To mimic a peptide, constrain an acyclic inhibitor by macrocyclization, or design a ligand be positioned by a structural framework in a way that receptor site, functional groups or molecular fragments must location addresses the structural model is most efficiently approached by engineering a framework to enforce specific vector relationships among the bonds that link the functional units to it. The program CAVEAT was developed for this purpose, to search three-dimensional databases for structures containing bonds with a specific orientation. A structural database is preprocessed to determine the relationships between all pairs of relevant bonds in each molecule. The resulting CAVEAT database can then be searched rapidly to identify potential templates or linking fragments.

To complement existing databases as a source of templates, two databases of computed, minimized structures have been generated. TRIAD contains 411,000 tricyclic hydrocarbons, and ILIAD has 110,000 structures built up from linear chains of 5 units.

A companion program to CAVEAT, called CLASS, carries out a post-search screening and clustering of structures to speed the evaluation of hits. CLASS allows flexible definition of structural or functional characteristics for inclusion or exclusion from the list of hits, including template tracing and avoidance of steric interactions, and it clusters hits that represent similar structural information. A benchmark 3-vector CAVEAT search through the TRIAD database yields 750 hits that are screened and clustered into 6 distinct groups by CLASS; all this takes less than 3 minutes on an SGI Indigo.

DENSITY FUNCTIONAL PSEUDOPOTENTIAL STUDIES OF MOLECULAR GEOMETRIES, VIBRATIONS, AND BINDING POTENTIALS. APPLICATION TO METALLOCARBOHEDRENES

Cray Search Inc., Eagan, MN, USA

Density functional theory has been found to provide a very computationally cost-effective method for the study of molecular systems. We have recently enhanced the computational capabilities of the DGauss density functional theory program by implementing norm-conserving pseudopotentials which include scalar relativistic effects. A comprehensive study of molecular calculations comparing the use of the pseudopotentials relative to all electron basis sets, and experimental results was carried out. We find that, in general, pseudopotential bond distances are within 0.1 Å of experimental and all-electron results, and relative uncertainties of vibrational frequencies are, on the average, less than 12%. For binding energies, pseudopotential results agree well with corresponding all-electron results. We have also applied the pseudopotential density functional method to investigate the stability, bonding, and geometric structure of the recently discovered metallocarbohedrenes. It is found that the previously proposed T_{d} dodecahedron structure is dynamically unstable. Instead, a new structure of D2d symmetry is found to be more strongly bound.

DESIGN AND PRELIMINARY RESULTS OF LEAPFROG, A SECOND GENERATION DE NOVO DRUG DISCOVERY TOOL

Richard D. Cramer III
Tripos Associates, St. Louis, MO, USA

Interest in de novo drug discovery tools is rapidly increasing, with recent literature reports of new programs from a...