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A probabilistic language based on stochastic models of population growth is proposed for a
standard language to be used in environmental assessment. Environmental impact on a
population is measured by the probability of quasiextinction. Density-dependent and inde-
pendent models are discussed. A review of one-dimensional stochastic population growth
models, the implications of environmental autocorrelation, finite versus “infinite” time
results, age-structured models, and Monte Carlo simulations are included. The finite time
probability of quasiextinction is presented for the logistic model. The sensitivity of the result
with respect to the mean growth rate and the amplitude of environmental fluctuations are
examined. Stochastic models of population growth form a basis for formulating reasonable
criteria for environmental impact estimates.
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1. INTRODUCTION

Those who prepare impact statements are free to
use any kind of mathematical model deemed ap-
propriate. However, the model used has a subtle and
pervasive effect on the choice of language in which
the conclusions are stated. Impact statements are
often challenged in courts of law and discussion in
such cases often concentrates on the validity of the
mathematical models used. Reliability and suffi-
ciency of the data is another often contended prob-
lem.

While we do not deny that this is a vital part of
every environmental assessment, we would like to
concentrate here on a more fundamental problem:
the type of the model itself.
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Environmental law does not specify what lan-
guage should be used to characterize the possible
“adverse” impact of a particular activity on natural
populations. The problem of formulating a unified
language in which to express environmental state-
ments is an important social need and a challenge to
scientists working in this field. Unfortunately, com-
munication between academic scientists and those
working in environmental assessment has been
limited. The testimony of distinguished scientists in
the courtroom, while valuable, is not a sufficient
means of interaction. The formulation of a unified
standard language for environmental assessment has
not received adequate attention.

If the problem can be at least partly resolved,
the form of language can even be incorporated into
the requirements set by the relevant laws (e.g., En-
vironmental Protection Act, Endangered Species Act,
etc.). This is a very ambitious goal. We wish to
contribute a first step towards that goal by suggesting
methods of analysis and by proposing a general
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framework for the formulation of a unified language.

We illustrate this paper with a specific case in
which we were recently involved: the assessment of
the impact of the Indian Point Power Plant on fish
populations in the Hudson River, in particular the
striped bass. The hearings between utilities and the
Environmental Protection Agency (EPA) went on for
many years. Thousands of pages of testimony and
millions of dollars have been spent. While some of
the expert testimony addressed questions of reliabil-
ity and sufficiency of the data, criticism was also
levelled at the model produced by the consultants for
the utilities and some witnesses suggested its replace-
ment by a more detailed model incorporating the age
structure of the population and ecosystem interac-
tions. However, increased dimensionality will in-
crease the number of parameters and thus aggravate
the problems of judging the statistical adequacy of
the data. The inconclusive hearings may be related
partially to the absence of objective methods for
formulating conclusions in an appropriate language.

There is one speakable significant requirement
of the language of environmental assessment arising
from the wide general public involvement in these
problems. We cannot expect from either the general
public or from a judge, the technical knowledge of
models developed in theoretical biology. Therefore,
however technical the ways of obtaining results may
be, the final conclusions or recommendations should
be made in widely understandable terms. Decision-
makers should be able to understand the results,
relying on the expert’s qualifications only for the
ways in which the results were obtained, but not for
the interpretation of the meaning of the final state-
ment itself.

2. THEORETICAL BACKGROUND

We will argue in this paper that probabilistic
language based on stochastic models of population
growth is a good candidate for a standard language
to be used in environmental assessment.

There is nothing new in principle in the use of
stochastic dynamic models in describing natural
processes. It is a reasonably well-developed area of
applied mathematics. On the other hand, theoretical
problems of stochastic dynamic models are very dif-
ficult. Only a very few practically interesting ques-
tions in this area have been generally resolved
analytically so that every specific set of differential
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equations designed for modelling particular processes
(like population growth, for instance) presents a spe-
cial problem. While people working in this area are
still debating the important “philosophical” question
of which calculus, Ito or Stratonovich, to use in
population models!'~ there exists a set of applied
problems of immediate concern.

We will characterize the state of understanding
the area of stochastic modelling of population growth
by discussing several examples.

2.1. Density-Independent Growth

The basic equations of the Malthusian model are
either of the discrete-time type,

N(z+1)=m(t)N(2), (2.1)

where N(¢) is the population size at time 7z, m(?) is
the net growth rate at time ¢, or a continuous-time
analog

LY~ (N (). (2.2)

This model was studied by Goel and Richter-
Dyn™ Capocelli and Ricciardi,® Tuckwell,® and
Dennis and Patil'® using the Stratonovich calculus
and by Levins,"D Iosefescu and Tautu,'? and
May."? This list is not exhaustive. Leibowitz'¥ con-
sidered the same model with a special kind of corre-
lated noise. Gleit'” introduced harvesting into the
model. Gopalsamy'® introduced age-dependence.
Lewis"? considered stochastic time delays caused by
random individual maturation time. Gurney and
Misbet'® considered the case of a patchy environ-
ment. Polansky'? studied a two-niche model with
migration.

In most of the work which has been done, r(z)
has the form

r(t)=r+o0e(2), (2.3)

where r is the mean growth rate, e(¢) is the standard-
ized white noise, and o characterizes the amplitude of
the fluctuations.

Let us assume that the growth process starts with
the population size N, and we are interested in the
chances of the population size crossing a given preas-
signed level, N, < N,, which is meant as a “critical
level” corresponding to so-called quasiextinction. The
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answer is certainly time-dependent. Asymptotically,
for infinite time, these chances, P, are given by the
simple expression

p- (ﬂ)zw (2.4)

for positive r. For negative and zero value of r, the
probability is 1. Let us assume now that we want to
adopt this probability as the measure of persistence
of our population and compare it with the same
measure for the population under impact. Assume,
for simplicity, that the environmentally induced vari-
ance stays the same but impact results in a new and
lower value of the mean growth rate, r,,,. Let us
define as the measure of our impact, I, the relative
change in the probability of quasiextinction

1=t (2.5)
We have
Nc 2(rim,,—-r)/¢72
I= (Tv;) -1, (26)

Clearly, the greater the reduction in the growth rate,
the larger is the value of our index, I. What is more
interesting is that if the variance in the growth rate,
62, is growing, the index becomes less and less sensi-
tive to the reduction in 7. It is, therefore, absolutely
insufficient to measure the impact in terms of the
reduction of the average growth rate without taking
into account the level of variability. What the critical
level of quasiextinction, N,, is, constitutes another
problem which should be discussed separately. We
wish to show here only the significance of the vari-
ance in the growth rate in any reasonable criterion of
the impact. In the case of the striped bass in the
Hudson River, the survival of the first-year fishes
apparently varies 50-fold, depending primarily on the
water temperature, thus producing a hugh variance in
the year-to-year growth rate. A deterministic model
of assessment is, therefore, absolutely misleading as a
way of estimating the impact. As it has been shown
many times, with different kinds of models, even the
mean behavior of the model does not correspond to
the behavior of the mean model. This is always the
case because the population trajectory is a nonlinear
function of demographic parameters.
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Another problem appears if we look at finite-time
chances as opposed to asymptotic probability of qua-
siextinction. We have an exact impression for the
density function for the first passage time at a pre-
scribed level, N®:

slw) ]

N
g(t,—”)= exp{ —
No o2 V1? 20%

2.7

This density sums up to the asymptotic probability
given by the previous formula, [{°g(t)= P. We are
interested here in the finite integral expressing the
chances for the first passage to happen before time 7.
With this we could make up an index of impact
which will be time-dependent and answer the ques-
tion of what is the measure of the impact for a given
length of time. Without calculations it is clear that
the result will be strongly time-dependent for a rela-
tively small T, tending to our asymptotic formula
with T — oo. In cases when an impact has a finite
duration this could be a reasonable approach to take.
We can also calculate the expected time of the first
passage through the critical level, its variance, and so
on. All of these criteria, which are much harder to
calculate than the simple deterministic criteria, seem
much more informative than the latter when assessing
impact.

2.2. Density-Dependent Growth

A number of people have worked on the logistic
equation and its generalization. Levins('? obtained a
steady-state distribution for the population size. Goel
and Richter-Dyn(” and Tuckwell®® presented the re-
sults for the first passage time with implications on
the extinction problem. Levikson®” worked with the
near-equilibrium approximation of the model.

The standard form of the logistic equation is

dN N
?—-rN(l—?), (28)

where K is the carrying capacity of the environment.
In the best understood cases it is assumed that the
“noise” is concentrated in r and K is a fixed con-
stant. In this case, the equation can be transformed,
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by introducing
x=In——— (2.9)
to the simple form

Zor (2.10)

After that, the noise in r is introduced and results are
principally similar to the previous exponential growth
model. From the point of view of the probability of
quasiextinction the results can be obtained by replac-
ing the ratio (N./N,) by another expression involv-

ing carrying capacity

(%)
@. (2.11)

The more difficult case is that of random fluctuations
introduced in the carrying capacity, K. Levins('"
first, and then Goel and Richter-Dyn,” Feldman
and Roughgarden,® Levikson,?® and Turelli® con-
sidered this problem. Roughgarden®" used a dis-
crete-time model linearized around equilibrium. This
approach enables him to consider even the correlated
noise but this advantage is offset by the linearization.
It is valid only around the equilibrium,

2.3. Age-Structured Models

The problem of unpredictable variation is quite
complex when successive Leslie matrices in the classi-
cal demographic model are randomly determined.
Following Pollard®® and Sykes®® successive Leslie
matrices in the demographic equations are either
assumed independent or chosen according to a
Markov chain. In these papers and in the work of
Namkoong® the recursion equation for the mean
and variance of the age distribution was established.
Weissner®® and Athreya and Karlin® studied the
conditions for asymptotic extinction. The dynamics
of growth rates in stochastically fluctuating environ-
ments has been studied numerically by Boyce®” and
analytically by Cohen.?®-3D The most recent results
on the distribution of growth rates and extinction are
presented in the paper by Tuljapurkar and Orzack.®?

It is not our intention to discuss all these very
interesting works in detail here. We want to underline
only that there have been a lot of important things
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which have been done but it is still a wide open area
for research and, in particular, in the direction of
estimating quasiextinction probabilities which we
connect to the impact measurement. In the next
section we will attempt to outline the most important
problems which need to be resolved.

3. WHAT SHOULD BE DONE

There are a number of important problems
standing in the way of making practical use of theory.
We will identify here five of the problems which need
to be investigated. All of them can be viewed as
“independent axes” in the “space of the problems”
we actually encounter. In reality they will appear in
combinations.

3.1. Implications of Environmental Autocorrelation

In nearly all the models studied, the environ-
mentally induced fluctuations in the growth parame-
ters are assumed to be of the “white noise” sort, i.e.,
uncorrelated for any two instants in time. This is a
simplifying assumption valuable for the analytical
treatment of the problem. Needless to say, in fact,
environmental fluctuations are correlated in time.
The question is how the typical correlation time
compares with both the generation time for a given
population and the characteristic time for which the
prediction is being made. It is intuitively clear, and
can be rigorously shown, that if the time scale of our
prediction is much longer than the correlation time,
the assumption of white noise is a good approxima-
tion. This approximation will not work if the time
range under consideration is comparable to the en-
vironmental autocorrelation time. For an exponential
autocorrelation function and a simple Malthusian
growth model the question was considered in
Braumann.®® If we are interested in a short-term
prediction, positive autocorrelation will lower the
quasiextinction probability (for the fixed variance)
compared to the case of white noise. In the long run,
however, autocorrelation will not make any dif-
ference. The interesting problem is what happens in
the case of a not-sign-defined autocorrelation func-
tion, when the “typical” sequence of environmental
events has a specific temporal structure.

The available record of environmental parame-
ters involving meteorological and geophysical mea-
surements is usually much longer than the time the
populations have been observed. At least 50 years of
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environmental data were available (but not used) in
the abovementioned Hudson River case while the fish
populations have been monitored only for the last
5-7 years. We should be able to use our understand-
ing of the environmental autocorrelations, which have
more sufficient support data to improve our models
of population growth if we know how the environ-
ment affects population growth.

3.2. Impact in Finite Versus “Infinite” Time

Most of the analytically accessible results relate
to the asymptotic properties of a random process
describing population growth. The diffusion equa-
tion, describing the dynamics of the probability dis-
tribution, becomes time-independent in this case and,
therefore, easier to deal with. Unfortunately, in many
practical cases we need finite-time results. These re-
quire the consideration of the full time-dependent
diffusion model. Important examples are the cases in
which the impact has a finite and predictable dura-
tion. The power plants are often planned for a
40-50-year lifetime and, although it could seem like a
long time, it is only a few generations for some
important species of fish. Individuals of the striped
bass live as long as 20 years. The mean generation
time is about 9 years. Clearly asymptotic estimates
are not acceptable in this case and we need finite
time evaluations for all the necessary probabilistic
characteristics.

3.3. Nonlinearity and Dimension of the Models

The only models of which we have a reasonably
good understanding are quite simple. As in many
other cases, we are limited by linearity and low
dimension. It is important therefore to consider the
most important nonlinear and multiple-dimensional
models. One important multidimensional model is a
demographic (Leslie) model with age structure and
with one random parameter describing survival of the
first age class. This has the property that both fertil-
ity (number of eggs per female at a given age) and
survival parameters for adults do not fluctuate nearly
as much as does survival of young. This fluctuation
in survival of the young is the single most important
source of stochasticity.

In many cases, as with the striped bass, an
age-dependent model is a necessity. While the pro-
longed life span may seem to serve as a buffer against
environmental uncertainty, the role of age structure is
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not clear from the point of view of the extinction
probabilities.

The major source of nonlinearity in these models
is density-dependence which, to a first approxima-
tion, can be concentrated in survival of the first age
class, as has been done recently by Levin and
Goodyear.*¥ They have obtained a number of very
interesting results relating to the “chaotic” behavior
of the deterministic system.

Surprisingly, in our opinion, the addition of
stochasticity to such a system will simplify the behav-
ior as compared to that of the deterministic model.
The environmental stochasticity will break down the
fine structure of the deterministic behavior and be-
come the leading source of the observed vari-
ation.®> 36 It is not our purpose here to elaborate
more on this interesting and important topic. We
want only to stress that interaction of stochasticity
and nonlinearity, as well as increased dimension, is a
promising area which should bring a number of
interesting results relevant to applications.

3.4. Monte Carlo Computer Simulations

When problems are not tractable analytically,
computer simulations can be used to generate the
random processes with given statistical characteris-
tics. Estimation of all the necessary probabilities can
then be done numerically. Since we are dealing with
estimation of small probabilities, the computations
required for carrying out such a program are very
extensive. It is important, therefore, to develop meth-
ods which would shorten the computations. One ap-
proach is to define upper and lower bounds of the
desired probabilities based on simpler models. If the
nonlinearity, for instance, lies between two linear
functions, could we conclude that our quasiextinction
probability can be estimated by dealing with two
linear models? In general, dealing with the specific
type of equations describing population growth, we
can hope for an improvement of the Monte Carlo
methodology with respect to our particular class of
models, thus reducing the amount of necessary calcu-
lations.

3.5. Measurement, Parameter Estimation,
and Monitoring

With comparatively short, and often marginally
sufficient, periods of observation, the problems of
what to monitor become very important. The answer
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clearly depends on the type of model one has in mind
while designing a monitoring program. For previ-
ously proposed models, the measurement process
must be investigated before any practical recom-
mendations can be made.

At first it might seem that stochastic models
would require much more data than deterministic
models. This question can be answered only in each
specific context. Since extinction probabilities are
quite resistant to the changes in the statistical char-
acteristics of the process, we will not need very much
accuracy in measuring the required characteristics to
get a reasonably good qualitative judgment on the
desired probabilities. The problem of the sensitivity
of the conclusions to the means, variances, and corre-
lation parameters of the growth process is, however,
crucial for our ability to apply this methodology to
real cases.

4. ILLUSTRATIVE EXAMPLE

Consider the simplest density-dependent growth
model, the logistic equation

— =N X

dt

an (1 N), (4.1)

where we assume the carrying capacity, K, to be
constant and the mean growth rate, r, subject to
environmentally induced fluctuations of the sort de-
scribed in Sec. 2 of this paper. An analytical expres-
sion for the probability P that a population started
with initial size N, will fall, at least once, below the
actual level N, in a time T is given by the integral

T
P—fo g(¢) dt (4.2)
where
Ny (1- N, /K)

o027V
i)

o[ =22

g(1) =

N, (1I-N,/K)
20t

X exp

(43)
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We have evaluated the integral. The exact result is

P(N,,T|N,)
N (I-N/K) |
L Rt ]n(NO (I_Nc/K)) rT
==(1+
2} oaT
L[ 2 (= Ny/K) [P
| Ny (1-N,/K)

[ N,(1-N./K)
X | 1+ Erf IH[NO(I_NC/K) -
I om N
(4.4)
where
Exf(z) = %fozexp(— u?) du. (4.5)

Let us examine the probability distribution, P,
numerically using the following assumptions:

-y, = (4.6)

i.e,, initially the population is at one-half of the
carrying capacity and the critical level is chosen to be
at 10% of the carrying capacity. We choose a range of
—0.06+0.06 (units 1/time) for the mean growth
rate, r, and 0.10+0.30 as the range for variance of
the growth rate, o. Five periods of time, T=
10,50,100,10,000, 00 are examined so that the time
effect on the probability can be seen (Figs. 1-4).

As would be expected, the probability, P, of
passing once below the critical level, N,, increases
with time for each fixed r and o. The higher the
variance, the less sensitive the probability, P, to a
reduction in r, so that in 10 years (Fig. 1) the effect
could be insignificant. The longer the time, 7, the
more influential is the effect of a given reduction in r.

For r negative we can observe a seemingly coun-
terintuitive effect of the probability reduction with
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Fig. 1. The probability, P, of passing below the critical
level, N_, after 10 years.
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Fig. 2. The probability, P, of passing below the critical
level, N, after 50 years.

growing environmental variance. In reality, with
negative r a population will certainly fall below the
critical level, given enough time. Stochasticity in-
creases the chances of staying above the critical level.
Thus effect is seen only for large enough time, 7, and
strongly negative values of r. See Fig. 2 with r = —0.06
for a demonstration of this effect.

For the stable population when the growth rate,
r, is zero except for very large fluctuations the proba-
bility of quasiextinction is generally low. For this
population we present estimates (Table I) of when
asymptotic values may be used for the probability, P,
and when we must go to the exact solution. There are
two times of interest: an upper bound beyond which
the T = oo asymptotic value may be used and a lower
bound, below which the T=0 asymptotic may be
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Fig. 3. The probability, P, of passing below the critical
level, N, after 100 years.

10}
| 0'2:,
[ 0-3'
104

10°5E,

Fig. 4. The probability, P, of passing below the critical level,
N, for 10,000 years (solid line) and the asymptotic probability
(of ever passing the critical level, T = oo (broken line).

Table L.

()3 Ty
a=0.1 73 3 million
0=02 18 3/4 million
o=0.3 8 1/3 million

used. These we will denote by T, and T}, respec-
tively.

Thus, for example, for o = 0.1 the lower bound
time, T;, is 73. For all times before this, we may with
absolute error of no more than 1072 use the time
equals zero asymptotic value, P =0. Similarly, the
upper bound time, T}, is three million. For all times
greater than this, to within an error of 1072 we may
use the time equals infinity asymptotic value, P =1.
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For all intermediate times between T, and T, the
exact formula must be used. The above time ranges
show that asymptotic values are typically of no use in
environmental assessment. For the striped bass case
discussed earlier the generation time is about nine
years. We see that when the variance is high the
probability of quasiextinction is substantially above
the short time asymptotic value of zero, but below the
long time value of 1. We therefore must use the exact
equation to calculate P.

Consider now the dependence of the chances of
quasiextinction on the level N,. Clearly, the question
of how to define the level, N, is a biological one and
no a priori mathematical argument will lead to a
solution. We can however ask the meaningful ques-
tion of how sensitive are the chances of quasiextinc-
tion to this level N,. In Fig. 5 we have plotted the
quasiextinction probability, P, against the N, /K with
all other parameters fixed. It is clear that for each of
the variances, the probability, P, decreases very
rapidly with decrease in N, /K, and hence is very
sensitive to how the level N, /K is defined.

Although we do not pretend that the analysis of
this admittedly simple model can be directly applied
to a particular population, it demonstrates the impos-
tance of taking into account environmentally induced
stochasticity in estimating an impact. It stresses the
relative importance of the different parameters char-
acterizing population growth and the value of an
“impact time,” T, for which the impact is estimated.

5. CONCLUSIONS

Decision-makers should be presented with an
adequate description of risks involved in accepting
one or another of the alternative solutions of the
environmental problems. In our opinion, presenting
the probabilities of certain “adverse” events to hap-
pen under different managerial policies is the rea-
sonable and objective way to describe the limited
state of our present knowledge about the natural
populations in question. It seems likely that in many
cases, clear valid probability statements can be made
even though we may not be in a position to build an
explicit model to describe the precise path that a
population will follow. This would permit an estima-
tion of impact in a form that may under some
circumstances be of greater managerial value than
tracking the population from year to year. For exam-
ple, predicting next year’s population may be critical
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Fig. 5. The probability, P, of passing below the critical level, N,.
The critical level divided by carrying capacity at time 7= 10 for a
stable r = 0 population.

for fishery management, while estimation of the
probability of eliminating a population in the next 50
years may be critical for assessing the danger of
having an irreversible impact on an ecosystem. The
existing theoretical basis developed for the popula-
tion growth models suggests that the methodology for
such an impact estimation can be developed and
successfully applied to the analysis of real environ-
mental problems.
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APPENDIX A

We summarize here the fundamental equations
of exponential growth in a random environment. As
was remarked in Sec. 2, the exponential growth model
with noise in r is principally similar to the logistic
model, with noise in r and the carrying capacity
constant. This allows us to solve the simpler exponen-
tial model and then transform the results to yield a
solution for the logistic model.

Consider the deterministic exponential growth
equation®

ar =rN(t)

N(0)=N,, (A1)

where N(7) is the site of the population at time ¢ and
r a parameter representing growth rate. N, is the
initial population site.

Now we claim that the population mteracts with
the environment stochastically through the parameter
r as follows: replace r with r(¢) where

r(t)=r+e(2), (A.2)

r is constant and e(¢), for any fixed ¢, is a random
variable normally distributed such that

<e(t)>ave = 0
<£(t1)£(t2)>ave = 028(t2 - tl)’

where the brackets denote ensemble averages. In other
words, &(¢) is a zero average delta-correlated Gaussian
process (white noise) having spectral density o 2.

We thus have the fluctuation equation®?”

(A.3a)

(A.3b)

dN

=~ N=Ne(o). (A.4)

With the assumptions on &(¢) (A.3) it can be shown
the growth of the population is described by a Markov
process N(z) whose transitions pdf (N, t|N,) satis-
fies the forward diffusion (or Fokker-Planck) equa-
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tion:
af o 92
0<N<oo0. (A5)

The drift A(N) and infinitesimal variance B(N) of
the process are

A(N) = (r+°72)N
B(N) = a2N2. (A6)

Also as is shown in Capocelli and Ricciardi® by
means of the substitutions

O(N,1|Ny) = N(Ny /N )"

Xexp{2 }f(N tIN,) (A.7a)

Y=x +In(N/N0) (A.7b)

the diffusion equation (A.5) is transformed to

a0 _ o* 9*®

= 7y —o<y<oo (AS)

with initial condition
@(y,0150) =8(y — »)- (A9)
This can be solved, and then upon transformation

back to the population site, N, we obtain for
f (N 2 ! |N())

_ (In(N/N,) - ot)’
20t

1 1
f(N’thO)—O’JZ— N

(A.10)

The above equations, with more detail may be
found in the interesting paper by Capocelli and
Ricciardi.®

APPENDIX B. QUASIEXTINCTION
PROBABILITIES

The problem of quasiextinction is equivalent to
the mathematical problem of first-passage time. The



180

following simple argument®” demonstrates that the
first-passage time problem associated with a certain
diffusion process is solvable by adding to the initial
condition (A.9) the following boundary condition:

F(N.,£|N,)=0, allz. (B.1)

Define 7, to be the time to first reach the boundary
N,. This first-passage takes place at times which vary
from realization to realization, so that the first-pas-
sage time

T,=t,—1t (B2)

is a random variable.
Let the region under consideration be the inter-
val

N, N<oo,

where N(¢) is a Markov process with initial distribu-
tion

(N, 15| Ny) =8(N - N,). (B.3)

To calculate (T},),,. we exclude any realization of
the random process N(¢) as soon as it takes the
boundary value N, for the first time. We describe the
remaining realizations by a probability density
f(N, t|Ny) such that

AW = f(N,1|N,) dN + O[(aN)]| (B4

is the probability that at time ¢, the process N(t)
takes a value in the interval [7,, z]. Then the integral

W(t)=fswf(N,z|N0)dN (B.5)

gives the probability that N(¢) never reaches the
boundary during the time interval [z, 7).
Initially we have

W(ty) =1 (B.6)

since no realization could have reached the boundary,
N, in the first instant the process begins.

Within the interval [N, oo] the probability den-
sity, f(N, t|N,), is governed by the Fokker—Planck
equation (A.5) described in Appendix A, since no
trajectories terminate, and, hence, be excluded inside
[N,, o). Near the quasiextinction level, N, however,
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practically all trajectories reach N, and must be ex-
cluded. Hence, the probability density f(N,?|N,)
vanishes on the boundary

f(N,, tIN;) =0. (B.7)

Let P(r) be the probability that the quasiextinc-
tion level is first reached during the time interval
[2y, T]. Then we have

P(1) =w(t,)-wW(T) (B.3)

or

P(t)=1—fN°°f(N,t|No)dN. (B.9)

Upon substitution of f(N,#|N,) for the exponential
model (Appendix A) with the additional boundary
condition (B.1) we obtain for the chances of quasiex-
tinction:

P(T)——-%[1+Erf[w]

oV2T
N 2r/v:2 N_/N
+(—£) 14 Erf| RN/ No)+ 1T
Ny oV2T
(B.10)

where

Erf(z) = %fozexp(— u?) du.

The asymptotic values when T — oo are:

r<0
lim P(T)=

T o0 {(NC/N(,)”/"Z r>0’

(B.11)

Note that we are considering the case N, < N,, ie.,
quasiextinction.

Now the transformation to the logistic model is
made by the substitution in all of the results

N N (1- N, /K)
No Ny (1-N/K)’

The above transformation is proper only for N, and
N, less than K.
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