may have gone unresolved by nuclear
markers (Nice and Shapiro 1999). This may occur if coding
genes under strong directional selection are responsible for
the observed phenotypic divergence and insufficient time
has elapsed for reproductive isolation to be reflected
as genetic divergence at neutral molecular markers
(Greenberg et al. 1998; Nice and Shapiro 1999).

Mioscirtus wagneri (Orthoptera: Acrididae) is a highly
specialized grasshopper exclusively inhabiting hypersaline
low grounds with patches of Suaeda vera, the halophilic
plant on which it exclusively depends for food and ref-
uge (Cordero et al. 2007). M. wagneri shows a highly
fragmented distribution and its Iberian populations have
progressively become isolated due to historical and human-
induced habitat reduction (Ortego et al. 2009; Ortego et al.
2010). Molecular-based research in the Iberian Peninsula
has revealed strong genetic structure at both large and fine
spatiotemporal scales. A mitochondrial DNA (mtDNA)
based study has shown that the Iberian populations of M.
wagneri present a marked phylogeographic structure,
forming three main clades which correspond with popula-
tions located in northeast, central-southeast and southwest
Iberia (Ortego et al. 2009). The higher resolution of micro-
satellite markers has also revealed a deep population sub-
structure within these main mtDNA-based clades, with the
presence of 7—11 genetic clusters which often involve close
populations (Ortego et al. 2010). Such marked genetic
structure is probably the result of the extremely frag-
mented distribution and isolation of their particular habitats
(Ortego et al. 2009; Ortego et al. 2010) together with the
scarce dispersal potential of this highly specialist species
(J. Ortego, unpublished data). Thus, the marked genetic
structure at both mtDNA and microsatellite markers makes
this species an interesting model system to study the con-
gruence between morphological and genetic differentiation
at different spatiotemporal scales.

In this study we analyze the morphological variability of
Iberian populations of M. wagneri, paying particular
attention to the relationship between genetic and morpho-
logical divergence. For this purpose, we used previous
molecular information to analyze morphological variability
occurring at large (mtDNA; Ortego et al. 2009) and fine
(microsatellites; Ortego et al. 2010) spatiotemporal scales.
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The particular objectives of the present study are: (1) to
analyze the morphological differentiation within the dis-
tribution range of M. wagneri in the Iberian Peninsula; (2)
to investigate the congruence between morphological and
genetic structure inferred on the basis of both mtDNA and
microsatellite markers; and (3) to test the null hypothesis
that morphological divergence correlates with genetic
divergence and geographic distance among populations. By
answering these basic questions, we study whether simple
and inexpensive morphological surveys can reflect genetic
structure and be potentially useful to establish management
units and guide conservation strategies.

Materials and methods
Sampling and study area

During 20062007, we sampled 24 populations of M. wag-
neri. We are confident these populations cover the entire
species distribution range in the Iberian Peninsula, as several
other potentially adequate habitats for M. wagneri (i.e. saline/
hypersaline lagoons and low grounds) have been extensively
prospected without any record of the species (Cordero et al.
2007; Ortego et al. 2009; Ortego et al. 2010). We collected
11-31 adult individuals per population and specimens were
preserved whole in 1,500 pl of 96% ethanol at —20°C until
needed for genetic and morphological analyses. We aimed to
sample a similar number of males and females in each
locality. However, male to female ratio is generally much
higher than parity in this species (P. J. Cordero, unpublished
data) and this generally resulted in smaller sample sizes for
females in some sampling localities (Table 1). Population
code description and further information on sampling loca-
tions are given in Table 1 and Fig. 1.

Morphology

For all individuals we measured femur and tibia length and
maximum width of the hind leg, pronotum length, head
length, and tegmen length to the nearest 0.1 mm using a
stereoscopic microscope Leica S8 APO and the software
LAS version 2.8.1. All these variables were strongly inter-
correlated (all » values > 0.609; Table S1 in Supporting
Information). For simplicity, all results presented in this
article are only based on femur length, the body size esti-
mate which was most strongly inter-correlated with all the
other five measured variables (Table S1 in Supporting
Information). We also estimated structural body size by
performing a principal component analysis (PCA) on the
six morphological traits. Following the broken-stick crite-
rion (Jackson 1993), this PCA yielded one axis (PCI)
which accounted for 96.33% of the total variance.
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Fig. 1 Genetic clusters for the Iberian populations of Mioscirtus
wagneri according with mitochondrial data (thick solid lines; Ortego
et al. 2009) and microsatellite markers (thin solid lines for main

This PCA yielded high factor loadings on the first principal
component (>0.96 in all cases) and PC1 scores were used
as an index of overall body size (e.g. Schauble 2004; Mila
et al. 2009; Polihronakis 2009). We obtained analogous
results using overall body size index (PC1) or femur length
and the results for PC1-based analyses are only presented
in Supporting Information (Tables S2-S3 and Fig. S1-S2).

Morphological, genetic, and geographical distances

Morphological divergence was calculated as the Euclidean
distance between population mean values (e.g. Mila et al.
2009). Genetic divergence between sampling locations was
calculated separately for microsatellite and mtDNA data
using pairwise Fgr values and testing their significance
with Fisher’s exact tests after 10 000 permutations as
implemented in ARLEQUIN 3.1 (Excoffier et al. 2005). These
datasets correspond to those used by Ortego et al. 2009 (for
mtDNA; fragments of the genes 16S rRNA and cyto-
chrome oxidase subunit II) and Ortego et al. 2010 (for
microsatellite loci; Aguirre et al. 2010) to investigate the
phylogeography and genetic structure of the Iberian pop-
ulations of M. wagneri (Fig. 1). Geographical distances
between populations were calculated as the straight-line
distance between all pairs of sampling sites. We used
Mantel tests to analyze the association between distance
matrixes using zT software with 10 000 permutations
(Bonnet and Van de Peer 2002).

clusters, dashed lines for secondary clusters; Ortego et al. 2010).
Sampling sites and population codes are described in Table 1

Statistical analyses

We analyzed the association between body size and sex
and population using General Linear Models (GLMs) in
SPSS 17.0 software. Individuals were grouped on the basis
of three criteria: (A) sampling locality, (B) mtDNA clus-
ters, and (C) microsatellite clusters. In brief, we analyzed
genetic structure for mtDNA and microsatellite data using
Samova 1.0 (Dupanloup et al. 2002) and STRUCTURE 2.2
(Pritchard et al. 2000), respectively. In the analyses of
microsatellite markers, we first pooled data from all pop-
ulations to obtain main genetic clusters. Then, we re-ana-
lysed the data from the main clusters obtained separately to
detect possible subtle genetic structure not revealed when
all localities are pooled (e.g. Tzika et al. 2008; Ortego et al.
2010). Thus, we used both global and local analyses to
cluster populations on the basis of microsatellite data
(Fig. 1). More details for the analyses of genetic structure
for both mtDNA and microsatellite data are indicated in
Ortego et al. (2009) and (2010), respectively.

Results

Body size strongly differed among sampling localities and
with mtDNA- and microsatellite-based clusters (Table 2;
Fig. 2). We also found a strong interaction between sex and
locality/cluster (Table 2). This interaction arises because
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Table 1 Geographical location for the 24 studied populations of Mioscirtus wagneri in the Iberian Peninsula

Locality Province Code Latitude Longitude n males n females mtDNA Microsat
Northeast

Pantano de Utxesa Lleida UTX 41°29'N 0°30'E 12 8 mtDNA-1 Micro-1.1
Laguna Salada Zaragoza SAL 41°30'N 0°43'W 17 3 mtDNA-1 Micro-1.2
Laguna de Chiprana Zaragoza CHI 41°14'N 0°11'W 12 6 mtDNA-1 Micro-1.3
Laguna Salada Grande Teruel GRA 41°02'N 0°12'W 18 2 mtDNA-1 Micro-1.3
Central-Southeast

Saladar de Ocaiia Toledo OCA 39°58'N 3°38'W 9 11 mtDNA-2 Micro-2.1
Saladar de Huerta Toledo HUE 39°50'N 3°37W 8 10 mtDNA-2 Micro-2.1
Saladar de Villasequilla Toledo VIL 39°53'N 3°44'W 7 11 mtDNA-2 Micro-3.1
Laguna del Cerrillo Toledo CER 39°41'N 3°18'W 10 10 mtDNA-2 Micro-3.1
Laguna del Altillo Toledo ALT 39°41'N 3°18'W 9 11 mtDNA-2 Micro-3.1
Laguna de Longar Toledo LON 39°41'N 3°19W 10 10 mtDNA-2 Micro-3.1
Laguna Larga Toledo LAR 39°36'N 3°18'W 16 4 mtDNA-2 Micro-3.1
Laguna de Tirez Toledo TIR 39°32'N 3°21'W 10 10 mtDNA-2 Micro-3.1
Laguna de Pefia Hueca Toledo PEN 39°31'N 3°20'W 9 11 mtDNA-2 Micro-3.1
Laguna de Quero Toledo QUE 39°29'N 3°15'W 18 5 mtDNA-2 Micro-3.1
Laguna de la Sal Toledo LSA 39°26'N 3°200W 9 11 mtDNA-2 Micro-3.1
Laguna de las Yeguas Toledo YEG 39°25'N 3°17W 10 10 mtDNA-2 Micro-3.1
Laguna de Salicor Ciudad Real SCO 39°27'N 3°10W 21 10 mtDNA-2 Micro-3.1
Laguna de Alcahozo Ciudad Real ALC 39°23'N 2°52'W 10 10 mtDNA-2 Micro-4.1
Laguna de Manjavacas Cuenca MAN 39°24'N 2°52'W 11 mtDNA-2 Micro-4.1
Saladar de Cordovilla Albacete COR 38°33'N 1°38'W 17 mtDNA-2 Micro-5.1
Saladar de Agramén Albacete AGR 38°24'N 1°37W 9 mtDNA-2 Micro-5.2
Saladar del Margen Granada MAR 37°38'N 2°34'W 9 11 mtDNA-2 Micro-6.1
Southwest

Rio Tinto Huelva TIN 37°13'N 6°54'W 11 mtDNA-3 Micro-7.1
Castro Marin Algarve CAS 37°14'N 7°30'W 13 mtDNA-3 Micro-7.2

Genetic clusters for mtDNA and microsatellite markers are indicated

body size divergence differed between sexes in several
pair-wise population comparisons (Fig. 2). Although these
analyses suggest a main genetic-morphological congru-
ence, detailed pair-wise population comparisons revealed
that several genetically differentiated populations showed
no significant body size differentiation (Table 3; Fig. 2).
By contrast, some genetically homogeneous populations
showed significant morphological divergence (Table 3;
Fig. 2). Morphology was more geographically structured
than mtDNA variability, i.e. genetically homogeneous
populations at mtDNA markers generally showed strong
morphological differentiation (Fig. 2; Table 3). We also
found that morphology was more geographically structured
than microsatellite variability in some localities, particu-
larly those involving the extensively sampled populations
from Central Spain (Fig. 2; Table 3). Morphological
divergence was strongly correlated with geographical dis-
tance (Mantel tests, males: » = 0.215, P < 0.001; females:
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Table 2 GLM:s for the association between body size (femur length)
and sex and locality/genetic cluster

Model Test P
(A) Sampling localities
Sex F\, 126 = 5801.66 <0.001
Locality Fa3. 406 = 17.78 <0.001
Sex x Locality Fr3 406 = 2.98 <0.001
(B) mtDNA clusters
Sex F1, 468 = 1617.99 <0.001
mtDNA cluster F>, 465 = 28.33 <0.001
Sex x mtDNA cluster F>, 465 = 5.66 0.004
(C) Microsatellite clusters
Sex F, 460 = 2507.13 <0.001
Microsatellite cluster Fe¢, 460 = 31.53 <0.001
Sex x Microsatellite cluster Fe, 460 = 4.10 0.001

Individuals were grouped on the basis of three criteria: (A) sampling
locality, (B) mtDNA clusters, and (C) microsatellite clusters
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Fig. 2 Body size (femur length) in relation with sex (males: open
circles; females: solid circles) and populations. Populations were
grouped on the basis of three criteria: a sampling locality, b mtDNA-

r = 0.364, P < 0.001). We found no association between
morphological and mtDNA divergence (Mantel tests,
males: r = —0.085, P = 0.134; females: r = 0.101,
P = 0.066; Fig. 3a). However, there was a strong associ-
ation between morphological and microsatellite divergence
(Mantel tests, males: r = 0.165, P = 0.010; females:
r = 0.250, P < 0.001; Fig. 3b).

Discussion

We found significant morphological differentiation among
Iberian populations of the grasshopper M. wagneri, sug-
gesting that selection and/or genetic drift together with
long-term population isolation has probably contributed to
morphological divergence at different spatiotemporal
scales (Garnier et al. 2005; Garcia et al. 2008; Polihronakis
2009). Accordingly, we have found a strong morphological
divergence between most genetic clusters obtained from
previous mtDNA and microsatellite analyses on spatial
genetic structure. However, morphological divergence
correlated with genetic differentiation at microsatellite
markers but such association was not statistically signifi-
cant for mtDNA. The latter has probably resulted from the
lower resolution of mtDNA in comparison with microsat-
ellites markers, i.e. only three mtDNA genetic clusters have
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based clusters, and ¢, d microsatellite-based clusters. Population and
cluster codes are described in Table 1

been found in the Iberian Peninsula (Ortego et al. 2009)
whereas microsatellite analyses revealed the presence of
7-11 genetically differentiated groups (Ortego et al. 2010).
Thus, the marked morphological divergence observed at
moderately fine spatiotemporal scales seems to be not well
reflected by the scarcely variable mtDNA markers used to
characterize the studied populations (Mila et al. 2009;
Polihronakis 2009).

Despite the general correspondence between body size
and genetic divergence, morphology was not completely
congruent with genetic data (e.g. Greenberg et al. 1998;
Lee and Frost 2002; Illera et al. 2007). Some genetically
differentiated populations showed no morphological
divergence, suggesting stabilizing selection or convergent
evolutionary pressures in certain distant populations (Lee
and Frost 2002). By contrast, we have found absence of
morphological divergence between some geographically
close populations with low or disrupted gene flow (e.g.
SAL-CHI; Fig. 1). Such absence of morphological diver-
gence could have resulted from morphological stasis for
the studied traits due to stabilizing/fluctuating selection in
geographically close populations experiencing similar
variable environmental conditions (Charlesworth et al.
1982; e.g. Lee and Frost 2002; Toju and Sota 2009).
Finally, some genetically homogeneous populations
showed significant morphological divergence (e.g. some
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wagneri considering a mtDNA and b microsatellite markers. Males:
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populations from La Mancha region, Central Spain;
Fig. 1). In this case, morphological differentiation could
have resulted from phenotypic plasticity or ongoing
divergent evolutionary pressures operating at very fine
spatial scales (Greenberg et al. 1998; Nice and Shapiro
1999). At such spatiotemporal scale, the disruption of gene
flow may be so recent that not even highly variable
microsatellite markers are reflecting it (Greenberg et al.
1998; Nice and Shapiro 1999). As it has been suggested in
other systems, this could have important evolutionary
implications particularly if morphological divergence at
such fine spatiotemporal scales generates reproductive
isolation and this further contributes to reduce inter-popu-
lation gene flow (Funk et al. 2009; Wang and Summers
2010). Natural/sexual selection may also underlay the
observed sexual differences in body size divergence:

and microsatellite markers reflect evolutionary changes
occurring at different spatiotemporal scales. Detailed
analyses considering other traits could also help to reveal
cryptic patterns of morphological divergence and repro-
ductive isolation uncovered in this study (e.g. genitalia
morphology; Garnier et al. 2005; Polihronakis 2009).
Future studies analyzing the environmental factors which
affect morphological divergence (Telfer and Hassall 1999;
Heidinger et al. 2010) together with common garden
experiments (Telfer and Hassall 1999) are necessary to
determine the relative role of selection and drift on the
patterns of morphological divergence observed. This would
also help to resolve which percentage of the morphological
variance is merely due to phenotypic plasticity (Pigliucci
2001; Lee and Frost 2002; Ramirez-Valiente et al. 2009).
Although some apparently significant morphological vari-
ation could be misleading, our study suggests that addi-
tional morphological information can help to resolve
evolutionary divergence which is not well reflected by
scarcely variable mtDNA markers, Thus, morphology can
retain useful information on genetic structure and has the
benefit over molecular methods of being inexpensive,
offering a preliminary/complementary useful criterion for
the establishment of management units necessary to guide
conservation policies.
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