EXPERIMENTAL ASSESSMENT OF A SOLAR COOLING SYSTEM FOR ICE PRODUCTION

INSTITUTO DE ENERGÍAS RENOVABLES

EXPERIMENTAL ASSESSMENT OF A SOLAR COOLING SYSTEM FOR ICE PRODUCTION

Wilfrido Rivera

4th International Conference on "Energy, Sustainability and Climate Change"

ESCC 2017
Table of Contents:

- Motivation
- Objective
- Compresion Systems
- Absorption Systems
- Designing of the absorption cooling system
- Results
- Conclusions
Objetive:

Development of an absorption cooling system with a capacity of 8 kg/day of ice production using exclusively solar energy as the heat source.

Secondary objectives:

- Development of a CPC to concentrate the solar radiation to produce the refrigerant.
- Determination of the working mixture to be used in the system.
- Development of the absorption cooling system.
Compression cooling cycle

![Diagram of a compression cooling cycle]
EXPERIMENTAL ASSESSMENT OF A SOLAR COOLING SYSTEM FOR ICE PRODUCTION

Compression and absorption cooling cycles

Mechanical Compressor

Condenser

Evaporator

High pressure
Low pressure

EV

Compressor

Thermal Compressor

Condenser

Generator

Evaporator

Absorber

Solution with low concentration in R
Solution with high concentration in R

Refrigerant (R)

Refrigerant (R)
Absorption cooling system

- Evaporator
- Absorber
- Condenser
- Generator

Pressure levels:
- Low pressure: P_E, P_A
- High pressure: P_C, P_G

Temperatures:
- T_E
- T_{C}, T_A
- T_G

Heat flows:
- Q_E
- Q_A
- Q_G
- W_P

Solution: HEₙ Solution
EXPERIMENTAL ASSESSMENT OF A SOLAR COOLING SYSTEM FOR ICE PRODUCTION

Intermittent absorption cooling system

- Generator Absorber
- Condenser
- Evaporator

Pressure and temperature relationships:
- High pressure:
 - P_C (Condenser pressure)
 - P_E (Evaporator pressure)
- Low pressure:
 - T_E (Evaporator temperature)
 - T_C (Condenser temperature)
 - T_G (Generator Absorber temperature)

Heat flows:
- Q_C (Condenser heat)
- Q_G (Generator heat)
- Q_A (Absorber heat)
- Q_E (Evaporator heat)
EXPERIMENTAL ASSESSMENT OF A SOLAR COOLING SYSTEM FOR ICE PRODUCTION

Conceptual system diagram
Ray tracing at different incidence angles on the CPC
Schematic diagram of the system
EXPERIMENTAL ASSESSMENT OF A SOLAR COOLING SYSTEM FOR ICE PRODUCTION

First prototype
Final prototype
Main equations

Ammount of ammonia produced:

\[m = \rho v \]

Energy received by the CPC:

\[Q_R = \sum_{i=1}^{n} H_i tA \]

Cooling power:

\[Q_{EV} = m_{H2O} (C_p \Delta T + h_f) \]

Coefficient of performance:

\[COP_S = \frac{Q_{EV}}{Q_R} \]
Temperatures profile of the system
Internal view of the first evaporator and ice produced
Modelling of the cylindrical evaporator on CFD
Modelling of the cylindrical evaporator on CFD
EXPERIMENTAL ASSESSMENT OF A SOLAR COOLING SYSTEM FOR ICE PRODUCTION

Ice produced in the cylindrical evaporator No. 1
Ice produced in the cylindrical evaporator No. 2
Ice produced in the cylindrical evaporator No. 2
SISTEMAS DE ENFRIAMIENTO OPERADOS CON ENERGÍA SOLAR

Generator pressures
Ammonia produced by the system
EXPERIMENTAL ASSESSMENT OF A SOLAR COOLING SYSTEM FOR ICE PRODUCTION

Solar coefficients of performance
EXPERIMENTAL ASSESSMENT OF A SOLAR COOLING SYSTEM FOR ICE PRODUCTION

! Thanks for your attention !