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Summary

1. Many species of forest Lepidoptera have cyclic population dynamics. Although
there are numerous potential causes, including interactions with predators, para-
sitoids, pathogens, and food-plant quality, strongly density-dependent interactions
are often difficult to demonstrate. Both autocorrelation analysis and attractor—
reconstruction methods have recently been applied to a number of species’ time
series. Results suggest that complex dynamics, i.e. cycles or deterministic chaos,
may be more prevalent than once thought, and that higher-dimensioned models are
necessary.

2. We develop a two-dimensional difference equation model that relates the
average quality of individuals to patterns of abundance. The delayed density
dependence is caused by transmission of quality through generations via maternal
effects. We show that the maternal effect model can produce patterns of population
fluctuations similar to those displayed by one class of host—parasitoid models.

3. We review empirical evidence for maternal and quality effects in dynamics of
forest Lepidoptera. We fit the maternal effect and delayed logistic models to six
species of forest moths for which delayed density dependence and maternal or
quality effects have been found. The maternal effect model was a good predictor of
the period of the oscillations for the species that we examined. We discuss why
models of this type give better fits to moth cycles than do first order models with
added delays.
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Introduction

Ecologists generally recognize two groups of animals
as including species with cyclic population dynamics:
small mammals (and their predators) and forest
insects. Among the insects the most striking
examples are from Lepidoptera of the temperate
zone. A recent review (Myers 1988) lists 18 forest
moth species whose population densities are known
to oscillate. Unravelling the causes of such oscil-
lations is not only of theoretical but also of practical
interest, since many of these moths are economically
important forest pests.

In one sense, of course, we know what causes
population cycles: true oscillations can only arise via
density-dependent regulation, and only if such regu-
lation involves a time delay (Hutchinson 1948;
Caswell 1972; May 1973). In other words, the system
oscillates only if there are delayed negative feedbacks
(Berryman 1987). In univoltine insects, like moths
of the temperate zone, we expect that regulatory

processes will involve time delays; this allows such
systems to be modelled with difference equations
(Royama 1981). However, the role of density depen-
dence in population regulation remains controversial
(e.g. Wolda 1991; Berryman 1991) despite the
suggestion that the long-term persistence of popu-
lations by itself implies some form of regulation
(Royama 1977).

Are forest Lepidoptera regulated by density-
dependent processes? For animal populations in
general, the answer to such a simple question seems
to be nearly as elusive today as it was decades ago.
There are several methods available with which one
can test for density dependence, but all apparently
have inherent problems when applied to available
data. One can, for example, analyse life-table data
(Dempster 1983) using methods originally formu-
lated by Morris (1959) and modified by others.
Alternatively one can look for density dependence
in a time-series (Bulmer 1975; Pollard, Lakhani &
Rothery 1987). Such tests have intuitively simple
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logical bases but suffer from statistical difficulties
(Solow 1990). When applied to forest moths, results
of these methods are often mixed. For example,
reviews of published life tables by Dempster (1983)
and by Stiling (1987, 1988) were done specifically to
assess the evidence for regulation in moths and
other insects. Both authors reached similar con-
clusions, i.e. that the majority of species have no
clearly demonstrable density-dependent regulatory
factor. The earlier paper by Stiling was specifically
concerned with the effects of parasitoids, an often-
invoked explanation of moth cycles. Dempster’s
analysis (of 24 Lepidopteran species) suggested that
the few cases of parasitoids acting as regulating
agents were equivocal at best, and that all other
forces shown to be density-dependent (reduced
fecundity, starvation) involved intraspecific compe-
tition, which would only be important when the
population approached the carrying capacity. In
view of their results, both authors suggested that
‘ceiling’ models might be more appropriate for de-
scribing insect dynamics. Other factors besides
natural enemies have been suggested as possible
cases of moth cycles, for example changes in food-
plant quality (Rhoades 1985 ), but again the evidence
is most often equivocal (Myers 1988; Larsson 1989).

In contrast, recent statistical analysis of insect
time-series suggests that many species are affected
by some form of delayed regulation. Two studies
have addressed the question of whether or not insect
time-series are indicative of complex dynamics, i.e.
cycles or deterministic chaos. Witteman, Readfern,
& Pimm (1990) used autocorrelation analysis and
attractor reconstruction methods to analyse a
number of vertebrate and invertebrate time series.
Turchin (1990) used partial autocorrelation functions
and a general second-order nonlinear model to
analyse time-series from 14 insect species, nine of
which were forest moths included in the Dempster
and Stiling papers. Turchin (1990) found that seven
moth series had partial autocorrelation functions
characteristic of a second-order autoregressive
process. In other words, while it might be true that
usual life-table regression methods did not detect
any apparent regulation, such regulation was operat-
ing but with a lagged effect. Witteman et al. (1990)
drew the same conclusion. They showed that several
species’ time-series indicated a low dimensional at-
tractor, usually two or three dimensions being suf-
ficient to embed the system. Further analysis by
Turchin & Taylor (1992) supported this conclusion.
The importance of delayed regulation has been dis-
cussed before, both theoretically and in individual
cases (e.g. Varley 1949; Royama 1977; Hassell 1985;
Berryman 1987; Murdoch & Reeve 1987), but
Witteman ef al. (1990) and Turchin (1990) were the
first to broadly apply analytical methods of time-
series analysis for the sole purpose of determining
the proper dimension with which to begin modelling.

Turchin & Taylor (1992) then took the next logical
step in applying time-series modelling to populations
with delayed regulation; they used response-surface
fitting to reconstruct the dynamic patterns of these
species. Other researchers working with moths sub-
sequently applied Turchin’s (1990) methods to test
for delayed density dependence in insect time-series
(Liebhold & Elkington 1991; Woiwod & Hanski
1992).

It must be mentioned here that the results dis-
cussed above must be interpreted with some caution.
The reason for this lies in the nature of the data
sets being analysed: ecological time-series are not
only inherently ‘noisy’, but are also usually of such
short duration that it is difficult to draw conclusions
with much statistical significance. For example,
Ellner (1991) demonstrated how a short, noisy time-
series involving simple density dependence might
resemble deterministic chaos when the attractor-
reconstruction method is used with arbitrary time-
lags. Methods exist for detecting a chaotic signal
from a noisy time-series (Sugihara & May 1990), but
again the available series are usually too short for
such techniques to be reliable (Turchin & Taylor
1992). However, this limitation of the size of avail-
able data sets cuts both ways in the debate about
density dependence: for example, the results of both
Dempster (1983) and Stiling (1987, 1988) have been
shown to be prone to Type Il errors (Hassell, Latto
& May 1989; Woiwod & Hanski 1992). One point
seems, to us, to be both clear and of great import-
ance: although constructing an actual attractor may
be problematic, the dimension with which to begin is
often greater than one, with two dimensions usually
sufficient to embed the system. With univoltine
species (which have natural time-lags in multiples of
1 year), it is not likely that truly first-order dynamics
will resemble a second-order process unless the
population is subject to external noise that is auto-
correlated (Royama 1981).

Why is dimension so important? Consider simple
one-dimensional models of the form

Nivr = NE(NY), eqn 1

such as the well-known logistic or Ricker equations.
Ecologists are aware of the fact that such one-
dimensional discrete models can display complex
behavior, e.g. cycles with period 2, 4, 8, .. =2*
followed by deterministic chaos (May 1976;
Lauwerier 1986a). In contrast, assume that the popu-
lation is regulated by factors other than density N,.
In two dimensions:

Ny = fo(Xr)
XH—l = CP(NI,XI)'

eqn 2

Eliminating X,, equation 2 can be written in time-
delay form:

Nivr = NF (N,N_y). eqn 3
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The delayed effect of N,_; on N,, can be caused by
a variety of mechanisms, such as interactions with
predators and parasites, age distribution, or delayed
effects of some other environmental variable, for
example the quality of food plants.

The behaviour of equation 3 can be quite different
from that of equation 1 (Levin & May 1976; Pounder
& Rogers 1980; Royama 1981; Lauwerier 1986b).
For example, equation 3 can often display cycles
with any biologically realistic values of the par-
ameters, and the cycle period may not progress
through numbers in the sequence 2; in principle, all
values (including irrational and fractional) are poss-
ible (Beddington, Free & Lawton 1975; Lauwerier
1986b). The important point for our purpose is that
lower values of the parameters are necessary for
cycles as the dimensionality of the model increases
(Guckenheimer, Oster & Ipatkchi 1977).

With the proper dimension known, one can use a
linear approximation (i.e. a p-order autoregressive
model) for short-range prediction (Royama 1977),
and methods such as Turchin & Taylor’s (1992)
response surface fitting seem to be fairly successful
in predicting when one should find limit cycles or
deterministic chaos. However, reconstructive
methods do not help us determine the biological
nature of the significant higher dimensions.

In our view, the results of Turchin (1990), Turchin
& Taylor (1992) and Witteman et al. (1990),
when coupled to those of Stiling (1987, 1988) and
Dempster (1983) present something of a conundrum.
On the one hand, there is good evidence that a
biologically important second dimension exists in
many univoltine insect species. On the other hand,
strongly density-dependent trophic interactions are
often difficult to demonstrate, whether that inter-
action is with natural enemies (Hassell 1985) or with
food plants (Myers 1988; Larsson 1989).

In this paper we offer a two-dimensional model
that does not involve a trophic level interaction, yet
is based on a well-known aspect of the biology of
forest moths. Our proposed second dimension is the
average quality of individuals within a population.
The model differs formally from other population
quality models in that the transmission of quality
between generations is via maternal inheritance. In
our analysis of the model we show explicity that
maternal effects can produce cycles that might be
indistinguishable from those caused by a host—
parasitoid interaction. We review evidence from
empirical work suggesting that maternal quality
effects are important regulatory forces in moth popu-
lations. Finally, we fit the maternal effect model to
empirical data from six species of forest moths. The
model is shown to be a very good predictor of the
cycle period for all the species that we examined.
We give a simple mathematical argument for why
models of this type give better fits than first-order
models with time delays.

The Model

The assumptions

1. Fecundity of females, and the survival of im-
matures to adulthood, are functions of individual
quality. Normally this quality will relate to energy:
the amount that a female moth has stored for repro-
duction, or the average size or weight of larval/
pupal stages. However, other quality measures can
be used; these might include the level of viral or
protozoan parasites transmitted transovarially,
or the level of disease resistance in immatures due
to maternally influenced physiological vigour.

2. Offspring quality is a function of maternal quality.
In other words, there are maternal effects.

3. Average quality is influenced by population den-
sity in the current generation. This can result from
intraspecific competition for limited resources, or
from other effects in the current generation, for
example shifts in food quality due to high levels of
herbivory.

The exact way in which the average individual
quality is measured need not concern us here; some
simple measures might be the dry weight of female
pupae, or the caloric content of individuals exploded
in a calorimeter. Our requirement is simply that
mother—daughter relationships can be made, and
that fecundity can be expressed as a function of the
quality variable. Hereafter, for the sake of brevity,
we will refer to average individual quality simply as
‘quality’.

The equations reflecting the above assumptions
have the form:

Nevr = Nif(x))
Xerr = (X Nievy)s

eqn 4

where f is a monotonically increasing function of x,
and describes the net reproductive rate of an indi-
vidual of quality x, and @(x,, N,.) is an increasing
function of x (the maternal effect) and a decreasing
function of N, (as intraspecific competition for
resources increases). Note that the argument N of
the second equation is evaluated at the same gener-
ation as x on the left side of the equation. This is due
to our assumption that quality is affected by density
in the current generation. Mathematically, as will be
seen, this is a crucial assumption of the model. In
this respect equation 4 differs from usual discrete-
time population models where the variables N and x
would be interpreted as densities of interacting popu-
lations (Beddington, Free & Lawton 1976). Note
that the model can be rewritten in the time-delay
form in equation 3 by substituting the right side of
the first equation for N,y in the second equation,
then eliminating x,.

In the absence of the maternal effect ¢ is indepen-
dent of x, and equation 4 reduces to the form of
equation 1, with
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F(N) = f(¢(N)).

Thus, the presence of the maternal effect creates the
delayed density dependence. Equilibrium density
and quality N*,x* can be found as the roots of

fGx*) =1
@(x*,N*) = x*,

The model in equation 4 is analysed (see Appendix
1) by the method of local stability analysis. As
shown, two parameters,

a=q,>0
and
b = —frpyN* >0

where subscripts refer to partial derivatives evalu-
ated at equilibrium, control the dynamic behaviour
through the roots of the characteristic equation

M—-—(Q+a—br+a=0.

Properties of the model

In analysing equation 4 it will be convenient to
discuss a specific example. Consider the following
parameterization:

Xt

N,+1 = N\R eqn 5
t+1 t k +xr q
S/N,
Xiv1 =x,M_—"L1—
p + SIN

The parameter R represents the maximum repro-
ductive rate given any quality x, and M is the maxi-
mum possible increase in average quality. Constants
k and p control the rates of increase to the asymp-
totes R and M. The $ term represents the total
amount of resource available in the environment;
we assume that this is constant each generation.

We divide the numerator and denominator of
equation 5 by S; then by expressing N and x in the
appropriate units we can eliminate the other two
parameters k and p so that equation 5 becomes

Rx,
N, = eqn 6
t+1 tl +x’ q
M
Xip) = Xy0———
T 4 N

Stability analysis of equation 6 shows that non-
damping oscillations occur whenever the parameter
R is greater than unity, assuming that M is also
greater than unity. The period of the oscillations in
the linearized form of equation 6 is a function of

b=(1—1R)L - 1/M).

Thus, if M >> 1 the length of the period is determined

only by the maximum rate of increase R. In this

model low values of R lead to longer cycles.
Figures 1 & 2 show some typical behaviour of
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Fig. 1. Typical behaviour of the maternal effect model
(equation 6) shown in time-series plots: (a) R=1-3,
M =10; (b) R=3-0, M =10.
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Fig. 2. Typical phase-plane portrait of the maternal effect
model 6, shown in logarithmic scale. Each ellipse corre-
sponds to a unique set of initial conditions. Note the
formation of ‘island chains’ for some initial values.

model 6 displayed in both time series and phase-
plane plots. As can be seen from the phase diagram,
the cycles are neutrally stable, i.e. the amplitude
and period of the cycles are dependent upon initial
conditions. In this way, equation 6 is similar to
the familiar Lotka-Volterra predator and prey
equations, and also to several other two-dimensional
models (Beddington et al. 1975; Anderson & May
1980; Lauwerier & Metz 1986). The cycles usually
have fractional values for the period, and the system
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is not precisely periodic, as in a continuous model.
Note also in the phase diagram the formation of
‘island chains’ for some initial conditions, a feature
common to this type of two-dimensional discrete
map (Lauwerier 1986b; Lauwerier & Metz 1986).

Models that generate neutral cycles are of course
pathological from a biological viewpoint (May 1976).
Modification of equation 6 to produce true ‘limit’
cycles can be done in any number of ways by adding
one or more parameters. Available data do not
allow us to distinguish between different modifi-
cations, but our main conclusions do not depend on
the exact form of the functions. A functional sensi-
tivity analysis that begins with model 6 is given in
Appendix 2.

In comparing the behaviour of the maternal effect
model to that of other published two-dimensional
discrete models, we found that similar dynamics are
produced by the following class of host-parasitoid
equations:

Ny = )\Nrf(P/)
Pryy =N — 1\ Ny

eqn 7

where N is host density, P is parasitoid density, A is
the maximum per capita increase per generation in
the absence of parasitoids (analogous to R in our
model) and f(P) is a decreasing function of P. The
above general form was developed in Hassell & May
(1973); further analysis can be found in Lauwerier
(1986b) and Lauwerier & Metz (1986).

Models 6 and 7 have in common several properties
of biological interest. First, and perhaps most im-
portant, is that cycle periods have an absolute mini-
mum of six. This result was stated as a theorem by
Lauwerier & Metz (1986) for equation 7; we extend
this result to models of the form of equation 6,
given certain restrictions on functions f and ¢ (see
Appendix 2). The minimum six-cycle is in perfect
agreement with observation: to our knowledge no
forest moth has a period less than six (Myers 1988),
in contrast to mammalian cycles.

Second, in both models cycle periods decrease as
the growth parameters (R and 1) increase. This pat-
tern is opposite to that of some other delay models
such as the discrete predator—prey (Beddington,
Free & Lawton 1975) or delayed logistic (Levin &
May 1976), for example (Taneyhill 1993).

Empirical evidence

QUALITY AND MATERNAL EFFECTS IN
MOTHS

Population quality as a factor in the dynamics of
moth populations is generally known from the work
of Wellington (1957), who studied the western tent
caterpillar Malacosoma pluviale. Larval tent cater-
pillars could be classified into various types, depend-
ing on the amount of yolk provided by the female

moth. These larval types displayed large differences
in their survival, behaviour, disease resistance and
dispersal ability (Wellington 1960). The survival and
eventual fecundity of the larval forms was influenced
by maternal quality. The highest quality larvae (Type
I in Wellington’s terminology) laid more eggs, and
more of the high-quality type, when all larval types
were fed to repletion (Wellington 1965).

The biology of the tent caterpillar is in broad
outline typical of many forest Lepidoptera. Females
generally lay clutches that number in the several
hundreds. The first eggs laid often receive a dis-
proportionate amount of yolk, and quality of the
larvae often depends on the amount of maternal
provisioning. Larval quality influences factors such
as weight at pupation, which affects subsequent
fecundity (Szujecki 1987).

Researchers working with other forest moths and
insects found Wellingtonian effects in their species
as well. Greenblatt & Witter (1976) found the same
kind of larval quality types in the tent caterpillar
Malacosoma neusstria; Campbell (1962), working
on the spruce budworm Choristoneura fumiferana,
found larval quality effects associated with various
forms of the maternal X-chromosome. Campbell’s
work recalled some earlier study by European re-
searchers who noticed different larval or adult moth
forms associated with forest insect outbreaks; for
example, Franz (1941, 1942, 1965) with the budworm
Choristoneura (= Cacoecia) murinana, and Engel
(1942) with the pine looper Bupalus piniarius. As
did Greenblatt & Witter (1976), Laux (1962) found
different larval types associated with outbreak and
non-outbreak populations of Malacosoma neusstria.

Differences in larval quality forms within outbreak
populations have also been seen in another forest
insect, the sawfly Acantholyda nemoralis. Novikova
(1969) described two forms of sawfly in this species:
an early form with larvae less susceptible to natural
enemies, and a late form that had more rapid repro-
duction and a higher proportion of females. Pro-
portions of the two forms in the population changed
as numbers approached outbreak levels. Sawflies, it
should be noted, are the major forest insects be-
sides lepidopterans that display cyclic or outbreak
dynamics (Larsson & Tenow 1984).

Recently there has been renewed interest in the
Wellingtonian ideas. Myers (1990), working with
Malacosoma, has shown that transplanted tent cater-
pillars tend to oscillate in phase with the parent
population. Rossiter 1990, 1991a,b) has made quan-
titative genetic studies of the gypsy moth Lymantria
dispar in regard to maternal effects and population
regulation, and has suggested that maternal effects
are an important factor in the cause of outbreaks
(Rossiter 1991c).

It is worthwhile here to mention the gypsy moth in
greater detail, since it is this species that has perhaps
been most extensively researched with regard to the
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type of effects that we discuss in the model. We have
found in the literature evidence for all of the relation-
ships postulated by the maternal effect equations.
For example, Rossiter (1990) found that larval
quality and various life-history traits were influenced
by the amount of maternal provisioning (function
@(x)), and that the rate of larval development was
influenced by density in the current generation
(function @(N,+)). The last result was also found by
Campbell (1978). Capinera & Barbosa (1976), in
laboratory studies, found that larvae from small eggs
go through more instars and lay more, smaller eggs
(function f(x)); they discuss the Wellington hypoth-
esis. Finally, both Lance, Elkington & Schwalbe
(1986) and Leonard (1970) proposed population
quality hypotheses for the gypsy moth; for example,
from Leonard: ‘Evidence is presented to suggest
that the gypsy moth . . . is numerically self-regulating
through a shift in quality of individuals induced by
changes in nutrition.’

More discussion of empirical research on maternal
and quality effects may be found in the next section,
which considers moth species individually.

MODEL FITTING

In this section we fit the maternal effect model to the
moth species listed in Table 1. We chose species on
the basis of the following criteria: (i) only univoltine
forest moths were considered; (ii) at least one refer-
ence for each moth has suggested that the species is
regulated by delayed density dependence; (iii) quality
and/or maternal effects have been suggested or
demonstrated for each species; (iv) a time-series
exists for that species that is adequate for use in
estimation of model parameters.

(Some readers may wonder why we did not choose
to include the larch moth Zeiraphera diniana in our
analysis. The reason was that we had a priori evi-
dence that Z. diniana should be described by a
higher order model (Royama 1977; Turchin & Taylor
1992), with N,;, a function of N,,N,_,, and N,_,.
We will comment further in the Discussion section).

As a contrasting two-dimensional non trophic-

level model, we also fit the data to the well-known
delayed logistic equation:

Niv1 = Nexp(ro(l — Ni—(/K) eqn 8

This model has been recommended as an all-purpose
model for univoltine species affected by delayed
density dependence (Berryman, Millstein & Mason
1990).

Estimation of Parameters

Before fitting the models to empirical data we must
discuss several potential pitfalls. To our knowledge
there are no experimental results that would allow
us to make independent parameter estimates for the
f and o functions. The alternative is to take advan-
tage of the embedding theorem of Takens (1981) for
generic dynamic systems and use lagged densities as
the predictor variables, i.e. rewrite the model so
that N, is a function of N, and N,_;. This method
of parameter estimation is very convenient but con-
tains its own problems (Morris 1990). In fitting a
non-linear model to the data the difficulty of conver-
gence of an iterative regresion procedure increases
with the dimension (i.e. the number of parameters).
For the maternal effect model this is more of a
problem than for the host—parasitoid model in which
the growth parameter A does double-duty. In ad-
dition the predictor variables, being lagged densities,
will contain errors of the same magnitude as those of
the response variable, violating one of the major
assumptions of regression analysis.

With these caveats in mind, we proceeded
as follows. We fit model 6 in its time-lag form
(Appendix 1) via a non-linear iterative regression
(Procedure NLIN of SAS, SAS Institute 1989).
Since the dynamics of the model are only weakly
dependent on the parameter M when M > 1, we
concentrated on estimating the parameter R. For
some series the iterative procedures used by NLIN
did not easily converge. In these cases we used the
one-parameter model

Niy1 = RN(1 + N,_; — 1/RN)"! eqn 9

Table 1. Predicted dynamics of six species of forest moths, using model 11. Superscripts refer to references from which the
parameter R was estimated by the non-linear regression method. Parameters B,Xmin, and M estimated by computer

simulation

Species Ref.* R M Xenin § T (predicted) T (actual)
Choristoneura fumiferana 6 1-34 2-0 0-02 1-005 34 30-38
Hyphantria cunea 4 1-64 275 0-5 1-0025 12 11-8
Lymantria dispar 2 4-05 12-0 0-03 1-0025 7-8 7-8
Epirrita autumnata 1 4-68 3-0 0-04 1-0025 9 9
Bupalus piniarius 5 4-8 2-5 0-0375 1-0025 8 8

Acleris variana 3 512 5-0 0-02 1-005 7-8 7

* References: 1, Andersson & Jonasson 1980; 2, Bess 1961; 3, Morris 1959; 4, Morris 1964; 5, Schwerdtfeger 1941;

6. Royama 1984.
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Table 2. Predicted dynamics of forest moths, using the time-delayed logistic model N, =N, exp(ro(1 — N,—/K)).
Parameters estimated by a linear regression using the same time series as in Table 1

Species o K Predicted dynamics
Choristoneura fumiferana 0-325 65 Stable
Hyphantria cunea 0-415 5:53 Stable
Lymantria dispar 1-32 2620 7-cycle
Epirrita autumnata 1-54 178 8-cycle
Bupalus piniarius 0-308 154 Stable
Acleris variana 1-13 141 6-cycle

which, we found converges to values quite close to
those estimated from equation 6. Equation 9 corre-
sponds to equation 7 with the function f(P,) equal to
(1 + P,); it would describe a neutrally stable host—
parasitoid model. For the delayed logistic, we used a
linear regression of the log rate of change r, =
log.(N,{/N,) as a function of N,_; to estimate the
parameters rpy and K.

Model 6 is, of course, neutrally stable; thus the
amplitude, and to a lesser extent the period of the
resulting cycles will be dependent on initial con-
ditions. Since we do not have data to suggest the
proper functional form for ¢(x,N) we adopted
alternative procedures. First, the estimates of R
from the above method were used in simulations of
equation 6. The initial conditions were varied until
the amplitude of the resulting oscillations matched
the observed amplitude for each species’ cycle. The
reported period of the cycle was then read from the
simulation. This method sacrifices possible compari-
sons of amplitude in order to test predicted period of
the cycles. True limit cycles can be generated by the
model

Ny = N o eqn 10
1+ x
M
Xr+1 = Xt 1+ Ny
Xt = Xmin

which adds the assumptions that the maternal effect
is not linear and that there is a lower limit to the
average individual quality. This model is biologically
more realistic but is not everywhere differentiable;
thus, we used simulations to estimate the new par-
ameters Xy, and .

We compared published values for the period of
each species to those predicted by both the maternal
effect and delayed logistic models. Results of the
analysis are shown in Table 1. Below we briefly
discuss each moth individually.

Choristoneura fumiferana. The spruce budworm,
with its long-period oscillation (Royama 1984) is one
of the most interesting cases of all the known cyclic
moths. Population quality effects for this moth have
been noted by Campbell (1962), who found vari-
ations in fecundity, egg size and egg weights corre-

lated with several forms of maternal X-chromosome;
Neilson (1963) studied disease resistance and physio-
logical vigour in this species; Thomson (1958) found
that microsporidian parasites could be transmitted
transovarially.

Royama (1984) has concluded that the survival of
late instar larvae is the factor driving oscillations in
C. fumiferana. Suggested causes of the oscillating
mortality in old larvae were parasitism and an
unknown ‘fifth agent’.

The long cycle period of C. fumiferana makes
estimation of the parameter R somewhat difficult,
since we only have census data for slightly less than
one cycle (Morris 1963; Royama 1984), and this
time-series actually consists of two from different
localities. The regression converged to values of
1-05 and 2-54 for the two parts of the data set. The
true value is probably somewhat between these two
extremes. Turchin (1990) used the following general
model for the purpose of extracting the proper
dimension from a time-series:

Nev1 = Nexp(rg + Ny + aoN,—1) eqn 11

Using log-transformed data, equation 10 estimated
ro as 029 for C. fumiferana, or R=1-34. This is
almost identical to the estimate from the logistic
model and, in addition, to the weighted mean of the
estimates from the two parts of the time-series by
the maternal effect model (1-38 and 1-3, respectively;
see also Fig. 3b). The logistic equation predicts
stability for the budworm.

The estimate of R for this species is quite interest-
ing in itself, being quite low for the intrinsic rate of
reproduction for an insect. One possible explanation
is that the budworm is simply tracking changes in the

. quality of its food plant, which happens on a slow

time-scale (Ludwig, Jones & Holling 1978), making
the time-series look like a long-period linear oscil-
lator (Royama 1977).

Hyphantria cunea. Historical records indicate that
the fall webworm has been cycling for more than a
century with an average period of about 12 years
(Morris 1964). This is exactly what is predicted by
the maternal effect model. Quality effects on popu-
lation dynamics of the webworm have been docu-
mented by Morris (1971, 1976). An important part
of this work was the demonstration that the web-
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Fig. 3. Two models of delayed density dependence for the
spruce budworm data (Royama 1984). (a) Logistic-type
model with delay in which the log rate of change is a
function of log density in the previous generation.
(b) Oscillator type model in which the change in log rate of
change (second difference of the log) is a function of log
density. The slope estimates (2 — k)InN(t); i.e. the ordinate
has 2 x InN(t) added so as not to confound errors by also
having InN(¢) in the dependent variable.

worm larvae’s ability to encapsulate parasites was a
function of larval quality (Morris 1976). The delayed
logistic equation predicts stability for the webworm
also.

Epirrita autumnata. Both quality and maternal ef-
fects have been demonstrated in the autumnal moth
(Haukioja & Neuvonen 1985, 1987). Althugh avail-
able time-series are quite short (Andersson &
Jonasson 1980), there is an extensive record of out-
breaks (Tenow 1972), and analysis of the outbreak
pattern confirms the 9—10 year period (Haukioja
et al. 1988). While the maternal effect model does
predict the correct cycle period, the value from the
logistic equation is only one less (see Haukioja et al.
1988).

Bupalus piniarius. The pine looper is a well-studied
moth in Europe, with a number of available time-
series (Schwerdtfeger 1941; Klomp 1966; Barbour
1988). Analysis of numerical records of B. piniarius
suggests that the pine looper is regulated by strong
delayed density dependence (Barbour 1988). The

fecundity of female moths is a function of pupal
weight, and the density of larvae influences the
average weight at pupation (Klomp & Gruys 1965).
The density of larvae in one generation has been
shown to affect the survival of eggs and larvae in the
next generation (Klomp 1966). Weights of female
pupae oscillate of eggs and larvae in the next gener-
ation (Klomp 1966). Weights of female pupae oscil-
late slightly out of phase with the oscillations in
numbers, with peak average weight preceding a
population peak (Barbour 1988).

For our analysis we used the data of Schwerdtfeger
(1941), which is one of the longest moth time-series
available. The data are those reported by Varley
(1949), the original data unfortunately being appar-
ently lost. It is generally agreed (Den Boer 1990)
that any inaccuracies in the data as reconstructed by
Varley (1949) are random with respect to the precise
values of the original data set. Turchin’s (1990)
partial autocorrelation analysis clearly indicated a
second-order process apparent in the Schwerdtfeger
data.

Analysis of this data set for B. piniarius illustrates
the relevence of the maternal effect and other
second-order models to the resolution of the current
debate on the detection of density dependence
(Berryman 1991; Wolda 1991; Reddingius & Den
Boer 1989). The same time-series analysed by us
and by Turchin (1990) has been thoroughly studied
by Den Boer (1990), using the best available statisti-
cal methods for detection of density dependence in a
series of population censuses. This analysis suggested
that inferring density-dependent regulation from
Schwerdtfeger’s data was at best problematical.
However, all of the tests used by Den Boer (1990)
assume that the data are from a first-order Markov
process; i.e. the regulation is direct, not delayed.
But as Turchin’s (1990) analysis has shown, that
data strongly suggest a second-order process.

Acleris variana. The black-headed budworm is one
of the first organisms for which delayed density
dependence was demonstrated (Morris 1959); more
recent analysis confirms the original conclusion
(Berryman 1986; Turchin 1990). Morris’ (1959)
analysis suggested that the delayed regulation was
caused by parasitoids. Varley, Gradwell & Hassell
(1973), however, have shown that delayed regulation
is actually stronger for another unknown cause;
thus, we include A. variana in the analysis. Even if
the regulation is entirely due to the action of para-
sitoids, the maternal model should fit the dynamics
if the interaction with the parasitoid can be described
by equation 7.

Lymantria dispar. The gypsy moth has perhaps been
the most well-researched moth with regard to quality
effects (Leonard 1970; Capinera & Barbosa 1976;
Capinera, Barbosa & Hagedorn 1977; Lance et al.
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1986; Rossiter 1990, 1991a) and maternal effects
(Rossiter 1991b). Maternal effects on quality have
been demonstrated via mother—daughter plots of
a quality variable (Rossiter 1991b). Discussion in
Lance et al. (1986) and Rossiter (1991c) could be
considered as verbal descriptions of the maternal
effect model. Note that the logistic model also pre-
dicts the correct period.

Summary

The maternal effect model predicts cycle periods
that are close to the observed value for all six
species. The logistic model predicts stability for three
species. Of the remaining three, two (A. variana
and E. autumnata) are predicted to cycle with
periods 1 year less than the observed value. Both
models accurately predict the period for Lymantria
dispar.

The computer simulations yielded two new pre-
dictions. First, only a very small bit of non-linearity
in the maternal effect is necessary to induce limit
cycles. Second, the parameter M often seems bio-
logically realistic, being usually around 2-3, i.e.
one order of magnitude in the natural logarithm.

The results strongly suggest that a maternal effect
model would be a better predictor of the dynamics
than would a logistic-type model with a time delay.
As we have stated above, a host—parasitoid model
of the form of equation 7 should be able to do as
well. Clearly, there is something in the mathematical
form of the two models that more realistically de-
scribes the dynamics. We offer the following argu-
ment for why this is so.

Throughout this paper we have used the terms
‘cycle’ and ‘oscillation’ interchangeably. Most popu-
lation biologists might do the same. Let us return,
however, to a statement made above concerning
models 6 and 7: the fact that the period of the cycles
increases as the value of the growth parameter
decreases. In logistic models the opposite is true:
increasing r increases the period of the cycles. An
approximation to models 6 and 7 can be written as

N[ N
= f(N,
= o

which in words means that the population density N,
affects the change in growth rate (not density)
(Ginzburg 1993). The above equation with popu-
lation densities expressed in logarithmic scale can be
written

Nyy — 2Ny + Nioy = —kN,

which is a discrete analogue of the familiar dif-
ferential equation for an undamped linear oscil-
lator (e.g. a mass on a spring with no friction).
The parameter k represents the magnitude of the
effect that the population density has on change in
growth rate; it is analogous to a restoring force in

our physical analogy. This is how the growth par-
ameters affect cycles in the maternal and host—
parasitoid models. But since in logistic models with
delay the opposite is true, these models are not true
‘oscillators’ in the above sense. As Fig. 3 suggests,
oscillator models should yield better statistical fits
for the species we discuss.

Discussion

The possibility of natural populations undergoing
complex dynamic changes has been discussed ever
since the discovery that even the simplest models
can display chaotic behaviour (May 1976). Finding
cases of complex dynamics in the real world, how-
ever, has proven to be a more difficult task. Why
should this be? In our opinion two issues —
dimensionality and mechanism — are crucial to our
understanding of populations as dynamic systems.

Regarding dimension, almost all ecologists are
aware of the study of Hassell, Lawton & May (1976),
the first attempt to fit a number of species to a non-
linear model and determine whether that species
should be stable, oscillatory or chaotic. The well-
known result, now reproduced in several textbooks,
was that virtually all of the real-world populations
had parameter values placing them within the expo-
nentially stable or oscillatory stable regions of the
parameter space. In a later work, Bellows (1981)
reached the same conclusion. Yet is must be empha-
sized that the results were based on the assumption
of a one-dimensional model, i.e. N, =f(N,). The
authors of these studies knew as well as anyone that
their results would not be valid if the true dimension
of the system were higher; for example Hassell et al.
(1976) mentioned this caveat for the case of the
larch budmoth Zeiraphera diniana, perhaps the most
clear-cut case in the world of a truly cyclic moth. Yet
this warning about choosing the proper embedding
dimension was not fully appreciated until much
later. In the words of Pimm (1991): ‘Ecologists in
general (including me) stopped looking for complex
dynamics in real populations.’

It is our guess that the reason for not considering
higher-dimension models at the outset was the pre-
vailing opinion that delayed density dependence
must arise from a trophic interaction, and that the
evidence for such was and is difficult to demonstrate
(Hassell 1985). Consider the arguments proposed
by Dempster (1983): in most lepidopteran studies,
density-dependent interactions with predators or
parasitoids are unclear, while all other forces shown
to be (direct or delayed) density-dependent, such as
reduced fecundity, would only be important when
the population size approached the carrying capacity.
However, if the maternal effect model is correct, the
above conclusion does not follow; rather an indi-
vidual’s fecundity at any population size is a function
of its quality, the quality of the last generation, and
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the amount of resource available in the environment.

It has already been pointed out (Royama 1981)
that one cannot infer a causal density-dependent
relationship from correlations with mortality. If
population quality and maternal effects are the
driving force behind moth cycles, then the usual
mortality agents (pathogens, parasitoids) may be the
proximal causes of an individual’s death; yet that
individual might be destined to die anyway because
it is of low quality. Of course, the converse is
probably true: if cycles are really caused by inter-
actions with natural enemies, then one might find
correlations of mortality with quality.

Besides interactions with natural enemies, the
other quality mechanism considered important in
insect population dynamics is the change in host-
plant food quality due to levels of herbivory. Such
changes have been noted for many forest moth
systems (Lesniak 1973; Schultz & Baldwin 1982;
Rhoades 1985). The two types of quality change
thought to be important are changes in nitrogen
content (White 1974; Tuomi et al. 1984) and in levels
of secondary compounds (Rhoades 1985; Haukioja
et al. 1988). The food-quality hypothesis remains
speculative due to the difficulty of obtaining conclus-
ive evidence (Myers 1988; Larsson 1989). As we
noted in the model assumptions, the maternal effect
equations themselves do not necessarily imply that
the average quality be wholly within the body of the
organism; thus, the change in food-plant quality can
be reflected in the model by the argument N, of
function g, the population in the current generation
affecting average quality. There is experimental
support for this (e.g. Valentine, Wallner & Wargo
1983). However, the change in quality must then be
passed to the next generation (argument x of function
@ to induce sustained cycles. This can occur either
within the food plants, in the herbivore via maternal
effects, or both, in which case the species might
show evidence of being embedded within a third-
order attractor. Changes in plant quality have been
demonstrated to be capable of generating of complex
dynamics when coupled to trophic interactions
(Foster, Hunter & Schultz 1992). For most species,
however, two dimensions seem to be sufficient to
describe the system. A significant exception is the
larch moth Zeiraphera diniana (Royama 1981;
Turchin & Taylor 1992; Baltensweiler & Fisclin
1988); the third dimension found for this moth may
indeed be indicative of a strong food-quality effect.

The linking of maternal and trophic causes can
also be done with viral or protozoan parasites that
are transmitted transovarially. We mentioned this
in our short discussion of the spruce budworm
(Thomson 1958). The maternal effect model thus
provides an alternative framework for describing
interactions with these natural enemies as well.

Since we have shown that population quality and
maternal effects can generate cycles indistinguishable

from those caused by interactions with natural
enemies, only empirical work can tell us what the
true mechanisms are. We have no illusions about
this being an easy task: one only need look at the
controversy over endogenous vs. exogenous expla-
nations for cycles in the red grouse in Great Britain
(Cherfas 1990). In our view, the only way to dis-
tinguish mechanisms is to perform manipulative
experiments. In testing population quality hypoth-
eses, individuals should be removed from the influ-
ence of their normal extrinsic mortality agents. As
we noted above, we are aware of only one such
experiment, that of Myers (1990) with Malacosoma
pluviale. Since the results of that study supported an
intrinsic hypothesis, and since the type of maternal
effects first described by Wellington (1957) seem to
be ubiquitous in temperate-zone forest Lepidoptera,
the maternal effect model must be considered as a
strong contender for explaining cycles in forest
moths.
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Appendix 1

LOCAL STABILITY ANALYSIS

Beginning with the general model (equation 4), we
first change the variables to logarithmic scale:

u = InN eqn 12
v = Inx
and define new functions

f(v) = Inf(e”) eqn 13
@(v,u) = Ingp(e',e")
We thus have in the new variables
Urpy = U + f(vy) eqn 14

Virr = Q(Vislri1)

The matrix for the linearized equations around the
equilibrium point u* = In(N*),v* = In(x*) is

1 fi

P v+ Qufy

where ' denotes the partial derivative. Note that the
argument of the second equation is u,.; and it
should be substituted from the first when computing
derivatives. Stability of the system is determined by

the roots of the characteristic equation
M= (1L+ @)+ @if )N + @, = 0. eqn 15

Local stability is governed by, in the original
variables,

a=q,>0 eqn 16
and
b = —fionN* >0 eqn 17

These parameters are discussed in the text. In the
special case of equation 6, a=1 and b= (1— 1/R)
(1-1/M), and the characteristic equation has the
form

M-2-br+1=0. eqn 18

Since we assume that R>1, M>1,and 0<b <1
we have two complex eigenvalues with product equal
to 1. The period of the cycle for the linearized form
is given by

21
T=—

Vab—b?
2-b

arctan
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which is readily seen from the complex plane rep-
resentation of the eigenvalue. The minimum 6-cycle
is guaranteed by noting that as R—> o the value of
b—1, and the value of the denominator in the
above expression approaches arctan /3, i.e. an angle
of 60°.

Model 6 can be expressed in time-lag form as

R

Nyyy=——N,
t+1 1 + z t
where
NJ/N,_, M
z

" R-NJN,_,1+N,

Appendix 2

SENSITIVITY ANALYSIS: FUNCTIONAL FORMS
AND PARAMETER DEPENDENCE FOR
DYNAMICAL BEHAVIOUR

Limit cycle models

The neutral stability of equation 6 results from the
linear expression of x in the second equation, which
causes the partial derivative ¢,* to equal 1 (see
above). Since this partial derivative is the determi-
nant of the stability matrix, the two eigenvalues lie
on the unit circle in the complex plane for all values
of the parameters. The first assumption to be
modified then is the linearity of the maternal effect.
We have:

P(x,Niyy) = eqn 19

e

(1 + Npvy)
With this simple modification the equilibrium is
stable for all values of {3 less than 1, and unstable for
all values of (3 greater than 1. We can produce true
limit cycles realistically but mathematically crudely
by imposing upper or lower limits on quality x:

M
1+ Nt+l

Xmin < X < Xmax-

@(xNpyy) = 1 eqn 20

Simulations using the above for ¢(x,N) show that
cycles very similar to those shown in the figures are
generated, with the exception that the cycles
‘limit’ cycles, in the sense that varied initial
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Population cycles
of forest
Lepidoptera

N (f)

Fig. Al. Phase-plane portrait of the stable limit cycle
model (equation 22). N, scale from —1 to 35; x, scale from
—1 to 10. Parameter values R=3-0, f =14, M =20,
k=0-1.

x(#)

V(1)

Fig. A2. Phase-plane portrait of the maternal effect model
(equation 25) showing a flip bifurcation, with phase trajec-
tories converging to the two phase points (N,,x,) = (6-814,
0-232) and (4-037, 1-154). N, scale from 2-0 to 10-0; x, scale
from —0-5 to 2-0.

ditions lead to the same cycle. This model is bio-
logically more realistic but cannot be fitted from a
time-series alone.

Continuing with the above idea, we can add the
assumption that a minimum quality x exists, and
incorporate this explicitly into a differentiable form
of @(x,N). An example is

(Mx,)ﬁ

x,N) =k +
@(x,N) L+ N

eqn 21

where & is a small number representing the minimum
quality. We can avoid adding & as an extra parameter
if we make the additional assumption that & is equal
to the equilibrium quality divided by the maximum
rate of numerical increase R, meaning that species
with higher possible increase rates have a smaller
minimum quality. For the model this replaces k with
the expression 1/R(R—1). This, it turns out, is
a convenient form mathematically concerning the
bifurcation behaviour of the model. The determinant
of the matrix for the local linearization becomes

A = B(1 — 1/R). eqn 22

When this equation passes the value one we have a
Hopf-type bifurcation as the eigenvalues cross the
unit circle in the complex plane, with the creation of
stable cycles in the form of an invariant Hopf curve.
Thus, both the non-linearity and growth parameters
can control the bifurcation behaviour of the model.
A typical limit cycle generated by the model is
shown in Fig. Al.

Hopf bifurcations in this model are possible when
f > 1; but if function fis a linear function then stable
limit cycles can be created for powers of {3 less than
one, i.e. if

N1 = NR x,. eqn 23

The above two models generate limit cycles similar
to those of models 6 and 7, but due to the way N* is
changed the period of the cycles increases with
increasing R, as in the logistic model. The attractors
generated are similar to those from the discrete
predator-prey model of Beddington et al. (1975).

If @ is a differentiable non-convex function of x,
then qualitatively different bifurcation behaviour is
possible. The model with
X1 = kx;

M .
+ (1 + Ny1) eqn 24
p

1 —ex
undergoes flip bifurcation with the creation of a two-
cycle generated by eigenvalues of opposite sign (see
Fig. A2). The two-cycle is stable for all realistic
values of R. This example is perhaps of more math-
ematical than biological interest.
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