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Summary 

1. Many species of forest Lepidoptera have cyclic population dynamics. Although 
there are numerous potential causes, including interactions with predators, para- 
sitoids, pathogens, and food-plant quality, strongly density-dependent interactions 
are often difficult to demonstrate. Both autocorrelation analysis and attractor- 
reconstruction methods have recently been applied to a number of species' time 
series. Results suggest that complex dynamics, i.e. cycles or deterministic chaos, 
may be more prevalent than once thought, and that higher-dimensioned models are 
necessary. 
2. We develop a two-dimensional difference equation model that relates the 
average quality of individuals to patterns of abundance. The delayed density 
dependence is caused by transmission of quality through generations via maternal 
effects. We show that the maternal effect model can produce patterns of population 
fluctuations similar to those displayed by one class of host-parasitoid models. 
3. We review empirical evidence for maternal and quality effects in dynamics of 
forest Lepidoptera. We fit the maternal effect and delayed logistic models to six 
species of forest moths for which delayed density dependence and maternal or 
quality effects have been found. The maternal effect model was a good predictor of 
the period of the oscillations for the species that we examined. We discuss why 
models of this type give better fits to moth cycles than do first order models with 
added delays. 

Key-words: delayed density dependence, population cycles, maternal effects, 
Lepidoptera, population quality. 
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Introduction 

Ecologists generally recognize two groups of animals 
as including species with cyclic population dynamics: 
small mammals (and their predators) and forest 
insects. Among the insects the most striking 
examples are from Lepidoptera of the temperate 
zone. A recent review (Myers 1988) lists 18 forest 
moth species whose population densities are known 
to oscillate. Unravelling the causes of such oscil- 
lations is not only of theoretical but also of practical 
interest, since many of these moths are economically 
important forest pests. 

In one sense, of course, we know what causes 
population cycles: true oscillations can only arise via 
density-dependent regulation, and only if such regu- 
lation involves a time delay (Hutchinson 1948; 
Caswell 1972; May 1973). In other words, the system 
oscillates only if there are delayed negative feedbacks 
(Berryman 1987). In univoltine insects, like moths 
of the temperate zone, we expect that regulatory 

processes will involve time delays; this allows such 
systems to be modelled with difference equations 
(Royama 1981). However, the role of density depen- 
dence in population regulation remains controversial 
(e.g. Wolda 1991; Berryman 1991) despite the 
suggestion that the long-term persistence of popu- 
lations by itself implies some form of regulation 
(Royama 1977). 

Are forest Lepidoptera regulated by density- 
dependent processes? For animal populations in 
general, the answer to such a simple question seems 
to be nearly as elusive today as it was decades ago. 
There are several methods available with which one 
can test for density dependence, but all apparently 
have inherent problems when applied to available 
data. One can, for example, analyse life-table data 
(Dempster 1983) using methods originally formu- 
lated by Morris (1959) and modified by others. 
Alternatively one can look for density dependence 
in a time-series (Bulmer 1975; Pollard, Lakhani & 
Rothery 1987). Such tests have intuitively simple 79 
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logical bases but suffer from statistical difficulties 
(Solow 1990). When applied to forest moths, results 
of these methods are often mixed. For example, 
reviews of published life tables by Dempster (1983) 
and by Stiling (1987, 1988) were done specifically to 
assess the evidence for regulation in moths and 
other insects. Both authors reached similar con- 
clusions, i.e. that the majority of species have no 
clearly demonstrable density-dependent regulatory 
factor. The earlier paper by Stiling was specifically 
concerned with the effects of parasitoids, an often- 
invoked explanation of moth cycles. Dempster's 
analysis (of 24 Lepidopteran species) suggested that 
the few cases of parasitoids acting as regulating 
agents were equivocal at best, and that all other 
forces shown to be density-dependent (reduced 
fecundity, starvation) involved intraspecific compe- 
tition, which would only be important when the 
population approached the carrying capacity. In 
view of their results, both authors suggested that 
'ceiling' models might be more appropriate for de- 
scribing insect dynamics. Other factors besides 
natural enemies have been suggested as possible 
cases of moth cycles, for example changes in food- 
plant quality (Rhoades 1985 ), but again the evidence 
is most often equivocal (Myers 1988; Larsson 1989). 

In contrast, recent statistical analysis of insect 
time-series suggests that many species are affected 
by some form of delayed regulation. Two studies 
have addressed the question of whether or not insect 
time-series are indicative of complex dynamics, i.e. 
cycles or deterministic chaos. Witteman, Readfern, 
& Pimm (1990) used autocorrelation analysis and 
attractor reconstruction methods to analyse a 
number of vertebrate and invertebrate time series. 
Turchin (1990) used partial autocorrelation functions 
and a general second-order nonlinear model to 
analyse time-series from 14 insect species, nine of 
which were forest moths included in the Dempster 
and Stiling papers. Turchin (1990) found that seven 
moth series had partial autocorrelation functions 
characteristic of a second-order autoregressive 
process. In other words, while it might be true that 
usual life-table regression methods did not detect 
any apparent regulation, such regulation was operat- 
ing but with a lagged effect. Witteman et al. (1990) 
drew the same conclusion. They showed that several 
species' time-series indicated a low dimensional at- 
tractor, usually two or three dimensions being suf- 
ficient to embed the system. Further analysis by 
Turchin & Taylor (1992) supported this conclusion. 
The importance of delayed regulation has been dis- 
cussed before, both theoretically and in individual 
cases (e.g. Varley 1949; Royama 1977; Hassell 1985; 
Berryman 1987; Murdoch & Reeve 1987), but 
Witteman et al. (1990) and Turchin (1990) were the 
first to broadly apply analytical methods of time- 
series analysis for the sole purpose of determining 
the proper dimension with which to begin modelling. 

Turchin & Taylor (1992) then took the next logical 
step in applying time-series modelling to populations 
with delayed regulation; they used response-surface 
fitting to reconstruct the dynamic patterns of these 
species. Other researchers working with moths sub- 
sequently applied Turchin's (1990) methods to test 
for delayed density dependence in insect time-series 
(Liebhold & Elkington 1991; Woiwod & Hanski 
1992). 

It must be mentioned here that the results dis- 
cussed above must be interpreted with some caution. 
The reason for this lies in the nature of the data 
sets being analysed: ecological time-series are not 
only inherently 'noisy', but are also usually of such 
short duration that it is difficult to draw conclusions 
with much statistical significance. For example, 
Ellner (1991) demonstrated how a short, noisy time- 
series involving simple density dependence might 
resemble deterministic chaos when the attractor- 
reconstruction method is used with arbitrary time- 
lags. Methods exist for detecting a chaotic signal 
from a noisy time-series (Sugihara & May 1990), but 
again the available series are usually too short for 
such techniques to be reliable (Turchin & Taylor 
1992). However, this limitation of the size of avail- 
able data sets cuts both ways in the debate about 
density dependence: for example, the results of both 
Dempster (1983) and Stiling (1987, 1988) have been 
shown to be prone to Type II errors (Hassell, Latto 
& May 1989; Woiwod & Hanski 1992). One point 
seems, to us, to be both clear and of great import- 
ance: although constructing an actual attractor may 
be problematic, the dimension with which to begin is 
often greater than one, with two dimensions usually 
sufficient to embed the system. With univoltine 
species (which have natural time-lags in multiples of 
1 year), it is not likely that truly first-order dynamics 
will resemble a second-order process unless the 
population is subject to external noise that is auto- 
correlated (Royama 1981). 

Why is dimension so important? Consider simple 
one-dimensional models of the form 

Nt+1 = NtF(Nt), eqn 1 

such as the well-known logistic or Ricker equations. 
Ecologists are aware of the fact that such one- 
dimensional discrete models can display complex 
behavior, e.g. cycles with period 2, 4, 8, ..=2t 
followed by deterministic chaos (May 1976; 
Lauwerier 1986a). In contrast, assume that the popu- 
lation is regulated by factors other than density N,. 
In two dimensions: 

Nt+ I = Ntf(Xt) eqn 2 

Xt+1 = cp(Nt,Xt). 

Eliminating Xt, equation 2 can be written in time- 
delay form: 

N+ = NtF (Nt, Nt ).* eqn 3 
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The delayed effect of N,_ I on N, I can be caused by 
a variety of mechanisms, such as interactions with 
predators and parasites, age distribution, or delayed 
effects of some other environmental variable, for 
example the quality of food plants. 

The behaviour of equation 3 can be quite different 
from that of equation 1 (Levin & May 1976; Pounder 
& Rogers 1980; Royama 1981; Lauwerier 1986b). 
For example, equation 3 can often display cycles 
with any biologically realistic values of the par- 
ameters, and the cycle period may not progress 
through numbers in the sequence 2k; in principle, all 
values (including irrational and fractional) are poss- 
ible (Beddington, Free & Lawton 1975; Lauwerier 
1986b). The important point for our purpose is that 
lower values of the parameters are necessary for 
cycles as the dimensionality of the model increases 
(Guckenheimer, Oster & Ipatkchi 1977). 

With the proper dimension known, one can use a 
linear approximation (i.e. a p-order autoregressive 
model) for short-range prediction (Royama 1977), 
and methods such as Turchin & Taylor's (1992) 
response surface fitting seem to be fairly successful 
in predicting when one should find limit cycles or 
deterministic chaos. However, reconstructive 
methods do not help us determine the biological 
nature of the significant higher dimensions. 

In our view, the results of Turchin (1990), Turchin 
& Taylor (1992) and Witteman et al. (1990), 
when coupled to those of Stiling (1987, 1988) and 
Dempster (1983) present something of a conundrum. 
On the one hand, there is good evidence that a 
biologically important second dimension exists in 
many univoltine insect species. On the other hand, 
strongly density-dependent trophic interactions are 
often difficult to demonstrate, whether that inter- 
action is with natural enemies (Hassell 1985) or with 
food plants (Myers 1988; Larsson 1989). 

In this paper we offer a two-dimensional model 
that does not involve a trophic level interaction, yet 
is based on a well-known aspect of the biology of 
forest moths. Our proposed second dimension is the 
average quality of individuals within a population. 
The model differs formally from other population 
quality models in that the transmission of quality 
between generations is via maternal inheritance. In 
our analysis of the model we show explicity that 
maternal effects can produce cycles that might be 
indistinguishable from those caused by a host- 
parasitoid interaction. We review evidence from 
empirical work suggesting that maternal quality 
effects are important regulatory forces in moth popu- 
lations. Finally, we fit the maternal effect model to 
empirical data from six species of forest moths. The 
model is shown to be a very good predictor of the 
cycle period for all the species that we examined. 
We give a simple mathematical argument for why 
models of this type give better fits than first-order 
models with time delays. 

The Model 

The assumptions 

1. Fecundity of females, and the survival of im- 
matures to adulthood, are functions of individual 
quality. Normally this quality will relate to energy: 
the amount that a female moth has stored for repro- 
duction, or the average size or weight of larval/ 
pupal stages. However, other quality measures can 
be used; these might include the level of viral or 
protozoan parasites transmitted transovarially, 
or the level of disease resistance in immatures due 
to maternally influenced physiological vigour. 
2. Offspring quality is a function of maternal quality. 
In other words, there are maternal effects. 
3. Average quality is influenced by population den- 
sity in the current generation. This can result from 
intraspecific competition for limited resources, or 
from other effects in the current generation, for 
example shifts in food quality due to high levels of 
herbivory. 

The exact way in which the average individual 
quality is measured need not concern us here; some 
simple measures might be the dry weight of female 
pupae, or the caloric content of individuals exploded 
in a calorimeter. Our requirement is simply that 
mother-daughter relationships can be made, and 
that fecundity can be expressed as a function of the 
quality variable. Hereafter, for the sake of brevity, 
we will refer to average individual quality simply as 
'quality'. 

The equations reflecting the above assumptions 
have the form: 

Nt+ I = Ntf(xt) eqn 4 

Xt+1= q(xt, Nt+1), 

where f is a monotonically increasing function of xt 
and describes the net reproductive rate of an indi- 
vidual of quality x, and q(xt, Nt+?) is an increasing 
function of x (the maternal effect) and a decreasing 
function of Nt+l (as intraspecific competition for 
resources increases). Note that the argument N of 
the second equation is evaluated at the same gener- 
ation as x on the left side of the equation. This is due 
to our assumption that quality is affected by density 
in the current generation. Mathematically, as will be 
seen, this is a crucial assumption of the model. In 
this respect equation 4 differs from usual discrete- 
time population models where the variables N and x 
would be interpreted as densities of interacting popu- 
lations (Beddington, Free & Lawton 1976). Note 
that the model can be rewritten in the time-delay 
form in equation 3 by substituting the right side of 
the first equation for Nt+I in the second equation, 
then eliminating xt. 

In the absence of the maternal effect q is indepen- 
dent of x, and equation 4 reduces to the form of 
equation 1, with 
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Thus, the presence of the maternal effect creates the 
delayed density dependence. Equilibrium density 
and quality N* ,xX can be found as the roots of 

f(x) = 1 
q(x*,N*) = x*. 

The model in equation 4 is analysed (see Appendix 
1) by the method of local stability analysis. As 
shown, two parameters, 

a = cp' > 0 

and 

b = -t tfpN* > 0 

where subscripts refer to partial derivatives evalu- 
ated at equilibrium, control the dynamic behaviour 
through the roots of the characteristic equation 

-' - (1 + a - b)k + a = 0. 

Properties of the model 

In analysing equation 4 it will be convenient to 
discuss a specific example. Consider the following 
parameterization: 

Nt+ = NtR xt eqn 5 
k + xt 

t+I= xtM- S/Nt+?I 
p + S/Nt+I 

The parameter R represents the maximum repro- 
ductive rate given any quality x, and M is the maxi- 
mum possible increase in average quality. Constants 
k and p control the rates of increase to the asymp- 
totes R and M. The S term represents the total 
amount of resource available in the environment; 
we assume that this is constant each generation. 

We divide the numerator and denominator of 
equation 5 by S; then by expressing N and x in the 
appropriate units we can eliminate the other two 
parameters k and p so that equation 5 becomes 

Nt+ I = Nt Rx+ eqn 6 
1+ xt 

M 
t+ I t1+ N 

Stability analysis of equation 6 shows that non- 
damping oscillations occur whenever the parameter 
R is greater than unity, assuming that M is also 
greater than unity. The period of the oscillations in 
the linearized form of equation 6 is a function of 

b = (1- 1/R)(1- 11M). 

Thus, if M?> 1 the length of the period is determined 
only by the maximum rate of increase R. In this 
model low values of R lead to longer cycles. 

Figures 1 & 2 show some typical behaviour of 
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Fig. of the maternal effect model 
(equation 6) shown in time-series plots: (a) R = 13, 
M= 10; (b) R =3-0, M= 10. 
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Log /1 (t) 

Fig. 2. Typical phase-plane portrait of the maternal effect 
model 6, shown in logarithmic scale. Each ellipse corre- 
sponds to a unique set of initial conditions. Note the 
formation of 'island chains' for some initial values. 

model 6 displayed in both time series and phase- 
plane plots. As can be seen from the phase diagram, 
the cycles are neutrally stable, i.e. the amplitude 
and period of the cycles are dependent upon initial 
conditions. In this way, equation 6 is similar to 
the familiar Lotka-Volterra predator and prey 
equations, and also to several other two-dimensional 
models (Beddington et al. 1975; Anderson & May 
1980; Lauwerier & Metz 1986). The cycles usually 
have fractional values for the period, and the system 
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is not precisely periodic, as in a continuous model. 
Note also in the phase diagram the formation of 
'island chains' for some initial conditions, a feature 
common to this type of two-dimensional discrete 
map (Lauwerier 1986b; Lauwerier & Metz 1986). 

Models that generate neutral cycles are of course 
pathological from a biological viewpoint (May 1976). 
Modification of equation 6 to produce true 'limit' 
cycles can be done in any number of ways by adding 
one or more parameters. Available data do not 
allow us to distinguish between different modifi- 
cations, but our main conclusions do not depend on 
the exact form of the functions. A functional sensi- 
tivity analysis that begins with model 6 is given in 
Appendix 2. 

In comparing the behaviour of the maternal effect 
model to that of other published two-dimensional 
discrete models, we found that similar dynamics are 
produced by the following class of host-parasitoid 
equations: 

Nt+I = XNJf(Pt) eqn 7 

Pt+, = Nt- 1I/k Nt+I 

where N is host density, P is parasitoid density, k is 
the maximum per capita increase per generation in 
the absence of parasitoids (analogous to R in our 
model) and f(P) is a decreasing function of P. The 
above general form was developed in Hassell & May 
(1973); further analysis can be found in Lauwerier 
(1986b) and Lauwerier & Metz (1986). 

Models 6 and 7 have in common several properties 
of biological interest. First, and perhaps most im- 

portant, is that cycle periods have an absolute mini- 
mum of six. This result was stated as a theorem by 
Lauwerier & Metz (1986) for equation 7; we extend 
this result to models of the form of equation 6, 
given certain restrictions on functions f and cp (see 
Appendix 2). The minimum six-cycle is in perfect 
agreement with observation: to our knowledge no 
forest moth has a period less than six (Myers 1988), 
in contrast to mammalian cycles. 

Second, in both models cycle periods decrease as 
the growth parameters (R and A) increase. This pat- 
tern is opposite to that of some other delay models 
such as the discrete predator-prey (Beddington, 
Free & Lawton 1975) or delayed logistic (Levin & 

May 1976), for example (Taneyhill 1993). 

Empirical evidence 

QUALITY AND MATERNAL EFFECTS IN 

MOTHS 

Population quality as a factor in the dynamics of 
moth populations is generally known from the work 
of Wellington (1957), who studied the western tent 
caterpillar Malacosoma pluviale. Larval tent cater- 
pillars could be classified into various types, depend- 
ing on the amount of yolk provided by the female 

moth. These larval types displayed large differences 
in their survival, behaviour, disease resistance and 
dispersal ability (Wellington 1960). The survival and 
eventual fecundity of the larval forms was influenced 
by maternal quality. The highest quality larvae (Type 
I in Wellington's terminology) laid more eggs, and 
more of the high-quality type, when all larval types 
were fed to repletion (Wellington 1965). 

The biology of the tent caterpillar is in broad 
outline typical of many forest Lepidoptera. Females 
generally lay clutches that number in the several 
hundreds. The first eggs laid often receive a dis- 
proportionate amount of yolk, and quality of the 
larvae often depends on the amount of maternal 
provisioning. Larval quality influences factors such 
as weight at pupation, which affects subsequent 
fecundity (Szujecki 1987). 

Researchers working with other forest moths and 
insects found Wellingtonian effects in their species 
as well. Greenblatt & Witter (1976) found the same 
kind of larval quality types in the tent caterpillar 
Malacosoma neusstria; Campbell (1962), working 
on the spruce budworm Choristoneura fumiferana, 
found larval quality effects associated with various 
forms of the maternal X-chromosome. Campbell's 
work recalled some earlier study by European re- 
searchers who noticed different larval or adult moth 
forms associated with forest insect outbreaks; for 
example, Franz (1941, 1942, 1965) with the budworm 
Choristonieura (= Cacoecia) murinana, and Engel 
(1942) with the pine looper Bupalus piniarius. As 
did Greenblatt & Witter (1976), Laux (1962) found 
different larval types associated with outbreak and 
non-outbreak populations of Malacosoma nieusstria. 

Differences in larval quality forms within outbreak 
populations have also been seen in another forest 
insect, the sawfly Acantholyda nemoralis. Novikova 
(1969) described two forms of sawfly in this species: 
an early form with larvae less susceptible to natural 
enemies, and a late form that had more rapid repro- 
duction and a higher proportion of females. Pro- 
portions of the two forms in the population changed 
as numbers approached outbreak levels. Sawflies, it 
should be noted, are the major forest insects be- 
sides lepidopterans that display cyclic or outbreak 
dynamics (Larsson & Tenow 1984). 

Recently there has been renewed interest in the 
Wellingtonian ideas. Myers (1990), working with 
Malacosoma, has shown that transplanted tent cater- 
pillars tend to oscillate in phase with the parent 
population. Rossiter 1990, 1991a,b) has made quan- 
titative genetic studies of the gypsy moth Lymantria 
dispar in regard to maternal effects and population 
regulation, and has suggested that maternal effects 
are an important factor in the cause of outbreaks 
(Rossiter 1991c). 

It is worthwhile here to mention the gypsy moth in 
greater detail, since it is this species that has perhaps 
been most extensively researched with regard to the 
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type of effects that we discuss in the model. We have 
found in the literature evidence for all of the relation- 
ships postulated by the maternal effect equations. 
For example, Rossiter (1990) found that larval 
quality and various life-history traits were influenced 
by the amount of maternal provisioning (function 
cp(x)), and that the rate of larval development was 
influenced by density in the current generation 
(function cp(Nt+1)). The last result was also found by 
Campbell (1978). Capinera & Barbosa (1976), in 
laboratory studies, found that larvae from small eggs 
go through more instars and lay more, smaller eggs 
(function f(x)); they discuss the Wellington hypoth- 
esis. Finally, both Lance, Elkington & Schwalbe 
(1986) and Leonard (1970) proposed population 
quality hypotheses for the gypsy moth; for example, 
from Leonard: 'Evidence is presented to suggest 
that the gypsy moth ... is numerically self-regulating 
through a shift in quality of individuals induced by 
changes in nutrition.' 

More discussion of empirical research on maternal 
and quality effects may be found in the next section, 
which considers moth species individually. 

MODEL FITTING 

In this section we fit the maternal effect model to the 
moth species listed in Table 1. We chose species on 
the basis of the following criteria: (i) only univoltine 
forest moths were considered; (ii) at least one refer- 
ence for each moth has suggested that the species is 
regulated by delayed density dependence; (iii) quality 
and/or maternal effects have been suggested or 
demonstrated for each species; (iv) a time-series 
exists for that species that is adequate for use in 
estimation of model parameters. 

(Some readers may wonder why we did not choose 
to include the larch moth Zeiraphera diniana in our 
analysis. The reason was that we had a priori evi- 
dence that Z. diniana should be described by a 
higher order model (Royama 1977; Turchin & Taylor 
1992), with N,+? a function of N,,N,-,, and N,-2. 
We will comment further in the Discussion section). 

As a contrasting two-dimensional non trophic- 

level model, we also fit the data to the well-known 
delayed logistic equation: 

Nt+1 = Ntexp(ro(1 - Nt_IK) eqn 8 

This model has been recommended as an all-purpose 
model for univoltine species affected by delayed 
density dependence (Berryman, Millstein & Mason 
1990). 

Estimation of Parameters 

Before fitting the models to empirical data we must 
discuss several potential pitfalls. To our knowledge 
there are no experimental results that would allow 
us to make independent parameter estimates for the 
f and cp functions. The alternative is to take advan- 
tage of the embedding theorem of Takens (1981) for 
generic dynamic systems and use lagged densities as 
the predictor variables, i.e. rewrite the model so 
that Nt+1 is a function of Nt and Nt-1. This method 
of parameter estimation is very convenient but con- 
tains its own problems (Morris 1990). In fitting a 
non-linear model to the data the difficulty of conver- 
gence of an iterative regresion procedure increases 
with the dimension (i.e. the number of parameters). 
For the maternal effect model this is more of a 
problem than for the host-parasitoid model in which 
the growth parameter k does double-duty. In ad- 
dition the predictor variables, being lagged densities, 
will contain errors of the same magnitude as those of 
the response variable, violating one of the major 
assumptions of regression analysis. 

With these caveats in mind, we proceeded 
as follows. We fit model 6 in its time-lag form 
(Appendix 1) via a non-linear iterative regression 
(Procedure NLIN of SAS, SAS Institute 1989). 
Since the dynamics of the model are only weakly 
dependent on the parameter M when M>> 1, we 
concentrated on estimating the parameter R. For 
some series the iterative procedures used by NLIN 
did not easily converge. In these cases we used the 
one-parameter model 

Nt+1 = RNJ(1 + Nt1 - 1IRNt)1 eqn 9 

Table 1. Predicted dynamics of six species of forest moths, using model 11. Superscripts refer to references from which the 
parameter R was estimated by the non-linear regression method. Parameters P,xm,j,, and M estimated by computer 
simulation 

Species Ref.* R M Xmin T (predicted) T (actual) 

Choristoneura fumiferana 6 1-34 2-0 0-02 1-005 34 30-38 
Hyphantria cunea 4 1-64 2 75 0 5 1-0025 12 11-8 
Lymantria dispar 2 4 05 12-0 0-03 1-0025 7-8 7-8 
Epirrita autumnata 1 4-68 3-0 0 04 1-0025 9 9 
Bupalus piniarius 5 4-8 2-5 0-0375 1-0025 8 8 
Acleris variana 3 5-12 5-0 0-02 1-005 7-8 7 

* References: 1, Andersson & Jonasson 1980; 2, Bess 1961; 3, Morris 1959; 4, Morris 1964; 5, Schwerdtfeger 1941; 
6, Royama 1984. 
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Table 2. Predicted dynamics of forest moths, using the time-delayed logistic model Nt+1 = Nt exp(rl(1 -Nt 

Parameters estimated by a linear regression using the same time series as in Table 1 

Species r() K Predicted dynamics 

Choristoneura fumiferana 0-325 65 Stable 
Hyphantria cunea 0-415 5 53 Stable 
Lymantria dispar 1-32 2620 7-cycle 
Epirrita autumnata 1-54 178 8-cycle 
Bupalus piniarius 0-308 154 Stable 
Acleris variana 1-13 141 6-cycle 

which, we found converges to values quite close to 
those estimated from equation 6. Equation 9 corre- 
sponds to equation 7 with the function f(Pt) equal to 
(1 + P,); it would describe a neutrally stable host- 
parasitoid model. For the delayed logistic, we used a 
linear regression of the log rate of change r, 
loge(N,+?lN,) as a function of N,_1 to estimate the 
parameters ro and K. 

Model 6 is, of course, neutrally stable; thus the 
amplitude, and to a lesser extent the period of the 
resulting cycles will be dependent on initial con- 
ditions. Since we do not have data to suggest the 
proper functional form for cp(x,N) we adopted 
alternative procedures. First, the estimates of R 
from the above method were used in simulations of 
equation 6. The initial conditions were varied until 
the amplitude of the resulting oscillations matched 
the observed amplitude for each species' cycle. The 
reported period of the cycle was then read from the 
simulation. This method sacrifices possible compari- 
sons of amplitude in order to test predicted period of 
the cycles. True limit cycles can be generated by the 
model 

Rx, 
N+ I = Nt, + eqn 10 

= XP 
M 

t+I 1 ? 
Nt,?1 

Xt ? Xmin 

which adds the assumptions that the maternal effect 
is not linear and that there is a lower limit to the 
average individual quality. This model is biologically 
more realistic but is not everywhere differentiable; 
thus, we used simulations to estimate the new par- 
ameters Xmin and P. 

We compared published values for the period of 
each species to those predicted by both the maternal 
effect and delayed logistic models. Results of the 
analysis are shown in Table 1. Below we briefly 
discuss each moth individually. 

Choristoneura fumiferana. The spruce budworm, 
with its long-period oscillation (Royama 1984) is one 
of the most interesting cases of all the known cyclic 
moths. Population quality effects for this moth have 
been noted by Campbell (1962), who found vari- 
ations in fecundity, egg size and egg weights corre- 

lated with several forms of maternal X-chromosome; 
Neilson (1963) studied disease resistance and physio- 
logical vigour in this species; Thomson (1958) found 
that microsporidian parasites could be transmitted 
transovarially. 

Royama (1984) has concluded that the survival of 
late instar larvae is the factor driving oscillations in 
C. fumiferana. Suggested causes of the oscillating 
mortality in old larvae were parasitism and an 
unknown 'fifth agent'. 

The long cycle period of C. fumiferana makes 
estimation of the parameter R somewhat difficult, 
since we only have census data for slightly less than 
one cycle (Morris 1963; Royama 1984), and this 
time-series actually consists of two from different 
localities. The regression converged to values of 
1-05 and 2 54 for the two parts of the data set. The 
true value is probably somewhat between these two 
extremes. Turchin (1990) used the following general 
model for the purpose of extracting the proper 
dimension from a time-series: 

Nt+ = Ntexp(r( + oclNt + oc2Nt_1) eqn 11 

Using log-transformed data, equation 10 estimated 
r( as 0)29 for C. fumiferana, or R= 1-34. This is 
almost identical to the estimate from the logistic 
model and, in addition, to the weighted mean of the 
estimates from the two parts of the time-series by 
the maternal effect model (1.38 and 1.3, respectively; 
see also Fig. 3b). The logistic equation predicts 
stability for the budworm. 

The estimate of R for this species is quite interest- 
ing in itself, being quite low for the intrinsic rate of 
reproduction for an insect. One possible explanation 
is that the budworm is simply tracking changes in the 
quality of its food plant, which happens on a slow 
time-scale (Ludwig, Jones & Holling 1978), making 
the time-series look like a long-period linear oscil- 
lator (Royama 1977). 

Hyphantria cunea. Historical records indicate that 
the fall webworm has been cycling for more than a 
century with an average period of about 12 years 
(Morris 1964). This is exactly what is predicted by 
the maternal effect model. Quality effects on popu- 
lation dynamics of the webworm have been docu- 
mented by Morris (1971, 1976). An important part 
of this work was the demonstration that the web- 
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Fig. 3. Two models of delayed density dependence for the 
spruce budworm data (Royama 1984). (a) Logistic-type 
model with delay in which the log rate of change is a 
function of log density in the previous generation. 
(b) Oscillator type model in which the change in log rate of 
change (second difference of the log) is a function of log 
density. The slope estimates (2 - k)lnN(t); i.e. the ordinate 
has 2 x lnN(t) added so as not to confound errors by also 
having lnN(t) in the dependent variable. 

worm larvae's ability to encapsulate parasites was a 
function of larval quality (Morris 1976). The delayed 
logistic equation predicts stability for the webworm 
also. 

Epirrita autumnata. Both quality and maternal ef- 
fects have been demonstrated in the autumnal moth 
(Haukioja & Neuvonen 1985, 1987). Althugh avail- 
able time-series are quite short (Andersson & 
Jonasson 1980), there is an extensive record of out- 
breaks (Tenow 1972), and analysis of the outbreak 
pattern confirms the 9-10 year period (Haukioja 
et al. 1988). While the maternal effect model does 
predict the correct cycle period, the value from the 
logistic equation is only one less (see Haukioja et al. 
1988). 

Bupalus piniarius. The pine looper is a well-studied 
moth in Europe, with a number of available time- 
series (Schwerdtfeger 1941; Klomp 1966; Barbour 
1988). Analysis of numerical records of B. piniarius 
suggests that the pine looper is regulated by strong 
delayed density dependence (Barbour 1988). The 

fecundity of female moths is a function of pupal 
weight, and the density of larvae influences the 
average weight at pupation (Klomp & Gruys 1965). 
The density of larvae in one generation has been 
shown to affect the survival of eggs and larvae in the 
next generation (Klomp 1966). Weights of female 
pupae oscillate of eggs and larvae in the next gener- 
ation (Klomp 1966). Weights of female pupae oscil- 
late slightly out of phase with the oscillations in 
numbers, with peak average weight preceding a 
population peak (Barbour 1988). 

For our analysis we used the data of Schwerdtfeger 
(1941), which is one of the longest moth time-series 
available. The data are those reported by Varley 
(1949), the original data unfortunately being appar- 
ently lost. It is generally agreed (Den Boer 1990) 
that any inaccuracies in the data as reconstructed by 
Varley (1949) are random with respect to the precise 
values of the original data set. Turchin's (1990) 
partial autocorrelation analysis clearly indicated a 
second-order process apparent in the Schwerdtfeger 
data. 

Analysis of this data set for B. piniarius illustrates 
the relevence of the maternal effect and other 
second-order models to the resolution of the current 
debate on the detection of density dependence 
(Berryman 1991; Wolda 1991; Reddingius & Den 
Boer 1989). The same time-series analysed by us 
and by Turchin (1990) has been thoroughly studied 
by Den Boer (1990), using the best available statisti- 
cal methods for detection of density dependence in a 
series of population censuses. This analysis suggested 
that inferring density-dependent regulation from 
Schwerdtfeger's data was at best problematical. 
However, all of the tests used by Den Boer (1990) 
assume that the data are from a first-order Markov 
process; i.e. the regulation is direct, not delayed. 
But as Turchin's (1990) analysis has shown, that 
data strongly suggest a second-order process. 

Acleris variana. The black-headed budworm is one 
of the first organisms for which delayed density 
dependence was demonstrated (Morris 1959); more 
recent analysis confirms the original conclusion 
(Berryman 1986; Turchin 1990). Morris' (1959) 
analysis suggested that the delayed regulation was 
caused by parasitoids. Varley, Gradwell & Hassell 
(1973), however, have shown that delayed regulation 
is actually stronger for another unknown cause; 
thus, we include A. variana in the analysis. Even if 
the regulation is entirely due to the action of para- 
sitoids, the maternal model should fit the dynamics 
if the interaction with the parasitoid can be described 
by equation 7. 

Lymantria dispar. The gypsy moth has perhaps been 
the most well-researched moth with regard to quality 
effects (Leonard 1970; Capinera & Barbosa 1976; 
Capinera, Barbosa & Hagedorn 1977; Lance et al. 
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1986; Rossiter 1990, 1991a) and maternal effects 
(Rossiter 1991b). Maternal effects on quality have 
been demonstrated via mother-daughter plots of 
a quality variable (Rossiter 1991b). Discussion in 
Lance et al. (1986) and Rossiter (1991c) could be 
considered as verbal descriptions of the maternal 
effect model. Note that the logistic model also pre- 
dicts the correct period. 

Summary 

The maternal effect model predicts cycle periods 
that are close to the observed value for all six 
species. The logistic model predicts stability for three 
species. Of the remaining three, two (A. variana 
and E. autumnata) are predicted to cycle with 
periods 1 year less than the observed value. Both 
models accurately predict the period for Lymantria 
dispar. 

The computer simulations yielded two new pre- 
dictions. First, only a very small bit of non-linearity 
in the maternal effect is necessary to induce limit 
cycles. Second, the parameter M often seems bio- 
logically realistic, being usually around 2-3, i.e. 
one order of magnitude in the natural logarithm. 

The results strongly suggest that a maternal effect 
model would be a better predictor of the dynamics 
than would a logistic-type model with a time delay. 
As we have stated above, a host-parasitoid model 
of the form of equation 7 should be able to do as 
well. Clearly, there is something in the mathematical 
form of the two models that more realistically de- 
scribes the dynamics. We offer the following argu- 
ment for why this is so. 

Throughout this paper we have used the terms 
'cycle' and 'oscillation' interchangeably. Most popu- 
lation biologists might do the same. Let us return, 
however, to a statement made above concerning 
models 6 and 7: the fact that the period of the cycles 
increases as the value of the growth parameter 
decreases. In logistic models the opposite is true: 
increasing r increases the period of the cycles. An 
approximation to models 6 and 7 can be written as 

Nt+ I t =f(Nt) 

which in words means that the population density Nt 
affects the change in growth rate (not density) 
(Ginzburg 1993). The above equation with popu- 
lation densities expressed in logarithmic scale can be 
written 

Nt+ l-2Nt + Nt- I -kNt 

which is a discrete analogue of the familiar dif- 
ferential equation for an undamped linear oscil- 
lator (e.g. a mass on a spring with no friction). 
The parameter k represents the magnitude of the 
effect that the population density has on change in 
growth rate; it is analogous to a restoring force in 

our physical analogy. This is how the growth par- 
ameters affect cycles in the maternal and host- 
parasitoid models. But since in logistic models with 
delay the opposite is true, these models are not true 
'oscillators' in the above sense. As Fig. 3 suggests, 
oscillator models should yield better statistical fits 
for the species we discuss. 

Discussion 

The possibility of natural populations undergoing 
complex dynamic changes has been discussed ever 
since the discovery that even the simplest models 
can display chaotic behaviour (May 1976). Finding 
cases of complex dynamics in the real world, how- 
ever, has proven to be a more difficult task. Why 
should this be? In our opinion two issues - 
dimensionality and mechanism - are crucial to our 
understanding of populations as dynamic systems. 

Regarding dimension, almost all ecologists are 
aware of the study of Hassell, Lawton & May (1976), 
the first attempt to fit a number of species to a non- 
linear model and determine whether that species 
should be stable, oscillatory or chaotic. The well- 
known result, now reproduced in several textbooks, 
was that virtually all of the real-world populations 
had parameter values placing them within the expo- 
nentially stable or oscillatory stable regions of the 
parameter space. In a later work, Bellows (1981) 
reached the same conclusion. Yet is must be empha- 
sized that the results were based on the assumption 
of a one-dimensional model, i.e. N,?1 =f(N,). The 
authors of these studies knew as well as anyone that 
their results would not be valid if the true dimension 
of the system were higher; for example Hassell et al. 
(1976) mentioned this caveat for the case of the 
larch budmoth Zeiraphera diniana, perhaps the most 
clear-cut case in the world of a truly cyclic moth. Yet 
this warning about choosing the proper embedding 
dimension was not fully appreciated until much 
later. In the words of Pimm (1991): 'Ecologists in 
general (including me) stopped looking for complex 
dynamics in real populations.' 

It is our guess that the reason for not considering 
higher-dimension models at the outset was the pre- 
vailing opinion that delayed density dependence 
must arise from a trophic interaction, and that the 
evidence for such was and is difficult to demonstrate 
(Hassell 1985). Consider the arguments proposed 
by Dempster (1983): in most lepidopteran studies, 
density-dependent interactions with predators or 
parasitoids are unclear, while all other forces shown 
to be (direct or delayed) density-dependent, such as 
reduced fecundity, would only be important when 
the population size approached the carrying capacity. 
However, if the maternal effect model is correct, the 
above conclusion does not follow; rather an indi- 
vidual's fecundity at any population size is a function 
of its quality, the quality of the last generation, and 
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the amount of resource available in the environment. 
It has already been pointed out (Royama 1981) 

that one cannot infer a causal density-dependent 
relationship from correlations with mortality. If 
population quality and maternal effects are the 
driving force behind moth cycles, then the usual 
mortality agents (pathogens, parasitoids) may be the 
proximal causes of an individual's death; yet that 
individual might be destined to die anyway because 
it is of low quality. Of course, the converse is 
probably true: if cycles are really caused by inter- 
actions with natural enemies, then one might find 
correlations of mortality with quality. 

Besides interactions with natural enemies, the 
other quality mechanism considered important in 
insect population dynamics is the change in host- 
plant food quality due to levels of herbivory. Such 
changes have been noted for many forest moth 
systems (Lesniak 1973; Schultz & Baldwin 1982; 
Rhoades 1985). The two types of quality change 
thought to be important are changes in nitrogen 
content (White 1974; Tuomi et al. 1984) and in levels 
of secondary compounds (Rhoades 1985; Haukioja 
et al. 1988). The food-quality hypothesis remains 
speculative due to the difficulty of obtaining conclus- 
ive evidence (Myers 1988; Larsson 1989). As we 
noted in the model assumptions, the maternal effect 
equations themselves do not necessarily imply that 
the average quality be wholly within the body of the 
organism; thus, the change in food-plant quality can 
be reflected in the model by the argument N+ I of 
function q, the population in the current generation 
affecting average quality. There is experimental 
support for this (e.g. Valentine, Wallner & Wargo 
1983). However, the change in quality must then be 
passed to the next generation (argument x of function 
q to induce sustained cycles. This can occur either 
within the food plants, in the herbivore via maternal 
effects, or both, in which case the species might 
show evidence of being embedded within a third- 
order attractor. Changes in plant quality have been 
demonstrated to be capable of generating of complex 
dynamics when coupled to trophic interactions 
(Foster, Hunter & Schultz 1992). For most species, 
however, two dimensions seem to be sufficient to 
describe the system. A significant exception is the 
larch moth Zeiraphera diniana (Royama 1981; 
Turchin & Taylor 1992; Baltensweiler & Fisclin 
1988); the third dimension found for this moth may 
indeed be indicative of a strong food-quality effect. 

The linking of maternal and trophic causes can 
also be done with viral or protozoan parasites that 
are transmitted transovarially. We mentioned this 
in our short discussion of the spruce budworm 
(Thomson 1958). The maternal effect model thus 
provides an alternative framework for describing 
interactions with these natural enemies as well. 

Since we have shown that population quality and 
maternal effects can generate cycles indistinguishable 

from those caused by interactions with natural 
enemies, only empirical work can tell us what the 
true mechanisms are. We have no illusions about 
this being an easy task: one only need look at the 
controversy over endogenous vs. exogenous expla- 
nations for cycles in the red grouse in Great Britain 
(Cherfas 1990). In our view, the only way to dis- 
tinguish mechanisms is to perform manipulative 
experiments. In testing population quality hypoth- 
eses, individuals should be removed from the influ- 
ence of their normal extrinsic mortality agents. As 
we noted above, we are aware of only one such 
experiment, that of Myers (1990) with Malacosoma 
pluviale. Since the results of that study supported an 
intrinsic hypothesis, and since the type of maternal 
effects first described by Wellington (1957) seem to 
be ubiquitous in temperate-zone forest Lepidoptera, 
the maternal effect model must be considered as a 
strong contender for explaining cycles in forest 
moths. 
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Appendix 1 

LOCAL STABILITY ANALYSIS 

Beginning with the general model (equation 4), we 
first change the variables to logarithmic scale: 

u = lnN eqn 12 
v = lnx 

and define new functions 

f(v) = lnf(e') eqn 13 

qp(v,u) = lnqV(ev,e") 

We thus have in the new variables 

Ut+ I = Ut + ( vt) eqn 14 

Vt+i = P(vt,Ut+i) 

The matrix for the linearized equations around the 
equilibrium point u- = ln(N*-),v* = ln(x* ) is 

1 t 

ViJ (V + ZXv, 

where ' denotes the partial derivative. Note that the 
argument of the second equation is ut+t and it 
should be substituted from the first when computing 
derivatives. Stability of the system is determined by 
the roots of the characteristic equation 

k2 - (l + (V, + (Vj,) + (V, = 0. en1 v v v ~~~eqnl15 

Local stability is governed by, in the original 
variables, 

a=cPq >O eqnl6 

and 

b = > 0 eqn 17 

These parameters are discussed in the text. In the 
special case of equation 6, a = 1 and b = (1 - 1IR) 
(1 - 1IM), and the characteristic equation has the 
form 

k2 - (2 - b)k + I = 0. eqnl8 

Since we assume that R > 1, M > 1, and 0 < b < 1 
we have two complex eigenvalues with product equal 
to 1. The period of the cycle for the linearized form 
is given by 

2it 
T= 

4b2 
arctan 

2-b 

which is readily seen from the complex plane rep- 
resentation of the eigenvalue. The minimum 6-cycle 
is guaranteed by noting that as R -*oo the value of 
b -* 1, and the value of the denominator in the 
above expression approaches arctan V/3, i.e. an angle 
of 600. 

Model 6 can be expressed in time-lag form as 

Rz 
Nt+= I + Nt 

where 

NtINt-1 M 

R - NtINt1 1 ?+ Nt 

Appendix 2 

SENSITIVITY ANALYSIS: FUNCTIONAL FORMS 

AND PARAMETER DEPENDENCE FOR 

DYNAMICAL BEHAVIOUR 

Limit cycle models 

The neutral stability of equation 6 results from the 
linear expression of x in the second equation, which 
causes the partial derivative qVx* to equal 1 (see 
above). Since this partial derivative is the determi- 
nant of the stability matrix, the two eigenvalues lie 
on the unit circle in the complex plane for all values 
of the parameters. The first assumption to be 
modified then is the linearity of the maternal effect. 
We have: 

V(xt,Nt+,) = 
x,5(1 ? Nt ?) eqn 19 

With this simple modification the equilibrium is 
stable for all values of 3 less than 1, and unstable for 
all values of 3 greater than 1. We can produce true 
limit cycles realistically but mathematically crudely 
by imposing upper or lower limits on quality x: 

q)(xt,Nt,) = 
xt1 ? Nt+I eqn 20 

Xmin < X < Xmax. 

Simulations using the above for cp(x,N) show that 
cycles very similar to those shown in the figures are 
generated, with the exception that the cycles 
'limit' cycles, in the sense that varied initial 
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Fig. Al. Phase-plane portrait of the stable limit cycle 
model (equation 22). N, scale from -1 to 35; x, scale from 
-1 to 10. Parameter values R=3-0, t = 14, M=2-0, 
k=0-1. 

N1 (t) 

Fig. A2. Phase-plane portrait of the maternal effect model 
(equation 25) showing a flip bifurcation, with phase trajec- 
tories converging to the two phase points (N,,x,) = (6 814, 
0.232) and (4.037, 1 154). N, scale from 2-0 to 10.0; x, scale 
from -0.5 to 2-0. 

ditions lead to the same cycle. This model is bio- 
logically more realistic but cannot be fitted from a 
time-series alone. 

Continuing with the above idea, we can add the 
assumption that a minimum quality x exists, and 
incorporate this explicitly into a differentiable form 
of cp(x,N). An example is 

T(Vx,1N) = k + + NM?1 eqn 21 

where k is a small number representing the minimum 
quality. We can avoid adding k as an extra parameter 
if we make the additional assumption that k is equal 
to the equilibrium quality divided by the maximum 
rate of numerical increase R, meaning that species 
with higher possible increase rates have a smaller 
minimum quality. For the model this replaces k with 
the expression 1/R(R - 1). This, it turns out, is 
a convenient form mathematically concerning the 
bifurcation behaviour of the model. The determinant 
of the matrix for the local linearization becomes 

X1X2 = PO(1 - IRR). eqn 22 

When this equation passes the value one we have a 
Hopf-type bifurcation as the eigenvalues cross the 
unit circle in the complex plane, with the creation of 
stable cycles in the form of an invariant Hopf curve. 
Thus, both the non-linearity and growth parameters 
can control the bifurcation behaviour of the model. 
A typical limit cycle generated by the model is 
shown in Fig. Al. 

Hopf bifurcations in this model are possible when 
3> 1; but if function f is a linear function then stable 

limit cycles can be created for powers of ( less than 
one, i.e. if 

Nt+1 = NtR xt. eqn 23 

The above two models generate limit cycles similar 
to those of models 6 and 7, but due to the way N* is 
changed the period of the cycles increases with 
increasing R, as in the logistic model. The attractors 
generated are similar to those from the discrete 
predator-prey model of Beddington et at. (1975). 

If cp is a differentiable non-convex function of x, 
then qualitatively different bifurcation behaviour is 
possible. The model with 

M 
xt+ = kxt + I _ _,(1 + Nt+,) eqn 24 

undergoes flip bifurcationt with the creation of a two- 
cycle generated by eigenvalues of opposite sign (see 
Fig. A2). The two-cycle is stable for all realistic 
values of R. This example is perhaps of more math- 
ematical than biological interest. 
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