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There are two kinds of uncertainty. One kind arises as variability resulting
frorn heterogeneity or stochasticity. The other arises as partial ignorance
resulting from systematic measurement error or subjective (epistemic) uncer-
tainty. As most researchers recognize, variability and ignorance should be
treated separately in risk analyses. Although a second-order Monte Carlo
simulation is commonly employed for this task, this approach often requires
unjustified assumptions which may be inappropriate in some circumstances.
We argue that the two kinds of uncertainty should be propagated through
mathematical expressions with different calculation methods. Basically, inter-
val analysis should be used to propagate ignorance, and probability theory
should be used to propagate variability. We demonstrate how using an
inappropriate method can yield erroneous results. We also show how
ignorance and variability can be represented simultaneously and manipulated
in a coherent analysis that does not confound the two forms of uncertainty and
distinguishes what is known from what is assumed. © 1996 Elsevier Science

Limited.

1 IGNORANCE AND VARIABILITY ARE
DIFFERENT KINDS OF UNCERTAINTY

Comprehensive taxonomiies of uncertainty have been
offered by several authors.'” These classifications
recognize many distinct kinds of uncertainty with
considerable subtlety. For our purposes, it will be
sufficient to follow Casti® in recognizing two basic
kinds of uncertainty that are fundamentally different

from each other. We distinguish objective uncertainty

arising from variability of the underlying stochastic
system as against subjective or epistemic uncertainty
resulting from our not having complete information
about that system.

Table 1 gives questions exemplifying these two
kinds of uncertainty in two aspects of an extinction
risk analysis’ for an encangered species of owls. The
sample questions in the first column refer to variability
expressed over time and across space. This column
could have been split into two columns to represent
temporal and spatial variability separately if one so
desired, with obvious examples for each new cell in
the table. In fact, because variability can be ¢xpressed
over almost any dimension, we could have muitiplied
the number of columns ad libitum. We have collapsed
all such examples of uncertainty due to variability into
one column for the sake of simplicity and to draw
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attention to the fact that the same mathematical
techniques are used to propagate uncertainty whether
the value changes over time, across space, among
individuals or on some other axis of variability.

We use the term ‘ignorance’ to denote the partial
incertitude that arises because of limits on empirical
study or mensurational precision. For instance, at
some moment in time the number of owls present in a
well defined region of forest is a particular number
that is not varying. Nevertheless, this number may not
be precisely known to us, just because it can be
extremely difficult to tally every single bird. This
uncertainty is decidedly unlike the uncertainty, say, in
mortality rates arising from variability of the weather.
For instance, ignorance and variability respond
differently to empirical effort. Whereas ignorance can
usually be reduced by additional study or by
improving the techniques of measurement, variability
has an objective reality that is independent of our
empirical study of it. Additional effort may yield a
better estimate of the magnitude of variability, but it
will not tend to reduce it.

Although there may sometimes be epistemologically
complex situations in which it is hard to distinguish
between the two kinds of uncertainty, it is often fairly
straightforward to do so. Despite this, both forms of
uncertainty will be associated with many quantities of
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Table 1. Uncertainty

Variability

Ignorance

Model formulation
season to season?
Parameter values

Do mortality mechanisms change from

How does the number of owls vary in
different parts of the forest?

Which model of density dependence
should be used?

What is the number of owls present in the
forest?

interest in risk analysis problems. For example, if the
future population size of owls is estimated from the
mortality rate and the current population size, it is
characterized by both randomness and incertitude.
The relative magnitudes of ignorance and variability
for any particular parameter of interest will depend on
how well it has been studied and on the intrinsic
stochasticity of the underlying system. In an analysis,
we usually cannot control how much ignorance there
is about a given parameter, nor how much it varies.

The purpose of this paper is to discuss some
empirical and computational issues that arise when
both kinds of uncertainty enter into a risk analysis
problem. To motivate this discussion, we consider
some very simplified numerical examples. Although
these idealized examples are themselves unrealistic as
risk analysis problems, they will help us to clarify
certain important issues that commonly arisc in real
analyses. In the next two sections, we point out how
the two kinds of uncertainty behave differently in
calculations. The following sections then consider
several methodological approaches to recognizing and
propagating  uncertainty through  mathematical
calculations.

2 CLASSICAL PROBABILITY THEORY
INCORRECTLY PROPAGATES IGNORANCE

As risk analysts, how should we do arithmetic with
numbers about whose values we are unsure? We
arguc that the answer depends in part on why we are
unsurc and whcther the notion of frequency is
applicable to the situation under study. Let us start
this discussion with a simple question:

If the parameter A is a number somewhere between
0.2 and 0.4, and the parameter B is a number
somewhere between 0.3 and 0.5, what is the value of
the product AB?

How we go about getting an answer to such a
question depends on what we belicve about the
parameters involved and what the nature of our
uncertainty about them is. For instance, if we suppose
both A and B are actually fixed quantities whose
values we just don’t happen to know, then we might
use interval analysis®'* to arrive at an answer to the
question. This approach asks about the possible range
of the product given the stated ignorance about A and

B. In this case, the smallest possible value would be
obtained when A is 0.2 and B is 0.3, yielding the
product 0.06. The largest possible value would be
0.4 X0.5=0.2. No other pair of numbers from the
respective intervals yield a product outside this range.
Thus, the answer is that the product is a number
somcwhere between 0.06 and 0.2. Figure 1(a) depicts
this interval.

On the other hand, if we think the parameters A
and B arc varying randomly, then we might use a very
differcnt approach to arrive at an answer. Under
Laplace’s Principle of Insufficient Reason, the
uncertainty about each parameter should be modeled
with a uniform distribution. Choosing any other
distributions would constitute an assertion of addi-
tional knowledge about the parameters. These
distributions are then combined by the ordinary rules
of probability theory.' In particular, if we assume they
are independent, we can use probabilistic convolution
or some Monte Carlo strategy to estimate the
distribution of the product AB. The result is shown as
a probability density function in Fig. 1(b). Figure 1(c)
is the cumulated form of the same probability
distribution, which is slightly more convenient for the
following discussion because the ordinate always
ranges between zero and one.

Although some probabilists'* have suggested prob-
ability theory is irrelevant to manipulating bounds on
unknown values, others'>"!” have insisted with some
vechemence that probability theory is the only
consistent calculus for propagating uncertainty of any
sort. We suspect both of these views are incorrect and
unnccessarily restrictive. We show how both interval
analysis and probability theory will arrive at the same
answer if we are careful to distinguish what is known
from what is assumed.

The answers from interval analysis and probability
theory agree in one sense. They both say the value of
the product must lie between 0.06 and 0.2. The
support of the probability distribution (i.c., the range
of values for which probabilities are nonzero) is
identical to the result of the interval analysis. Yet the
answers are clearly different. The answer given by the
probabilistic approach suggests that the product is
much more likely to be a value near the central
tendency than to be one of the extreme values. There
is a clear concentration of probability mass in the
centre of the distribution. Yet there is nothing in the
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Fig. 1. (a) Depiction of the interval [0.06, 0.2] which is guaranteed to contain the product of two uncertain numbers A = [0.2,
0.4] and B =[0.3, 0.5]. Note that this interval is not the same as a uniform probability distribution. (b) The probablllty
distribution of the product of random variables A = uniform(0.2, 0.4) and B =uniform(0.3, 0.5) under an assumption of
independence. (¢) The cumulative form of the probability distribution of this product. (d) The smallest region guaranteed to
contain the cumulative distribution of the product assuming the dependence between A and B is some linear correlation
between —1 and +1. (e) The smallest region guaranteed to enclose the cumulative distribution of the product without making
any assumption about the stochastic dependence between A and B. (f) The smallest region guaranteed to enclose the
cumulative probability distrivution of the product of A and B given no information other than the bounds on both parameters.
Note that this region is very different from a uniform distribution.

original statement of the question that obviously
justifies this concentration. Let us examine just where
this concentration comes from and whether it is
justified.

We assumed independence between parameter A
and parameter B. Perhaps this assumption accounts
for the observed central concentration of probability.
We can explore this idea by varying the correlation
between A and B over the range of possible
correlations. In general, the possible range of
correlations depends on the shapes of the two
univariate random distributions.” In our case,
correlations between A and B can be any value over
the full theoretical range between +1 and —1. Using
variance reduction'® ard dispersive Monte Carlo
sampling,”’ we can calculate bounds on the cumulative
distribution function that can result from the product
of A and B. Figure 1(d) shows the region
circumscribed by these bounds. No matter what the
magnitude of the correlation between A and B, the
probability distribution of their product must lie
within the black region. This region is clearly much
narrower than the interval depicted in Fig. 1(a), so we
see that ignoring correlation cannot, by itself, have
accounted for the discrepancy between the interval
result and probability result.

Of course, correlation only measures linear
associations between the parameters. Nothing in the
original question constrained us to assume that only
linear associations could exist between the two
parameters. What are the bounds on the cumulative
distribution function given any possible statistical

dependency between A and B? This question is very
similar to a problem first posed by Kolmogorov which
has recently been solved.”! Applying dependency
bounds analysis,”>*>?" we find that the distribution of
the product of A and B must lie somewhere in the
black region depicted in Fig. 1(e). This result shows
that, no matter what statistical dependency we assume
between the two parameters, or even if we do not
assume anything at all about their interdependence,
we still get an answer that is narrower than suggested
by interval analysis and which exhibits a persistent
albeit wecaker concentration of probability mass in the
centre of the range.

Perhaps the concentration of probability arises from
our choice of uniform distributions to model the
parameters. Given the paucity of information about A
and B, however, it is hard to see how we could have
selected any other distributions. Indeed, a long
intellectual tradition in probability theory dating back
to Laplace* himself demands that uniform distribu-
tions be used as the default in the absence of specific
information about the frequencies of possible values.
More recent theoretical arguments® ?*° based on a
criterion of maximizing information entropy reaffirm
the selection. If we had ignored this tradition and the
recent arguments, and assumed the distributions were,
say, normal or lognormal, the resulting concentration
of probability would have been even more pron-
ounced. It turns out that the problem is not so much
that we have assumed uniformity for the two
distributions. The problem comes because we assumed
particular shapes for them.
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One need not assume specific shapes for the
distributions if there is no basis for doing so. Recently
developed methods based on interval probabilitics™
allow us to express incertitude (ignorance) about
probability itself. It is also possible to do calculations
with these interval probabilities.”” Figure 1(f) shows
the region in which the probability distribution of the
product AB must lie, given only the information about
bounds on A and B. This result states that any value
or distribution of values between 0.06 and 0.2 is
possible and that we cannot say anything about which
values arc more likely than any others within this
range. This interval-probabilistic approach thus agrees
completely with the original result in Fig. 1(a)
obtained from elementary interval analysis. They both
represent an unknown quantity that may or may not
be varying but whose value(s) we know to be limited
to a specific range. Although the results in Fig. 1(a)
and (f) were obtained by completely different
computational approaches, the interpretations of the
results are identical.

We see, finally, that the solutions in Fig. 1(b)-(e)
are incorrect, becausc they assume more information
than was given in the original question. In this sense,
they are the result of wishful thinking, rather than a
careful analysis of what is actually known. This
example illustrates what may be a widespread
problem with applying classical probability theory in
risk analyses where the relevant empirical information
is sorely incomplete (as is usually the case). Using
classical probability theory to estimate even the simple
product of two uncertain parameters requires several
assumptions, without which no answer could be
obtained. In practice, such assumptions are rarely
even stated, much less tested or justified in any way. It
seems obvious to us that, unless there is specific
empirical information or theoretical argument to
justify such assumptions, the results thcy produce
could never be scientifically defensible. Although they
may parade as precise applications of formal
probability theory, the ensuing risk analyses conceal a
considerable amount of unstated uncertainty that
bears directly on the interpretation of the results.

The case in which some probability distributions are
poorly characterized is undoubtedly common, and it
may be typical in risk analysis, especially for new
hazards and recently recognized environmental
threats. For instance, because drilling is usually very
expensive, analysis of groundwater contamination may
be limited by very small sample sizes. Likewise,
human effects of putative environmental hazards are
typically difficult to characterize statistically because
of practical or ethical constraints on data collection.
Perhaps even more commonly, the correlations and
statistical dependencies among variables remain
unmeasured and unexplored even for long studied
problems. For instance, probabilistic risk assessments

for nuclear power operations™ still often neglect
common-cause, common-mode and  cascading
failures® which introduce unknown dependencies
among the variables in the analysis. Without specific
analysis, there is no way to foretell whether
inattention to such phenomena causes wasteful
overestimation™ or dangerous underestimation™ of
risks.

Yect risk analyses must be performed even when
empirical information is extremely sparse. The
conundrum then is how should we propagate
uncertainty under such conditions. Should we assume
the uncertainty can always be treated like stochastic
variability? We have seen that doing so can lead to
unjustified results when the requisite assumptions of
probability theory are untested. Huff*' summarized
the danger: ‘Knowing nothing about a subject is
frequently healthier that knowing what is not so...".
On the other hand, relying on the calculational
methods of interval analysis in all circumstances will
result in unnccessarily conservative answers when
those assumptions are true.

3 UNCERTAINTY DOES NOT IMPLY
FLUCTUATION

Tossing a coin provides a good example of the
difference between variability and ignorance in risk
analyses. If cach toss is an independent event and the
probability of tossing heads is known to be p and the
probability of tossing tails (1-p), the binomial
distribution gives both the expected number of heads
after n tosses and the probability that the number of
heads will exceed the number of tails by some
quantity. We are able to perform a perfect risk
analysis for this textbook case. The solid curves in Fig,.
2 describe the means and 95% confidence intervals for
how many more heads than tails are expected after a
given number of tosses of a fair coin (p =0.5).
Although the expected mean is consistently zero, the
95% bounds widen as the square root of the number
of tosses. It is, of course, thc independence
assumption that makes variance grow linearly and
standard deviation grow as the square root.

Now suppose that the initial estimate of p was
slightly inaccurate. For instance, suppose we failed to
detect that the coin was a little biased. At first, the
difference between the actual and the expected tosses
is negligible. Their divergence is linear with the
number of tosses, however, so that the eventual excess
of heads over tails is very likely to lie well outside the
range predicted by the risk analysis. In this case,
although the classical analysis is fine in the short run,
the measurement error in the estimate of p plays a
dominant role and limits our ability to make reliable
risk analyses in the long run. The uncertainty due to
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Fig. 2. Comparison of the uncertainties in coin tossing due
to bias and due to fluctuation. Solid lines are for p =0.5,
dashed lines for p =0.54. Each set shows the expected
excess of heads over tails and the ranges within which the
excess is likely to lie 95% of the time. The ranges expand as
the square root of the number of tosses, while the expected
means diverge linearly. For a small number of tosses, risk
analyses for the two values of p are similar. The effect of
bias begins to dominate as the number of tosses gets larger.

variability, reflected by the width of the 95%
confidence bounds, grows much more slowly than the
uncertainty due to ignorance about the value of p,
which is reflected in the difference between the solid
and dotted sets of lines. The reason for this is simply
that random variations partially cancel with each
other, while incertitude accumulates linearly.

The dominance of ignorance over variation emerges
in this example because the effects are iterated over
time. The effects will also be iterated over the number
of input parameters, so ignorance will tend to become
more important as the number of inputs and
calculations in a risk model increase. Therefore, like
distant extrapolations, the reliability of complex risk
calculations may be more controlled by ignorance
than by variability. But even for a fixed problem and
model, the relative importance of the two kinds of
uncertainty depends on their respective magnitudes.
Poor empirical study and imprecise measurements can
yield a situation in which the ignorance already
‘dominates the problem.

Variation and ignorance behave differently in a risk
analysis. Random variation partially cancels itself out,
but ignorance does not. This is the reason, for
instance, that averaging over repeated measurements
of a quantity will tend to minimize the random
component of its measurement error, yet does nothing
to reduce any systematic error that might be present.
The coin example illustrates how cancellation can
occur over time. Lucky streaks of heads are
counterbalanced by subsequent bad luck with tails so
that one expects to remain fairly close to even.

Partial cancellation also occurs among variables in a

risk calculation. For instance, if A and B in the
previous section really were randomly varying, it
would be perfectly correct to expect that values in the
middle of the range [0.06, 0.2] would be more likely
than the end points of the range where both variables
are simultaneously extreme. This expectation does not
hold, however, when the uncertainty is ignorance
rather than variability. We cannot assume that the
systematic error in one variable will compensate for
the systematic error in another variable. They might,
but it would be illegitimate to assume that they must.
For instance, suppose there is bias in the estimate of
juvenile mortality in our extinction analysis for the
endangered owl. If there is also bias in the estimate
for adult mortality, is it reasonable to assume that
error on the high side in one will tend to be balanced
by error on the low side in the other? This would be
reasonable if the errors were random, but they are
systematic so we cannot expect to be so lucky. In fact,
because adult and juvenile mortality are generally
estimated by similar methods, one would anticipate
the biases might well be in the same direction and thus
reinforce rather than balance one another.

Just because we are uncertain about a quantity does
not mean that it is fluctuating,*? and it certainly does
not mean it is random. But using the uncertainty
calculus of probability theory generally requires one
to assume the quantities involved are random.
Without this assumption, probability theory would not
be of much use in formulating any estimates. Yet
when we accept these assumptions without any
empirical basis for doing so, we introduce error into
the analysis and provide a target for criticism. Insofar
as we are ignorant to some degree about the value of
a quantity, we cannot discount the possibility that the
uncertainty consists wholly of systematic error. The
methods of probability theory cannot legitimately be
used to propagate such error as though it were
random.**** Only when we have some evidence or
argument that the uncertainty is composed pre-
dominantly of random error, would those methods
then be appropriate. In the next section we consider a
way to empirically distinguish random and systematic
error.

4 SYSTEMATIC AND RANDOM ERROR CAN
BE DISTINGUISHED EMPIRICALLY

The theory of measurements®® is based on three
axioms about the true value of a measurand:

1. the true value exists,
2. the true valuc is constant, and
3. the true value cannot be found.

These axioms imply that there will always be
measurement error which is the difference between
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the measured value and the true value. We can never
know the actual size of a measurecment’s crror
because, if we did, we would then know the true value
which is unknowable. Nevertheless, we can still think
about it in theoretical terms. Measurement error is
often partitioned into two major components**~

Cmcasurement = csyslcmalic + Crandom-

A systematic measurement error is constant or
changes in a regular way over repeated measurements
of a single quantity. A random measurement error, on
the other hand, varies or would vary from
measurement to measurement of a single quantity.
There may be other components to the error of a
measurement. For instance, there may occasionally be
gross errors (so called because they are larger than is
justifiable by measurement conditions) which can be
detected and eliminated by outlier tests. And a few
data sets have even been known to contain blunders
(e.g., slip of the pen, etc.) which have to be eliminated
by diligence and rechecking. Of course, gross errors
and blunders should never be common, but, as the
axioms imply, measurement error is in a strong sense
inevitable. This is to say that either some systematic
error or some random ecrror, and likely both, will
always be present to some extent. It is widely believed
that systematic error is consistently underestimated in
empirical studies.'*”*

Systematic and random errors have different
consequences for measurement. When random errors
are small, measurements of a single quantity under a
single set of conditions will be close to one another.
The measurement is said to be repeatable. When both
random and systematic crrors are small, measure-
ments of a single quantity under different conditions
(e.g., at different locations, by different investigators,
or using different equipment) will be close to one
another. In this case, the measurement is said to be
reproducible. Good repeatability implies random
errors are small. Good reproducibility implies that
both random and systematic errors are small. From
these considerations, we can deduce that systematic
errors are large whenever measurements have good
repeatability but poor reproducibility. This means that
it is possible in principle to assess the relative
magnitude of systematic error. The situation in which
systematic error is fairly large is probably very
common, at least in field studies collecting biological
and environmental measurements.

S SECOND-ORDER MONTE CARLO
METHODS REQUIRE UNJUSTIFIED
ASSUMPTIONS

A second-order Monte Carlo simulation is just a
Monte Carlo simulation in which every replicate is

itself the result of a Monte Carlo simulation. (Special
strategies such as Latin hypercube sampling' are often
employed for the sake of efficicncy, but the
mathematical results should be the same asymptoti-
cally whatever algorithm is used.) This approach has
been employed to explore the effect of an analyst’s
uncertainty about the parameters used to define the
input distributions in risk analyses.***'* For instance,
in assessing the cffects of measurement error on an
extinction analysis for the endangered owl, we might
select mean values for the reproduction and mortality
rates from random distributions to use in a simulation
that yields an estimate of the distribution of extinction
risks. Repeatedly sampling the means to use in
simulations yields a distribution of distributions that
express uncertainty both from measurement error and
from variability in the underlying population dynam-
ics. It seems very reasonable to use a second-order
method in this way to model uncertainty about the
probabilities themselves. Indeed, the approach has
been used for some time.’>> There are, however,
three practical problems one faces when employing a
sccond-order simulation: (1) parameterization issues,
(2) computational complexity, and (3) interpretational
difficulty.

Parameterization of a second-order Monte Carlo
simulation can require an analyst to supply con-
siderably more specifications. Each uncertain para-
meter in the underlying simulation is replaced by a
statistical distribution, whose form and paramecters
must then be specified. In principle, the cross
correlations among the distributions of parameters
should also be given, although independence is
typically assumed in most cases. Given that the values
of the second-order parameters are likely to be
guesses, are not they too subject to uncertainty? Are
we then facing a third-order problem? Obviously, the
approach logically leads to an entire hierarchy of
uncertainties,”>*** any of which has the possibility of
substantially altering the final analysis. It is not clear
at what point such deliberation degenerates into a
merely fanciful exercise without much scientific
content.

The second and third practical problems are
intertwined with one another. A second-order
simulation is a computational problem of roughly
squared complexity compared to an ordinary Monte
Carlo simulation. Each replicate in the outer loop of
the simulation implies an entire Monte Carlo
simulation in the inner loop. Given that at least a few
hundred simulations are needed to yield a reasonably
reliable picture of a statistical distribution, this
translates into a substantial computational burden that
might require hours or even days of time in a
microcomputer implementation of a complex issue. In
principle, any second-order simulation can be
reexpressed as a first-order simulation®* so it should
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be possible to reduce the computational burden.
However, the output summaries from such a
simplified simulation no longer distinguish uncertainty
from the two levels and therefore mix the two kinds of
uncertainty. For instance, the distribution of the
extinction risk distributions would be condensed into a
single distribution that does not give the probability of
the owl population falling below some threshold size,
but instead gives the probability that our predictions
are inaccurate enough that the population would
appear to fall that low, whether due to real statistical
variation or due to our ignorance. Thus, reducing a
second-order problem to a first-order problem
confounds the two kinds of uncertainty and defeats
the purpose of doing the analysis in the first place. As
a result, one is faced with either a manageable
simulation whose output is of tangential relevance as
an objective conclusion of the risk analysis, or a much
more cumbersome simulation (whose output, by the
way, can itself be difficult to communicate). Although
none of these three problems is insurmountable, they
do often tend to complicate the practical use of
second-order methods in risk analyses.

Let us now consicer the intended use of
second-order Monte Carlo methods for propagating
parametric uncertainty. In any probabilistic risk
analysis, the input probability distributions are usually
selected by some sort of statistical procedure. Often, a
parametric distribution of a specified shape such as the
lognormal or normal is fitted to empirical data.
Sometimes an input distribution’s shape and para-
meters are simply assumed based on professional
judgment. In all but a few extremely well studied
cases, the parameters for input distributions are
themselves the subject of some uncertainty that arises
because of limited sample sizes or because the samples
are collected from a statistical population other than
the one specifically of interest. But what is the nature
of this uncertainty about the parameters? Does the
analyst believe that the parameters are in some sense
drawn from a statistical distribution? Is there some
variability or heterogeneity over time, across space or
along some other axis so that the original underlying
distribution is not stationary? Or is it really just the
case that the analyst is ignorant to some degree about
what may be the constant parameters for a stationary
distribution? If it is the latter, then we submit that
probabilistic methods, including all Monte Carlo
methods, will be inappropriate for propagating the
uncertainty. Exactly the same argument that applies to
ignorance about the underlying values applies to
second-order parameters too. In the coin example
mentioned above, for instance, the uncertainty about
the parameter p may well be ignorance rather than
variability.

On top of the ostensible clumsiness of second-order
Monte Carlo methods, we then see them to be

incomplete as well. They cannot handle ignorance
about (as opposed to variability of) the distribution
parameters. What computational method would be
better suited to analyze the combination and
interaction of the two kinds of uncertainty in a risk
analysis? In the next section, we outline our
suggestion.

6 PROBABILITY THEORY AND INTERVAL
ANALYSIS CAN BE COMBINED

We have argued that it is important to use the
methods of interval analysis for propagating ignorance
and the methods of probability theory for propagating
variability. Most risk analysis problems, however,
must deal with both kinds of uncertainty at the same
time. Is it possible to handle both variability and
ignorance in a single, comprehensive analysis that is
faithful to both interval analysis and probability
theory? Recent developments in the theory of bounds
on probabilities® ™’ permit such an analysis. In this
section we give a simple numerical example that
combines variability with ignorance to yield a quantity
that is uncertain in both senses.

Figure 3(a) depicts a cumulated normal distribution
centred at 5.0 with unit standard deviation. For
convenience, the tails have been truncated at the first
and ninety-ninth percentiles. We refer to this
distribution as normal(5,1). The probability distribu-
tion represents a quantity about whose value we are
uncertain because of its intrinsic variability. Figure
3(b) depicts an interval between one half and one,
symbolized as [0.5,1]. This interval represents a
quantity about whose value we are uncertain because
we have no more precise measurement of it. It may be
varying within this range, or it may be a fixed,
unvarying valuc somewhere within the range. We
don’t have any particular information one way or the
other.

The remaining graphs in Fig. 3 depict the product,
sum, quotient and difference of the normal(5,1)
distribution and the [0.5,1] interval. Let us carefully
consider the product depicted in Fig. 3(c). The answer
that probability bounds analysis gives us is not a single
probability distribution. Rather, it is a region within
which the probability distribution of the product must
lie. This is to say that, whatever the true value(s) of
the uncertain quantity we have represented with the
interval, the distribution of the product lics some-
where within the black region of Fig. 3(c). This answer
fully expresses the uncertainty induced by the two
factors. Any more precise an answer would simply be
underestimating the degree of uncertainty present in
the calculation. For instance, if we had used a uniform
distribution to represent the second factor rather than
an interval, and performed the multiplication accord-
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Fig. 3. (a) A cumulative normal probability distribution with mean 5.0 and standard deviation 1.0, but truncated beyond the st

and 99th percentiles. This distribution is symbolized by the expression normal(5,1). (b) An interval between one half and one,

symbolized by the expression [0.5,1]. (¢) The product of the distribution and interval, normal(5,1) X [0.5,1]. The black region

envelopes all the cumulative distributions that could arise as this product. (d) The sum normal(5,1) + [0.5,1]. (¢) The quotient
normal(5,1)/[0.5.1]. (f) The difference normal(5,1) — [0.5,1].

ing to the rules of probability theory, we would have
obtained a particular distribution roughly centred in
the black region of Fig. 3(c). But such an answer
would, however, have a wholly unjustified precision.
In other words, it might be wrong, either under- or
overestimating probabilities for the possible range of
products. Of course it might be exactly correct by
accident, but such an outcome would actually be
remarkably unlikely.

The horizontal span of the probability bounds are a
function of the variability in the result. The vertical
breadth of the bounds is a function of our ignorance.
A pure risk analysis problem with perfectly charac-
terized probability distributions as inputs will yield a
pure probability distribution as the result. Values,
distributions and dependencies that are imperfectly
known contribute to a widening of the bounds. The
greater the ignorance, the wider the vertical distance
between bounds, and the more difficult to make
precise probabilistic statements about the expected
frequencies of extreme events. But this is what one
wants; after all, ignorance should muddle the answer
to some extent. Something is obviously amiss
information-theoretically if we can combine ignorance
and gain more precision than we started with.

The mathematical details of the calculations used to
obtain the probability bounds are elementary and
have been described with numerical examples
elsewhere.”” High-level software®® is available for
performing arbitrary algebraic calculations with
relative ease. For instance, the software allowed us to
perform the multiplication simply by typing in the
expression ‘normal(5,1) * [0.5,1]. The resulting pair of
probability bounds can be assigned to a variable and
used in subsequent calculations. Probability bounds
that describe the uncertainty about the inputs in a risk

analysis problem can be derived from known
constraints or developed using statistical confidence
interval procedures.***’

The practicality of a method for propagating
uncertainty depends in part on how computationally
expensive it is, although the growing availability of
powerful computers is making this concern less
important than it used to be. Table 2 gives
comparisons for the several methods we have
mentioned. If the calculation of the underlying
arithmetic cxpression using scalar floating point
numbers requires F time, Monte Carlo simulations
require on the order of NF time, where N is the
number of replications. The value selected for N
usually ranges between 100 and 50,000, depending on
the patience and zeal of the analyst. Using more
Monte Carlo replicates is generally always preferable
to using fewer, but special strategies such as Latin
hypercube sampling' are used to minimize N. Interval
analysis requires on the order of 4F time, although
this could be reduced to 2F time if all the numbers
and intermediate results are strictly positive.® '
Second-order Monte Carlo methods require on the
order of N°F time because, as we mentioned above,
each replicate in the outer loop implies an entire
Monte Carlo simulation in the inner loop. Probability

Table 2

Analysis Relative execution time

Deterministic point estimate ~ F

Interval analysis 4F

Monte Carlo NF where N € [100,50000]
Probability bounds K’F where K € [20,100]
Second-order Monte Carlo N’F where N € [100,50000]
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bounds analysis requires on the order of K?F time,
where K is the number of discretization bins
employed. The number of bins usually ranges between
20 and 100, depending on the finickiness of the
analyst. The example calculations displayed in Fig. 3
were done using K =50. This table shows that
probability bounds analysis compares quite favourably
with other methods of uncertainty propagation, being
on a par with the computational expense of a simple
Monte Carlo analysis.

Some theoreticians®” have argued that it is
reasonable to use Monte Carlo methods to take
account of the fact that there is disagreement about
the appropriate risk model to use, and even to average
the results from different models, weighted by the
respective evidence each one has supporting its claim
as the truth. Others'***® disagree with this approach,
suggesting it is nonsensical to average the results of
mutually exclusive theories about nature. Their
position leaves unanswzred the question of how
uncertainty about model form ought to be propagated
through an analysis and suggests that muitiple
analyses are required which grow combinatorially in
complexity as the number of disputes about model
form increases. It seems to us that not knowing which
model is correct means we cannot be sure which
outcome will follow. This is ignorance, not variability,
and should be treated as incertitude in a risk analysis.

()

Figure 4 illustrates how the predictions of two theories
with respect to some variable are combined as the
envelope of their cumulative distribution functions.
The region depicted in Fig. 4(b) can be used as an
input for probability bounds analysis. We see then
that an approach based on probability bounds analysis
is flexible enough to incorporate uncertainty arising
from indecision or controversy about the mathemati-
cal form of the risk model, including which functions
are used, the values of parameters, the shapes of input
distributions, and the correlation and dependency
structure among variables. Although the resulting
probability bounds are wider than they would be if we
could agree on the correct form of the model, they
will enclose the true result so long as the correct
model is among those considered. By using probability
bounds analysis the computational complexity does
not grow when there are more questions about model
form.

Although the probability bounds approach is
flexible, it is not very delicate. By lumping all sources
of incertitude together, one cannot later resolve what
component of the uncertainty in the output is the
result of what source of uncertainty, unless dual
with-and-without computations are made. The ap-
proach may also be unwieldy in analysing the weight
of evidence®” for one theory or model choice over
another. One might think that a second-order Monte

-—h

(b)

0

Fig. 4. (a) (Hypothetical) probability distributions for a parameter from competing theories I and 11. (b) Probability bounds
representing uncertainty in the parameter resulting from controversy about whether theory 1 or Il is correct and the variability
each theory predicts for the parameter. The region is the envelope of the respective cumulated forms of the two distributions.



142 S. Ferson, L. R. Ginzburg

Carlo simulation would be better suited for the task,
but Loui”? has argued that a probability bounds
approach is not improved on by higher-order Monte
Carlo methods in that it answers all the practical
questions they can answer. This is not to say that
evidence for one theory over another should be
ignored. However, to make use of the information in a
probability bounds approach would require a series of
nested calculations at different levels of confidence to
incorporate the evidence comprehensively. A hybrid
arithmetic® that generalizes probability bounds
analysis in the same way that fuzzy arithmetic®'
generalizes interval analysis would be needed to do
this,

7 RISK ANALYSIS IS NOT PROBABILITY
THEORY

As we somewhat simplistically depict in Fig. 5, risk
analysis is a new field of inquiry that is distinct from
probability theory. The two disciplines address
different problems. Since the time of Laplace,
probability theory has concentrated on making good
estimates for single quantities whose values might be
varying or might be uncertain. The typical problem in
probability theory posits the existence of an answer
that is a single real number. Risk analysis, on the
other hand, focuses on fundamentally different
questions. In risk analysis, we are usually dealing with
populations and various potential magnitudes of risk.
We are generally interested in the entire distribution
rather than a single number. Whereas probability
theory uses a distribution to characterize the
uncertainty about a single scalar number, risk analysis
requires somec comparable device to express the
uncertainty about a distribution. Second-order Monte
Carlo methods seek to provide this needed perspec-
tive, as does probability bounds analysis.

We have argued that different computational
methods need to be used for variability and ignorance,

Probability Risk

theory analysis

Fig. 5. Qualitative comparison of the subject matter of risk
analysis and probability theory.

but we are not the first to suggest this. In decision
theory,**** of which risk analysis is surely a
subdiscipline, ignorance and variability have long been
recognized as deserving different analytical treat-
ments. Knight” himself differentiated between deci-
sions under risk and decisions under uncertainty which
correspond to situations in which probabilities are
either well known or completely unknown. It has been
argued that maximum entropy criteria can be used to
reduce a decision-under-uncertainty problem to a
decision-under-risk problem so long as one supposes
that the available information is sufficient to uniquely
determine the probabilities.”® We argue that such a
supposition is wishful thinking that cannot be justified
in real-life problems. Instead, one should just concede
that empirical knowledge is limited and honestly
observe this fact when making calculations. Recent
methodological research in probability intervals®' 2
has shown how formal decisions may be made in
circumstances in which both ignorance and variability
play important roles. This approach has the
comprehensiveness and objectivity required of a
method used for making decisions affecting the public
good.

8 CONCLUSIONS

Using idealized numerical examples we have illus-
trated an important principle: measurement error
should not blithely be treated as though it were
random error. Although some of it may well be
random, it is illegitimate to assumc that it is always
random and doing so will lead to unjustifiably precise
answers. While empirical effort can in principle reveal
the relative magnitudes of the systematic and random
components in measurement error, enough informa-
tion can never be collected to make such a
determination perfectly. More generally, uncertainty
should not always be treated as though it were
variability. Doing so will lead a risk analysis to
incorrect results. Although variability in parameters
will partially cancel itself out when the parameters are
combined in a risk analysis, ignorance need not do so
becausc it can contain systematic error. One cannot
assume ignorance about one thing is cancelled out by
ignorance about another. It might actually be the case
that errors balance one another to some extent, but
assuming thecy always will is merely wishful thinking.
The more complex the mathematical expression used
in a risk analysis is in terms of the number of
parameters or time steps, the more important this
argument will be.

Of course we do not suggest that all uncertainty
should necessarily be treated as though it were
ignorance. Doing so would neglect available informa-
tion and abdicate the responsibility to obtain an
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answer that is as precise as is justified. Analysts in
individual circumstances are free to specify what they
know and admit what they do not know. This process
may, of course, involve assumptions one way or the
other such as the analyst may consider reasonable. We
expect that conscientious deliberation will in most
cases recognize the presence of uncertainty that
should be considered ignorance rather than variability,
although the relative magnitudes of the two kinds of
uncertainty will vary widely among circumstances.

We conclude that nct only should ignorance be
distinguished from variability in risk analyses, but the
two forms of uncertainty should be propagated with
different analytical methods. A method like interval
analysis is appropriate for propagating ignorance
through mathematical calculations. Although this
method is general enough to be applied to both
ignorance and variability, in the case of the latter it
will inefficiently yield results with overestimated (i.e.,
hyperconservative) dispersions. Likewise, when the
dependence between inputs can be specified, interval
analysis cannot make use of the information to narrow
the results. Probability theory provides the methods
appropriate for propagating random variability with
known dependencies through calculations. Although
appropriate for variability, probability theory in its
classical form cannot be used to propagate real
ignorance however. Although several theoreticians
have asserted there is no distinction to be made
between ignorance and probability, we follow the
tradition in decision theory which says there is.
Because risk analysis is generally concerned with
entire distributions of risks and the reliability of these
distributions, as a purely practical matter, variability
and ignorance should be treated in a way that does
not confuse the two forms of uncertainty. Because
both are present in almost all practical situations, an
approach (such as probability bounds analysis) that is
faithful to both interval analysis and probability
theory should be used tc propagate uncertainty in risk
analysis.
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