Potential conflict zones in the Barents Sea

F. Aleskerov, S. Demin, S. Shvydun
Higher School of Economics
Institute of Control Sciences

Santorini, 2017
1. Motivation
2. Resources
3. Problem statement
4. Model
5. Application of the model
6. Comparison of scenarios
7. Conclusion
Motivation

Sectorial line along 32° E, sought by the USSR (and Russia)

Map showing geographical locations including Spitsbergen, Franz Josef Land, Medial line, sought by Norway, and Novaya Zemlya.
Important resources: oil and gas
Important resources: fish (codfish)
Main task – allocation of territories with different resources (about 240,000 regions 210,000 square meters each)

Input data – allocation of resources (fish, oil and gas)

Output – different scenarios of territories’ allocation
Utility function

\[u_k^{Resource}(x) = \begin{cases}
 f(Resource, x) \cdot \left(\frac{d^* - d_k(x)}{d^*} \right), & \text{if } d_k(x) < d^*, \\
 0, & \text{if } d_k(x) \geq d^*.
\end{cases} \]

\[u_k^{Total}(x) = \alpha \cdot u_k^{Oil&Gas}(x) + u_k^{Fish}(x) \]

- \(f(Resource, x) \) - volume of the Resource in region \(x \)
- \(d_k(x) \) - distance from region \(x \) to the nearest point of country \(k \)
- \(\alpha \) - resources importance ratio
1. Current situation
2. Allocation according to the distance
3. Allocation with respect to the level of interest
 a. Modified adjusted winner procedure
 i. Initial allocation: all areas are allocated to Norway
 ii. Initial allocation: all areas are allocated to Russia
 b. Allocation of zones to the most interested country
Modified adjusted winner procedure

\[(x, k_2) \in P \quad u_{k_1}^T(x) \neq 0\]

\[
\frac{u_{k_1}^T(x)}{u_{k_2}^T(x)} \rightarrow \text{max}.
\]

- \(P\) - set of pairs \((\text{region}, \text{owning country})\)
- \(k_1\) - least satisfied country
- \(k_2\) - most satisfied country
Application to the Barents Sea (current situation)
Application to the Barents Sea (distance)
Application to the Barents Sea (modified adjusted winner procedure)

Importance ratio = 1
Importance ratio = 5
Importance ratio = 10
Application to the Barents Sea (to the most interested country)
Comparison of scenarios

<table>
<thead>
<tr>
<th></th>
<th>Importance ratio = 1</th>
<th>Importance ratio = 5</th>
<th>Importance ratio = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Norway</td>
<td>Russia</td>
<td>Norway</td>
</tr>
<tr>
<td>Current allocation</td>
<td>100625</td>
<td>46833</td>
<td>102877</td>
</tr>
<tr>
<td>Allocation according to the distance</td>
<td>126655</td>
<td>23833</td>
<td>210150</td>
</tr>
<tr>
<td>Modified adjusted winner procedure (Norway)</td>
<td>74461</td>
<td>74446</td>
<td>227406</td>
</tr>
<tr>
<td>Modified adjusted winner procedure (Russia)</td>
<td>74451</td>
<td>74455</td>
<td>227383</td>
</tr>
<tr>
<td>Allocation of zones to the most interested country</td>
<td>126655</td>
<td>23833</td>
<td>210150</td>
</tr>
</tbody>
</table>
1. Different scenarios of territory and resources allocation
2. Different ratios of resources’ importance
3. Opportunity to improve the model by taking into account other resources
Thank you for your attention!