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The genetic consequences of small population size and isolation are of central concern in both population
and conservation biology. Organisms with a metapopulation structure generally show effective population
sizes that are much smaller than the number of mature individuals and this can reduce genetic diversity
especially in small sized and isolated subpopulations. Here, we examine the association between
heterozygosity and the size and spatial isolation of natal colonies in a metapopulation of lesser kestrels
(Falco naumanni). For this purpose, we used capture—-mark-recapture data to determine the patterns of
immigration into the studied colonies, and 11 highly polymorphic microsatellite markers that allowed us to
estimate genetic diversity of locally born individuals. We found that individuals born in smaller and more
isolated colonies were genetically less diverse. These colonies received a lower number of immigrants,
supporting the idea that both reduced gene flow and small population size are responsible for the genetic
pattern observed. Our results are particularly intriguing because the lesser kestrel is a vagile and migratory
species with great movement capacity and dispersal potential. Overall, this study provides evidence of
the association between individual heterozygosity and the size and spatial isolation of natal colonies in a
highly mobile vertebrate showing relatively frequent dispersal and low genetic differentiation among local
subpopulations.
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1. INTRODUCTION

Numerous organisms are distributed forming spatially
structured populations in the manner of metapopulations,
composed of a number of local populations differing in
size and degree of connection that are generally submitted
to extinction—colonization dynamics and behave as highly
heterogeneous systems (Levins 1969; Hanski 1998).
From a genetic point of view, organisms with a
metapopulation structure generally show effective popu-
lation sizes that are much smaller than the number of
mature individuals (Gilpin 1991; Hedrick 1996; Amos &
Harwood 1998). This has special relevance for small and
isolated subpopulations, because they are theoretically
more likely to exhibit reduced genetic diversity and may be
more prone to extinction from genetic and stochastic
processes than larger and better connected ones
(Frankham 1995, 2005; Saccheri et al. 1998; Nieminen
et al. 2001; Spielman ez al. 2004).
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Matings between closely related parents reduce genetic
diversity and this frequently results in progeny with lower
fitness than outbred ones (Charlesworth & Charlesworth
1987; Falconer & Mackay 1996). In natural populations,
many empirical studies have also provided supporting
evidence for a positive relationship between individual
genetic diversity measured at neutral markers and different
components of fitness, including disease resistance
(Acevedo-Whitehouse ez al. 2003, 2006; Ortego er al.
2007a), fecundity (Ortego et al. 2007b) and survival
probability (Hoffman ez al. 2004; Markert et al. 2004),
although the possible role of inbreeding in such corre-
lations has been recently put into question (Balloux ez al.
2004; Pemberton 2004). At the population level, low
genetic diversity is suspected to reduce the ability of
populations to respond to novel and changing environ-
mental conditions (Willi ez al. 2006) and compromise
their long-term viability (Saccheri ez al. 1998; Westemeier
et al. 1998; Nieminen er al. 2001; Spielman ez al. 2004;
Frankham 2005). The level of genetic variation within a
population depends on a balance between mutation,
natural selection, genetic drift, inbreeding and gene flow,
the last four factors being closely linked to the size and
spatial isolation of populations (Frankham 1996; Hedrick
2000). Thus, it is not very surprising that the study of the
genetic and demographic consequences of small
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population size and isolation is of central concern in both
population and conservation biology (Frankham 1996;
Amos & Balmford 2001).

Empirical evidence of the genetic consequences of
small population size has been established in comparisons
across species, with a number of studies reporting a
positive relationship between genetic diversity and esti-
mated effective population sizes (e.g. Soulé 1976; Nevo
et al. 1984; but see Bazin ez al. 2006). Within species, most
studies have predominantly focused on analysing
differences in genetic diversity among isolated populations
that generally follow an ‘island’ model of spatial genetic
structure due to the presence of natural or anthropogenic
dispersal barriers that prevent gene flow among popu-
lations. These studies generally include analyses of islands
(e.g. Frankham 1997; Whiteman ez al. 2006; White &
Searle 2007) or isolated populations (e.g. Dixon ez al.
2007) differing in size and have generally observed
reduced levels of genetic diversity in smaller populations.
Finally, other studies have found higher variability in
continuous populations compared with isolated popu-
lations (e.g. Segelbacher ez al. 2003; Hoglund ez al. 2007,
White & Searle 2007), or reported temporal increases of
genetic diversity following demographic expansions (e.g.
Hansson ez al. 2000; Ortego et al. 2007¢), or decreases
after population bottlenecks (e.g. Groombridge et al.
2000; Taylor ez al. 2007). The association between genetic
diversity and the degree of connection/size of local
subpopulations has also been extensively studied in a
metapopulation context (e.g. Hanfling & Brandl 1998;
Saccheri ez al. 1998; Rowe et al. 1999; Harper ez al. 2003;
Andersen er al. 2004), although empirical evidence for
such an association in highly mobile species showing
frequent dispersal and scarce genetic differentiation
among local subpopulations is much more scarce (e.g.
Seppa & Laurila 1999).

An ideal vertebrate model to study the association
between genetic diversity and the size and spatial isolation
of local populations within a classical metapopulation
system is the lesser kestrel (Falco naumanni). The lesser
kestrel is a small size bird of prey that forms breeding
colonies experiencing relatively frequent colonization and
extinction events that are highly dependent on a balance
between adult survival, breeding performance and
migration processes (Serrano er al. 2004; Aparicio et al.
2007; Calabuig et al. 2008). The aim of this study was to
analyse the association between individual genetic diver-
sity and the size and spatial isolation of natal colonies in a
metapopulation of lesser kestrels. We first studied
variability among colonies in immigration patterns in
relation to their size and spatial isolation and then we
analysed whether heterozygosity of locally born individ-
uals was associated with these parameters. For this
purpose, we used capture—mark-recapture data to
determine the patterns of immigration into the studied
colonies, and 11 highly polymorphic microsatellite
markers that allowed us to estimate genetic diversity of
locally born individuals.

2. MATERIAL AND METHODS

(a) Study population and field procedures

The study was conducted in La Mancha, central Spain, in
an area covering approximately 1000 km? (figure 1). In this
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Figure 1. Map of the study area showing the spatial
distribution and average size (number of breeding pairs) of
the studied lesser kestrel colonies.

area, lesser kestrels form colonies in abandoned farm
houses where they nest under tiled roofs and inside holes in
walls. Each building or complex of buildings occupied by at
least two pairs was defined as a breeding colony. During the
years 2000-2006, we have studied a total of 37 breeding
colonies clustered in two subpopulations separated by 30 km:
“Villacafias’ (39°30' N, 3°20’ W; 17 colonies) and ‘Con-
suegra’ (39°35' N, 3°40’W; 6 colonies) subpopulations
(figure 1). However, in spite of the low exchange of
individuals between both subpopulations, Bayesian model-
based clustering analyses (STRUCTURE v. 2.1, Pritchard et al.
2000) indicated that they are not genetically differentiated
(maximum number of clusters modelled=10; Ortego er al.
2007a, 2008).

Monitoring included the capture and banding of breeding
adults, recording of breeding parameters and intensive
ringing of nestlings in the colonies (Ortego er al. 2007a—c).
During the study period (2000-2006 breeding seasons), we
ringed almost all nestlings born in the study area (approx.
95% of nestlings; approx. 400 chicks per year) and the
effectiveness of capture (i.e. the ratio between the number of
captured birds and the total number of individuals at a
colony) of breeding adults in the studied colonies was on
average 70% (Ortego et al. 2007¢, 2008). Adults were trapped
with a noose carpet or by hand during incubation and were
individually marked with metallic and coloured plastic rings
for later identification. Chicks were marked at hatching with a
waterproof felt-tip pen, and were banded 5-7 days later.
Blood samples (100 pl) for genetic analyses were obtained by
venipuncture of the brachial vein and preserved in approxi-
mately 1200 pl ethanol 96% at —20°C. All ringed chicks were
bled when they were 30 days old.

(b) Characteristics of the colonies

Colonies were characterized between 2000 and 2006 in terms
of size (number of breeding pairs) and isolation (distance and
sizes of neighbouring colonies). From 30 April onwards, each
hole apparently appropriate for lesser kestrels was regularly
examined to determine the total number of occupied nests
and calculate the total number of breeding pairs in the
colonies (Aparicio er al. 2007). We estimated the spatial
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isolation of the colonies using different measurements:
(i) distance to the nearest colony, calculated as the straight-
line distance to the nearest neighbour colony of lesser kestrels
and (ii) population connectivity (Hanski 1998). Connectivity
(S) of colony ¢ is calculated as: S;, =) ;. exp(—ad;)N;,,
where Nj, is number of breeding pairs in colony 7 dj; is
the distance between colonies 7 and j; and 1/« is the average
dispersal distance, set to 3.022 km based on previous research
in the study population (J. Ortego 2007, unpublished
manuscript). It should be noted that isolated colonies are
not the smallest ones in our study population (Spearman rank
correlation coefficients; colony size—distance to the nearest
colony: r,=0.162, p=0.460; colony size—connectivity:
r,=0.061, p=0.783).

(c¢) Immigration patterns

To study immigration patterns, we determined the number of
non-local birds arriving every year to a given colony. We
calculated immigration rates using only recovery data from
banded individuals, excluding from the analyses information
on unringed birds of uncertain origin. We considered
immigrants for a given colony those banded birds that were
born or bred in other colonies in previous seasons (i.e.
individuals with exact known origin). Thus, we are confident
that our dataset is not biased due to unmarked individuals that
may be philopatric but considered as immigrants merely
because we failed to capture them in previous breeding seasons.

(d) Genotyping and genetic diversity estimates

We genotyped 419 nestling lesser kestrels across 11 highly
polymorphic microsatellite markers: Fp5, Fpl3, Fp31,
Fp46-1, Fp79-4, Fp86-2, Fp89 (Nesje er al. 2000), Ful,
Fu2 (J. H. Wetton 2000, unpublished data), Fn1-11 and Fn2-14
(Ortego ez al. 2007d; see Ortego et al. 2007a for microsatellite
details). All individuals were genotyped at all these 11
microsatellite markers. We used QIAamp DNA Blood
Mini Kits (QIAGEN) to extract and purify genomic DNA
from the blood samples. Approximately 5 ng of template
DNA was amplified in 10 pl reaction volumes containing 1 X
reaction buffer (67 mM Tris—-HCl (pH 8.3), 16 mM
(NH4),SO4, 0.01% Tween-20, EcoStart Reaction Buffer,
Ecogen), 2 mM MgCl,, 0.2 mM of each dNTDP, 0.15 uM of
each dye-labelled primer (FAM, HEX or NED) and 0.1 U of
Tag DNA EcoStart polymerase (Ecogen). All reactions were
carried out on a Mastercycler EpgradientS (Eppendorf)
thermal cycler. The PCR programme used was 9 min
denaturing at 95°C followed by 30 cycles of 30 s at 94°C,
45 s at the annealing temperature (Ortego er al. 2007d)
and 45 s at 72°C, ending with a 5 min final elongation stage
at 72°C. Amplification products were electrophoresed using
an ABI 310 Genetic Analyzer (Applied Biosystems) and
genotypes were scored using GENEScaN v. 3.7 (Applied
Biosystems). We used two metrics to estimate individual
genetic diversity: (i) uncorrected heterozygosity (Ho),
calculated as the proportion of loci at which an individual
is heterozygous and (ii)) homozygosity by locus (HL), a
microsatellite derived measure that improves heterozygosity
estimates in open populations by weighting the contribution
of each locus to the homozygosity value depending on its
allelic variability (Aparicio et al. 2006; Ortego et al. 2007b).
Particularly, HL. improves heterozygosity estimates when
markers are highly different in variability, as is the case in this
study (Ortego er al. 2007a; e.g. Ortego et al. 2007¢). HL is
calculated as follows: HL= (ZEy,)/(ZE, + 2E;), where E;, and
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E; are the expected heterozygosities of the loci that an
individual bears in homozygosis (h) and heterozygosis (j),
respectively (Aparicio er al. 2006). Ho and HL were
calculated using CERNICALIN, an excel spreadsheet available
on request.

(e) Statistical analyses

(i) Patterns of immigration

We examined the factors influencing the number of
immigrants arriving to a given colony using generalized linear
mixed models (GLMMs) implemented with the GLIMIX
macro of SAS (SAS Institute 2004). GLMMs allow analyses
of data where the response variable is determined by both
random and fixed effects. Total number of immigrants (88
colony-years; range: 5—20 colonies per year) was analysed
using a Poisson error structure and log link, including as
covariates colony size, distance to the nearest lesser kestrel
colony (transformed as log(x+ 1)), and population connec-
tivity (S). We also included a variable that we defined as
effectiveness of capture calculated as the ratio between the
number of captured birds and the total number of individuals
at a colony in a given year. We did so because the number of
observed immigrants in the colonies is likely to be affected by
that parameter. As several colonies were monitored across
years, we included year and colony identity as random effects
in all these analyses in the manner of a randomized complete
block design to avoid pseudo-replication (Krackow &
Tkadlec 2001). Subpopulation identity was also included as
random effect to control for the potential non-independence
of number of immigrants within subpopulations.

(i) Patterns of genetic diversity

We used GLMMs to study the factors determining genetic
diversity of locally born individuals in relation to colony size,
distance to the nearest lesser kestrel colony (transformed as
log(x+1)) and population connectivity (S). Ho and HL of
locally born individuals (419 individuals from 196 nests) were
fitted as dependent variables using a normal error structure
and identity link. The identities of colonies, cohorts and
subpopulations were included as random effects to control for
the potential non-independence of Hy and HL within
colonies, cohorts and subpopulations. Given that siblings
were not independent among them, we also included brood
identity nested within colony identity (i.e. a higher level
factor; Singer 1998) as random effect.

Finally, we also used a GLMM to analyse the factors
determining genetic diversity at the population level (i.e.
colonies) rather than at the individual level. For this purpose,
we calculated average heterozygosity for each colony and year.
We did not pool data over years for each colony because both
colony size and parameters associated with spatial isolation are
not constant over years for a given colony as a consequence of
population changes and eventual extinction or foundation of
new colonies (Ortego er al. 2007¢). We performed these
analyses taking into account that data of genetic diversity
provided by siblings are non-independent. Thus, to avoid
pseudo-replication, we dealt with the means of heterozygosity
for each brood and then calculated average heterozygosity for
each colony-year (e.g. Ortego er al. 2007¢). The identities of
colonies, cohorts and subpopulations were also included as
random effects in this analysis.

Initially, each GLMM was constructed with all explana-
tory terms fitted, including first-order interactions and
quadratic effects to account for potential nonlinear
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Table 1. GLMM (Poisson error and log link function) for total number of immigrants arriving to a focal colony. (Distance to the

nearest colony was transformed as log (x+1).)

estimate +s.e.

test P

intercept

squared distance to the nearest colony (m)
colony size

effectiveness of capture

colony identity

subpopulation 0

year 0.525+0.473

—1.2611£0.477
—3.248%1.192
0.052+0.011
1.343+0.464
0.2711+0.184

0.008
<0.001
0.005
0.071

F1,84:7'42
F1’84:23.26
F1,84:8.40
Z=1.47

zZ=1.11 0.134

relationships. Final models were selected following a back-
ward procedure, by progressively eliminating non-significant
variables. The significance of the remaining variables was
tested again until no additional variable reached significance.
The result is the minimal most adequate model for explaining
the variability in the response variable, where only the
significant explanatory variables are retained. All tests were
performed using the residual degrees of freedom (SAS
Institute 2004). Hypotheses were tested using F-statistics
and all p values refer to two-tailed tests.

3. RESULTS

(a) Patterns of immigration

The total number of immigrants arriving at a given colony
was positively associated with colony size and the
effectiveness of capture, and negatively associated with
squared distance to the nearest colony of lesser kestrels
(table 1, figure 2). This pattern indicates that number of
immigrants decreases nonlinearly with distance to the
nearest colony. The total number of immigrants was not
significantly associated with population connectivity
(F1,83=1.40, p=0.240). However, note that the distance
to the nearest colony and population connectivity were
intercorrelated (Spearman rank correlation coefficient;
7s=0.486, p=0.019). To address this problem of colli-
nearity, we performed a complementary analysis to assess
the effect of population connectivity, when it alone is
included into the model. After excluding squared distance
to the nearest colony from the model, population
connectivity became positive and significantly associated
with number of immigrants (F; g4=5.19, p=0.025).
Thus, although both variables significantly predicted the
total number of immigrants arriving to a given colony, the
effect of population connectivity was lower and it
disappeared when squared distance to the nearest colony
was included in this model. Other quadratic terms and
interactions between independent variables were not
significant in any analysis (p>0.1 in all cases).

(b) Patterns of genetic diversity

The measures HL and Ho were highly correlated
(Pearson correlation; r=—0.974, p<0.001). Under a
wide range of simulated scenarios, HL has been proved to
be a better predictor of genome-wide heterozygosity than
Hp in open populations (Aparicio et al. 2006). Further-
more, HL generally provides a better fit of the data than
other measures of multilocus heterozygosity in both this
and previous genetic studies of our lesser kestrel
population (Ortego er al. 2007a—c). For these reasons,
detailed model parameters and graphical outputs are only
presented for HL analyses in tables 2 and 3 and figures 3
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Figure 2. Relationship between (a) distance to the nearest

colony (transformed as log(x+1)) and (b) colony size and

total number of immigrants. Total number of immigrants is

expressed as statistical residuals obtained after controlling for
other influencing variables.

and 4, respectively, and the same information for Hgo
is given in the electronic supplementary material. After
controlling for random effects, the genetic diversity of
locally born individuals (nestlings) was negatively associ-
ated with squared distance to the nearest colony of lesser
kestrels (table 2, figure 3a) and positively associated with
colony size (table 2, figure 3b6). Once again, the effect of
population connectivity disappeared (Ho: Fj415=1.13,
»=0.288; HL: F;4,5=0.86, p=0.355) when squared
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Table 2. GLMM (normal error and identity link function) for HL of locally born individuals. (Distance to the nearest colony was

transformed as log(x+1).)

estimate +s.e. test p
intercept 0.327+0.014
squared distance to the nearest colony (m) 0.1534+0.056 Fy 416=7.34 0.007
natal colony size —0.002+0.001 Fy 416=6.34 0.012
brood identity 0.0017+0.0009 Z=1.84 0.033
colony identity 0.0003+0.0005

subpopulation 0
cohort 0

Z=0.66 0.253

Table 3. GLMM (normal error and identity link function) for average colony HL. (Distance to the nearest colony was

transformed as log(x+1).)

estimate +s.e. test P
intercept 0.316+0.016
squared distance to the nearest colony (m) 0.234+0.065 F,5,=12.77 <0.001
colony size —0.002+0.001 F,51=6.96 0.011
colony identity 0.0007 +0.0009 Z=0.74 0.230

subpopulation 0
cohort 0

distance to the nearest colony was retained in the
model. Other quadratic terms and interactions between
independent variables were not significant in any of these
analyses (»>0.1 in all cases).

Finally, average colony genetic diversity was negatively
associated with squared distance to the nearest colony of
lesser kestrels (table 3, figure 4a) and positively associated
with colony size (table 3, figure 454). Other quadratic terms
and interactions between independent variables were not
significant in these analyses (p>0.1). The precision of
average colony heterozygosity could be variable because
sample size (i.e. number of genotyped broods) varied
between colonies. To avoid this problem, we performed a
complementary analysis to reinforce the results reported
above. Given that random terms were not significant in the
multivariate mixed model (table 3), we used sample size
to give observations of different weights in a weighted
least-squares analysis (e.g. Kaeuffer ez al. 2007; Ortego et al.
2007¢). As above, average colony heterozygosity was
negatively associated with squared distance to the nearest
colony of the lesser kestrels (Hp: 1= —3.521,p=0.001; HL.:
t=3.190, p=0.002) and positively associated with colony
size (Ho: t=3.521, p=0.001; HL: t= —2.753, p=0.008).

(¢) Patterns of immigrationigenetic diversity

and geographical location of colonies

Empirical and theoretical studies have established that the
geographical location of populations is a major determi-
nant of several population characteristics such as their size,
connectivity and genetic diversity (e.g. Garcia-Ramos &
Kirkpatrick 1997; Kirkpatrick & Barton 1997; Lammi
et al. 1999; Vucetich & Waite 2003). To address this
question and resolve the potential confounding effect of
the geographical location of the studied colonies on the
results reported above, we analysed whether the studied
parameters (i.e. spatial isolation and size of the colonies,
immigration rate, and individual and average colony
heterozygosity) are associated with the geographical
location of the colonies within each studied subpopulation.
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After controlling for other influential variables and random
effects (see above), we found no association between
distance from the colony to subpopulation centre and
colony size (Fy,g=0.23, p=0.632), distance to the
nearest colony (F;,g=1.95, p=0.166), connectivity
(F1,86=2.25, p=0.137), immigration rate (F;g3;=0.39,
»=0.536), individual heterozygosity (Ho: Fj415=1.30,
»=0.254; HL: F} 4,5=0.90, p=0.343) or average colony
heterozygosity (Ho: Fy,50=0.53, p=0.472; HL: F; 50=
0.04, p=0.849). Note that the absence of association
between the number of immigrants and distance to
subpopulation centre also indicates that immigration
rates in peripherally located colonies are not substantially
underestimated due to the arrival of several unringed birds
from other subpopulations outside the study area.

4. DISCUSSION

Here, we show that lesser kestrels born in smaller and
spatially isolated colonies are genetically less diverse than
those born in larger and better connected ones. These
colonies received a lower number of immigrants, support-
ing the idea that both reduced gene flow and small
population size are responsible for the observed patterns
of heterozygosity. Both the number of immigrants and
heterozygosity were better explained by a nonlinear
relationship with distance to the nearest colony than by
the linear term, indicating that the association of this
measure of spatial isolation with these parameters follows
a saturation curve. This nonlinear pattern indicates that
the negative association between the degree of spatial
isolation and genetic diversity become relevant from a
minimum distance, suggesting that the arrival of immi-
grants, and thus gene flow, only decreases from a threshold
distance. Although the maximum distance between
neighbouring colonies observed in the study population
is very short in relation to the high movement capacity of
lesser kestrels, the lower number of immigrants arriving at
spatially isolated colonies may be associated with a lower
chance of such colonies being explored by dispersing
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Figure 3. Relationship between (a) distance to the nearest
colony (transformed as log(x+ 1)) and (b) natal colony size
and HL of locally born individuals. HL is expressed as
statistical residuals obtained after controlling for other
influencing variables.

individuals. It has been confirmed that adult lesser kestrels
explore several colonies at the end of fledgling supposedly
to obtain information on conspecific breeding per-
formance, a time-consuming behaviour that is likely to
reduce the chance of prospecting spatially isolated
colonies due to the short time period available before all
the chicks have fledged (Aparicio ez al. 2007). On the other
hand, lesser kestrels may be reluctant to disperse and settle
in isolated colonies due to the benefits derived from
increased local familiarity. The strong association between
number of immigrants and colony size could be a
consequence of the higher chance that prospecting birds
detect larger colonies (Bowler & Benton 2005). Also, the
higher availability of breeding cavities in larger colonies,
generally located in bigger and structurally more complex
buildings, could also explain why the number of
immigrants arriving at a focal colony increases with its
size (G. Calabuig 2007, unpublished data).

The observed pattern of heterozygosity is particularly
intriguing because the lesser kestrel is a vagile and
migratory species with great dispersal potential, showing
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influencing variables.

dispersal distances and daily home ranges (lesser kestrels
forage up to 10 km from their colony; Bonal & Aparicio
2001) much larger than the average minimum distance
between two neighbour breeding colonies in our study
population. Furthermore, we have studied a single
metapopulation in a restricted geographical area, where
lesser kestrels show a weak isolation-by-distance pattern of
fine spatial scale genetic structure typical of continuous
populations (Ortego ez al. 2008; see Wright 1943; Slatkin
1993). Apart from asymmetrical migration, some life-
history characteristics of the study species may have also
favoured the observed pattern of individual genetic
diversity. First, the general philopatric behaviour char-
acterizing lesser kestrels (Negro ez al. 1997; Serrano er al.
2001) is likely to have contributed to the observed pattern
by increasing the chance of crosses between genetically
similar individuals particularly in small size colonies
(Ortego et al. 2008). Second, previous studies have
found that philopatric behaviours, both in experienced
and first breeders, are more prevalent in spatially isolated
colonies (Serrano ez al. 2001, 2004), which could increase
the chance of crosses between relatives and favour,
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together with reduced gene flow, a diminished individual
genetic diversity in isolated colonies. Finally, the relatively
short generation time of lesser kestrels (modal lifespan is
4 years) in comparison with other long-live species (e.g.
Swart er al. 1994; Hailer er al. 2006) could also have
contributed to a more frequent turnover of individuals in
the breeding colonies, allowing relatively quick changes of
heterozygosity at fine temporal and spatial scales (Ortego
et al. 2007¢, 2008).

In contrast to previous studies analysing the entire
species range distribution (e.g. Lammi ez al. 1999;
Hutchison 2003), we found no difference in colony
characteristics or genetic diversity between centrally and
peripherally located colonies. This may be caused by the
fact that the studied subpopulations are located in the core
of the species distribution in the Iberian Peninsula (Ortego
et al. 2007¢) and does not constitute isolated metapopula-
tions but, rather, subpopulations within the range of
dispersal from other neighbouring populations (Ortego
et al. 2007¢). Thus, although the study area includes two
well geographically determined clusters, several other
populations are located close to the study area and
interchange of individuals is likely to be a frequent process
(Serrano & Tella 2003; Ortego et al. 2007¢).

In conclusion, this study indicates that genetic diversity
can be associated with the size and spatial isolation of local
populations in highly mobile vertebrates with relatively
frequent dispersal and scarce genetic differentiation among
subpopulations. These results, together with the detri-
mental consequences of low heterozygosity reported in
several species including that studied here (Ortego et al.
2007a,b), may help to explain the poorer reproductive
performance and reduced long-term persistence of the
small size and isolated populations (Saccheri er al. 1998;
Madsen ez al. 1999; Spielman ez al. 2004; Frankham 2005).

This study conforms to the terms of the general ethical
guidelines for animal welfare and nature conservation. We
manipulated and banded lesser kestrels under licence from
the Spanish institutional authorities (Environmental Agency
of Junta de Comunidades de Castilla-La Mancha and the
Ringing Office of the Ministry of Environment).

Primer sequences for microsatellite Ful and Fu2 were kindly
provided by Jon H. Wetton (Forensic Science Service, UK).
This work received financial support from the projects:
CGL2005-05611-C02-02/BOS (Ministerio de Educacion
Ciencia) and PAI05-053 (Junta de Comunidades de
Castilla-La Mancha). During this work, J.O. and G.C. were
supported by predoctoral fellowships from the Junta de
Comunidades de Castilla-La Mancha and the European
Social Fund. We performed all the laboratory work at the
Laboratory of Genetics of the IREC and fragment genotyping
was performed by the Centro de Investigaciones Bioldgicas
(CSIC) of Madrid.
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