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There are two kinds of uncertainty. One kind arises as variability resulting 
from heterogeneity or stochasticity. The other arises as partial ignorance 
resulting from systematic measurement error or subjective (epistemic) uncer- 
tainty. As most researchers recognize, variability and ignorance should be 
treated separately in risk analyses. Although a second-order Monte Carlo 
simulation is commonly employed for this task, this approach often requires 
unjustified assumptions which may be inappropriate in some circumstances. 
We argue that the two kinds of uncertainty should be propagated through 
mathematical expressions with different calculation methods. Basically, inter- 
val analysis should be used to propagate ignorance, and probability theory 
should be used to propagate variability. We demonstrate how using an 
inappropriate method can yield erroneous results. We also show how 
ignorance and variability can be represented simultaneously and manipulated 
in a coherent analysis that does not confound the two forms of uncertainty and 
distinguishes what is known from what is assumed. © 1996 Elsevier Science 
Limited. 

1 IGNORANCE AND VARIABILITY ARE 
DIFFERENT KINDS OF UNCERTAINTY 

Comprehensive taxonomies of uncertainty have been 
offered by several authors. I-5 These classifications 
recognize many distinct kinds of uncertainty with 
considerable subtlety. For our purposes, it will be 
sufficient to follow Casti ~' in recognizing two basic 
kinds of uncertainty that are fundamentally different 
from each other. We distinguish objective uncertainty 
arising from variability of the underlying stochastic 
system as against subjective or epistemic uncertainty 
resulting from our not having complete information 
about that system. 

Table 1 gives questions exemplifying these two 
kinds of uncertainty in two aspects of an extinction 
risk analysis 7 for an endangered species of owls. The 
sample questions in the lirst column refer to variability 
expressed over time and across space. This column 
could have been split into two columns to represent 
temporal and spatial variability separately if one so 
desired, with obvious examples for each new cell in 
the table. In fact, because variability can be expressed 
over almost any dimension, we could have multiplied 
the number of columns ad libitum. We have collapsed 
all such examples of uncertainty due to variability into 
one column for the sake of simplicity and to draw 

attention to the fact that the same mathematical 
techniques are used to propagate uncertainty whether 
the value changes over time, across space, among 
individuals or on some other axis of variability. 

We use the term "ignorance' to denote the partial 
incertitude that arises because of limits on empirical 
study or mensurational precision. For instance, at 
some moment  in time the number of owls present in a 
well defined region of forest is a particular number 

• that is not varying. Nevertheless, this number may not 
be precisely known to us, just because it can be 
extremely difficult to tally every single bird. This 
uncertainty is decidedly unlike the uncertainty, say, in 
mortality rates arising from variability of the weather. 
For instance, ignorance and variability respond 
differently to empirical effort. Whereas ignorance can 
usually be reduced by additional study or by 
improving the techniques of measurement,  variability 
has an objective reality that is independent of our 
empirical study of it. Additional effort may yield a 
better estimate of the magnitude of variability, but it 
will not tend to reduce it. 

Although there may sometimes be epistemologically 
complex situations in which it is hard to distinguish 
between the two kinds of uncertainty, it is often fairly 
straightforward to do so. Despite this, both forms of 
uncertainty will be associated with many quantities of 
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Table 1. Uncertainty 

Variability 

Model formulation 

Parameter values 

Do mortality mechanisms change from 
season to season'? 

How does the number of owls vary in 
different parts of the forest? 

Ignorance 

Which model of density dependence 
should be used? 

What is the number of owls present in the 
forest? 

interest in risk analysis problems. For example, if the 
future population size of owls is estimated from the 
mortality rate and the current population size, it is 
characterized by both randomness and incertitude. 
The relative magnitudes of ignorance and variability 
for any particular parameter  of interest will depend on 
how well it has been studied and on the intrinsic 
stochasticity of the underlying system. In an analysis, 
wc usually cannot control how much ignorance there 
is about a given parameter,  nor how much it varies. 

The purpose of this paper is to discuss some 
empirical and computational issues that arise when 
both kinds of uncertainty enter into a risk analysis 
problem. To motivate this discussion, we consider 
some very simplified numerical examples. Although 
these idealized examples are themselves unrealistic as 
risk analysis problems, they will help us to clarify 
certain important issues that commonly arise in real 
analyses. In the next two sections, we point out how 
the two kinds of uncertainty behave differently in 
calculations. The following sections then consider 
several methodological approaches to recognizing and 
propagating uncertainty through mathematical 
calculations. 

2 CLASSICAL PROBABILITY T H E O R Y  
INCORRECTLY P R O P A G A T E S  I G N O R A N C E  

As risk analysts, how should we do arithmetic with 
numbers about whose values we are unsure? We 
argue that the answer depends in part on why we are 
unsure and whether the notion of frequency is 
applicable to the situation under study. Let us start 
this discussion with a simple question: 

If the parameter  A is a number somewhere between 
0.2 and 0.4, and the parameter  B is a number 
somewhere between 0.3 and 0.5, what is the value of 
the product AB? 

How we go about getting an answer to such a 
question depends on what we believe about the 
parameters involved and what the nature of our 
uncertainty about them is. For instance, if we suppose 
both A and /3 are actually fixed quantities whose 
values we just don' t  happen to know, then we might 
use interval analysis 8-13 to arrive at an answer to the 
question. This approach asks about the possible range 
of the product given the stated ignorance about A and 

B. In this case, the smallest possible value would be 
obtained when A is 0.2 and B is 0.3, yielding the 
product 0.06. The largest possible value would be 
0.4 × 0.5 = 0.2. No other pair of numbers from the 
respective intervals yield a product outside this range. 
Thus, the answer is that the product is a number 
somewhere between 0.06 and 0.2. Figure l(a) depicts 
this interval. 

On the other hand, if we think the parameters A 
and B are varying randomly, then we might use a very 
different approach to arrive at an answer. Under 
Laplace's Principle of Insufficient Reason, the 
uncertainty about each parameter  should be modeled 
with a uniform distribution. Choosing any other 
distributions would constitute an assertion of addi- 
tional knowledge about the parameters. These 
distributions are then combined by the ordinary rules 
of probability theory. 1 In particular, if we assume they 
are independent,  we can use probabilistic convolution 
or some Monte Carlo strategy to estimate the 
distribution of the product AB. The result is shown as 
a probability density function in Fig. l(b). Figure l(c) 
is the cumulated form of the same probability 
distribution, which is slightly more convenient for the 
following discussion because the ordinate always 
ranges between zero and one. 

Although some probabilists j4 have suggested prob- 
ability theory is irrelevant to manipulating bounds on 
unknown values, others ~5-~7 have insisted with some 
vehemence that probability theory is the only 
consistent calculus for propagating uncertainty of any 
sort. We suspect both of these views are incorrect and 
unnecessarily restrictive. We show how both interval 
analysis and probability theory will arrive at the same 
answer if we are careful to distinguish what is known 
from what is assumed. 

The answers from interval analysis and probability 
theory agree in one sense. They both say the value of 
the product must lie between 0.06 and 0.2. The 
support of the probability distribution (i.e., the range 
of values for which probabilities are nonzero) is 
identical to the result of the interval analysis. Yet the 
answers are clearly different. The answer given by the 
probabilistic approach suggests that the product is 
much more likely to be a value near the central 
tendency than to be one of the extreme values. There 
is a clear concentration of probability mass in the 
centre of the distribution. Yet there is nothing in the 
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Fig. I. (a) Depiction of the interval [0.06, 0.2] which is guaranteed to contain the product of two uncertain numbers A = [0.2, 
0.4] and B = [0.3, 0.5]. Note that this interval is not the same as a uniform probability distribution. (b) The probability 
distribution of the product of random variables A = uniform(0.2, 0.4) and B = uniform(0.3, 0.5) under an assumption of 
independence. (c) The cumulative form of the probability distribution of this product. (d) The smallest region guaranteed to 
contain the cumulative diswibution of the product assuming the dependence between A and B is some linear correlation 
between -1 and +1. (e) The smallest region guaranteed to enclose the cumulative distribution of the product without making 
any assumption about the stochastic dependence between A and B. (f) The smallest region guaranteed to enclose the 
cumulative probability distribution of the product of A and B given no information other than the bounds on both parameters. 

Note that this region is very different from a uniform distribution. 

original statement of the question that obviously 
justifies this concentration. Let us examine just where 
this concentration comes from and whether it is 
justified. 

We assumed independence between parameter  A 
and parameter  B. Perhaps this assumption accounts 
for the observed central concentration of probability. 
We can explore this idea by varying the correlation 
between A and B over the range of possible 
correlations. In general, the possible range of 
correlations depends on the shapes of the two 
univariate random distributions. TM In our case, 
correlations between A and B can be any value over 
the full theoretical range between +1 and -1 .  Using 
variance reduction ~9 a rd  dispersive Monte Carlo 
sampling, 2° we can calculate bounds on the cumulative 
distribution function that can result from the product 
of A and B. Figure l(d)  shows the region 
circumscribed by these bounds. No matter  what the 
magnitude of the correlation between A and B, the 
probability distribution of their product must lic 
within the black region. This region is clearly much 
narrower than the interw~l depicted in Fig. l(a),  so we 
see that ignoring correlation cannot, by itself, have 
accounted for the discrepancy between the interval 
result and probability result. 

Of  course, correlation only measures linear 
associations between the parameters. Nothing in the 
original question constrained us to assume that only 
linear associations could exist between the two 
parameters. What are the bounds on the cumulative 
distribution function given any possible statistical 

dependency between A and B? This question is very 
similar to a problem first posed by Kolmogorov which 
has recently been solved. 2~ Applying dependency 
bounds analysis, 22"23"2° we find that the distribution of 
the product of A and B must lie somewhere in the 
black region depicted in Fig. l(e).  This result shows 
that, no matter what statistical dependency we assume 
between the two parameters,  or even if we do not 
assume anything at all about their interdependence,  
we still get an answer that is narrower than suggested 
by interval analysis and which exhibits a persistent 
albeit weaker concentration of probability mass in the 
centre of the range. 

Perhaps the concentrat ion of probability arises from 
our choice of uniform distributions to model the 
parameters. Given the paucity of information about A 
and B, however, it is hard to see how we could have 
selected any other distributions. Indeed, a long 
intellectual tradition in probability theory dating back 
to Laplace 24 himself demands that uniform distribu- 
tions be used as the default in the absence of specific 
information about the frequencies of possible values. 
More recent theoretical arguments 2529 based on a 
criterion of maximizing information entropy reaffirm 
the selection. If we had ignored this tradition and the 
recent arguments, and assumed the distributions were, 
say, normal or Iognormal, the resulting concentration 
of probability would have been even more pron- 
ounced. It turns out that the problem is not so much 
that we have assumed uniformity for the two 
distributions. The problem comes because we assumed 
particular shapes for them. 
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One need not assume specific shapes for the 
distributions if there is no basis for doing so. Recently 
developed methods based on interval probabilities ~c,-~' 
allow us to express incertitude (ignorance) about 
probability itself. It is also possible to do calculations 
with these interval probabilities. -~7 Figure l(f) shows 
the region in which the probability distribution of the 
product AB must lie, given only the information about 
bounds on A and B. This result states that any value 
or distribution of values between 0.06 and 0.2 is 
possible and that we cannot say anything about which 
values arc more likely than any others within this 
range. This interval-probabilistic approach thus agrees 
completely with the original result in Fig. l(a) 
obtained from elementary interval analysis. They both 
represent an unknown quantity that may or may not 
be varying but whose value(s) we know to be limited 
to a specific range. Although the results in Fig. l(a) 
and (f) were obtained by completely different 
computational approaches, the interpretations of the 
results are identical. 

We see, finally, that the solutions in Fig. l (b ) - ( e )  
are incorrect, because they assume more information 
than was given in the original question. In this sense, 
they are the result of wishful thinking, rather than a 
careful analysis of what is actually known. This 
example illustrates what may be a widespread 
problem with applying classical probability theory in 
risk analyses where the relevant empirical information 
is sorely incomplete (as is usually the case). Using 
classical probability theory to estimate even the simple 
product of two uncertain parameters requires several 
assumptions, without which no answer could be 
obtained. In practice, such assumptions are rarely 
even stated, much less tested or justified in any way. It 
seems obvious to us that, unless there is specific 
empirical information or theoretical argument to 
justify such assumptions, the results they produce 
could never be scientifically defensible. Although they 
may parade as precise applications of formal 
probability theory, the ensuing risk analyses conceal a 
considerable amount of unstated uncertainty that 
bears directly on the interpretation of the results. 

The case in which some probability distributions are 
poorly characterized is undoubtedly common, and it 
may be typical in risk analysis, especially for new 
hazards and recently recognized environmental 
threats. For instance, because drilling is usually very 
expensive, analysis of groundwater contamination may 
be limited by very small sample sizes. Likewise, 
human effects of putative environmental hazards are 
typically difficult to characterize statistically because 
of practical or ethical constraints on data collection. 
Perhaps even more commonly, the correlations and 
statistical dependencies among variables remain 
unmeasured and unexplored even for long studied 
problems. For instance, probabilistic risk assessments 

for nuclear power operations ~ still often neglect 
common-cause, common-mode and cascading 
failures 3'~ which introduce unknown dependencies 
among the variables in the analysis. Without specific 
analysis, there is no way to foretell whether 
inattention to such phenomena causes wasteful 
overestimation ~° or dangerous underestimation 20 of 
risks. 

Yet risk analyses must be performed even when 
empirical information is extremely sparse. The 
conundrum then is how should we propagate 
uncertainty under such conditions. Should we assume 
the uncertainty can always be treated like stochastic 
variability? We have seen that doing so can lead to 
unjustified results when the requisite assumptions of 
probability theory are untested. HufI "4~ summarized 
the danger: "Knowing nothing about a subject is 
frequently healthier that knowing what is not so...'. 
On the other hand, relying on the calculational 
methods of interval analysis in all circumstances will 
result in unnecessarily conservative answers when 
those assumptions are true. 

3 UNCERTAINTY DOES NOT IMPLY 
F L U C T U A T I O N  

Tossing a coin provides a good example of the 
difference between variability and ignorance in risk 
analyses. If each toss is an independent event and the 
probability of tossing heads is known to be p and the 
probability of tossing tails ( 1 - p ) ,  the binomial 
distribution gives both the expected number of heads 
after n tosses and the probability that the number of 
heads will exceed the number of tails by some 
quantity. We are able to perform a perfect risk 
analysis for this textbook case. The solid curves in Fig. 
2 describe the means and 95% confidence intervals for 
how many more heads than tails are expected after a 
given number of tosses of a fair coin (p =0.5).  
Although the expected mean is consistently zero, the 
95% bounds widen as the square root of the number 
of tosses. It is, of course, the independence 
assumption that makes variance grow linearly and 
standard deviation grow as the square root. 

Now suppose that the initial estimate of p was 
slightly inaccurate. For instance, suppose we failed to 
detect that the coin was a little biased. At first, the 
difference between the actual and the expected tosses 
is negligible. Their divergence is linear with the 
number of tosses, however, so that the eventual excess 
of heads over tails is very likely to lie well outside the 
range predicted by the risk analysis. In this case, 
although the classical analysis is fine in the short run, 
the measurement error in the estimate of p plays a 
dominant role and limits our ability to make reliable 
risk analyses in the long run. The uncertainty due to 
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Fig. 2. Comparison of the uncertainties in coin tossing due 
to bias and due to fluctuation. Solid lines are for p = 0.5, 
dashed lines for p = 0.54. Each set shows the expected 
excess of heads over tails and the ranges within which the 
excess is likely to lie 95% of the time. The ranges expand as 
the square root of the number of tosses, while the expected 
means diverge linearly. For a small number of tosses, risk 
analyses for the two value.~ of p are similar. The effect of 
bias begins to dominate as the number of tosses gets larger. 

variability, reflected by the width of the 95% 
confidence bounds, grows much more slowly than the 
uncertainty due to ignorance about  the value of p,  
which is reflected in the difference between the solid 
and dotted sets of lines. The reason for this is simply 
that random variations partially cancel with each 
other, while incertitude accumulates linearly. 

The dominance of ignorance over variation emerges 
in this example because the effects are iterated over 
time. The effects will also be iterated over  the number  
of input parameters ,  so ignorance will tend to become 
more important  as the number  of inputs and 
calculations in a risk model increase. Therefore,  like 
distant extrapolations, the reliability of complex risk 
calculations may be more controlled by ignorance 
than by variability. But even for a fixed problem and 
model,  the relative importance of the two kinds of 
uncertainty depends on their respective magnitudes. 
Poor empirical study and imprecise measurements  can 
yield a situation in which the ignorance already 
• dominates  the problem. 

Variation and ignorance behave differently in a risk 
analysis. Random variation partially cancels itself out, 
but ignorance does not. This is the reason, for 
instance, that averaging over  repeated measurements  
of a quantity will tend to minimize the random 
component  of its measurement  error, yet does nothing 
to reduce any systematic error that might be present. 
The coin example illustrates how cancellation can 
occur over  time. Lucky streaks of heads are 
counterbalanced by sub,;equent bad luck with tails so 
that one expects to remain fairly close to even. 

Partial cancellation also occurs among variables in a 

risk calculation. For instance, if A and B in the 
previous section really were randomly varying, it 
would be perfectly correct to expect that values in the 
middle of the range [0.06, 0.2] would be more likely 
than the end points of the range where both variables 
are simultaneously extreme. This expectation does not 
hold, however, when the uncertainty is ignorance 
rather than variability. We cannot assume that the 
systematic error in one variable will compensate  for 
the systematic error in another  variable. They might, 
but it would be illegitimate to assume that they must. 
For instance, suppose there is bias in the estimate of 
juvenile mortality in our extinction analysis for the 
endangered owl. If there is also bias in the estimate 
for adult mortality, is it reasonable to assume that 
error on the high side in one will tend to be balanced 
by error on the low side in the other? This would be 
reasonable if the errors were random, but they are 
systematic so we cannot expect to be so lucky. In fact, 
because adult and juvenile mortality are generally 
estimated by similar methods,  one would anticipate 
the biases might well be in the same direction and thus 
reinforce rather  than balance one another.  

Just because we are uncertain about  a quantity does 
not mean that it is fluctuating, 4z and it certainly does 
not mean it is random. But using the uncertainty 
calculus of probability theory generally requires one 
to assume the quantities involved are random. 
Without this assumption, probability theory would not 
be of much use in formulating any estimates. Yet 
when we accept these assumptions without any 
empirical basis for doing so, we introduce error into 
the analysis and provide a target for criticism. Insofar 
as we are ignorant to some degree about the value of 
a quantity, we cannot discount the possibility that the 
uncertainty consists wholly of systematic error. The 
methods of probability theory cannot legitimately be 
used to propagate  such error as though it were 
random. 4~6 Only when we have some evidence or 
argument  that the uncertainty is composed pre- 
dominantly of random error, would those methods 
then be appropriate.  In the next section we consider a 
way to empirically distinguish random and systematic 
error. 

4 SYSTEMATIC AND RANDOM ERROR CAN 
BE DISTINGUISHED EMPIRICALLY 

The theory of measurements  46 is based on three 
axioms about the true value of a measurand: 

1. the true value exists, 
2. the true valuc is constant, and 
3. the true value cannot be found. 

These axioms imply that there will always be 
measurement  error which is the difference between 
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the measured value and the true value. We can never 
know the actual size of a measurement 's  error 
because, if we did, we would then know the true value 
which is unknowable. Nevertheless, we can still think 
about it in theoretical terms. Measurement error is 
often partitioned into two major components 4~-46 

e m c a s u r c m e n  t ~- esystcmatic  ~ erandom. 

A systematic measurement error is constant or 
changes in a regular way over repeated measurements 
of a single quantity. A random measurement error, on 
the other hand, varies or would vary from 
measurement to measurement of a single quantity. 
There may be other components to the error of a 
measurement.  For instance, there may occasionally be 
gross errors (so called because they are larger than is 
justifiable by measurement conditions) which can be 
detected and eliminated by outlier tests. And a few 
data sets have even been known to contain blunders 
(e.g., slip of the pen, etc.) which have to be eliminated 
by diligence and rechecking. Of course, gross errors 
and blunders should never be common, but, as the 
axioms imply, measurement error is in a strong sense 
inevitable. This is to say that either some systematic 
error or some random error, and likely both, will 
always be present to some extent. It is widely believed 
that systematic error is consistently underestimated in 
e m p i r i c a l  s t u d i e s .  I '47'44 

Systematic and random errors have different 
consequences for measurement.  When random errors 
are small, measurements of a single quantity under a 
single set of conditions will be close to one another. 
The measurement is said to be repeatable. When both 
random and systematic errors are small, measure- 
ments of a single quantity under different conditions 
(e.g., at different locations, by different investigators, 
or using different equipment) will be close to one 
another. In this case, the measurement is said to be 
reproducible. Good repeatability implies random 
errors are small. Good reproducibility implies that 
both random and systematic errors are small. From 
these considerations, we can deduce that systematic 
errors are large whenever measurements have good 
repeatability but poor reproducibility. This means that 
it is possible in principle to assess the relative 
magnitude of systematic error. The situation in which 
systematic error is fairly large is probably very 
common, at least in field studies collecting biological 
and environmental measurements. 

5 SECOND-ORDER MONTE CARLO 
METHODS REQUIRE UNJUSTIFIED 
ASSUMPTIONS 

A second-order Monte Carlo simulation is just a 
Monte Carlo simulation in which every replicate is 

itself the result of a Monte Carlo simulation. (Special 
strategies such as Latin hypercube sampling ~ are often 
employed for the sake of efficiency, but the 
mathematical results should be the same asymptoti- 
cally whatever algorithm is used.) This approach has 
been employed to explore the effect of an analyst's 
uncertainty about the parameters used to define the 
input distributions in risk analyses. 48-5t'4 For instance, 
in assessing the effects of measurement error on an 
extinction analysis for the endangered owl, we might 
select mean values for the reproduction and mortality 
rates from random distributions to use in a simulation 
that yields an estimate of the distribution of extinction 
risks. Repeatedly sampling the means to use in 
simulations yields a distribution of distributions that 
express uncertainty both from measurement error and 
from variability in the underlying population dynam- 
ics. It seems very reasonable to use a second-order 
method in this way to model uncertainty about the 
probabilities themselves. Indeed, the approach has 
been used for some time. 5253 There are, however, 
three practical problems one faces when employing a 
second-order simulation: (1) parameterization issues, 
(2) computational complexity, and (3) interpretational 
difficulty. 

Parameterization of a second-order Monte Carlo 
simulation can require an analyst to supply con- 
siderably more specifications. Each uncertain para- 
meter in the underlying simulation is replaced by a 
statistical distribution, whose form and parameters 
must then be specified. In principle, the cross 
correlations among the distributions of parameters 
should also be given, although independence is 
typically assumed in most cases. Given that the values 
of the second-order parameters are likely to be 
guesses, are not they too subject to uncertainty? Are 
we then facing a third-order problem? Obviously, the 
approach logically leads to an entire hierarchy of 
uncertainties, 32"54"5° any of which has the possibility of 
substantially altering the final analysis. It is not clear 
at what point such deliberation degenerates into a 
merely fanciful exercise without much scientific 
content. 

The second and third practical problems are 
intertwined with one another. A second-order 
simulation is a computational problem of roughly 
squared complexity compared to an ordinary Monte 
Carlo simulation. Each replicate in the outer loop of 
the simulation implies an entire Monte Carlo 
simulation in the inner loop. Given that at least a few 
hundred simulations are needed to yield a reasonably 
reliable picture of a statistical distribution, this 
translates into a substantial computational burden that 
might require hours or even days of time in a 
microcomputer implementation of a complex issue. In 
principle, any second-order simulation can be 
reexpressed as a first-order simulation ~'55 so it should 
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be possible to reduce the computational burden. 
However, the output summaries from such a 
simplified simulation no longer distinguish uncertainty 
from the two levels and therefore mix the two kinds of 
uncertainty. For instance, the distribution of the 
extinction risk distributions would be condensed into a 
single distribution that does not give the probability of 
the owl population falling below some threshold size, 
but instead gives the probability that our predictions 
are inaccurate enough that the population would 
appear to fall that low, whether due to real statistical 
variation or due to our ignorance. Thus, reducing a 
second-order problem to a first-order problem 
confounds the two kind,; of uncertainty and defeats 
the purpose of doing the analysis in the first place. As 
a result, one is faced with either a manageable 
simulation whose output is of tangential relevance as 
an objective conclusion of the risk analysis, or a much 
more cumbersome simulation (whose output, by the 
way, can itself bc difficult to communicate). Although 
none of these three problems is insurmountable, they 
do often tend to complicate the practical use of 
second-order methods in risk analyses. 

Let us now consicer the intended use of 
second-order Monte Carlo methods for propagating 
parametric uncertainty. In any probabilistic risk 
analysis, the input probability distributions are usually 
selected by some sort of statistical procedure. Often, a 
parametric distribution of a specified shape such as the 
lognormal or normal is fitted to empirical data. 
Sometimes an input distribution's shape and para- 
meters are simply assumed based on professional 
judgment. In all but a few extremely well studied 
cases, the parameters for input distributions are 
themselves the subject of some uncertainty that arises 
because of limited sample sizes or because the samples 
are collected from a statistical population other than 
the one specifically of in,:erest. But what is the nature 
of this uncertainty about the parameters? Does the 
analyst believe that the parameters are in some sense 
drawn from a statistical distribution? Is there some 
variability or heterogeneity over time, across space or 
along some other axis so that the original underlying 
distribution is not stationary? Or is it really just the 
case that the analyst is ignorant to some degree about 
what may be the constant parameters for a stationary 
distribution? If it is the latter, then we submit that 
probabilistic methods, including all Monte Carlo 
methods, will be inappropriate for propagating the 
uncertainty. Exactly the same argument that applies to 
ignorance about the underlying values applies to 
second-order parameters too. In the coin example 
mentioned above, for instance, the uncertainty about 
the parameter p may well be ignorance rather than 
variability. 

On top of the ostensible clumsiness of second-order 
Monte Carlo methods, we then see them to be 

incomplete as well. They cannot handle ignorance 
about (as opposed to variability of) the distribution 
parameters. What computational method would be 
better suited to analyze the combination and 
interaction of the two kinds of uncertainty in a risk 
analysis? In the next section, we outline our 
suggestion. 

6 PROBABILITY THEORY AND INTERVAL 
ANALYSIS CAN BE COMBINED 

We have argued that it is important to use the 
methods of interval analysis for propagating ignorance 
and the methods of probability theory for propagating 
variability. Most risk analysis problems, however, 
must deal with both kinds of uncertainty at the same 
time. Is it possible to handle both variability and 
ignorance in a single, comprehensive analysis that is 
faithful to both interval analysis and probability 
theory? Recent developments in the theory of bounds 
on probabilities 3°-37 permit such an analysis. In this 
section we give a simple numerical example that 
combines variability with ignorance to yield a quantity 
that is uncertain in both senses. 

Figure 3(a) depicts a cumulated normal distribution 
centred at 5.0 with unit standard deviation. For 
convenience, the tails have been truncated at the first 
and ninety-ninth percentiles. We refer to this 
distribution as normal(5,1). The probability distribu- 
tion represents a quantity about whose value we are 
uncertain because of its intrinsic variability. Figure 
3(b) depicts an interval between one half and one, 
symbolized as [0.5,1]. This interval represents a 
quantity about whose value we are uncertain because 
we have no more precise measurement of it. It may be 
varying within this range, or it may be a fixed, 
unvarying value somewhere within the range. We 
don't  have any particular information one way or the 
other. 

The remaining graphs in Fig. 3 depict the product, 
sum, quotient and difference of the normal(5,1) 
distribution and the [0.5,1] interval. Let us carefully 
consider the product depicted in Fig. 3(c). The answer 
that probability bounds analysis gives us is not a single 
probability distribution. Rather, it is a region within 
which the probability distribution of the product must 
lie. This is to say that, whatever the true value(s) of 
the uncertain quantity we have represented with the 
interval, the distribution of the product lies some- 
where within the black region of Fig. 3(c). This answer 
fully expresses the uncertainty induced by the two 
factors. Any more precise an answer would simply be 
underestimating the degree of uncertainty present in 
the calculation. For instance, if we had used a uniform 
distribution to represent the second factor rather than 
an interval, and performed the multiplication accord- 
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Fig. 3. (a) A cumulative normal probability distribution with mean 5.0 and standard deviation 1.0, but truncated beyond the 1st 
and 99th percentiles. This distribution is symbolized by the expression normal(5,1). (b) An interval between one half and one, 
symbolized by the expression [0.5,1]. (c) The product of the distribution and interval, normal(5,1)x [0.5,1]. The black region 
envelopes all the cumulative distributions that could arise as this product. (d) The sum normal(5,1) + [0.5,1]. (e) The quotient 

normal(5,1)/[0.5,1]. (f) The difference normal(5,1 ) - [0.5,1]. 

ing to the rules of probability theory, we would have 
obtained a particular distribution roughly centred in 
the black region of Fig. 3(c). But such an answer 
would, however, have a wholly unjustified precision. 
In other words, it might be wrong, either under- or 
overestimating probabilities for the possible range of 
products. Of course it might be exactly correct by 
accident, but such an outcome would actually be 
remarkably unlikely. 

The horizontal span of the probability bounds are a 
function of the variability in the result. The vertical 
breadth of the bounds is a function of our ignorance. 
A pure risk analysis problem with perfectly charac- 
terized probability distributions as inputs will yield a 
pure probability distribution as the result. Values, 
distributions and dependencies that are imperfectly 
known contribute to a widening of the bounds. The 
greater the ignorance, the wider the vertical distance 
between bounds, and the more difficult to make 
precise probabilistic statements about the expected 
frequencies of extreme events. But this is what one 
wants; after all, ignorance should muddle the answer 
to some extent. Something is obviously amiss 
information-theoretically if we can combine ignorance 
and gain more precision than we started with. 

The mathematical details of the calculations used to 
obtain the probability bounds are elementary and 
have been described with numerical examples 
elsewhere. 37 High-level software 56 is available for 
performing arbitrary algebraic calculations with 
relative ease. For instance, the software allowed us to 
perform the multiplication simply by typing in the 
expression 'normal(5,1) * [0.5,1]'. The resulting pair of 
probability bounds can be assigned to a variable and 
used in subsequent calculations. Probability bounds 
that describe the uncertainty about the inputs in a risk 

analysis problem can be derived from known 
constraints or developed using statistical confidence 
interval procedures. 33-37 

The practicality of a method for propagating 
uncertainty depends in part on how computationally 
expensive it is, although the growing availability of 
powerful computers is making this concern less 
important than it used to be. Table 2 gives 
comparisons for the several methods we have 
mentioned. If the calculation of the underlying 
arithmetic expression using scalar floating point 
numbers requires F time, Monte Carlo simulations 
require on the order of NF time, where N is the 
number of replications. The value selected for N 
usually ranges between 100 and 50,000, depending on 
the patience and zeal of the analyst. Using more 
Monte Carlo replicates is generally always preferable 
to using fewer, but special strategies such as Latin 
hypercube sampling I are used to minimize N. Interval 
analysis requires on the order of 4F time, although 
this could be reduced to 2F time if all the numbers 
and intermediate results are strictly positiveY 13 
Second-order Monte Carlo methods require on the 
order of N~F time because, as we mentioned above, 
each replicate in the outer loop implies an entire 
Monte Carlo simulation in the inner loop. Probability 

Table 2 

Analysis Relative execution time 

Deterministic point estimate 
Interval analysis 
Monte Carlo 
Probability bounds 
Second-order Monte Carlo 

F 
4F 
NF where N ~ [100,50000] 
KZF where K E [20,100] 
NZF where N E [100,50000] 
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bounds analysis requires on the order of K2F time, 
where K is the number of discretization bins 
employed. The number of bins usually ranges between 
20 and 100, depending on the finickiness of the 
analyst. The example calculations displayed in Fig. 3 
were done using K = 5 0 .  This table shows that 
probability bounds analysis compares quite favourably 
with other methods of uncertainty propagation, being 
on a par with the computational expense of a simple 
Monte Carlo analysis. 

Some theoreticians 57 have argued that it is 
reasonable to use Monte Carlo methods to take 
account of the fact that there is disagreement about 
the appropriate risk model to use, and even to average 
the results from different models, weighted by the 
respective evidence each one has supporting its claim 
as the truth. Others 1"5~'5~ disagree with this approach, 
suggesting it is nonsensical to average the results of 
mutually exclusive the aries about nature. Their 
position leaves unanswered the question of how 
uncertainty about model form ought to be propagated 
through an analysis and suggests that multiple 
analyses are required which grow combinatorially in 
complexity as the number of disputes about model 
form increases. It seems to us that not knowing which 
model is correct means we cannot bc sure which 
outcome will follow. Thi,; is ignorance, not variability, 
and should be treated as incertitude in a risk analysis. 

Figure 4 illustrates how the predictions of two theories 
with respect to some variable are combined as the 
envelope of their cumulative distribution functions. 
The region depicted in Fig. 4(b) can be used as an 
input for probability bounds analysis. We see then 
that an approach based on probability bounds analysis 
is flexible enough to incorporate uncertainty arising 
from indecision or controversy about the mathemati- 
cal form of the risk model, including which functions 
are used, the values of parameters, the shapes of input 
distributions, and the correlation and dependency 
structure among variables. Although the resulting 
probability bounds are wider than they would be if we 
could agree on the correct form of the model, they 
will enclose the true result so long as the correct 
model is among those considered. By using probability 
bounds analysis the computational complexity does 
not grow when there are more questions about model 
form. 

Although the probability bounds approach is 
flexible, it is not very delicate. By lumping all sources 
of incertitude together, one cannot later resolve what 
component of the uncertainty in the output is the 
result of what source of uncertainty, unless dual 
with-and-without computations are made. The ap- 
proach may also be unwieldy in analysing the weight 
of evidence 57 for one theory or model choice over 
another. One might think that a second-order Monte 

(a) 

(b) ' 

0 
Fig. 4. (a) (Hypothetical) probability distributions for a parameter from competing theories I and 11. (b) Probability bounds 
representing uncertainty in the parameter resulting from controversy about whether theory ! or 11 is correct and the variability 
each theory predicts for the parameter. The region is the envelope of the respective cumulated forms of the two distributions. 



142 S. Ferson, L. R. Ginzbt, rg 

Carlo simulation would be better suited for the task, 
but Loui -~2 has argued that a probability bounds 
approach is not improved on by higher-order Monte 
Carlo methods in that it answers all the practical 
questions they can answer. This is not to say that 
evidence for one theory over another should be 
ignored. However, to make use of the information in a 
probability bounds approach would require a series of 
nested calculations at different levels of confidence to 
incorporate the evidence comprehensively. A hybrid 
arithmetic u) that generalizes probability bounds 
analysis in the same way that fuzzy arithmetic 6' 
generalizes interval analysis would be needed to do 
this. 

7 RISK A N A L Y S I S  IS N O T  P R O B A B I L I T Y  
T H E O R Y  

As we somewhat simplistically depict in Fig. 5, risk 
analysis is a new field of inquiry that is distinct from 
probability theory. The two disciplines address 
different problems. Since the time of Laplace, 
probability theory has concentrated on making good 
estimates for single quantities whose values might be 
varying or might be uncertain. The typical problem in 
probability theory posits the existence of an answer 
that is a single real number. Risk analysis, on the 
other hand, focuses on fundamentally different 
questions. In risk analysis, we are usually dealing with 
populations and various potential magnitudes of risk. 
We are generally interested in the entire distribution 
rather than a single number. Whereas probability 
theory uses a distribution to characterize the 
uncertainty about a single scalar number, risk analysis 
requires some comparable device to express the 
uncertainty about a distribution. Second-order Monte 
Carlo methods seek to provide this needed perspec- 
tive, as does probability bounds analysis. 

We have argued that different computational 
methods need to be used for variability and ignorance, 

Probability I )R isk  
theory analysis 

Fig. 5. Qualitative comparison of the subject matter of risk 
analysis and probability theory. 

but we are not the first to suggest this. In decision 
t h c o r y y  "~'3 of which risk analysis is surely a 
subdiscipline, ignorance and variability have long been 
recognized as deserving different analytical treat- 
mcnts. Knight ~ himself differentiated between deci- 
sions under risk and decisions under uncertainty which 
correspond to situations in which probabilities are 
either well known or completely unknown. It has been 
argued that maximum entropy criteria can bc used to 
reduce a decision-under-uncertainty problem to a 
decision-under-risk problem so long as one supposes 
that the available information is sufficient to uniquely 
determine the probabilities. 28 We argue that such a 
supposition is wishful thinking that cannot be justified 
in real-life problems. Instead, one should just concede 
that empirical knowledge is limited and honestly 
observe this fact when making calculations. Recent 
methodological research in probability intervals 3~'3~'62 
has shown how formal decisions may be made in 
circumstances in which both ignorance and variability 
play important roles. This approach has the 
comprehensiveness and objectivity required of a 
method used for making decisions affecting the public 
good. 

8 CONCLUSIONS 

Using idealized numerical examples we have illus- 
trated an important principle: measurement error 
should not blithely be treated as though it were 
random error. Although some of it may well be 
random, it is illegitimate to assume that it is always 
random and doing so will lead to unjustifiably precise 
answers. While empirical effort can in principle reveal 
the relative magnitudes of the systematic and random 
components in measurement error, enough informa- 
tion can never be collected to make such a 
determination perfectly. More generally, uncertainty 
should not always be treated as though it were 
variability. Doing so will lead a risk analysis to 
incorrect results. Although variability in parameters 
will partially cancel itself out when the parameters are 
combined in a risk analysis, ignorance need not do so 
because it can contain systematic error. One cannot 
assume ignorance about one thing is cancelled out by 
ignorance about another. It might actually be the case 
that errors balance one another to some extent, but 
assuming they always will is merely wishful thinking. 
The more complex the mathematical expression used 
in a risk analysis is in terms of the number of 
parameters or time steps, the more important this 
argument will be. 

Of course we do not suggest that all uncertainty 
should necessarily be treated as though it were 
ignorance. Doing so would neglect available informa- 
tion and abdicate the responsibility to obtain an 



Different methods for propagation o f  uncertainty 143 

answer that is as precise as is justified. Analysts in 
individual circumstances are free to specify what they 
know and admit what they do not know. This process 
may, of course, involve assumptions one way or the 
other such as the analyst may consider reasonable. We 
expect that conscientious deliberation will in most 
cases recognize the presence of uncertainty that 
should be considered ignorance rather than variability, 
although the relative magnitudes of the two kinds of 
uncertainty will vary widely among circumstances. 

We conclude that not only should ignorance be 
distinguished from variability in risk analyses, but the 
two forms of uncertainty should be propagated with 
different analytical methods. A method like interval 
analysis is appropriate for propagating ignorance 
through mathematical calculations. Although this 
method is general enough to be applied to both 
ignorance and variability, in the case of the latter it 
will inefficiently yield re'suits with overestimated (i.e., 
hyperconservative) dispersions. Likewise, when the 
dependence between inputs can be specified, interval 
analysis cannot make use of the information to narrow 
the results. Probability theory provides the methods 
appropriate for propag~.ting random variability with 
known dependencies through calculations. Although 
appropriate for variability, probability theory in its 
classical form cannot be used to propagate real 
ignorance however. Although several theoreticians 
have asserted there is no distinction to be made 
between ignorance and probability, we follow the 
tradition in decision theory which says there is. 
Because risk analysis is generally concerned with 
entire distributions of ri,;ks and the reliability of these 
distributions, as a purely practical matter, variability 
and ignorance should be treated in a way that does 
not confuse the two forms of uncertainty. Because 
both are present in almost all practical situations, an 
approach (such as probability bounds analysis) that is 
faithful to both interval analysis and probability 
theory should be used to propagate uncertainty in risk 
analysis. 
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