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Introduction 
I have no special talent. I am only passionately curious. Albert Einstein 
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2 Chapter 1 

1 INTRODUCTION 
 

1.1 Background and State of the Art 

The act of changing location from one place to another is known as movement. This 

concept has existed since the advent of the world and can be seen from different 

perspectives. The movement of the Earth, for example, causes day and night, the 

change of the seasons, and the tides. Human migration can be seen as another angle of 

the broad concept of movement. It relates to the physical/spiritual movement of a 

human being from one area to another with a different motivation. Movement has been 

the source of many revolutions such as tribal, agricultural, industrial, economic, social, 

political, etc. Therefore, it is not unreasonable that many prospective scientists from 

different areas of science and technology, such as ecology, meteorology, sociology, 

behavioural studies, transportation planning, surveillance, and intelligence services 

conduct research to fully comprehend different aspects of movement and unravel the 

knowledge hidden in movement data.  

The contribution of this work, with regard to previous literature, is threefold: (i) to 

explain the concept of movement in a qualitative model and describe its position in 

GIScience; (ii) to explain the procedure of knowledge discovery in movement; (iii) to 

introduce the similarity analysis problem in movement and report on the relevant 

literature. In each of the following subsections, we discuss our contribution in more 

detail.  

1.1.1 Qualitative Reasoning about Movement 

GIScience is "the subset of information science that is about geographic information" 

(Goodchild et al., 1999, p. 737). Based on the definition by Worboys & Duckham, 

GISystems are computer-based information systems which enable us to capture, model, 

manipulate, retrieve, analyse, and present geographically referenced data 

(Worboys and Duckham, 2004). GISystems can also handle data regarding dynamic 

phenomena. Dynamic phenomena include a wide range of applications in many 

domains of scientific research and engineering such as animal ecology, disaster 

management (e.g. fire propagation, plate tectonics, and volcanic eruptions), urban 

planning, and traffic management. Because of the dynamic nature of  most spatial 

objects, much effort has been devoted to extend the potential of spatio-temporal 

http://en.wikipedia.org/wiki/Scientific_research
http://en.wikipedia.org/wiki/Engineering
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visualisation and reasoning in GISystems. Development of technologies that capture the 

spatio-temporal nature of objects outpaces the capability of GISystems to cover the full 

range of space and time reasoning, and still requires fundamental research.  

In previous decades, valuable work has been done in the areas of spatial and temporal 

reasoning (for example, see (Rajagopalan, 1995; Cohn, 1997, Muller, 1998; Cristani et 

al., 2000; Wolter and Zakharyaschev, 2000; Hornsby and Egenhofer, 2002; Merz, 2003; 

Héas, 2005; Gottfried, 2006; Guesgen, 2010; Petitjean, 2012; Menon, 2013; Basiri, 

2014). Among others, the Interval Calculus (Allen, 1983), the Semi-Interval Calculus 

(Freksa, 1992a), the Region Connection Calculus (Cohn et al., 1997), and the 9-

Intersection Model (Egenhofer & Franzosa, 1991) express qualitative spatial or 

temporal relationships between entities. In this regard, moderate attention has been paid 

to consider both spatial and temporal dimensions simultaneously to establish spatio-

temporal relationships between entities. In recent years, considerable attention has been 

paid to spatio-temporal relations between entities, i.e. relative motion (see, for example, 

(Claramunt & Jiang, 2001; Noyon et al., 2007)), but less to effectively describe motion 

within a qualitative framework. The Qualitative Trajectory Calculus (QTC) has been 

proposed by Van de Weghe (2004) as a qualitative spatio-temporal representation for 

objects that are moving based on the characterisation of their trajectories with respect to 

each other. Van de Weghe started from the idea that interactions between objects in the 

real-world can be described by relationships between pairs of moving point objects 

(MPOs) moving in a one-dimensional space (Van de Weghe, 2004). In many cases, the 

enormous complexity of real-world dynamic phenomena can be described by MPOs, 

being constantly disjoint. For example, an increasing number of moving vehicles has 

caused many traffic experts to focus on research for safe and efficient traffic flow. They 

often treat vehicles as MPOs in their analysis regardless of the size and shape of the 

vehicles. This way building quantitative and qualitative models becomes much more 

appropriate. 

In fact, the strength of QTC, compared to other approaches in qualitative spatial 

reasoning (e.g. Region Connection Calculus (Cohn et al., 1997)), is that QTC starts 

from a dynamic distance change between a pair of objects over time whereas others pay 

attention to static relationships between objects. Therefore, we believe that QTC is 

perfectly suitable to explore the movement of objects in a qualitative framework. 

http://en.wikipedia.org/wiki/Traffic_flow
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This thesis seeks to contribute to research on the movement of tracked 

individuals/groups of objects that can be treated as MPOs. For this purpose, we make 

extensive use of QTC which has been studied to formulate interrelations between 

moving objects. We employ the concept of this calculus to show its usefulness, 

applicability, and power in reasoning about the movement of objects. Below, we 

describe why we employ qualitative models, and particularly QTC, instead of many 

quantitative/numerical models for handling movement. 

We would like to reduce the complexity of the analysis of movement while preserving 

its important features and obtain desirable results. High dimensionality, geometry, 

topology, spatial dependency, and spatial heterogeneity are among those properties that 

add complexity to geographic systems and particularity GISystems (Miller & Han, 

2009). Spatio-temporal data including moving objects are even more complicated to 

process than other geographic data (Dodge, 2011). Therefore, appropriate analytical 

methods need to be developed to capture different aspects of spatio-temporal data 

(Imfeld, 2000). To decrease the complexity of movement analysis, QTC makes four 

simplifications, namely relational simplification, object simplification, topological 

simplification, and temporal simplification. In brief, QTC considers the relation 

between two objects, i.e. binary relations, as relational simplification. Additionally, in 

this calculus, moving objects are spatially simplified into MPOs known as object 

simplification. Looking at the real world, we discern that many moving objects around 

us, such as people, airplanes, and celestial objects, have disjoint relations. Since there 

are only two topological relationships between moving objects, namely disjoint and 

equal, QTC only considers disjoint relations as topological simplification. QTC 

relations hold at a particular time point. This is helpful to know what happens at one 

time point and understand the temporal dimension in depth (temporal simplification). 

These simplifications have been extensively expressed in (Delafontaine, 2012).  

Van de Weghe, in his doctoral dissertation, stated that humans usually prefer to 

communicate in qualitative categories supporting their intuition and not in quantitative 

categories (2004). He has also mentioned some examples in this regard. For example, 

“the first car is moving faster than the second one, and not: the first car is moving at a 

speed of 119 kilometers per hour and the second car at a speed of 116 kilometers per 

hour” (Van de Weghe, 2004, p. 2). A number of approaches have been developed in 

this regard. For example, Zadeh (2002) proposed a methodology to compute with 



 

 

5 Introduction 

words in contrast to numbers. “Computing with words is a methodology in which the 

objects of computation are words and propositions drawn from a natural language” 

(Zadeh, 2002). Thus, information systems, including GIS, which analyse spatio-

temporal phenomena, should employ such qualitative reasoning methods in their 

systems. 

Many researchers have investigated various aspects of moving objects, from generating 

spatiotemporal datasets that simulate real-world behaviour (Brinkhoff, 2002; Pfoser & 

Theodoridis, 2003) and indexing (Agarwal et al., 2003; Šaltenis et al., 2000), to 

modelling and querying (Erwig et al., 1999; Prasad Sistla et al., 1997). However, the 

reasoning on the relations between MPOs has attracted less attention, especially in a 

qualitative framework (for example, see (Bogaert, 2008; Cohn & Renz, 2008; Van de 

Weghe, 2004)). We believe that QTC constitutes a basis to adequately study the 

movement of MPOs. Some works have already been published to show the 

applicability of QTC in analysing the movement of MPOs (for example, see (Bogaert et 

al., 2007; Delafontaine et al., 2011a; Delafontaine et al., 2011b; Van de Weghe et al., 

2005a)). As for our contribution, we add or enhance the practical usefulness of QTC, 

and close the gaps between theory and application. In addition, we intend to disclose 

the links that interconnect the spatio-temporal qualitative reasoning such as QTC and 

knowledge discovery from movement. 

1.1.2 Knowledge Discovery from Movement 

One major area of concern is how to effectively integrate qualitative reasoning in the 

process of knowledge discovery. Basically, dynamic behaviour, especially movement 

data, are relatively complex to study and analyse compared to other types of data. 

Therefore, as mentioned earlier, qualitative reasoning can be involved in this procedure 

to greatly reduce the complexity. 

Knowledge discovery from movement databases was introduced in (Giannotti & 

Pedreschi, 2008), and then further extended in (Dodge, 2011). It includes three main 

steps, namely trajectory reconstruction, knowledge extraction, and knowledge delivery, 

as shown in Figure  1-1.  

In Figure  1-1, the components of the knowledge discovery process, which will be 

covered throughout this thesis, are highlighted. The darker the highlight, the greater the 

stress on the component in this work will be. We only marginally touch upon the first 
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component of the knowledge discovery process, i.e. trajectory reconstruction and 

preprocessing. We often, instead of static geometric shape of trajectories, transform 

them into qualitative relationships between MPOs. This step is considered as a 

preprocessing step.  

Trajectory Reconstruction 
and preprocessing

Knowledge Extraction Knowledge Delivery

· Filtering
· Resampling
· Smoothing
· Map matching

· Pattern discovery
· Classification
· Clustering
· Similarity Analysis

· Evaluation
· Interpretation
· Visualisation

Figure  1-1: Knowledge discovery process in movement databases (modified based on 

(Dodge, 2011)) 

The second component of the knowledge discovery process presented in Figure  1-1 is 

knowledge extraction. It refers to the extraction of useful knowledge from the 

movement of MPOs using appropriate techniques in knowledge discovery and data 

mining such as pattern discovery, classification, clustering, and similarity analysis 

(Dodge, 2011; Giannotti & Pedreschi, 2008; Miller & Han, 2009). Advantages of 

knowledge discovery techniques from moving objects are demonstrated in many 

studies, including contributions on pattern discovery (Demšar & Virrantaus, 2010; 

Dodge et al., 2008; Du Mouza & Rigaux, 2005; Gudmundsson et al., 2007; Laube et 

al., 2008; Laube et al., 2005; Wilson, 2008), extraction of clusters (Buzan et al., 2004; 

Jensen et al., 2007; Li et al., 2004; Nanni & Pedreschi, 2006; Rinzivillo et al., 2008; 

Zhang & Lin, 2004), and similarity within moving object data (Buchin et al., 2011b; 

Dodge et al., 2012; Dodge et al., 2009; Lin & Su, 2008; Pelekis et al., 2007). Terms 

such as pattern discovery, similarity analysis, and clustering are used very often in this 

thesis and reflect our attention to this stage in the knowledge discovery process. The 

next subsection (1. 1. 3) is dedicated to the literature about similarity analysis in 

movement data. Similarity analysis in movement data forms a major part of this thesis.  

The third component of the knowledge discovery process, i.e. knowledge delivery, has 

been extensively studied in literature (Andrienko & Andrienko, 2008; Andrienko et al., 

2013; Andrienko & Andrienko, 2012; Pelekis et al., 2012). At this stage of the 
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procedure, we need to appropriately assess the outcomes. In this thesis, the proposed 

visualisation techniques support us to evaluate and interpret extracted knowledge.  

1.1.3 Similarity Analysis in Movement Data 

Based on the definition given by Alt and Guibas (1999), the purpose of similarity 

analysis is to define how much two objects resemble (are similar to) each other. For 

example, in movement data, trajectories, patterns, and the behavioural properties of 

moving objects are among those objects to be analysed for similarity. Many studies 

have been conducted to address various aspects of similarity analysis problems in 

movement-related disciplines. In this subsection, we review only some of them. Dodge 

(2011), has elaborateda comprehensive literature study on similarity analysis in 

movement data. According to what she described, similarity search efforts in movement 

data have been mainly inspired from two research fields, namely time series analysis 

and computational geometry (Dodge, 2011). This is reasonable because most of the 

similarity analysis methods developed for time series analysis or geometric shapes can 

be easily adapted to data mining applications for movement.  

Basically, there are five groups of similarity measures defined for time series data, 

namely Minkowski distance, edit distance, dynamic time warping (DTW), longest 

common subsequence (LCSS), and distances based on local features (Dodge, 2011). 

Research along these lines constitutes a part of our focus in this dissertation. With the 

consideration that a trajectory is defined as a sequence of consecutive locations of the 

moving object over a period of time, it can accordingly be considered as a time series of 

spatial data in data mining tasks (Spaccapietra et al., 2008).  

In addition to the analysis of the geometric shape of trajectories and point-related 

attributes such as speed, the evaluation of interaction between moving objects becomes 

more important. This thesis is centered on the development of similarity measures to 

address relationships between moving objects.  

The complexity of analysis of movement data is considerably increasing with the 

growing number of repositories of movement data. Therefore, novel approaches to 

extract knowledge from this type of data are needed. One of the primary techniques to 

understand movement data sets is clustering of moving objects in terms of trajectories, 

patterns, etc. Clustering is defined as the procedure of grouping a collection of objects 

into subsets whose in-class members share a similarity in some sense. There are several 
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criteria playing a role in the clustering of moving objects. In (Kisilevich et al., 2010), an 

overview of the state-of-the-art approaches and methods of spatio-temporal clustering 

in different application domains is given. The following example, taken from 

(Kisilevich et al., 2010), clearly shows that clustering is mostly application dependent 

and depends on many factors. “When tracking pedestrians, for example, two 

geographically close sample points co-occurring within a minute interval could belong 

to the same cluster, whereas two sample points at near distance within a time interval of 

a few nanoseconds in a physics experiment might belong to different clusters” 

(Kisilevich et al., 2010, p. 855). Until now, based on the main classes of spatio-

temporal data types introduced in (Kisilevich et al., 2010), different clustering 

techniques have been defined to cluster spatio-temporal events and geo-referenced 

times series of moving objects. Most of the existing trajectory clustering techniques 

rely on the similarity of the geometric shapes (Buchin et al., 2011a; Fu et al., 2005; 

Giannotti & Pedreschi, 2008; Lee et al., 2007; Li et al., 2010b; McArdle et al., 2013; 

Miller & Han, 2009; Nanni & Pedreschi, 2006; Rinzivillo et al., 2008; Yanagisawa & 

Satoh, 2006), and non-spatio-temporal attributes of the trajectories (e.g. transport 

mode). Less attention has been paid to developing techniques to cluster interrelations 

between moving objects. In this dissertation, the latter is fully addressed. Different 

similarity analysis techniques are developed and their outcomes are substantially 

exploited in the clustering of interrelations between moving objects. In this respect, 

additional information is required to cluster trajectory data according to the interaction 

of moving objects. As discussed earlier, QTC can perfectly describe motion, and more 

specifically the interactions between moving objects (Van de Weghe, 2004). Therefore, 

we consider this formalism to form the basis for defining novel similarity measures 

and, consequently, for developing clustering techniques for trajectories of moving 

objects. Unlike various geometric clustering techniques of trajectories, which do not 

necessarily capture spatio-temporal similarity between the movements of objects 

(Dodge, 2011), the approach presented in this research can effectively reflect 

similarities in movement behaviour of interacting moving objects. 

1.2 Case Study 

Human movement analysis is receiving increasing attention from experts of different 

disciplines such as athletic performance analysis and rehabilitation (Grassi et al., 2005; 

Mirabella et al., 2011), mass event management (Versichele et al., 2012),  surveillance 

(Haritaoglu et al., 2000), games and animation (Menache, 2000), and art (Leman & 



 

 

9 Introduction 

Naveda, 2010). Recently, in GISciences, various basic and applied research have been 

pursued to increase the understanding of human movements and activities. In this thesis, 

we also narrow our focus to human movement analysis and employ data from some 

potential applications to better understand the techniques presented in each chapter.  

The proposed approaches in this thesis are mostly applied in a case study of Samba 

dance. The rhythmic movement in dance attracted our attention for several reasons; (i) 

The movement of each body part of a dancer can be represented by a trajectory in a 

three-dimensional space, as well as by a time series of different motion attributes to be 

used to reach the objectives outlined in this thesis. (ii) In any dance genre, the quality of 

the performance highly depends on the movement of each individual body part and also 

its interactions with other body parts. Since one of our goals in this research is to 

examine interactions between multiple MPOs, the case of dance is an appropriate 

example for this purpose. (iii) In this study, depending on the purpose of each chapter, 

different visualisation techniques are developed and/or employed. Unlike disorderly 

movements, dancers perform certain movements regularly during their performances 

and these regularities are perfectly reflected in the representations. Understanding the 

types of patterns which may exist in the underlying phenomena facilitates the detection 

of patterns (Andrienko & Andrienko, 2007). Displayed patterns allow us to understand, 

explore, and interpret the movements of dancers. 

In general, the use of a dance data set allows us to look at intuitive aspects of dance, 

such as staying on the beat and to complete particular dance moves, and use them as 

analogies for object movement patterns of interest to a geographic analysis. 

Fast technological improvements in positioning and tracking systems have made it 

possible to capture massive amounts of movement of animals, aircrafts, ships, humans, 

etc. Unlike the conventional methods of collecting indoor / outdoor human motion data, 

such as GPS, Bluetooth, ByteLight (using light to beam information to your phone), 

Barometer (using atmospheric pressure), Ultrasonic, and Wi-Fi, there are many other 

approaches to capture dance movements available for further analysis. Choosing the 

right technique highly depends on the purpose of research and the degree of accuracy 

expected from the results. In the following, some examples are provided. Sensing floors 

have been used to detect footsteps (Griffith & Fernstrom, 1998; Johnstone, 1991; 

McElligott et al., 2002; Paradiso et al., 1997; Srinivasan et al., 2005). For example, the 

Magic Carpet system  (Paradiso et al., 1997) was made of a grid of wires that were 
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insulated with a piezoelectric material to sense the footsteps. Sensing shoes, equipped 

with pressure sensors,  allow measurement of the pressure exerted by the toes and the 

heel of dancers (Paradiso et al., 1999; Yoonji et al., 2008). There have been many 

systems that use cameras to capture the movement of dancers (Bevilacqua et al., 2001; 

Castellano et al., 2007; Ng, 2004). Camera-based systems are used in many domains 

and not only in dance to record the changes in movement of objects over time such as 

in traffic. On the other hand, various sensing advances have been used to create 

wearable sensors to record dance movements (El-Nasr & Vasilakos, 2008; Flety, 2005; 

Hromin et al., 2003). For example, Hromin et al. (2003) used accelerometers, flex 

sensors, temperature sensors, photoresistors and pressure sensors, each of which 

provides a certain type of movement data. The Samba dance data in this research has 

been collected with a Motion Capture (MoCap) system that records the position of 

objects over time by means of reflective markers attached to the objects in combination 

with infrared cameras. Only a very basic dataset including three-dimensional 

coordinates of five body parts,  namely right finger, left finger, right toe, left toe, and 

head  of each Samba dancer is considered. We may use right hand|right finger, left 

hand|left finger, right foot|right toe, left foot|left toe interchangeably throughout this 

thesis. More information with regard to data preparation and customization is given in 

the following chapters.  

1.3 Research Objectives 

The previous section elaborated several problems with respect to the analysis of 

movement. We mainly aim to extend our understanding of the movement behaviour of 

single or multiple moving objects. In this regard, we seek to accomplish several 

objectives throughout this thesis. This section presents the general research questions 

(RQ) that this thesis intends to address and the corresponding chapters in which they 

are addressed. To cover all the objectives below, an integration of diverse techniques in 

geographic information systems, data mining, and visualisation is utilised.  

RQ 1: How do we enhance the practical usefulness of QTC? 

The first research question is addressed in all chapters of this thesis except in Chapter 8, 

which claims that results from qualitative reasoning are comparable with those from 

quantitative ones.  
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In this study, we make extensive use of QTC, which has been studied in the field of 

diagrammatic representation and reasoning of MPOs (Van de Weghe, 2004). We are 

convinced that this calculus, despite its uncomplicated concept, is appropriate to 

describe and reason about the enormous complexly-interacting objects of the real-

world. Throughout this thesis, we contribute to the enhancement of the practical 

usefulness of QTC. We take advantage of this existing theoretical contribution and 

apply it to potential applications. In this light, Chapter 2 reviews the theoretical 

cornerstones of the fundamental types of QTC and demonstrates how the calculus can 

be implemented and extended in order to represent and reason about raw moving object 

data. In Chapter 3, the concept of the continuous triangular model (CTM) is explained 

in detail. Chapters 4-7 further elaborate on a specific type of QTC: the Qualitative 

Trajectory Calculus-Basic (QTCB). QTCB defines a binary relation between two MPOs 

on the basis of the Euclidean distance in an unconstrained n-dimensional space. All 

other types of QTC including QTC Double-Cross (QTCC) (Van de Weghe et al., 

2005b), QTC-Shape (QTCS) (Van de Weghe et al., 2004), and QTC-Network (QTCN) 

(Bogaerts et al., 2004; Bogaert et al., 2006; Bogaert et al., 2007; Delafontaine et al., 

2011b; Van de Weghe et al., 2004) were formed on the basis of QTCB. In line with 

previous efforts, we incorporate the concept of QTC into knowledge discovery 

techniques for the detection of movement patterns of MPOs and for the exploration of 

similarities in movement patterns of MPOs. For this purpose, in Chapters 4-6, we 

attempt to employ the concept of QTC conceptual animation, a sequence of successive 

QTC relations, in order to obtain insight into the movement behaviour of MPOs and 

identify movement patterns, particularly repetitive ones. In each of these chapters, a 

similarity analysis technique is proposed in order to extract knowledge from the QTC 

conceptual animations. Unlike Chapters 4-6, which focus more on the movement 

behaviour of MPOs over durations of time, Chapters 7 and 8 investigate the movement 

behaviour of objects at time stamps.  

When we develop algorithms in order to identify patterns or make predictions, it is of 

crucial importance to know what sorts of structures are likely to exist within the dataset 

under consideration (Mountain, 2005). The general meaning of a pattern (i.e. a regular 

occurrence in time) can be applied to a wide variety of cyclical natural phenomena 

having a periodicity or frequency of anything from microseconds to millions of years. 

As stated in the previous subsection, the effectiveness of different approaches in this 

thesis is tested using a data set of Samba dance representing some basic rhythmical 
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movements of dancers. Pre-knowledge on the structure of dancer movements improves 

our ability to design techniques to extract more significant information. The question 

then arises, “what are the advantages of qualitative reasoning in this case?” Dance itself 

is a complicated process. If we also add the complexity of the collected dataset, then 

learning to digest this dynamic behaviour would be a demanding job. In qualitative 

reasoning (QR), precise numerical values or quantities are avoided, and qualitative 

values are used instead (Daintith, 2004). Qualitative spatio-temporal reasoning, a subset 

of QR, is based on a qualitative abstraction of the spatial and temporal aspects of the 

common-sense knowledge on which the human perspective of physical reality is based. 

As discussed earlier, QTC provides a context to qualitatively abstract the movement of 

MPOs and to express the relationships between them. And dance is the case that can 

satisfactorily illustrate the power of qualitative spatio-temporal reasoning of QTC. In 

dance, keeping control over the movements of interacting body parts determines the 

quality of the performances of dancers. This can be formulated through QTC and based 

on qualitative data (QTC binary relations between body parts). In this thesis, Chapters 

4-7 deliver insights into the movement of dancers and quickly identify potential 

problems that warrant more detailed quantitative analysis (Chapter 8).  

RQ 2: Is it possible to use  QTC in the context of knowledge discovery from movement? 

There are many examples in which detecting patterns are useful such as finding motifs 

in DNA sequences which have a biological significance or extracting specific patterns 

in speech used in speech processing. Given the importance of this issue, which has led 

many researchers to attempt to find patterns from different research domains like 

bioinformatics, speech processing, and image processing (for example see (Gilbert & 

Viksna, 1999; Hsu et al., 2001; Huang & Yu, 1999; Kovar & Gleicher, 2004; Laptev et 

al., 2005; Li & Holstein, 2002; Park & Glass, 2005; Qu et al., 1998; Wu et al., 2004)), 

we pursue this goal to discover patterns in the movement of MPOs. Among various 

types of patterns which may be observed in the movement of MPOs (a comprehensive 

classification of movement patterns can be found in (Dodge et al., 2008)), we focus on 

repetitive behaviour (i.e. frequent patterns) of moving objects. Frequent patterns 

reflecting regular behaviour of moving objects is an intensively studied topic (e.g. (Cao 

et al., 2007; Giannotti et al., 2007; Laube & Imfeld, 2002; Li, 2013; Li et al., 2010a)). 

Unlike most previous works that examine the behaviour of moving objects individually 

to detect frequent movement patterns, we aim to discover frequent patterns from the 

interactions of moving objects. We detect repetition in the behaviour of interacting 
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moving objects based on low-level qualitative data. In most previous studies, the most 

accurate information is provided as an input to be considered in the detection of 

patterns. However, in this study we show how low-level qualitative data can be 

appropriately employed in finding frequent patterns. In response to this research 

question, we employ the qualitative trajectory calculus (QTC) to detect repetitive 

patterns on the basis of some mathematical functions that calculate similarity in QTC 

relations of moving objects. We focus more on frequent patterns manifested in a 

number of ways, ranging from simple repeated movements of the hands of a dancer to 

complex movements of football players during a match. In each chapter of this thesis 

(4-8), a section is devoted to introduce a specific similarity measure used to retrieve and 

detect periodic patterns from the interactions of moving objects. 

RQ 3: How do we appropriately employ visualisation techniques in the analysis of 

movement data? 

Data visualisation techniques allow us to form multi-dimensional representations of 

data that can be easily interpreted to gain knowledge and insights into those data sets 

(Soukup & Davidson, 2002). Ware (2004) pointed out some of the advantages of data 

visualisation such as its power in comprehension of enormous and complex data 

associated with errors and artifacts. The process of data visualisation includes data 

collection and storage, preprocessing and transformation, displaying, and perception 

(Ware, 2004). Accordingly, “raw” data collections need to undergo preprocessing, in 

the form of data cleaning and data transformation (Larose, 2005). Then, they are 

transformed into something that can be displayed and understood. With data 

visualisation and visual data mining tools and techniques, one can identify the 

interesting (nontrivial, implicit, perhaps previously unknown and potentially useful) 

information or patterns (Soukup & Davidson, 2002). 

As a branch of this research area, visualisation of movement data has been an active 

topic for many years. Some of the key works exploring the visualisation of movement 

data include (Andrienko et al., 2012; Andrienko et al., 2007; Andrienko et al., 2008; 

Enguehard et al., 2013; Hägerstraand, 1970; Kwan, 2000; Randell et al., 1992; Ren & 

Kwan, 2007; Rinzivillo et al., 2008; Shamoun-Baranes et al., 2012; Willems et al., 

2009; Zeng et al., 2013). Given incremental improvement of visual exploration tools 

and techniques, the level of understanding of movement datasets is increasing over 

time. Many of these advancements rely on direct depiction of data rather than 
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summarisation or pattern extraction (Andrienko et al., 2008; Enguehard et al., 2013). 

Direct depiction of movement data, in most cases, provides only a general overview of 

the entire dataset. This limitation calls for other complementary techniques such as 

computer-aided synthesis (e.g. categorisation or pattern extraction) and filtering (either 

interactively or automatically) (Enguehard et al., 2013). 

The current study emphasises the importance of visualisation to represent and reason 

about movement patterns in movement data. In this regard, visual analysis has been 

identified as an essential tool for data exploration, utilising human vision to interpret 

patterns in data (MacEachren & Kraak, 2001). A well-structured survey of the state of 

the art in visual analysis regarding the analysis of movement data is given in 

(Andrienko & Andrienko, 2013). In agreement with (Andrienko & Andrienko, 2007), 

visualisation techniques alone are not adequate to conduct a broad analysis of dynamic 

phenomena and, therefore, a compromise between computational methods and 

visualisation techniques are suitable. We offer some appropriate visualisation 

techniques to visualise and straightforwardly detect the repetitive movement patterns of 

multiple objects. The proposed visualisation techniques are either close enough to 

human perception or effectively fit with computational analysis methods.  

In Chapter 4, we aim to contribute to the development of the concept of the Continuous 

Triangular Model (CTM). In previous efforts, the use of CTM was demonstrated in 

reasoning about imperfect intervals and visual analytics (i.e. analytical reasoning 

facilitated by interactive visual interfaces) (Qiang et al., 2010; Qiang et al., 2012). We 

apply CTM to display the degrees of similarity between movement patterns. In fact, we 

employ CTM as an exploratory method to delve into the movement data (i.e. dance 

dataset), identifying interesting relations and interactions between moving objects, and 

detecting regular and non-regular movement patterns. In Chapter 5, we propose a 

visualisation technique called sequence signature to map patterns of the interactions 

between two moving objects in an indexed raster space. We further develop this 

concept to visualise patterns of multiple objects in Chapter 6. Although the focus of 

Chapters 7 and 8 is more on examining similarity in movement patterns, the employed 

methods for this purpose are integrated with visualisation techniques. In Chapter 7, the 

Sequence Alignment Method (SAM) is applied to discover matched and mismatched 

patterns of dancers. Visualised aligned patterns provide added value to interpret the 

results. Chapter 8 proposes two approaches, namely REMO (RElative MOtion) and 

http://en.wikipedia.org/wiki/Reasoning
http://en.wikipedia.org/wiki/User_interface


 

 

15 Introduction 

DTW (Dynamic Time Warping) to study motion attributes of moving objects such as 

speed and motion azimuth. The visual exploration of these methods is the most 

powerful incentive to investigate movement patterns of moving objects. 

1.4 Thesis Outline 

The thesis consists of nine chapters. Chapters 2 to 8 are the substantial part of the 

thesis, comprising a collection of academic papers that have been published in 

international peer-reviewed journals, submitted or are in preparation for submission. 

The papers on which Chapters 2 and 3 are base, are mainly written by the first author. 

Based on the previously mentioned research questions, each chapter of this manuscript 

is organised to answer them. The chapters are not grouped because some of them may 

partly answer all research questions, whereas other chapters respond to a specific 

question. There are strong links between the chapters presented in this manuscript. The 

general outline of the thesis is presented in Table  1-1. In order to allow someone to read 

these papers smoothly and independently, there are some unavoidable overlaps in the 

individual chapters with regard to the literature reviews and the description of the 

research design and methodology. The last chapter summarises the main findings of our 

study and returns to the three research questions to reflect on our contributions and 

proposes avenues for future research.  
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2 THE QUALITATIVE TRAJECTORY CALCULUS 
 

Abstract: A number of qualitative calculi have been developed that reason about space 

and time. A recent trend has been the emergence of integrated spatio-temporal calculi in 

order to deal with dynamic phenomena such as motion. In 2004, Van de Weghe 

introduced the Qualitative Trajectory Calculus (QTC) as a qualitative calculus to 

represent and reason about moving objects. This chapter presents a general overview of 

the principal theoretical aspects of QTC. It shows how QTC deals with important 

reasoning concepts and how the calculus can be employed in order to represent raw 

moving object data. 

2.1 Introduction 

Reasoning about spatial and temporal information takes a central place in human daily 

life. A number of qualitative calculi have been developed to represent and reason about 

spatial or temporal configurations. Most of them focus on one of the two domains, 

whereas a few are true spatio-temporal calculi that deal with spatio-temporal 

phenomena. One such calculus is the Qualitative Trajectory Calculus, which will be 

referred to as QTC. QTC is a qualitative calculus to reason about a specific spatio-

temporal phenomenon: moving objects. 

The remainder of this chapter is structured as follows. First, relevant background issues 

are discussed. Second, some general characteristics of QTC are explained and a brief 

overview of all QTC calculi that have been elaborated so far is given. The most 

fundamental QTC calculus, QTCB, is then presented in detail. The following sections 

discuss representing and reasoning with QTC, as well as how QTC can be extended. An 

application section follows in order to highlight the potential of implementing QTC in 

information systems. The final section draws conclusions. 

2.2 Background 

In Artificial Intelligence, several qualitative calculi exist to reason about either spatial 

or temporal information, the most well-known being Allen’s Interval Calculus (Allen, 

1983). According to Wolter & Zakharyaschev (2000), an apparent and natural step is to 

combine both spatial and temporal formalisms in order to reason about spatio-temporal 

phenomena. Motion is a key research area in GISciences. Note that motion is an 
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inherently spatio-temporal phenomenon (Peuquet, 2001). Dealing with motion is 

essential to spatial and geographical information systems, where an evolution from 

static to dynamic formalisms and representations has been made. A specific type of 

motion is associated with moving objects, i.e. objects whose position moves through 

space in time. 

In the past decade, the modelling of moving objects has been a hot topic in fields such 

as GIScience, Artificial Intelligence and Information Systems (Bitterlich et al., 2008). 

In qualitative reasoning, however, considerable work has focused on the formalisation 

of motion, or moving objects in particular. Some examples are Muller (2002), Ibrahim 

(2007), Hallot & Billen (2008), and Kurata & Egenhofer (2009). These approaches 

have in common that they rely on topological models such as the Region Connection 

Calculus (Randell et al., 1992) or the 9-Intersection model (Egenhofer & Franzosa, 

1991). However, a general shortfall of topological models is their inability to further 

differentiate between disjoint relations. This makes their applicability to represent and 

reason about continuously moving objects questionable, as in many cases moving 

objects remain disjoint for most of the time. For instance, cars in a traffic situation are 

usually disjoint, apart from the exceptional case of an accident. 

In order to overcome this inability, the Qualitative Trajectory Calculus (QTC), was 

proposed by Van de Weghe (2004). QTC provides a qualitative framework to represent 

and reason about moving objects which enables the differentiation of groups of 

disconnected objects. The development of QTC has been inspired by some major 

qualitative calculi: the Region Connection Calculus (Randell et al., 1992), the temporal 

Semi-Interval Calculus (Freksa, 1992a), and the spatial Double-Cross Calculus (Freksa, 

1992b; Zimmerman & Freksa, 1996). 

2.3 The Qualitative Trajectory Calculus 

2.3.1 Simplifications 

Information systems usually represent knowledge according to an underlying model of 

the real-world. To this end, QTC makes four simplifications (Figure  2-1). First and 

foremost, QTC considers the relation between only two objects at the same time, i.e. 

binary relations (relational simplification, Figure  2-1b), as is common in spatio-

temporal reasoning (Cohn & Renz, 2007). Second, moving objects are spatially 

simplified into moving point objects or MPOs (object simplification, Figure  2-1c), as is 
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common in GIScience and geoinformatics (Gudmundsson et al., 2004; Guting et al., 

2000; Laube, 2005; Noyon et al., 2007). There are only two topological relations 

(disjoint and equal) between two MPOs. Since the relation between two equal MPOs is 

trivial, the third simplification in QTC is the restriction to disjoint MPOs (topological 

simplification). Finally, in order to understand the temporal dimension in depth, it is 

important to find out what happens at one time point. Hence, QTC relations are 

relations that hold at a particular time point (temporal simplification, Figure  2-1d). 

 

Figure ‎2-1: Simplification in QTC of a real-life situation (a) by taking cumulatively account of 

the relational simplification (b), the object simplification (c), and the temporal simplification 

(d) (simple arrows for trajectories, double arrows for instantaneous velocity vectors) 

2.3.2 Continuity, Conceptual Neighbours, and Transitions 

QTC assumes space and time, and thus the motion of objects, to be continuous. As a 

consequence, QTC relations change in time according to the laws of continuity. Along 

with continuity comes the important concept of conceptual neighbourhood as 

introduced by Freksa (1992b). Two QTC relations between the same pair of MPOs are 

conceptual neighbours if and only if these relations can directly follow each other 

through continuous motion of the MPOs, without the necessity for a third relation to 

hold at an intermediate point in time. A transition then denotes the continuous change 

of one relation into a conceptual neighbouring relation. Each transition thereby happens 

at a certain instant or point in time, which we will term a transition instant. A 

conceptual neighbourhood can be represented by a conceptual neighbourhood diagram 

(CND), i.e. a visualisation of a graph which nodes represent relations, and where two 

nodes are connected if they are conceptual neighbours of each other. 

All QTC calculi are associated with a set of jointly exhaustive and pairwise disjoint 

(JEPD) base relations. Consequently, there is one and only one relation for each pair of 

coexisting MPOs at each time instant.  In addition, due to continuity, the concurrent 



 

 

31 The Qualitative Trajectory Calculus 

movement of two MPOs over a given time interval is uniquely mapped to a sequence of 

conceptually neighbouring base relations. 

All QTC relations are formed by a tuple of labels (representing different primitive 

qualitative relations) that all have the same three-valued qualitative domain {, 0, +}, 

which we will denote as U in the remainder of this chapter. A ‘0’ symbol corresponds 

to a landmark value, and as Galton (2001) points out, this value always dominates both 

‘’ and ‘+’ values. Hence: 

· A ‘0’ must always last over a closed time interval (of which a time instant is a 

special case); 

· A ‘’ / ‘+’ must always last over an open time interval; 

· Only transitions to or from ‘0’ are possible (transitions from ‘’ / ‘+’ to ‘+’ / ‘’ 

are impossible) and transition instants always correspond with a ‘0’ value. 

Based on the notion of topological distance introduced by Egenhofer & Al-Taha 

(1992), the conceptual distance can be defined as a measure for the closeness of QTC 

relations (Van de Weghe & De Maeyer, 2005). We take the conceptual distance 

between ‘0’ and another symbol to be one. This is the smallest conceptual distance, 

apart from zero, i.e. the distance between a symbol and itself. Since a direct transition is 

impossible, the conceptual distance between ‘’ and ‘+’ is equal to two (one for ‘’ to 

‘0’ and one for ‘0’ to ‘+’). The overall conceptual distance between two QTC relations 

can then be calculated by summing the conceptual distance over all relation symbols. 

For instance, for two QTC relations consisting of four symbols, the conceptual distance 

ranges from zero to eight. 

2.4 Types of QTC 

Due to the consideration of different spaces and frames of reference, the following 

types of QTC have been elaborated: 

· Basic type – QTCB (Van de Weghe et al., 2006), Figure  2-2a 

· Double-Cross type – QTCC (Van de Weghe et al., 2005), Figure  2-2b 

· Network type – QTCN  (Bogaert et al., 2006), Figure  2-2c 

· Shape type – QTCS (Van de Weghe et al., 2005) 

The QTC Basic (QTCB) and the Double-Cross (QTCC) types both deal with MPOs that 

have a free trajectory in an n-dimensional space. QTCB relations are determined by 
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referring to the Euclidian distance between two MPOs (Figure  2-2a). QTCC relations on 

the other hand rely on the double cross, a concept introduced by Zimmerman & Freksa 

(1996), as a spatial reference frame (Figure  2-2b).  

QTCN (Network) focuses on the special case of MPOs which trajectories are 

constrained by a network, such as cars in a city. Since both the Euclidean distance and 

the double cross concepts ignore the spatial configuration of a potential underlying 

network, they are not well suited for QTCN. Therefore, QTCN relations rely on the 

shortest paths in the network between the considered MPOs (Figure  2-2c). In essence, 

QTCN employs the philosophy of QTCB in the context of a space constrained by a 

network.  

Finally, QTCS (Shape) employs the double cross concept in order to describe trajectory 

shapes or even arbitrary undirected polylines in a qualitative way. Thus, QTCS deals 

with the relative configuration of a trajectory, rather than with the relation between 

MPOs. QTCB will be only discussed in detail in this chapter. 

 

 

(a)    (b)    (c) 

Figure ‎2-2: Two MPOs represented in a typical two-dimensional QTCB (a), QTCC (b), and 

QTCN (c) setting. The frame of spatial reference is represented by the dashed line. 

2.5 QTC Basic (QTCB) 

A MPO is always characterised by an origin and a destination, whether explicit or 

implicit. Hence, a basic dichotomy concerning MPOs, perhaps the most fundamental 

one, is the distinction between towards and away from relations. This very generic idea 

underlies QTCB where this binary relation is evaluated on the basis of Euclidean 

distance in an unconstrained n-dimensional space. In addition, also the relative speed 

between both objects can be taken into account. As mentioned earlier, QTC relations 

consist of qualitative symbols that share the threefold domain U = {, 0, +}. QTCB 

relations are constructed from the following relationships: 
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Assume: MPOs k and l and time point t 

  𝑘|𝑡 denotes the position of an MPO k at t  

 𝑑(𝑢, 𝑣) denotes the Euclidean distance between two positions u and v  

𝑣𝑘
𝑡⃗⃗⃗⃗  denotes the velocity vector of k at t 

 𝑡1 ≺ 𝑡2 denotes that t1 is temporally before t2 

A. Movement of k with respect to l at t (distance constraint): 

: k is moving towards l: 

 ∃𝑡1 (𝑡1 ≺ 𝑡 ∧ ∀𝑡−(𝑡1 ≺ 𝑡− ≺ 𝑡 → 𝑑(𝑘|𝑡−, 𝑙|𝑡) > 𝑑(𝑘|𝑡, 𝑙|𝑡))) ∧ 

∃𝑡2 (𝑡 ≺ 𝑡2 ∧ ∀𝑡+(𝑡 ≺ 𝑡+ ≺ 𝑡2 → 𝑑(𝑘|𝑡, 𝑙|𝑡) > 𝑑(𝑘|𝑡+, 𝑙|𝑡)))  

  Eq. 2-1 

+: k is moving away from l: 

∃𝑡1 (𝑡1 ≺ 𝑡 ∧ ∀𝑡−(𝑡1 ≺ 𝑡− ≺ 𝑡 → 𝑑(𝑘|𝑡−, 𝑙|𝑡) < 𝑑(𝑘|𝑡, 𝑙|𝑡))) ∧ 

∃𝑡2 (𝑡 ≺ 𝑡2 ∧ ∀𝑡+(𝑡 ≺ 𝑡+ ≺ 𝑡2 → 𝑑(𝑘|𝑡, 𝑙|𝑡) < 𝑑(𝑘|𝑡+, 𝑙|𝑡)))  

  Eq. 2-2 

0: k is stable with respect to l (all other cases) 

B. Movement of l with respect to k at t (distance constraint), can be described as in A 

with k and l interchanged, and hence: 

−: l is moving towards k  Eq. 2-3 

+: l is moving away from k  Eq. 2-4 

0: l is stable with respect to k (all other cases) 

C. Relative speed of k with respect to l at t (speed constraint): 

: k is moving slower than l 

| 𝑣𝑘
𝑡⃗⃗⃗⃗ | < | 𝑣𝑙

𝑡⃗⃗⃗⃗ |  Eq. 2-5 

+: k is moving faster than l 

| 𝑣𝑘
𝑡⃗⃗⃗⃗ | > | 𝑣𝑙

𝑡⃗⃗⃗⃗ |  Eq. 2-6             

0: k and l are moving equally fast 

| 𝑣𝑘
𝑡⃗⃗⃗⃗ | = | 𝑣𝑙

𝑡⃗⃗⃗⃗ |  Eq. 2-7 

 

Two levels of QTCB relations have been proposed: a first level QTCB1 that only 

considers the distance constraints (relationships A and B), and a second level QTCB2 

taking account of the speed constraint (relationship C) as well. The resulting relation 

syntaxes are respectively the tuples (A B)B1 and (A B C)B2.  Note that relationship C 

dually represents the relative speed of l with respect to k, and hence trivialises a fourth 

relationship. Relation icons for QTCB are shown in Figure  2-3, where k is always on the 

left side, and l on the right side. The line segments and crescents represent potential 

motion areas. Note that their boundaries are open, and, for the crescents, the straight 

boundaries correspond to elements of another relation. A filled dot indicates that an 
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MPO might be stationary, whereas an open dot means that it must be moving. Dashed 

lines represent uncertain boundaries that follow from the ignorance of relative speed.  

There are 9 (3²) base relations in QTCB1 (Figure  2-3a). All these relations are possible 

in a one- or higher-dimensional space. QTCB2 on the other hand has 27 (3³) base 

relations (Figure  2-3b), which are all possible in two- or higher-dimensional spaces. 

However, in a one-dimensional space, only 17 (63.0%) QTCB2 relations can occur. This 

reduction follows from a dependency between the distance constraints and the speed 

constraint in the case of a 1D space. In a 1D space, the direction of movement is always 

collinear with the direction of Euclidean distance, and hence a ‘0’ in the distance 

constraints always corresponds to a stationary MPO. As a consequence, it is impossible 

for an MPO to be stationary and to have a higher speed than another MPO. In a two- or 

higher-dimensional space on the other hand, a ‘0’ distance constraint does not 

necessarily indicate a stationary object, e.g. in the case of ‘tangential motion’ such as 

when one MPO is circling around the other MPO. 

 

 

      (a)       (b) 

Figure ‎2-3: QTCB1 relation icons (a) and QTCB2 relation icons (b) 

2.6 Representing and Reasoning with QTC 

QTC has been confronted with key concepts in qualitative reasoning. In this section, we 

will discuss two of these issues, respectively conceptual neighbourhood diagrams 

(CNDs) and incomplete knowledge. 

2.6.1 Conceptual Neighbourhood Diagrams 

As mentioned earlier, the construction of CNDs for QTC is based on the concepts of 

dominance (Galton, 2001) and conceptual distance. For an in depth description, we 

refer to Van de Weghe & De Maeyer (2005). CNDs for the QTC Basic calculi in 2D 
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space are shown in Figure  2-4. For each link between conceptual neighbours the 

conceptual distance between the adjacent relations has been indicated.  

From the CNDs, we learn that, due to the laws of continuity, the conceptual neighbours 

of each particular relation constitute only a subset of base relations. This set comprises 

the candidate relations that may directly precede or follow the relation at hand in time, 

i.e. the set of possible transitions from/to this relation. This set of candidates is thereby 

highly limited when compared to the set of theoretical possibilities, as can be seen from 

Table  2-1. Note that each pair of conceptual neighbours R1 and R2 is associated with 

two transitions, i.e. a transition from R1 to R2, and its converse from R2 to R1. Similarly 

to a CND, a transition graph can be constructed with directed links to represent existing 

transitions.  

Another notable finding is that all CNDs are completely symmetric with respect to the 

relation consisting solely of ‘0’ values. We call this symmetric and reflexive relation 

the zero-relation. Symmetry with respect to the zero-relation is due to the central 

position of ‘0’ in the qualitative set U = {, 0, +}, as well as to the symmetry of 

conceptual neighbourhood for converse QTC relations.  

Furthermore, every relation is a conceptual neighbour of the zero-relation (and vice 

versa), as is consistent with our intuition. For instance, it is highly reasonable that, 

whatever the relation between two MPOs at a certain moment, they may always 

become stationary the next moment, in which case their relation turns into the zero-

relation. 

Table ‎2-1: The number of base relations, transitions, theoretical combinations of base relations, 

and the ratio transitions / theoretical combinations for QTC Basic calculus. 

QTC calculus # spatial dimensions # base relations # transitions # combinations ratio 

B1 1+ 9 32 72 44,4% 

B2 
1 17 64 272 23,5% 

2+ 27 196 702 27,9% 
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  (a)    (b)      (c) 

Figure ‎2-4: CNDs for QTCB1 in n-dimensional space (a), for QTCB2 in a one-dimensional 

space (b), and for QTCB2 in a two- or higher-dimensional space (c). The straight, dashed and 

dotted lines respectively represent the conceptual distances one, two and three. 

2.6.2 Incomplete Knowledge 

Not always everything has to be known about a situation to make inferences which are 

important for the issue at hand (Frank, 1996). Obviously, in these situations information 

may lack for offering complete answers to queries. However, ‘a partial answer may be 

better than no answer at all.’ as Freksa (1992a, p. 203) argues. By abstracting away 

from the mass of metrical details, qualitative representations are much more appropriate 

for handling such incomplete knowledge, rather than quantitative approaches (Cristani 

et al., 2000).  

As mentioned before, the development of the QTC has been inspired by some major 

QR calculi, especially the temporal Semi-Interval Calculus (Freksa, 1992a) and the 

spatial Double-Cross Calculus (Freksa, 1992b; Zimmermann & Freksa, 1996). Central 

in these theories is the specific attention to incomplete knowledge, and hence, one 

might expect QTC to be able to handle incomplete knowledge as well. 

One kind of incomplete knowledge results from natural language expressions. Consider 

the expression “k is moving towards l, which is not slower than k”. This expression can 

be represented in QTC, for instance by ( U U+)B2 with U+ = U \{+}. Hence, we obtain 

a union of six solutions. Interestingly, these solutions constitute a conceptual 

neighbourhood, i.e. they are mutually path-connected through conceptual neighbour 

relations when isolated from the complete CND of base relations (see Figure  2-4). 

According to Freksa (1992a), we achieve coarse knowledge, i.e. a kind of incomplete 

knowledge that allows to be represented by a conceptual neighbourhood of relations at 
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a certain level of granularity. When relations between MPOs are perceived or described 

incompletely through natural language, the resulting knowledge will typically be 

coarse. 

Whenever one expression may lead us to incomplete knowledge, multiple expressions 

can be combined in order to deduce finer knowledge. Table  2-2 gives an example of 

four expressions, each of which has a coarse result, for which the intersection results in 

complete knowledge. In addition, composition offers an appropriate inference 

mechanism to integrate expressions about three or more objects. 

Table ‎2-2: Intersection of coarse solutions to obtain fine knowledge, with U0 = U \(G\ et al.) 

(for more explanation, see (Van de Weghe 2004)) 

natural language expression 
QTCB2 

solution 
integrated solution 

“ k is moving towards l ” (− U U)B2 
(− U U)B2  (U0 U0 U)B2   

(U + U)B2  (U U 0)B2 

= (− + 0)B2 

“ k and l are moving along the same straight line ” (U0 U0 U)B2 

“ l is moving away from k ” (U + U)B2 

“ l is moving equally fast as k ” (U U 0)B2 

2.7 Extending QTC 

Complex real-life motions go far beyond the earlier described simplifications applied in 

QTC. Can we relax these constraints? Obviously, not all simplifications can be ignored. 

Therefore, we now focus on how QTC can be extended, whilst still accepting the object 

simplification, i.e. the abstraction of moving objects to MPOs. In the remainder of this 

section we will discuss the respective and cumulative releases of the relational, 

temporal, and topological simplifications. 

2.7.1 Multiple MPOs 

The relations between multiple MPOs can be represented by means of a QTC cross 

table or matrix (Table  2-3). An element (i, j) in this matrix represents the QTC relation 

between MPOs i and j. A QTC matrix can be computed at each time point. The 

following compression rules and techniques can be used in order to reduce its size: 

· The diagonal of the matrix can be excluded, as it is empty due to the topological 

constraint. 

· Only the upper right (or lower left half) of the matrix has to be considered, as is 

gray shaded in bold in Table  2-3. The lower part of the matrix holds the converse 

relations of the upper part and vice versa and is therefore redundant.  
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Hence, for n objects, the number of elements can be reduced from n² to (n²-n)/2. Note 

that research has been done in order to further simplify topological relations (Rodríguez 

et al., 2003) and simplifying temporal relations (Rodríguez,  et al., 2004) over multiple 

elements. It could be interesting to combine both in order to simplify spatio-temporal 

relations, such as QTC relations. Thus, the number of elements in a QTC matrix could 

be further reduced so that it only contains relevant information, i.e. no redundancies. 

Table ‎2-3: QTCB1 matrix for four MPOs k, l, m, and n at time t 

t k l m n 

k  -- -+ -0 

l --  ++ +0 

m +- ++  -0 

n 0- 0+ 0-  

 

2.7.2 Multiple Time Points and Intervals 

What if we consider QTC matrices at different time moments? According to the 

philosophy of qualitative reasoning, new relations only need to be calculated whenever 

transitions occur. As a consequence, it will be the most efficient to compute one initial 

matrix and to store only relations which have transitioned in all subsequent matrices. 

2.7.3 Multiple Topological Relations 

QTC does not distinguish topological relations, and might hence be complemented by 

topological calculi. As mentioned earlier, point objects only have two topological 

relations: disjoint and equal. Though QTC is developed to reason about disjoint objects, 

this constraint might be relaxed. Note that in case of equal MPOs, we will always 

obtain zero-relations. 

2.8 Example Case 

This section discusses an example application of QTC in one of the major domains of 

applied science that in essence deals with objects moving in a geographical space, 

namely transportation research. Ever since their invention, cars have been a focus of 

research for numerous traffic engineers that have tried to represent and understand their 

complex physics. A typical example is the case of an overtake event (André et al., 

1989; Fernyhough et al., 2000). In this section, we will analyse this case in QTC 

starting from raw trajectory sample points as received from position aware devices. As 

the left / right distinction is crucial in overtake events, we will utilise QTCB1. 
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Let us consider two cars k and l. Table  2-4 gives their two-dimensional sample 

coordinates during an overtake event at regular time steps of one second. As QTC 

assumes continuity, such a discrete set of sample points has to be interpolated in order 

to obtain continuous trajectories. Although several approaches are possible, we will, for 

this example case, rely on simple linear interpolation in space and time. This is also 

shown in Table  2-4. 

Table ‎2-4: Trajectory sample points of two cars k and l during an overtake event 

sample 
point 

car k 

 

car l 

 

x (m) y (m) t (s) x (m) y (m) t (s) 

1 15 0 0 15 10 0 

2 15 5 1 15 13 1 

3 10 13 2 15 17 2 

4 10 23 3 15 23 3 

5 10 33 4 15 28 4 

6 15 41 5 15 33 5 

7 15 46 6 15 38 6 

 

We find the following QTCB1 relation pattern: ( +)B1  ( +)B1  (0 0)B1  (+ )B1 

 (+ )B1. Since this is a pattern of subsequent conceptual neighbours, we call it a 

conceptual animation (Van de Weghe, Cohn et al., 2005). It consists of five relations, 

four of which hold over a time interval, whereas (0 0)B1 occurs instantaneously at 3 s. 

Although all others last over intervals, continuity theory induces some subtle 

differences between them. As pointed out earlier, a ‘0’ value must always last over a 

closed time interval (of which a time instant is a special case), whereas ‘’ and ‘+’ must 

always hold over an open time interval. Therefore, it follows that ( +)B1 and (+ )B1 

persist over open time intervals, whereas (0 0)B1 occurs at an instantaneous closed time 

interval. Note that, as Table  2-4 does not provide a preceding and following sample 

point for respectively the first and the seventh sample point, the change in movement 

direction is unknown at these instants. Consequently, the beginning of ( +)B1 and the 

end of (+ )B1 are unknown. With this knowledge, a more complete description of the 

complete conceptual animation would be: 
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]0, 1]:( +)B1  ]1, 3[:( +)B1  [3]:(0 0)B1  ]3, 5[:(+ )B1  [5, 6[:(+ )B1. 

 

Similarly to the overtake event, many other dynamic phenomena can be modelled by 

means of conceptual animations. Some of them are studied in this research. A 

qualitative framework can then be composed of such QTC patterns in order to reason 

about, recognise or simulate traffic events. 

2.9 Conclusions 

This chapter has presented the Qualitative Trajectory Calculus as a qualitative spatio-

temporal calculus to handle the relations between moving objects adequately. The 

development of QTC and which spatial and temporal calculi inspired QTC has been 

discussed. The chapter has focused on the most general and fundamental QTC calculi, 

i.e. the Basic type, as it constitutes the basis of all other types. The principal reasoning 

mechanisms such as conceptual neighbourhoodness have been considered in some 

detail, as well as the ability for QTC to deal with incomplete knowledge. The 

usefulness and applicability of QTC has been illustrated in a simple case where, starting 

from raw trajectory data, a conceptual QTC animation is obtained. 
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The Continuous Triangular Model  
 

Each problem that I solved became a rule, which served afterwards to solve other problems. 
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3 THE CONTINUOUS TRIANGULAR MODEL  
 

Abstract: Many disciplines are faced with the problem of handling time-series data. 

We introduce an innovative visual representation for time series, namely the continuous 

triangular model. In the continuous triangular model, all subintervals of a time series 

can be represented in a two-dimensional continuous field, where every point represents 

a subinterval of the time series, and the value at the point is derived through a certain 

function (e.g. average or summation) of the time series within the subinterval. The 

continuous triangular model thus provides an explicit overview of time series at all 

different scales. In addition to time series, the continuous triangular model can be 

applied to a broader sense of linear data. We also show how the coordinate interval 

space in the continuous triangular model can support the analysis of multiple time 

series through spatial analysis methods such as map algebra. A real-world dataset is 

employed to demonstrate the usefulness of this approach. 

3.1 Introduction 

Many disciplines are faced with the problem of handling time series data, which lead to 

considerable efforts dedicated to the research of time series (Enders, 2008; Hamilton, 

1994; Liao, 2005). The temporal scale is one of the most important issues in time series 

analysis. Analogous to the well-known modifiable areal unit problem in spatial analysis, 

the way of aggregating temporal data may also significantly affect analysis results. 

Sometimes patterns or relationships detectible in a certain scale cannot be detected in 

other scales. Even in the same scale, different partitions of intervals may result in 

different patterns being revealed. On the other hand, a question can be answered in 

different scales. For example, the answers to the question when there are a lot of traffic 

jams in Belgium may include ‘between 7:00am and 9:00am’, ‘during the days it snows’ 

and ‘in the months of school semester’. All these answers make sense because they may 

guide people to take actions in corresponding scales. Therefore, an appropriate choice 

of the temporal scale should take account of the characteristics of phenomena under 

study, the level of questions being asked, and the scale of actions to be taken. This 

choice is not easy, especially in the phase of exploratory analysis when there is not 

much known about the data and when the objective of the analysis is not accurately 

specified. In addition to specifying an appropriate scale for analysis, the hierarchy of 
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phenomena in different scales can also be important in certain analytical tasks 

(Andrienko et al., 2010). Analysts may be interested in how long-term patterns are 

composed or influenced by short-term patterns within them. As a result, multi-scale 

analysis is of critical importance for analysing temporal data. Due to the complexity of 

this issue, the solution requires considerable human intelligence to be involved.  

Visualisation has been proven to be an effective analytical approach for time series data 

(Aigner et al., 2007). An explicit visualisation can effectively combine the insight of 

humans and processing ability of computers (Andrienko & Andrienko, 2006; Keim et 

al., 2006a) to tackle analysis tasks. While a number of approaches have been developed 

to visualise time series (Havre et al., 2000; Hochheiser & Shneiderman, 2004; Lin et al., 

2004; Weber et al., 2001), the line chart remains the most frequently used. In a line 

chart, the horizontal dimension indicates positions in the time line, and the vertical 

dimension indicates the values at the positions. The time series is represented as a 

curve, offering a direct view of the variation of time series along the linear space. Line 

diagrams usually only display time series in a certain scale. Displaying time series in 

different scales would require drawing more curves, which makes the data display 

matted. Manipulating a sliding bar to shift the scales to be displayed is an alternative 

approach. However, with the slider, one still cannot obtain an overall picture of time 

series in all different scales. 

The Continuous Triangular Model (CTM) introduced in this chapter provides an 

alternative approach to represent time series and overcomes the difficulty of traditional 

approaches in visualising time series in multiple scales. The CTM is based on a 

diagrammatic representation of time intervals initially proposed by Kulpa (Kulpa, 

1997b; Kulpa, 2006). Later, Van de Weghe named it the Triangular Model (TM) and 

applied it to archaeological use cases (Van de Weghe et al., 2007). More recently, 

Qiang investigated its use in reasoning about imperfect intervals (Qiang et al., 2010) 

and visual analytics (Qiang et al., 2012a; Qiang et al., 2012b). The basic idea of the TM 

is representing time intervals as points in a coordinated two-dimensional (2D) space. 

Evolved from the TM, the CTM adds the third dimension to the interval space of the 

TM and forms a continuous field, which can display time series in all different 

intervals. In the continuous field, every point represents a specific interval and is 

referenced to a certain value of the interval, such as the summation, average or standard 

deviation etc. On the one hand, the CTM can provide an overview of linear time series 
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in all different scales. On the other hand, as the CTM is based on a 2D coordinate 

space, the glossary of spatial analysis methods in geographical information science 

(GIScience) are now open to be employed to manipulate and analyse the CTM data 

(Goodchild et al., 2007; Smith et al., 2007). In addition to time series, the CTM can 

also be applied to a broader sense of linear data, which refers to data sequences ordered 

in a one-dimensional (1D) space. Linear data can be derived from a linear geographical 

space, such as traffic speed along a road and runoff along a river, or objects with a 

linear structure, such as texts and DNA sequences. 

In the remainder of Chapter 3, we first review the representative approaches in temporal 

visualisation. Next, the basic concept of the TM is introduced, followed by its extension 

the CTM. We then demonstrate how the CTM can be applied to visualise time series of 

soccer players. Afterwards, we show how map algebra can be applied to analyse time 

series represented in the CTM. The final section draws conclusions. 

3.2 Related Work 

Extensive reviews of time series visualisation can be found in (Aigner et al., 2007; 

Aigner et al., 2011; Muller & Schumann, 2003). A common weakness of existing 

approaches is that time series can only be displayed in one or a few pre-set temporal 

scales, which may miss interesting patterns in other scales. This also prohibits the 

observation of the complete hierarchy of scales, where smaller phenomena are nested 

within larger phenomena. Moreover, in a certain scale, time series is usually visualised 

in equal-length time granules, e.g. hour, day, month or year. The patterns in intervals 

that partially overlap granules cannot be displayed. To the best of our knowledge, there 

is no approach that can break away the barriers between scales and visualise time series 

in all intervals within the considered time frame. This problem also exists in a broader 

sense of linear data. The CTM presented in this chapter can be considered as a solution 

to this problem.  

An idea similar to the CTM is the Growth Matrix introduced by Keim (Keim et al., 

2006b), which visualises stock price changes in a 2D space. In the Growth Matrix, the 

horizontal axis indicates the time when the fund is purchased, and the vertical axis 

indicates when the fund is sold. Every point in the matrix is referenced to the price 

difference between the purchasing and selling times. Beyond Keim’s research, this 

work demonstrates how other formulas (i.e. average and summations) can be applied to 

calculate the values of intervals, and how this representation can be useful for analysing 
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different types of linear data. Moreover, it shows the use of map algebra in comparing 

multiple time series, and how cartographic modelling (Tomlin, 1990) can be applied to 

the CTM to solve multi-criteria decision-making problems based on time series. 

3.3 Basic Concepts 

3.3.1 Triangular Model 

In the classical linear representation, a time interval 𝐼 is represented as a linear segment 

bounded by a start point 𝐼−  and end point 𝐼+ . The properties of an interval are 

expressed by the location and extent of the linear segment in a 1D space.  

The basic idea of the TM is mapping the linear segment in the 1D space into points in a 

2D space. Given an arbitrary time interval 𝐼, two straight lines (𝐿1 and 𝐿2) are projected 

from the two extremes ( 𝐼−  and 𝐼+ ), with 𝐿1  passing through 𝐼− ; 𝐿2  through 𝐼+ 

(Figure  3-1). 𝛼1 is the angle between 𝐿1 and the horizontal axis, while 𝛼2 is the angle 

between 𝐿2 and the horizontal axis, where 𝛼1 = −𝛼2 = 𝛼. The intersection point of 𝐿1 

and 𝐿2 is called the interval point, which expresses the properties of the time interval 𝐼. 

The horizontal position indicates the midpoint of 𝐼, i.e. 𝑚𝑖𝑑(𝐼) = (𝐼− + 𝐼+)/2, while 

the vertical position indicates the duration of 𝐼, i.e. 𝑑𝑢𝑟(𝐼) = tan 𝛼 ∙ (𝐼+ − 𝐼−)/2. The 

start of the interval 𝐼−, the end of the interval 𝐼+ and interval point 𝐼 form an isosceles 

triangle. Therefore, this representation of time intervals is called the Triangular Model 

(TM). The angle  is a pre-defined constant that is identical to the construction of all 

interval points. Here, we set 𝛼 = 45°  to be consistent with previous work (Kulpa, 

1997a; Kulpa, 2006; Qiang et al., 2010), though 𝛼 can be set to any value between 0° 

and 90° for specific purposes. In the TM, every time interval can be represented as a 

unique point in the 2D space. The 2D space where interval points are located in is 

called the Interval Space (𝐼ℝ).  

 

 

Figure ‎3-1. The configuration of the Triangular Model (TM). 
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3.3.2 Continuous Triangular Model 

In addition to discrete time intervals, the TM can be extended to represent continuous 

temporal data. Given a time interval 𝐼, all intervals during 𝐼 are enclosed in a triangular 

zone below it. In other words, every interval 𝐼𝑛 during 𝐼 corresponds to a specific point 

in this triangular zone. Let us consider a linear dataset arranged within 𝐼. Every point in 

the triangular zone represents a sub-interval 𝐼𝑛  of the linear data. If every point is 

assigned a certain value, i.e. 𝑓(𝐼𝑛), of the interval it represents, then the triangular area 

can be filled and becomes a continuous field. 𝑓(𝐼𝑛) is a certain formula dependent on 

𝐼𝑛 , such as the average, summation or standard deviation of the linear data in 𝐼𝑛 . 

Figure  3-2 illustrates how the CTM is built from a linear data sequence consisting of 

seven numbers. It shows that every point in the triangular area represents a certain 

subinterval of the sequence, and assigned a value that is calculated from the numbers 

within the subinterval. Here the granularity of the CTM is consistent to that of the linear 

data sequence. Finer granularity can be obtained through interpolation. Figure  3-3 gives 

an example of the implementation of the CTM in a raster space. Through colour-

coding, the CTM can be displayed as an image. 

 

Figure ‎3-2: Representing a linear data sequence with seven numbers in the CTM. (a): A point 

is assigned a number calculated from the numbers within a subinterval. (b): Every point in the 

triangular space is assigned a number of a specific subinterval. 

 

x1 x2 x3 x4 x5 x6 x7
0 1 2 3 4 5 6 7

f [2,5] = f (x3, x4, x5)

x1 x2 x3 x4 x5 x6 x7
0 1 2 3 4 5 6 7

f [0,1] f [1,2] f [2,3] f [3,4] f [4,5] f [5,6] f [6,7] 

f [0,2] f [1,3] f [2,4] f [3,5] f [4,6] f [5,7] 

f [0,3] f [1,4] f [2,5] f [3,6] f [4,7] 

f [0,4] f [1,5] f [2,6] f [3,7] 

f [0,5] f [1,6] f [2,7] 

f [0,6] f [1,7] 

f [0,7] 

(a) (b)
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Figure ‎3-3: The implementation of the CTM in a raster space. (a): A linear data sequence and 

its representation in a line chart. (b): The CTM representation of the linear data sequence in (a), 

with the average formula applied. 

3.4 Visualisation of Linear Data 

3.4.1 Visualising Time Series 

This subsection demonstrates how the time series of the moving speed of a soccer 

player can be represented in the CTM. The movement of the soccer players is obtained 

through digitalisation of the game video. Here we study an indoor soccer game, in 

which each team has 5 players during a 13.33-minute portion of a game. The 

trajectories of the mini-soccer players are sampled from video frames taken at regular 

time stamps, with a temporal granularity of one second, by automatic computer vision-

based tracking with field expert supervision. The time series is a player’s speed in every 

second (i.e. meter/second or m/s) during a study interval of 800 s. As indoor soccer is 

rather intensive and fast-paced, the line chart (i.e. Figure  3-4a) exhibits dramatic 

changes of speed from second to second. However, variations in longer intervals (e.g. 

one minute or two minutes) are hard to observe. In Figure  3-4b the time series of the 

player’s speed is represented by the CTM, where 𝑓(𝐼𝑛) is the average of the player’s 

average speed during 𝐼𝑛. In the CTM, short-term fluctuations can be observed in lower 

levels, while the long-term patterns can be observed in higher levels. Moreover, it 

explicitly displays a hierarchy of the time series in all different scales, in which one can 

observe the relationship between the short-term variations and long-term variations. 

From this diagram, one can identify intervals of sprint from the red areas on the bottom 

of the CTM, e.g. 𝐼1, 𝐼2, and 𝐼3. On a larger scale, it is clear that the player had a high 

average speed from 1:00 to 6:15 (i.e. 𝐼4). However, during the next 3.5 minutes (i.e. 𝐼5), 

he experienced a less active period, although there are still several sprints during it. 

Compared to the Growth Matrix of Keim (Keim et al., 2006b), in which 𝐼− and 𝐼+ are 
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respectively coordinated along the vertical and horizontal axes, the coordinate space of 

the CTM preserves the linear nature of time that flows from left to right. Mapping 

longer intervals in higher positions is also somehow more intuitive than the Growth 

Matrix.  

(a)

(b) 

Figure ‎3-4: The time series of a soccer player’s speed in a line diagram (a) and the CTM (b). 

3.5 Analysing Multiple Time Series 

As the CTM is based on a 2D coordinate interval spaces, many spatial analysis 

techniques in GIScience can be employed to analyse CTM diagrams. This section 

demonstrates how the method of map algebra is used to analyse multiple time series 

modelled by the CTM. 

With the traditional line chart, the comparison of multiple time series can only be made 

in a fixed temporal scale and partition. For example, in Figure  3-5, one can only 

compare the speed between the indoor soccer teams or players at granularity of second. 

The speed in other scales is hard to compare. Alternatively, using map algebra in the 

CTM, these time series can be compared over all different time intervals. The time 
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series of average running speed of the two competing teams can be compared by 

applying the ‘subtract’ algebra to their CTM diagrams. In the result CTM diagram, 

every point corresponds to a specific time interval, and the value at that point is the 

difference of the running speed between the two teams. Figure  3-6 illustrates the result 

of subtracting the CTM of the blue team from that of the red team. Blue represents a 

positive value, meaning that the average speed of the blue team is greater than that of 

the red team. Red represents a negative value, meaning that the average speed of the red 

team is greater. The result diagram can be interpreted as: in general, the blue team is 

more active (i.e. has greater running speed during long intervals), however, during 

some short time intervals, the red team has greater running speed, for instance, from the 

beginning to the 4
th

 minute and from the 9
th

 to the 13
th

 minute. In Figure  3-6b, the 

darkness of the colours indicates the degree of difference, which gives a better sense of 

the actual difference. From Figure  3-6b, one can see that only during some very short 

intervals (less than 2 minutes), the red team is apparently more active than the blue 

team. 

(a) 

(b) 

Figure ‎3-5: Line charts of multiple time series. (a): the average running speed of two 

competing soccer teams. (b): the running speed of individual players of the red team. 

The CTM can also be used to compare more time series, for instance, the running speed 

of several soccer players. Here we compare the running speed of four players in the red 

team, who have played through the entire study period. This can be done by combining 
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the CTM diagrams of these four players into one CTM using the following map algebra: 

at every point (i.e. during every interval), the player having the greatest running speed 

is selected. 

 

(a)      (b) 

Figure ‎3-6: The output of subtracting the CTM of the blue team from that of the red team. (a): 

Only colour hues are used to indicate the team with higher speed. (b): Colour darkness is 

applied to indicate the speed difference. 

We define this player the dominant player of the interval. If the dominant player of 

every interval is displayed in a specific colour hue, the output becomes a nominal 

diagram with four zones (i.e. Figure  3-7a). Each zone represents a set of intervals 

during which a certain player is dominant. In Figure  3-7b, darkness of colours is used to 

indicate the degree of dominance. There are many ways to calculate the degree of 

dominance. In this case, we define the degree of dominance as the percentage that the 

dominant player’s speed is greater than the average of the others. For example, if the 

speed of Player 1 is 5 and the average speed of Players 2-4 is 4, Player 1 is dominant 

over the others by 25%. Due to the many colour hues applied, it is a little hard to 

observe both the dominant players (represented by colour hues) and the degree of 

dominance (represented by darkness) in Figure  3-7b.  

This problem can be overcome by representing players dominant at certain levels in 

multiple CTM diagrams. In these diagrams, each colour hue represents the player 

dominant by a certain percentage. For example, in the top-left diagram of Figure  3-8, 

every colour indicates a player that is dominant over the others by at least 10%, which 

means the speed of this player is more than the average speed of the others by at least 

10%. Figure  3-9 uses two examples to illustrate this algebra in a raster space. From 

these diagrams, one can see that, with the increase of dominance threshold, the colour 

zones with low dominance gradually disappear, while the remaining zones represent the 
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intervals during which a player is dominant above a certain level. With the dominance 

threshold of 30%, it becomes clear that Player 2 and Player 3 are much more active 

than the others during two successive 5-minute intervals, which possibly reveals a 

strategy change or position shift during the game. The variation of these CTM diagrams 

can be better observed through a controlled animation, where the CTM diagram 

dynamically responses to a slider setting the dominance level. 

 

(a)      (b) 

Figure ‎3-7: Comparison of multiple players. (a): Dominant players is represented by discrete 

colour hues. (b): Dominance degree is represented by darkness of colours. 

 

Figure ‎3-8: Players dominant at different degrees are represented in multiple diagrams. The 

meaning of colour hues is identical to that in Figure ‎3-7. 
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Figure ‎3-9: Select the dominant player at every point in a CTM diagram. P means player. 

3.6 Conclusion  

We introduced an innovative representation of linear data, namely the CTM. In the 

CTM, the linear data in different intervals are displayed in a two-dimensional space, 

constituting a basis for a multi-scale analysis of linear data. In general, the CTM has 

two major advantages. First, it provides an explicit and compact visualisation of linear 

data in different scales. In the CTM, moving statistics (e.g., the average and 

summation) during intervals of different lengths can be displayed in one diagram, 

which offers an explicit overview of patterns in different scales. Compared with 

traditional multi-scale visualisation approaches, which only display data in a few 

selected scales, the CTM can present the data in all scales. This feature is particularly 

useful for the exploration of unfamiliar datasets, in which interesting patterns may 

emerge in any scales. Also, the CTM offers an overview of the hierarchy of scales, 

which allows the observation of the interaction between large-scale patterns and small-

scale patterns. Second, the CTM is based on a universal 2D coordinate space, which is 

very similar to prevalent geospatial datasets. This chapter demonstrated how existing 

techniques in GIScience can be used to manipulate and analyse CTM diagrams. By 

applying map algebra to the CTM, multiple time series can be compared at different 

scales. The CTM can use a single diagram to present the answer to the questions like 

‘whether Brussels is warmer than New York’ or ‘whether Player 2 is more active than 

the other players’ according to all possible intervals within the considered time frame. 

We contend that the CTM representation of these answers is more informative and 
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perceivable than traditional approaches such as line chart or colour lines. With the 

support of special visualisation techniques (e.g. setting a dominance threshold), it can 

have an extensive coverage of different analysis tasks. An example of soccer game was 

given to show the applicability of the CTM.  
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4 REPETITIVE MOTION PATTERNS 
 

Abstract: Discovering repetitive patterns is important in a wide range of research areas, 

such as bioinformatics and human movement analysis. This chapter puts forward a new 

methodology to identify, visualise and interpret repetitive motion patterns in groups of 

moving point objects (MPOs). The methodology consists of three steps. First, motion 

patterns are qualitatively described using the qualitative trajectory calculus (QTC). 

Second, a similarity analysis is conducted to compare motion patterns and identify 

repetitive patterns. Third, repetitive motion patterns are represented and interpreted in a 

continuous triangular model (CTM). As an illustration of the usefulness of combining 

these hitherto separated methods, two specific movement cases are examined: Samba 

dance, a rhythmical dance with many repetitive movements and mini-soccer, with 

fewer repetitive movements. The results show that in both cases the presented 

methodology is able to successfully identify, visualise and interpret the contained 

repetitive motion patterns. 

4.1 Introduction 

With recent advances in navigation and tracking systems, we are experiencing a 

dramatic growth in moving objects databases. These databases include the trajectories 

of human beings (Michael et al., 2006; Wang et al., 2003), animals (DeCesare et al., 

2005; Laube et al., 2007) and vehicles (Brakatsoulas et al., 2004; Hvidberg, 2006). 

Discovering relevant information from these large and growing data sets is a 

challenging task. In recent years, significant research in a variety of disciplines has 

attempted to derive knowledge from motion data (see, among others, (Giannotti et al., 

2009; Laube et al., 2005; Spaccapietra et al., 2008) for an overview). One way of 

discovering knowledge from large spatio-temporal datasets is by means of qualitative 

reasoning. To date, several qualitative spatial and temporal calculi have been 

introduced, e.g., interval algebra (Allen, 1983), cardinal direction calculus (Frank, 

1991), Double-Cross calculus (Freksa, 1992) and region connection calculus (Randell 

et al., 1992). Of particular interest to the study of moving objects is the qualitative 

trajectory calculus (QTC) (Van de Weghe, 2004). QTC describes the interaction 

between moving point objects (MPOs) in a qualitative way.  
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In this chapter, we use QTC to identify repetitive motion patterns in the movement data 

of MPOs. The term ‘repetitive motion patterns’ refers to conceptual animations 

(sequences of QTC relations following the constraints imposed by qualitative 

reasoning) that occur more than once during the movement. Herein, conceptual 

animations are defined as movement sequences. Similarity analysis is used to calculate 

the degree of similarity between movement sequences. The movement sequences with 

high degrees of similarity are repetitive motion patterns. To display the degrees of 

similarity, a visualisation technique, the continuous triangular model (CTM), is applied. 

The methodology is illustrated with two real-world case studies; the first is Samba 

dance, in which the infrared-observed motions of different parts of the bodies of 

dancers are analysed, and the second is mini-soccer, in which the positions of the 

players are sampled from video frames.  

With the introduction of this methodology, we seek to contribute to the procedure of 

knowledge discovery from movement of MPOs. The proposed methodology will help 

researchers and practitioners from various disciplines in analysing regularities and 

anomalies in moving object databases in their respective fields of expertise. 

The remainder of this chapter is organised as follows. Section  4.2 introduces the 

preliminary concepts of QTC and CTM. Section  4.3 describes the methodology used to 

analyse the motion patterns in the context of QTC. In addition, the visualisation and 

interpretation of the repetitive motion patterns are presented. Section  4.4 gives a brief 

discussion, summarises the conclusions and presents possible future work. 

4.2 Preliminaries 

In this section, we briefly review some of the fundamental concepts related to 

qualitative trajectory calculus, similarity analysis between conceptual animations, and 

the continuous triangular model. These concepts will be used in the remainder of the 

chapter.  

4.2.1 Qualitative Trajectory Calculus 

The basic principle of qualitative trajectory calculus (QTC) is that the complex reality 

of moving objects can be simplified by describing the interaction between two disjoint 

point objects. Depending on the level of detail and the number of spatial dimensions, 

different types of QTC have been developed: QTC Basic (QTCB) (Van de Weghe et al., 

2006; Van de Weghe & De Maeyer, 2005), QTC Double-Cross (QTCC) (Van de Weghe 
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et al., 2005), and QTC Network (QTCN) (Delafontaine et al., 2011). The first level of 

QTC Basic (i.e. QTCB1) considers only the changing Euclidean distance between two 

objects, which is independent of the number of dimensions in which the movements 

take place. We restrict our calculations in this study to QTCB1 and from now on, we use 

the term QTCB as a synonym for QTCB1.  

QTCB relations are built from the distance constraints (A and B) introduced in 

Section  2.5 and created by a tuple of labels that have an identical three-valued 

qualitative domain  {−, 0, +} . In total, there are nine QTCB relations as shown in 

Figure  2-3a. At each time stamp, there is a QTCB relation between two MPOs. 

Following the constraints imposed by continuity, a sequence of QTCB relations (i.e. a 

conceptual animation) can be generated. For example, Figure  4-1 shows the interaction 

in a 2D space between two MPOs that are continuously moving. This interaction is 

represented by a sequence of three QTCB relations during a given time interval [t1, t2]. 

In the beginning of the movement, the relation between the MPOs (− −) is established 

during a time interval. The relation (0 0) is an instantaneous QTCB relation between the 

MPOs. The remaining relation (+ +) occurs during the last part of the movement (for a 

detailed explanation, see (Van de Weghe, 2004)).  

 

Figure ‎4-1: The conceptual animation of k and l during a time interval [t1, t2] 

(− −) → (0 0) → (+ +) 

The relations between more than two MPOs can be presented in terms of a QTCB 

matrix (see Section  2.7.1.). Consequently, for a time interval, a conceptual animation is 

proposed as a sequence of QTCB matrices. For example, consider three MPOs, a, b, and 

c, at three consecutive time stamps (Figure  4-2). From time stamp t1 to t2, the QTCB 

matrix X is formed by the QTCB relations between all pairs of MPOs, and from time 

stamp t2 to t3, the QTCB matrix Y is generated (Table  4-1). 
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In general, the goal of this approach is to identify, visualise and interpret the repetitive 

motion patterns in groups of MPOs by exploring their conceptual animations. 

 

 

Figure ‎4-2: Three MPOs, a, b and c, during a time interval [t1, t3] 

 

Table ‎4-1: A conceptual animation of two QTCB matrices 

X[t1→t2] 𝒂 𝒃 𝒄 
𝒂  (0 0) (0 +) 
𝒃 (0 0)  (0 +) 
𝒄 (+ 0) (+ 0)  

 

 

Y[t2→t3] 𝒂 𝒃 𝒄 
𝒂  (0 +) (0 0) 
𝒃 (+ 0)  (− 0) 
𝒄 (0 0) (0 −)  

 

4.2.2 Similarity Analysis between Conceptual Animations 

Similarity analysis is used to express the degree of similarity between the conceptual 

animations. Prior to making a comparative analysis of two conceptual animations, we 

must decide how much detail needs to be considered in the comparison. For example, 

consider the following two conceptual animations, referring to the QTCB relations 

among the three MPOs (a, b and c) during two time intervals in Table  4-2.  

Table ‎4-2: A pair of conceptual animations among three MPOs during two time intervals   [t1-

t3] and [t4-t6] 

conceptual animation [t1-t3] 

X[t1→t2] 𝒂 𝒃 𝒄 
𝒂  (+ −) (− +) 
𝒃 (− +)  (0 +) 
𝒄 (+ −) (+ 0)  

 

 

Y[t2→t3] 𝒂 𝒃 𝒄 
𝒂  (+ 0) (− −) 
𝒃 (0 +)  (0 −) 
𝒄 (− −) (− 0)  

 

conceptual animation [t4-t6] 

X[t4→t5] 𝒂 𝒃 𝒄 
𝒂  (+ −) (− −) 
𝒃 (− +)  (0 0) 
𝒄 (− −) (0 0)  

 

 

Y[t5→t6] 𝒂 𝒃 𝒄 
𝒂  (+ 0) (− +) 
𝒃 (0 +)  (+ −) 
𝒄 (+ −) (− +)  

 

 

For the sake of simplicity, each conceptual animation can be abstracted to a combined 

QTCB matrix obtained by concatenating the ij
th

 cells of all QTCB matrices in that 

conceptual animation (Table  4-3). Hence, each conceptual animation of any length (any 

time interval) can be represented by a combined QTCB matrix. 
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Additionally, a movement during a time interval is divided into sub-intervals. In this 

study, to detect repetitive movement patterns, we start our comparison from the lowest 

level (level 1, which consists of only one QTCB matrix) and extend it to the higher 

levels. For example, Table  4-3 shows the comparison of two sub-intervals of level 2. 

For the entire movement, all combined QTCB matrices of level 2 should be compared to 

measure the degrees of similarity between them. This process is repeated for all levels, 

where the last level represents the entire movement.  

Table ‎4-3: Combined QTCB matrices during two time intervals 

conceptual animation [t1-t3] 

t1→t2→t3 𝒂 𝒃 𝒄 

𝒂  (+ −)(+ 0) (− +)(− −) 

𝒃 (− +)(0 +)  (0 +)(0 −) 

𝒄 (+ −)(− −) (+ 0)(− 0)  

conceptual animation [t4-t6] 

t4→t5→t6 𝒂 𝒃 𝒄 

𝒂  (+ −)(+ 0) (− −)(− +) 

𝒃 (− +)(0 +)  (0  0)(+ −) 

𝒄 (− −)(+ −) (0 0)(− +)  

 

The combined QTCB matrices can also be compared cell-by-cell. Two levels of detail 

are possible. In the highest level of detail, the fine comparison, the individual symbols 

of QTCB notation in each cell are compared based on the topological distance presented 

by Egenhofer and Al-Taha (Egenhofer & Altaha, 1992) (for additional explanations, 

see (Van de Weghe, 2004)). In the coarse comparison, regardless of the details, a 

complete cell of a combined QTCB matrix is compared to the corresponding cell in 

another combined QTCB matrix at each level. In this study, we use the coarse 

comparison, which reflects the full equality of relations between pairs of MPOs. For 

this purpose, Eq. 4-1 is used to calculate the degree of similarity (expressed as a 

percentage) between a pair of combined QTCB matrices as follows: 

 

     S = 100 ∗ ((𝑁 − 𝐿)/𝑁)    Eq. 4-1 

 

where N is the total number of cells in the combined QTCB matrix after eliminating the 

elements below the diagonal of the matrix because they are interchangeable with the 

elements above the diagonal of the matrix and L is the number of non-identical cells 

above the diagonal. This expression is the simple matching similarity measure for 

categorical data. The degree of similarity for Table  4-3 is calculated as follows: 
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S = 100 ∗ ((3 − 2)/3)= 33.33% 

 

As mentioned above, different levels of comparison are considered based on the length 

of the conceptual animations. In a subsequent section, the similarities between motion 

patterns are visualised using the continuous triangular model (CTM) to interpret the 

repetitive motion patterns. 

4.2.3 The Continuous Triangular Model 

CTM is derived from the idea of the triangular model (TM), which represents time 

intervals as points in a two-dimensional space (A detailed explanation can be found in 

Chapter  3). In the CTM, attribute data are associated with the points of the time 

intervals. Consequently, time series data can be mapped to a triangular plane in the 2D 

space, in which every point represents a specific interval of the time series and the grey 

scale at the point indicates a certain aggregation (e.g., summation and average) of time 

series of this interval. This representation of time series is the CTM. In Figure  3-4, we 

illustrated the two representations of a time series. Figure  3-4a showed a traditional line 

diagram of a time series. In the triangular plane in Figure  3-4b, every point 

corresponded to a time interval, following the coordinate space described in Figure  3-1, 

and the colour level at the point in Figure  3-4b indicated the average value of the time 

series within the interval. Using this approach, variations of short intervals can be 

observed in the lower levels of the triangular plane, and variations of long intervals can 

be observed in the higher levels. The CTM provides a direct overview of time series 

data at all temporal granularities. In addition to time series data, the CTM can be 

applied to other types of sequential data. In the following sections, we integrate CTM in 

the procedure of knowledge discovery from movement of MPOs. 

4.3 Motion Pattern Analysis of MPOs 

A comprehensive classification of movement patterns has been proposed by Dodge 

(Dodge et al., 2008). We focus on one of the primitive patterns in that classification: 

spatio-temporal periodicity (repetitive motion patterns). This chapter constitutes a novel 

contribution to the identification, visualisation and interpretation of the repetitive 

motion patterns. The workflow diagram presented in Figure  4-3 illustrates our 

approach. The procedure starts with raw data (trajectories of MPOs). Motion patterns of 

MPOs are obtained from the raw data. Then, similarity analysis is used to determine the 

degrees of similarity among the motion patterns. Finally, the degrees of similarity are 
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visualised using the CTM to interpret them. In the following subsection, two different 

case studies are examined to analyse the repetitive motion patterns. First, the 

movements of three Samba dancers are analysed; second, the movements of mini-

soccer players during a game are examined. 

 

Figure ‎4-3: Procedure overview 

4.3.1 Samba Dancers 

In this subsection, the movement of the different parts of the bodies of Samba dancers 

is analysed. Relations between the different parts of the bodies of the dancers are 

described as QTCB relations based on the positional information at each time stamp of 

the movement.  

The positional information consists of locations of the MPOs in a three-dimensional 

space that includes the head, the root, the right finger (the right hand), the left finger 

(the left hand), the right toe (the right foot), and the left toe (the left foot) of every 

dancer’s body, captured at every time stamp (temporal granularity of 0.04 s). For 

example, Table  4-4 shows a sequence of QTCB matrices formed based on the positional 

information of all captured MPOs during a given time interval. The movement of the 

body is captured by an infrared motion capturing system, which yields the position of 

markers attached to the body. We use a normalised data set with respect to one 

reference point and the orientation of the dancer’s body (the point is defined as the 

centroid of the body, root) (Naveda, 2011; Naveda & Leman, 2010). As mentioned 

earlier, similarity analysis is used to calculate the degrees of similarity between 

different movement sequences.  

Based on the basic concept of CTM introduced in the previous section, we apply a 

modified version of CTM to map the similarities between different pairs of movement 

sequences into a triangular raster. Every cell in the raster represents a pair of movement 

sequences of equal length, and the grey scale of the cell indicates their degree of 

similarity. 

•  Raw Data (Trajectories of MPOs) 

•Motion Patterns (QTC - Basic) 

•Similarity Analysis between Motion Patterns 

•Visualisation and Interpretation (CTM) 
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4.3.1.1 The Horizontal and Vertical Dimensions 

Here, the horizontal dimension of the raster represents the time line, and the vertical 

dimension represents the time distance between two sequences. The two sequences of 

the cell can be identified by drawing a 45°-45°-90° isosceles triangle on the horizontal 

axis (Figure  4-4). The 90° vertex is located in the cell. The two 45° vertices are located 

on the horizontal axis and identify the starting times of the two sequences. For 

illustration purpose, Figure  4-4 shows a highlighted triangle in which the cell at the 90° 

vertex represents a pair of movement sequences starting at 1.4 s and 3.2 s. The grey at 

the 90° vertex indicates the similarity between the pair of movement sequences. 

The cell’s position on the vertical axis indicates the distance between the starting points 

of the two represented sequences. For the highlighted triangle in Figure  4-4, the vertical 

position of the cell is 45 time stamps (1.80 s; the temporal granularity is 0.04 s), which 

is the temporal distance between the starting points of the two sequences. 

Table ‎4-4: The movement sequence of the QTCB matrices during a given time interval [0-0.24] 

(LF: left finger, RF: right finger, LT: left toe, RT: right toe, R: root, H: head). 

𝟎. 𝟎𝟎 − 𝟎. 𝟎𝟒 𝐿𝐹 𝑅𝐹 𝐿𝑇 𝑅𝑇 𝑅 𝐻 

𝐿𝐹  (+ 0) (+ 0) (+ −) (+ 0) (+ +) 
𝑅𝐹   (+ −) (+ −) (0 0) (− 0) 
𝐿𝑇    (− 0) (− 0) (− 0) 

𝑅𝑇     (− 0) (− 0) 

𝑅      (0 0) 

𝐻       
 

𝟎. 𝟎𝟒 − 𝟎. 𝟎𝟖 𝐿𝐹 𝑅𝐹 𝐿𝑇 𝑅𝑇 𝑅 𝐻 

𝐿𝐹  (+ −) (+ −) (+ −) (+ 0) (0 +) 
𝑅𝐹   (+ 0) (+ −) (0 0) (− +) 
𝐿𝑇    (− −) (− 0) (− +) 

𝑅𝑇     (− 0) (− +) 

𝑅      (0 +) 

𝐻       
 

𝟎. 𝟎𝟖 − 𝟎. 𝟏𝟐 𝐿𝐹 𝑅𝐹 𝐿𝑇 𝑅𝑇 𝑅 𝐻 

𝐿𝐹  (+ −) (+ 0) (+ −) (+ 0) (0 0) 
𝑅𝐹   (0 +) (0 0) (− 0) (− 0) 
𝐿𝑇    (0 −) (0 0) (0 0) 

𝑅𝑇     (− 0) (0 0) 

𝑅      (0 0) 

𝐻       
 

𝟎. 𝟏𝟐 − 𝟎. 𝟏𝟔 𝐿𝐹 𝑅𝐹 𝐿𝑇 𝑅𝑇 𝑅 𝐻 

𝐿𝐹  (+ −) (+ 0) (+ 0) (+ 0) (0 −) 
𝑅𝐹   (− 0) (− +) (− 0) (− 0) 
𝐿𝑇    (+ −) (0 0) (0 −) 

𝑅𝑇     (+ 0) (+ −) 

𝑅      (0 −) 

𝐻       
 

𝟎. 𝟏𝟔 − 𝟎. 𝟐𝟎 𝐿𝐹 𝑅𝐹 𝐿𝑇 𝑅𝑇 𝑅 𝐻 

𝐿𝐹  (+ −) (+ −) (+ 0) (+ 0) (− −) 
𝑅𝐹   (− −) (− +) (− 0) (− +) 
𝐿𝑇    (+ 0) (− 0) (− 0) 

𝑅𝑇     (0 0) (0 0) 

𝑅      (0 0) 

𝐻       
 

𝟎. 𝟐𝟎 − 𝟎. 𝟐𝟒 𝐿𝐹 𝑅𝐹 𝐿𝑇 𝑅𝑇 𝑅 𝐻 

𝐿𝐹  (+ −) (+ 0) (+ −) (+ 0) (− −) 
𝑅𝐹   (− 0) (− 0) (− 0) (− +) 
𝐿𝑇    (+ −) (0 0) (0 +) 

𝑅𝑇     (− 0) (− +) 

𝑅      (0 +) 

𝐻       
 

 

4.3.1.2 The Level Number 

The level of the CTM indicates the length of the movement sequences. For example, a 

level 1 CTM represents the similarities between any two movement sequences whose 

lengths are 1 ∗ 0.04 s (because the temporal granularity is 0.04 s), and a level 4 CTM 

represents the similarities between any two movement sequences whose lengths are 
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0.16 s (4 ∗ 0.04 s). Hence, in Figure  4-4, the lengths of the movement sequences are 

0.12 s (3 ∗ 0.04 s). Therefore, the cell at the top of the highlighted triangle represents 

the similarity between the movement sequence during the temporal interval [1.4, 1.4 +

0.12] and the movement sequence during the temporal interval [3.2, 3.2 + 0.12]. 

4.3.1.3 The Grey Scale 

In CTM, the grey scale of a cell indicates the similarity between two movement 

sequences, as calculated using Eq. 4-1. Black is 100% similarity, and white is 0% 

similarity. The grey bar on the right side of the CTM results displays the similarity 

scale.  

 

Figure ‎4-4: The CTM representation of similarities between movement sequences 

4.3.1.4 Comparison of CTMs 

The CTM visualises the similarity between the movement sequences of the person 

during two different time intervals. As explained above, a cell of a level 10 CTM 

displays the similarity between movements during the interval [t1, t1+0.4] and 

movements of the same person during the interval [t2, t2+0.4]. 

From the CTM of one person, temporal patterns of movements of the person can be 

observed. Now, the movements of three different Samba dancers (student 1, student 2 

and their teacher) are analysed. The CTM representations show some regular patterns 

(Figure  4-5, Figure  4-6, and Figure  4-7). The first four levels of CTM for the three 

dancers are shown. High similarities (i.e. dark cells) are mostly distributed along lines 

that are parallel to the horizontal axis. These dark cells indicate high similarities in pairs 

of intervals with the same temporal distance between each other. For example, in 
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Figure  4-5, Figure  4-6, and Figure  4-7, the lower line of dark cells shows that 

movements in an interval are very similar to movements in another interval that is 0.92 

s away from it. That is, the dancers regularly repeat similar movements every 0.92 s.  

 

 

Figure ‎4-5: Levels 1 to 4 of the CTM of student 1 with 0.04 s time granularity 

 

 

Figure ‎4-6: Levels 1 to 4 of the CTM of student 2 with 0.04 s time granularity 
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Figure ‎4-7: Levels 1 to 4 of the CTM of the teacher with 0.04 s time granularity 

 

4.3.1.5 Interpretation of Motion Patterns 

The results show some differences between the CTM of the teacher and the CTMs of 

the students. In the CTM of the teacher (Figure  4-7), dark similarities are strictly 

distributed along the line at 0.92 s. This indicates that the movements of the teacher are 

regularly repeated every 0.92 s. However, in the CTMs of students 1 and 2 (Figure  4-5 

and Figure  4-6), the dark lines are not straight, compared with that of the teacher. Some 

parts of the dark line are located above or below the 0.92 s line. This is because there 

are some lag and lead times in the repetition of the same movements. From this 

observation, we can infer that the movements of students 1 and 2 are not as regular as 

the movements of the teacher. We also show some of the body configurations of 

student 1 and the teacher every 0.92 s in Figures 4-8 and 4-9. These visualisations are 

based on the MoCap toolbox (Toiviainen & Burger, 2010). The results show that 

student 1 and the teacher have an almost identical body configuration every 0.92 s. 

However, there are some time differences between the teacher and student 1 when 

performing the same movements. 

4.3.2 Mini-Soccer 

The relations between the movements of different mini-soccer players during a 13.33 m 

(i.e. minutes) portion of a game are analysed. The trajectories of the mini-soccer players 

are sampled from video frames taken at regular time stamps, with a temporal 

granularity of one second, by automatic computer vision-based tracking with field 
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expert supervision. The procedure used for the Samba dancers is applied to identify the 

repetitive motion patterns of the mini-soccer players. All players’ coordinates are 

extracted, and QTCB relations between players are then formed at each time stamp. 

There are five players on each team; hence, different possible combinations of players 

form the QTCB sequences, i.e. combinations of two, three, four or five players. 

 

 

Figure ‎4-8: Some body configurations of student 1 every 0.92 s 

 

 

Figure ‎4-9: Some body configurations of the teacher every 0.92 s 

A similarity analysis is performed between the movement sequences of the mini-soccer 

players for different combinations. Compared with the previous case study, the 
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frequency of repetitive motion patterns in mini-soccer is much lower, as shown in the 

CTMs in Figures 4-10, 4-11, and 4-12. In these figures, the CTMs of three, four and 

five mini-soccer players of one team are presented for levels 1, 2, 3, and 4. Identifying 

the repetitive motion patterns from the CTMs of mini-soccer players is much less 

straightforward than in the case of the Samba dancers because fewer repetitive motion 

patterns occur in mini-soccer than in Samba dance. A higher CTM level indicates that 

fewer similar motion patterns are observed and that the observed motion patterns are 

less similar. 

 

 

Figure ‎4-10: First four levels of the CTM representations of three mini-soccer players 
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Figure ‎4-11: First four levels of the CTM representations of four mini-soccer players 

 

 

Figure ‎4-12: First four levels of the CTM representations of five mini-soccer players 

4.4 Conclusions and Outlook 

This chapter has proposed a three-tiered methodology to identify, visualise and interpret 

repetitive motion patterns in groups of MPOs. Movements of multiple MPOs are 

described in terms of sequences of QTCB matrices, which in turn are used to identify 

the repetitive motion patterns. Next, similarity analysis is used to determine the degrees 
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of similarity between pairs of movement sequences. Finally, CTM is applied to display 

the degrees of similarity between all pairs of movement sequences.  

· The usefulness of the proposed methodology has been discussed in two real-

world movement cases, i.e. Samba dance and mini-soccer. While the current 

chapter provides an intuitively appealing approach for studying repetitive 

movements of moving objects, the following aspects warrant further exploration 

in future work: 

· Time granularity plays an important role in revealing the details of movement. 

The trajectories captured with the finest time granularity show more details of 

movement. It would be worthwhile to compare the results obtained from 

different time granularities. 

· QTCB relations are built based on changing Euclidean distances between two 

MPOs. In addition, directional information can also be considered to identify 

motion patterns using QTC Double-Cross (QTCC). QTCC provides more detail 

than QTCB but increases the problem complexity. 

· In the calculation of the similarity between QTC matrices, cell-by-cell 

comparison is made with the assumption that all cells are treated the same way. 

Some relations between the MPOs might be more important than others. These 

differences can be incorporated by assigning specific weights to each of those 

relations. 

· Map Algebra (i.e. a set of algebraic operations applied on two or more raster 

layers with the same dimensions to produce a new raster layer) might be applied 

to infer additional results by comparing CTMs at different levels. 

We hope to report on these and other aspects of movement pattern recognition and 

mining in the near future. 
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The Sequence Signature of Patterns 
 

Make everything as simple as possible, but not simpler. Albert Einstein  
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5 THE SEQUENCE SIGNATURE OF PATTERNS 
 

Abstract: The increasing availability and affordability of fine-grained trajectory data 

sets have spurred GIS and computer scientists to push forward the frontier of movement 

pattern analysis. This chapter proposes a novel approach to identifying, representing 

and clustering patterns of relative motion between two disjoint moving point objects 

(MPOs). The approach consists of three major steps. First, relative motion is 

summarised in terms of qualitative relationships based on Euclidean distance between 

MPOs. Second, sequences of these qualitative relationships are represented in a 

sequence signature (SESI). A SESI is a fractal feature and provides a visual summary 

of the movement patterns of two MPOs. Third, SESIs are compared using a distance 

measure, making it possible to identify clusters of qualitatively distinct trajectory pairs. 

The proposed method is illustrated using two real-world examples of interacting MPOs: 

cars on a highway and squash players. These simple examples show the usefulness of 

our approach for uncovering movement patterns that are hidden in spatio-temporal 

trajectory databases.  

5.1 Introduction 

The increasing deployment of location-aware devices has given rise to an 

unprecedented wealth of trajectory information, documenting the movements of various 

types of moving objects, including vehicles (Haghani et al., 2009), animals (Cagnacci et 

al., 2010), bank notes (Brockmann et al., 2006), sportspersons (Wisbey et al., 2010), 

and tourists (Tiru et al., 2010). During the past two decades or more, the increased 

availability and affordability of these fine-grained data sets have aroused a burgeoning 

interest among (geographical) information scientists, who have steadily begun to 

develop and implement tools to discover, aggregate, and cluster meaningful patterns of 

individual or group behaviour in space-time (Ahlqvist et al., 2010; Delafontaine et al., 

2012; Dodge et al., 2008; Gudmundsson et al., 2007; Laube et al., 2005; Shoval & 

Isaacson, 2007; Wang et al., 2012; Wilson, 1998). One specific area of interest 

concerns the line of inquiry that has developed qualitative formalisms to reason about 

moving objects. Adopting a qualitative approach implies that continuous information is 

being discretised by landmarks that classify neighbouring open intervals into discrete 

quantity spaces (Weld & Kleer, 1989). Key to this approach is that a distinction is 
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introduced only if it is relevant to the research context at hand (Clementini et al., 1997; 

Cohn, 1996). The impetus for developing qualitative formalisms is that qualitative 

information aligns better with human intuition, communication and decision making 

than quantitative information (Egenhofer & Mark, 1995; Monferrer & Lobo, 2002; 

Renz et al., 2000), as illustrated in the following example taken from Clementini, et al. 

(1997, p. 318): “Saying that Alaska is 1, 518, 800 km
2
 is sufficiently exact quantitative 

information about size and distances in Alaska, but very likely it is not meaningful in 

relation to the spatial knowledge of the average listener. On the other hand, saying that 

Alaska alone is bigger than all the states of the East coast from Maine to Florida is 

cognitively more immediate”. As this example illustrates, spatial reasoning in our 

everyday interaction with the physical world is driven primarily by qualitative 

abstractions of the (often too precise) quantitative space (Cohn & Hazarika, 2001). By 

abstracting away from metrical details, qualitative representations are also much more 

appropriate for addressing incomplete information than quantitative methods (Cristani 

et al., 2000). 

Much of the work in the area of qualitative reasoning concentrates on either the spatial 

or the temporal dimension of objects or phenomena. This observation is true for, among 

others, Interval Algebra (Allen, 1983), Point Algebra (Vilain et al., 1989), Double-

Cross Calculus (Freksa, 1992b), Region Connection Calculus (Randell et al., 1992) and 

Oriented Point Reasoning Algebra (Moratz et al., 2005). Only a few studies, however, 

have systematically examined the qualitative properties of spatio-temporal information, 

such as the trajectory data of moving objects. One of these studies includes Qualitative 

Trajectory Calculus (QTC) proposed by Van de Weghe (2004). QTC is a powerful 

formalism for representing and reasoning about interactions between two moving point 

objects (MPOs). In QTC, the interactions are considered to be the changes in the 

Euclidean distance between two MPOs. While insightful, QTC has, until recently, 

remained largely conceptual, and new methods for inferring meaningful knowledge 

from qualitative spatio-temporal information remain sorely needed (Delafontaine et al., 

2011). Hence, this chapter seeks to extend previous accomplishments in this area by 

developing a novel methodology to cluster trajectory pairs based on corresponding 

(repetitive) sequences of qualitative relationships between two MPOs.  

Clustering enables to group data according to similarity into meaningful clusters. In 

particular, spatio-temporal clustering is a procedure for clustering objects based on their 
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spatial and temporal similarities (Kisilevich et al., 2010). Figure  5-1, modified from 

(Kisilevich et al., 2010), visually depicts a possible classification of spatio-temporal 

data types. In this study, we focus on the clustering of trajectory data types and account 

for pointwise moving objects. Trajectories define the movement behaviour of moving 

objects, and consequently, the clustering of trajectories contributes to detecting groups 

of moving objects that have similar movement behaviour. Trajectory clustering is 

primarily application dependent. Until now, many attempts have been conducted in the 

field of trajectory clustering. Kisilevich et al (2010) has categorised trajectory 

clustering approaches into one of the following groups: Descriptive and generative 

model-based clustering (e.g., (Alon et al., 2003; Chudova et al., 2003; Gaffney & 

Smyth, 1999), distance-based clustering methods (e.g., (Nanni & Pedreschi, 2006; 

Pelekis et al., 2007)), density-based methods and the DBSCAN family (e.g., (Nanni & 

Pedreschi, 2006)), visual-aided approaches (e.g., (Andrienko & Andrienko, 2006)), 

micro clustering methods (e.g., (Hwang et al., 2005)), flocks and convoy (e.g., 

(Gudmundsson & van Kreveld, 2006; Kalnis et al., 2005)), important places (e.g., 

(Kang et al., 2004)), and pattern-based clustering (e.g., (Giannotti et al., 2007)). The 

presented approach could fall into pattern-based clustering. Patterns that are extracted 

from trajectories are referred to as trajectory patterns and express interesting behaviour 

of individual objects or multiple moving objects (Giannotti & Pedreschi, 2008). 

Different approaches exist in the mining of trajectory patterns. We use QTC to extract 

movement patterns of interactions of pairs of MPOs for clustering purposes 

(Figure  5-1). Additionally, a visually aided approach is applied to recognise the 

extracted patterns and to facilitate the understanding of the nature of the movement 

patterns that occur.  
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Figure ‎5-1: Spatio-temporal clustering modified from (Kisilevich et al., 2010) 

The remainder of this chapter is organised as follows. The next section introduces the 

proposed approach for identifying, representing and analysing patterns of relative 

motion between two MPOs. This section is subdivided into three subsections, which 

correspond to the three major steps of the method: (i) description of movement patterns 

using QTC (Subsection  5.2.1), (ii) representation of movement patterns in a SESI 

(Subsection  5.2.2), and (iii) distance measurement and hierarchical clustering of 

multiple SESIs (Subsection  5.2.3). Section  5.3 then demonstrates the usefulness of our 

methodology in identifying and clustering the movement patterns of cars and squash 

players. Section  5.4 presents a detailed discussion. Lastly, Section  5.5 summarises and 

reflects on the major findings here and outlines avenues for future research. 

5.2 Methodology 

Moving objects constitute a principal unit of analysis in many major domains of both 

theoretical and applied scientific research, including geographical information science 

(GIScience), artificial intelligence, knowledge representation, sports science, and 

transportation. In particular, a number of qualitative calculi have been developed to 

reason about moving objects. This chapter examines whether the Qualitative Trajectory 

Calculus (QTC), a qualitative formalism for reasoning about motion, can be employed 

to cluster moving objects’ trajectories based on their relative motions. In contrast to 

prior research that is related to the trajectory clustering of moving objects, which was 

primarily restricted to geometric summaries of trajectories, the present research is 

unique in that it specifically considers the interaction patterns of pairs of MPOs. 
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Studying the spatial interactions of MPOs over time is of interest in various research 

applications such as in sport sciences and choreography. The methodology comprises 

three major steps. First, raw trajectory data that stems from location-aware technologies 

is converted into qualitative relationships based on the Euclidean distance between two 

interacting MPOs. Second, drawing on the concept of an iterated function system, 

sequences of these qualitative relationships (i.e. movement patterns) are visually 

summarised in a sequence signature (SESI). Lastly, multiple SESIs are compared using 

a distance measure, which in turn is used to identify hierarchical clusters of 

qualitatively distinct trajectories. Each of these steps is discussed in depth below. 

5.2.1 Step 1: Converting Raw Trajectory Data into Qualitative 

Relationships  

To summarise raw trajectory data in terms of qualitative relationships, we use the 

Qualitative Trajectory Calculus (QTC) (Van de Weghe, 2004). In this study, we focus 

on QTCB because it is the simplest type from which all of the other types are derived. 

The approach can mutatis mutandis also be applied for the other types, but this step is 

left for future work. 

Discussed in Section  2.5, in QTCB, a qualitative relationship between two objects k and 

l at a time stamp t is defined by a label that is composed of two characters A and B. The 

resulting syntax for QTCB relation is the tuple (A B) that considers the distance 

constraints described in Section  2.5 (relationships A and B). In total, this approach 

yields 9 (3
2
) base relations, which are represented in Figure  2-3. The nine represented 

relationships form a set of jointly exhaustive and pairwise disjoint (JEPD) base 

relations. Consequently, at each time instant, there is one and only one QTBB relation 

for each pair of coexisting MPOs. To make this strategy clear, for example, QTCB 

relations (0 +),  (0 ), (+ 0), and ( 0), are explained as follows.  

(0 ) : k is stable with respect to l, and l is moving away from k 

(0 ) : k is stable with respect to l, and l is moving towards k 

( 0) : k is moving away from l, and l is stable with respect to k 

( 0) : k is moving towards l, and l is stable with respect to k 

A prototypical example of interaction between moving objects is the overtake event 

(see also (Van de Weghe et al., 2005)). Consider the interactions between two vehicles 
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k and l during a time interval. The movements of these vehicles can be expressed by a 

conceptual animation, in other words, a chronological sequence of continuous 

transitions between the QTCB relations. Suppose that car k is going to overtake car l. 

This interaction can be expressed in terms of the QTCB relationships as follows: 

State 1. car k and car l are both driving in the same traffic lane, and k is driving 

behind l: ( )   

State 2. car k is heading out to the second lane: ( )   

State 3. car k is driving in the second lane and is driving behind l, which is driving 

in the first lane: ( )   

State 4. car k is driving in the second lane and is driving in front of car l, which is 

driving in the first lane: ( )   

State 5. car k is heading back to the first lane: ( )   

State 6. car k and car l are both driving in the first lane, and l is driving behind k: 

( )   

It is noted that, following Galton’s theory of dominance (2001) and Forbus' equality 

change law (1984), a direct change from – to + and vice versa is impossible, because 

such a change must pass the qualitative value 0. This landmark value 0 needs to hold 

only for an instant. Therefore, there must be another relationship between State 3 and 4, 

namely, (0 0) (see also Van de Weghe & De Maeyer, 2005). Lastly, the above overtake 

event is represented by the following movement pattern: 

{( ) ( ) ( ) (0 0) ( ) ( ) ( )}                   Eq. 5-1 

We use the earlier implementation prototype called QTCAnalyst (Delafontaine et al., 

2011) to identify the qualitative movement patterns of MPOs. The next section presents 

a method to transform these QTC movement patterns into a fractal-based 

representation. 

5.2.2  Step 2: Summarising Movement Patterns in a Sequence Signature 

A sequence signature (SESI) is a fractal way of mapping patterns of the interactions 

between two MPOs in an indexed raster space. It is based on an iterated function 

system, as discussed in detail in Barnsley (1988). In a SESI, each sequence of n 

consecutive qualitative relationships is represented by a cell of length n (i.e. the number 

of subsequent QTCB relationships that constitute a movement pattern). Thus, a SESI of 
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length 1 represents movement patterns that are composed of one QTCB relation, while, 

for example, a SESI of length 5 represents movement patterns that are composed of five 

consecutive QTCB relations. The resolution of these cells depends on the length of that 

SESI. 

Figure  5-2 shows SESIs of lengths 1 and 2. The SESI of length 1 shows the nine base 

QTCB relationships. For higher lengths, each cell is further subdivided into nine cells, 

allowing each cell in a SESI of length n to correspond with a unique sequence of n 

qualitative QTCB relationships. In this way, each sequence of QTCB relationships has a 

specific location in the SESI. For example, the highlighted cells in the SESIs of length 

1 and 2 in Figure  5-2 represent movement patterns {( +)}, {( +)  (0 +)}, 

respectively. In QTCB, a SESI of length n contains 9
n
 cells. 

 

       {( +)}   {( +)  (0 +)} 

Figure ‎5-2: SESIs of length 1 and 2 

However, not all sequences of QTCB relationships are possible or significant. First, 

based on the laws of continuity (see Subsection  2.3.2), we can exclude chronologically 

impossible combinations of QTCB relationships in SESIs of length 2 or more. 

Figure  5-3a demonstrates SESIs of length 2 after imposing the continuity constraint. 
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(a)    (b) 

Figure ‎5-3: Continuity (a), and event-based constraints (b) imposed on a SESI of length 2 

The black cells indicate discontinuous (and thus impossible) sequences of qualitative 

relationships between two MPOs. For example, it is not possible to have a direct 

transition from ( +) to relationships (+ +), (+ 0), (+ ), (0 ), and ( ). Second, 

because we are typically interested in the changes in the relative motion between the 

MPOs over time (i.e. events), some sequences of qualitative relationships are not 

significant. This arrangement is the case when a QTCB relationship is invariant over 

time. For example, a transition from ( )   into itself is not very meaningful from a 

qualitative perspective. Figure  5-3b shows the result of imposing both of the restrictions 

above on a SESI of length 2. For illustrative purposes, we also provide the 

representations of SESIs of length 2 to 5 in Figure  5-4a. Figure  5-4b shows the SESI 

representation (length 3) of the overtake event given in Eq. 5-1. 

                

  (a)                (b) 

Figure ‎5-4: SESIs of lengths 2 to 5 (a), and the overtake event on a SESI of length 3 (b) 
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The fractal approach outlined above offers an insightful way to address repetitive 

movement patterns of any length.  

5.2.3 Step 3: Clustering Trajectory Pairs Based on Their Relative 

Movements 

Prior to clustering pairs of trajectories of MPOs based on their relative movements, we 

need some sort of measure to determine to what extent two SESIs are different. A 

comprehensive review of different clustering techniques has been performed by Rokach 

and Maimon (2010). Many clustering techniques employ distance measures to specify 

the distance between pairs of objects. We used a modified distance function that is 

based on the structure of the SESIs to calculate the distance between pairs of SESIs. We 

measure the distance 
1 2( , )nd S S  between two SESIs

1 2( , )S S  of length n as follows: 
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denote the normalised frequencies S1,ij and S2,ij of the mapped movement patterns in the 

ij
th

 cell of S1 and S2, respectively; 

n  denotes the number of impossible or insignificant cells in a SESI of length n; and 

Uij denotes the value of the highest frequency of the ij
th

 cell among all of the SESIs on 

which the distance measure is applied.  

Normalisation is used to scale heterogeneous frequencies of movement patterns, to 

make it possible to compare them. As a result, the normalised frequency of each cell of 

a SESI is confined to the interval [0, 1]. To calculate the distance between two SESIs, 

we start from the top left cells in both SESIs to subtract their normalised frequencies 

from each other. The distance measure in Eq. 5-2 runs over all of the cells in the SESIs. 

The denominator in Eq. 5-2 represents the number of feasible sequences of QTC 

relationships in that SESI. By definition, infeasible sequences are assigned a frequency 

of 0. For example, there are 200 feasible cells in a SESI of length 3. The distance 

function in Eq. 5-2 ranges from 0 to 1, where 0 indicates that the SESIs are identical 
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and 1 indicates that there is no correspondence at all between the SESIs. In fact, dn is an 

indicator to show how much movement patterns of a pair of MPOs (with length n) are 

similar to movement patterns of another pair mapped on two distinct SESIs. As an 

illustration, Figure  5-5 depicts two arbitrary trajectory pairs of two objects during two 

different time intervals. The SESIs of length 3 for both trajectory pairs are shown in 

Figure  5-6. The black cells indicate impossible cells, whereas the green cells display the 

frequency of the movement patterns. In this simple example, the frequency of 

occurrence of a movement pattern is either 0 or 1. The distance between these two 

SESIs can be calculated based on Eq. 5-2: 

3
2

3 1, 2,

3 1 2 2*3, 1

( )
( , ) 0.08

3 529
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i j
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The low distance value indicates that the interaction patterns between the two MPOs 

are, according to QTCB, qualitatively similar across both time intervals.  

 

Figure ‎5-5: Two trajectory pairs during two different time intervals 

 

Figure ‎5-6: Movement patterns and SESIs for the trajectory pairs shown in Figure ‎5-5  

In the case of multiple pairs of trajectories, we can apply a hierarchical clustering 

algorithm on the basis of the distance between multiple SESIs, to identify groups of 
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trajectories that have similar interaction patterns. The idea behind hierarchical 

clustering is to build a binary tree of the data that successively merges similar groups of 

objects. This binary tree provides a visualisation of a useful summary of the data. In 

this study, we use an agglomerative hierarchical clustering algorithm, which yields a 

dendrogram that represents a nested grouping of objects (in casu, trajectory pairs). The 

horizontal axis in the dendrogram represents the clustered objects, while the vertical 

axis shows the distance between clusters. We use average-linkage to compute distances 

between the new cluster and each of the old clusters (A detailed explanation can be 

found in (Dawyndt et al., 2005)). The distance between two clusters is then applied as 

the average distance from any member of one cluster to any member of the other 

cluster. We will illustrate the three major steps outlined above in the next section. 

5.3 Illustration 

In this section, we will apply our methodology in two examples: a very simple overtake 

event and a more complicated interaction situation of squash players. 

5.3.1 Example 1: Overtake Event on a Highway 

Figure  5-7 illustrates five different traffic situations with two cars (k and l), where each 

situation lasts 7 s (time steps of 1 second). The first three situations are simple overtake 

events. Table  5-1 shows the movement patterns for all five trajectory pairs. Following 

our methodology, we must first transform the trajectories into sequences of qualitative 

relationships. These sequences are depicted in Table  5-1. We next convert the 

sequences into SESIs of length 2 and 3 (Figure  5-8). We then measure the distance 

between all of the pairs of SESIs of a specific length. These distance measurements are 

then placed in a (symmetric) distance matrix for each SESI length (Figure  5-9). We 

lastly group the trajectory pairs using a hierarchical clustering method (Figure  5-9). As 

presented in Table  5-1, the movement patterns of the first three situations (1, 2, and 3) 

are similar to each other, and the movement patterns of the last two situations (4 and 5) 

are the same. In fact, the distance matrix shows that the first three trajectory pairs are 

identical in terms of qualitative relationships (see Table  5-1).  
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Figure ‎5-7: Five traffic situations 

The trajectory pairs with similar movement patterns are then placed in the same 

clusters. Thus, the trajectory pairs 1, 2 and 3 are taken together in the same cluster, 

while the trajectory pairs 4 and 5 are grouped into another cluster for their given length. 

Here, cluster analysis allows for us to compare the movements of MPOs based on the 

QTCB movement patterns extracted from the trajectory pairs. The distance value at each 

branching in the dendrogram represents the average distance between the SESIs in the 

branches.  

Table ‎5-1: Movement patterns of the above five trajectory pairs between two cars, k and l 

{ (- -)  ==>   (0 0) }

{ (0 0)  ==>   (+ +) }

{ (- -)  ==>   (0 0) ==>   (+ +) }

{ (+ -)  ==>   (0 0) }

{ (0 0)  ==>   (- +) }

{ (+ -)  ==>   (0 0) ==>   (- +) }

{ (- -)  ==>   (0 0) }

{ (0 0)  ==>   (+ +) }

{ (- -)  ==>   (0 0) ==>   (+ +) }

{ (+ -)  ==>   (0 0) }

{ (0 0)  ==>   (- +) }

{ (+ -)  ==>   (0 0) ==>   (- +) }

{ (+ -)  ==>   (0 0) }

{ (0 0)  ==>   (- +) }

{ (+ -)  ==>   (0 0) ==>   (- +) }

QTC Movement Patterns

Situation 1 Situation 2 Situation 3 Situation 4 Situation 5

 

Figure  5-9 represents only the hierarchical clustering of SESIs of length 2 and 3, 

respectively. The reason is that the maximum length of the considered sequences equals 

3 in all of the situations presented in Table  5-1. In general, we can observe that the 

distance between the clusters with a shorter length is larger than the distance between 

the clusters with a longer length. The reason is that the frequencies of short movement 

patterns are higher than the frequencies of long movement patterns because the longer 

movement patterns are created from the shorter ones.  
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Figure ‎5-8: SESIs of lengths 2 and 3 for all of the situations 

 

Figure ‎5-9: Distance matrices and hierarchical clustering of five traffic situations (five 

trajectory pairs) for SESIs of length 2 and 3 based on the distance function in Eq. 5-2 

5.3.2 Example 2: A Squash Rally 

In the second example, the qualitative relationships between two squash opponents are 

analysed. The data used is the public standard CVBase’06 dataset (Pers et al., 2006), 

which contains coordinates of two squash players derived from video frames taken at 

regular time steps (temporal resolution of 0.04 s). We consider the QTCB relationships 

between both players during four different rallies of the game (Figure  5-10). Long 

rallies have movement patterns that have higher frequencies compared to shorter rallies. 

However, if two players interact with a high frequency during a short rally, that rally 

might give rise to movement patterns that have high frequencies as well. For the 

analysis, we considered rallies that have lengths equal to 8 s. The rallies were selected 

randomly from the game.  
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Figure ‎5-10: Interaction between two squash players in four rallies of a set of a game 

The quantitative information of the trajectories was first transformed to QTCB. As an 

example, the frequencies of the movement patterns of length 4 realised during the 

fourth squash rally are shown in Figure  5-11. It is observed that {( +)  (0 +)  

(+ +)}  (0 +)} is a frequently occurring movement pattern. To interpret it, one might 

express that at the beginning of the interaction, the first player was moving towards the 

second player, while the second player was moving away from the first. Afterward, the 

first player changed his direction of movement and moved away from the second 

player. Later in the interaction, the first player stood still, and the second player was 

still moving away from him.  

Figure  5-12 illustrates the SESIs of length 2 to 4 of the four rallies. In addition, the 

distance matrices and dendrograms that result from the comparison of the SESIs are 

shown. From the SESIs, the complexity of the interactions of the squash players can be 

observed. Movement patterns mapped into the SESIs can reveal specific strategies 

taken by players. For example, the SESI of the third rally illustrates more frequent 

movement patterns than others. {( 0)  ( +)} and {( )  ( 0)} are the most 

frequent movement patterns of length 2 in this rally. This arrangement could arise 

because one of the players has taken a strategy to hit the ball to certain parts of the front 

wall, which has caused the other player to move towards him repeatedly. This approach 

can be used to obtain knowledge from a large moving object database. In the squash 

game, for example, the strategies taken by a player can be examined by comparing the 

SESIs in different rallies and games.  
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Figure ‎5-11: Frequency for the 28 movement patterns of length 4 of rally 4 

Similar to the previously shown example of traffic events, in the squash game, the 

distance matrices are formed based on Eq. 5-2, and finally, the results are used for 

clustering purposes. The dendrograms show clusters of similar rallies, which share 

more common movement patterns. From the dendrograms presented in Figure  5-12, we 

see that the interactions of the squash players in rally 2 are more similar to those in rally 

4 than in other rallies. This finding could support our understanding of the movement 

behaviour of MPOs during complex interactions based on qualitative relationships.  

 



 

 

93 The Sequence Signature of Patterns 

 

Figure ‎5-12: SESIs for rallies 1, 2, 3, and 4 of length 2, 3, and 4 along with the corresponding 

distance matrices and hierarchical clustering 

5.4 Discussion 

In this chapter, we proposed a method to cluster trajectory pairs of MPOs, and we 

demonstrated its applicability in two real-world examples. In what follows, we will 

elaborate on the strengths and weaknesses of our approach.  

(a) According to (Kisilevich et al., 2010), “analysis of movement behaviour is a 

complex process that requires understanding of the nature of the movement and 

phenomena it incurs. Automatic methods may discover interesting behavioural 

movement patterns with respect to the optimisation function but it may happen that 

these patterns are trivial or wrong from the point of view of the phenomena that is 

under investigation. Visual analytics field tries to overcome the issues of automatic 

algorithms introducing frameworks implementing various visualisation approaches of 

spatio-temporal data and proposing different methods of analysis including trajectory 

aggregation, generalisation and clustering”. In this study, SESIs provide a visual 

summary of the movement patterns of MPOs. The scattering of movement patterns that 

have occurred is visible in SESIs. The length of SESI is very influential to the scale of 

SESI. Therefore, the availability of fine-grained movement data at small temporal 

sampling intervals increases the difficulty of detecting QTCB movement patterns in 

SESIs. That is, SESIs are used as a visual-aided approach to perceive the dispersion of 

movement patterns. However, we see the SESI mathematically as a rectangular array of 

numbers, symbols, or expressions, which are arranged in rows and columns. The 

individual items in this matrix (i.e. SESI) are referred to as its elements or entries (i.e. 

the frequency of QTCB movement patterns). From a computational perspective, the 

longer the length of a SESI is, the more time is needed to compute the distance between 
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two SESIs (time complexity O(m
2
 + 9

n
); with m = length of chain of elements,  

n = length of SESI). In short, it is possible to calculate distances for any length of SESI, 

but visually detecting long-movement patterns in SESIs will become challenging.  

(b) Throughout this study, two different examples were analysed to show that the 

presented approach is persuasive and reliable. In the first example, the movement 

patterns of two cars at five different traffic scenarios were evaluated. The movement 

patterns could be identified through the trajectories themselves. The first example was 

deliberately considered to be simple, to examine the result of the clustering. As 

predicted, the results of clustering were justifiable according to the trajectories of the 

cars. In the second example, a more complex movement was given. Unlike a traffic 

scenario, squash players were moving freely in the squash court. Consequently, the 

clustering of the trajectory pairs was not possible by looking only at the trajectories. We 

applied the approach that was evaluated in the first example to cluster the trajectory 

pairs of the squash players. Comparing the experimental results of the presented 

approach with other existing methods was not our first priority in this study. However, 

this issue will enable more persuasive and reliable results.  

(c) Another important issue is whether incomplete knowledge (e.g., noise) can be 

handled with QTC. Of course, not always everything is known when making inferences 

about an issue at hand (Van Belleghem et al., 1994). Obviously, in these situations, the 

available information could be lacking with respect to offering complete answers to 

queries. However, “a partial answer may be better than no answer at all.” as Freksa 

(1992a) argues. The development of QTC has been inspired by some major qualitative 

reasoning calculi such as the temporal Semi-Interval Calculus (Freksa, 1992a) and the 

spatial Double-Cross Calculus (Freksa, 1992b; Zimmermann & Freksa, 1996). 

Principal in these theories is that specific attention has been paid to reasoning about 

incomplete knowledge. Hence, QTC can handle incomplete knowledge as well. (For 

more explanation, see (Van de Weghe et al., 2007).) 

5.5 Conclusions and Future Work 

Knowledge discovery from moving objects’ trajectories is an important and challenging 

issue in many research domains. This chapter presented a new technique for 

identifying, representing, and analysing patterns of relative motion between disjoint 

MPOs, which is based on three major steps. In the first step, we described movement 

patterns of MPOs using qualitative trajectory calculus (QTC). QTC enables us to 
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express the interactions between moving objects qualitatively. In the next step, 

movement patterns were represented in a sequence signature (SESI), which is a fractal 

way of mapping patterns of interactions between MPOs in an indexed raster space. 

Then, in the third step, a distance function was used to cluster SESIs and aims to 

improve the understanding of the movement patterns. We demonstrated the usefulness 

of our methodology to identify and cluster the movement patterns of cars and squash 

players.  

Our experimental results showed that the proposed mining technique achieved good 

clustering quality. In addition, unlike many trajectory similarity measures that are 

restricted to geometric abstractions of the trajectories, we were able to measure the 

distance between the trajectory pairs based on the movement patterns. The proposed 

methodology could be used in a wide range of research applications. Movement 

patterns such as walking, running, jumping, lifting, striking, and swimming can be 

investigated for different purposes. For example, the proposed approach can be used in 

sports sciences to analyse the movement of athletes with the purpose of rehabilitation, 

physical education and practice. The emphasis of the therapy can be diverse, ranging 

from upper limb rehabilitation and balance rehabilitation to the rehabilitation of specific 

body parts (Schönauer et al., 2011). In many cases, full body interactions are captured 

using various types of capturing systems, such as Motion Capture (MoCap), to 

determine how well the body parts, such as hands and feet, move through space and 

time to regain normal function (Allard et al., 1998; Fernandez-Baena et al., 2012; 

Higginson, 2009; Schönauer et al., 2011). The proposed clustering approach can cluster 

pairs of interactions and assess whether body interactions are sufficiently improved 

relative to a ‘normal’ body interaction. In the case of swimming, for example, the 

investigation of movement patterns of lower/upper limbs of swimmers identifies 

common features of novice swimmers and how these features change with increasing 

skill during an instructional period. The proposed approach can be applied in dance 

analysis, where an examination of the movement patterns of the body parts of dancers 

is important to assist instructors for educational purposes.  

Another possibility is to apply the presented approach to investigate the movement 

behaviour of animals. Because QTC considers the relationships between trajectory 

pairs, we can analyse the movement of pairs of animals to observe their movement 

patterns. For example, the interaction between two males can be different from the 
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interaction between a male and a female, or the interaction of a baby and its mother can 

be different from the interaction of a baby and its father. These differences can be 

observed from the QTC movement patterns. A library of various identified QTC 

movement patterns (interactions) can enhance the understanding of unknown 

movement patterns of animals.  

We could also exploit the proposed approach as a complementary analysis technique to 

support coaching in certain sports, such as football. For example, movement behaviour 

of certain players (e.g., strikers) in different temporal periods of the game could be 

examined to discover techniques or strategies that lead to frequent movement patterns 

on SESI. It would be an interesting step towards the visual analysis of the movement 

behaviour of players using SESIs when the team is attacking or defending.   

Prior to applying the proposed approach in such case studies, we will need to extend 

our approach towards other types of QTC, such as QTC Double-Cross (QTCC). These 

approaches provide more details about the movement of MPOs by including the 

direction of the movement of disjoint MPOs.  

Another interesting issue is the ontological aspect of knowledge discovery from 

qualitative data. The ontological commitments for incomplete, uncertain, and erroneous 

data must be linked to the decision process to see how they affect the quality of the 

decisions (Frank, 2007). In this study, we did not address the ontological aspects of the 

presented approach. However, we intend to extend the on-going research in future work 

and assess the ontological commitments for incomplete data on the resulting clusters. 
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6 MULTI-DIMENSIONAL PATTERNS 
 

Abstract: Increased affordability and deployment of advanced tracking technologies 

have led researchers from various domains to address the resulting spatio-temporal sets 

of movement data for the purpose of knowledge discovery that can help better 

understand the behaviour of moving objects. Two different approaches can be 

considered in the analysis of moving objects: quantitative analysis and qualitative 

analysis. This research focuses on the latter and uses the qualitative trajectory calculus 

(QTC), a type of calculus that represents qualitative data on moving point objects 

(MPOs) and establishes a framework to analyse the movement behaviour of multiple 

MPOs. This chapter uses a visualisation technique called sequence signature (SESI) 

which is a way of mapping QTC movement patterns in a 2D indexed rasterised space, 

to measure the similarity of movement patterns of multiple MPOs. The concept of SESI 

is fully introduced in Chapter  5. In this chapter, we extend this concept to extract 

knowledge from movement of multiple moving objects. The applicability of the 

proposed methodology is illustrated by means of a practical example of comparing 

Samba dance movements during different time intervals. The results show that the 

proposed method can be effectively used to analyse interactions of multiple MPOs in 

different domains.  

6.1 Introduction 

Due to technological advances in positioning and tracking systems such as GPS, mobile 

positioning with Bluetooth and Wi-Fi, and video tracking, enormous amounts of 

movement data have been acquired in various domains. As a result, much attention has 

recently been paid to the analysis of movement data in many research areas. A large 

number of studies have been conducted with respect to the analysis of trajectory data, 

the mining of movement patterns, and exploratory visual analytics (see, for example 

(Andrienko & Andrienko, 2007; Andrienko & Andrienko, 2012; Bak et al., 2012; 

Dodge, 2011; Giannotti & Pedreschi, 2008; Imfeld, 2000; Laube et al., 2005; Mountain, 

2005)).  

Despite these broad efforts, only scant progress has been made in the field of qualitative 

reasoning about moving objects. Qualitative formalisms that are suited to express 

qualitative spatial or temporal relationships between entities have gained wide 
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acceptance as a useful way of abstracting the real world and, consequently, reducing the 

complexity of reasoning about moving objects. In this respect, qualitative trajectory 

calculus (QTC), which was introduced by Van de Weghe (2004), represents a powerful 

calculus for assessing the interaction between disjoint moving point objects (MPOs) 

qualitatively.  

Based on concepts from geographic knowledge discovery (GKD) (Giannotti & 

Pedreschi, 2008) for extracting meaningful information, discovering interesting patterns, 

and interpreting them in a plausible way, we propose a visualisation technique for 

analysing the movements of multiple disjoint MPOs using QTC. In this chapter, we will 

focus on the usefulness of QTC in identifying movement patterns of MPO pairs. An 

innovative visualisation technique called sequence signature (SESI) is used to transform 

the QTC movement patterns of MPOs into a structure that is suitable for being analysed 

through traditional data mining techniques such as clustering algorithms. Using a 

similarity measure between two SESIs, we can quantify the similarity of the 

movements of the MPOs. The presented methodology reduces the complexity that is 

associated with the analysis of MPO movements. 

The remainder of this chapter is organised as follows. In the next section, we briefly 

discuss related work, while in Section  6.3, we introduce the key concepts of QTC and 

SESI. Section  6.4 discusses the proposed methodology for analysing the movement 

behaviour of multiple MPOs. In this section, data from an experiment (Samba dance) is 

presented to exemplify and validate the proposed method. In Section  6.5, we discuss 

our findings. Finally, Section  6.6 draws some conclusions and directions for future 

research. 

6.2 Related Work 

Movement data sets are growing rapidly due to the wholesale collection of spatio-

temporal data on various phenomena using time-efficient and accurate positioning 

technologies such as GPS. As the most fundamental perception of movement, much 

effort has been devoted to explore the trajectories of moving objects, which enables 

finding behavioural patterns that can be used in different applications (Dodge, 2011). 

Despite the abundance of work that is related to the analysis of moving object traces, 

there are still many questions to answer, such as what type of movement patterns is one 

looking for? And which approaches and algorithms should be accounted for to extract 

the movement patterns? Because the focus of this chapter is developing a method to 
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support our understanding of movement patterns of moving objects, three main issues 

are covered in this section: (i) relationships among MPOs (ii) visualisation of MPOs, 

and (iii) clustering movements. 

6.2.1 Relationships among MPOs  

Generally, movement patterns can be derived either from the movement of an 

individual object over time or from an interaction between two or more moving objects 

during a time interval of movement. A comprehensive classification of patterns in 

movement data, which is applicable for all of the common types of moving objects in 

different domains, such as humans, animals, cars, and eye movements, has been studied 

by Dodge (Dodge, 2011; Dodge et al., 2008). It is obvious that movement patterns of an 

isolated individual can differ from movement patterns of an individual who is part of a 

group. These differences between individual and group movement behaviour have been 

discussed extensively (Andrienko & Andrienko, 2007). Our research seeks to contribute 

to the exploration of interactions of multiple MPOs. The key idea is to examine 

movement patterns of multiple objects over space and time. One relevant concept in 

this respect is the relative motion matrix (REMO) (Laube et al., 2005), which was 

introduced by Laube, Imfeld and Weibel, in which users can search in a large 

movement data set for instances of pre-defined movement patterns that were 

constructed based on the existing knowledge about the movement of the objects under 

study. In REMO, the movement patterns are described by changes in the motion 

attributes of objects (i.e. the change in the speed or motion azimuth over space and 

time), and therefore, relate one object's movement to that of others. The REMO 

representation transforms the trajectories of MPOs into an analysis matrix that allows 

for the matching of movement patterns. The main difference between the current work 

and REMO is that, at the very basic level, we are investigating the interaction between 

pairs of MPOs instead of solely looking at the movement of individuals over time, and 

then, we infer the collective behaviour of multiple objects. Furthermore, this chapter 

does not investigate the changes in the motion attributes of MPOs. Instead, we examine 

how the relative changes in the Euclidean distances between MPOs can reveal 

movement patterns. For this purpose, we apply a qualitative approach called QTC (Van 

de Weghe, 2004) to express the relative change in the Euclidean distance among MPOs 

in a qualitative manner. Basically, three notions have been introduced in QTC between 

two MPOs to express the relationships between objects, namely moving towards, 

moving away from, and stable, which will be discussed in detail in Subsection  6.3.1.  
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6.2.2 Visualisation of MPOs 

Visual representation is used as an effective technique to represent and support the 

analysis of movement patterns of objects. A substantial amount of research has been 

conducted to express the significance of visualisation in understanding movements in 

different domains (Andrienko & Andrienko, 2010; Andrienko & Andrienko, 2007; 

Andrienko et al., 2008; kraak & Van De Vlag, 2007; Ooms et al., 2012; Pelekis et al., 

2012; Rinzivillo et al., 2008; Tominski et al., 2012; Xia & Kraak, 2010). For example, 

an effort has been made by Andrienko, Andrienko, Wachowicz, and Orellanal 

(Andrienko et al., 2008) to uncover interactions between moving objects by combining 

visual and filtering techniques. To achieve that goal, they have focused on two main 

issues: (i) the development of a theoretical foundation that includes a formal definition 

of an interaction and its indications, such as the spatial proximity between two or more 

objects at some moment in time or during a time interval, and (ii) a methodology for 

visually exploring and analysing possible interactions in large sets of movement data. 

Detecting, understanding, and visualising movement patterns are not limited to certain 

applications. For example, in Chapter 3, a technique for identifying, visualising and 

interpreting repetitive movement patterns within groups of moving point objects based 

on QTC information has been studied. As a case study, movement data of Samba 

dancers has been examined to evaluate the performance of Samba dancers in a 

visualisation technique, i.e. the continuous triangular model (CTM). From the results, 

repetitive movement patterns have been visually detected and interpreted. In fact, when 

movement patterns of MPOs are visualised, more tangible information might be 

extracted. This work is an extension of our previous effort (Chapter 5) of analysing the 

movement patterns of MPOs. Formerly, the relative motions and associated movement 

patterns between two disjoint MPOs were analysed using a visualisation technique 

called SESI. The proposed approach was only able to analyse the movement patterns of 

a single pair of MPOs, while in this chapter, this weakness is resolved by extending the 

approach to multiple MPOs, as explained in detail in Section  6.4. 

6.2.3 Clustering of Movements 

Over the past decade, many studies have addressed knowledge discovery and data 

mining issues that are related to moving object data. Among them, some contributed to 

the clustering of moving objects (Buzan et al., 2004; Jensen et al., 2007; Li et al., 2004; 

Nanni & Pedreschi, 2006; Rinzivillo et al., 2008; Zhang & Lin, 2004), the mining of 

movement patterns (Demsar & Virrantaus, 2010; Dodge et al., 2008; Gudmundsson et 
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al., 2007; Laube et al., 2011; Laube et al., 2008; Laube et al., 2005; Wilson, 2008) and 

exploring the similarity of moving objects (Buchin et al., 2009; Ding et al., 2008; 

Dodge et al., 2009; Lin & Su, 2008; Pelekis et al., 2007; Rinzivillo et al., 2008). The 

idea behind the approach proposed in this chapter is to contribute to all three classes of 

knowledge discovery, i.e. mining patterns, similarity assessment, and clustering. In 

addition to detecting and visualising movement patterns, we measure the similarity in 

the movement behaviour of moving objects. Knowledge about similarities in movement 

data can be valuable in the prediction, modelling and simulation of the collective 

behaviour of various dynamic phenomena (Dodge, 2011). In most of the cases, 

researchers have found similarities in movement patterns solely from the trajectories of 

moving objects. For example, in a prior study (Dodge, 2011), variations in the 

movement parameters, such as the speed, acceleration, or direction of the objects over 

time (which are obtained from the trajectories of moving objects) have been used to 

assess the similarity. Our work intends to explore similarities of movement patterns 

using a visualisation technique called SESI. From multiple SESIs, in addition to 

obtaining a visual synopsis of the movement patterns of MPOs, we can measure the 

degree of similarity in the movement patterns. The measurement leads towards a 

clustering of trajectory pairs, being the identification of groups of similar trajectory 

pairs.  

6.3 Background 

6.3.1 Qualitative Trajectory Calculus  

The movement of objects can sometimes be described more satisfactorily by using a 

qualitative description rather than a quantitative description (Delafontaine et al., 2011a). 

This possibility arises because qualitative measures better support the intuition of 

human beings compared with quantitative measures (Freksa, 1992). For example, 

stating that people are moving faster when they ride a bicycle than when they walk is 

easier to understand than stating that the average speed of riding a bicycle is 17-19 

km/h and that of walking is 4-6 km/h. Until now, various qualitative calculi have been 

developed to reason about space (Cohn et al., 1997; Egenhofer & Franzosa, 1991) and 

time (Allen, 1983), but few of them have systematically examined the qualitative 

properties of spatio-temporal information, such as trajectory data of moving objects. 

This subsection briefly presents a general overview of the principal theoretical aspects 

of QTC, which is an integrated spatio-temporal calculus that represents and reasons 
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about moving objects (A detailed explanation can be found in Chapter 5). We show 

how QTCB, the basic level of QTC, is employed to represent raw moving object data in 

order to provide the basis for our aim. We will briefly introduce some basic concepts of 

QTCB with an example. An interaction between two moving objects, say two bicycles, 

a and b (Figure  6-1a), during a time interval of movement can be described by QTCB 

relations. QTCB relations are constructed based on changes in the Euclidean distance 

between two MPOs over time. 

 

    (a) 

 

(b)            (c) 

Figure ‎6-1: Interaction between two moving objects (a, b) during a time interval of movement 

(a), nine possible QTCB relation icons (b), and all QTCB movement patterns between two 

bicycles a and b (c). 

The QTCB relations mainly imply the towards and away from relations. They are built 

up from the distance constraints (A and B) introduced in Section  2.5. As noted earlier in 

Chapter 5, each QTCB relation is represented by a two-tuple (A B)B
1
, where each tuple 

implies the distance constraints between both MPOs. There are 9 (3
2
) base relations in 

QTCB, which are shown in Figure  6-1b; these relations are all possible in a one or 

higher-dimensional space, i.e. (− +), (0 +), (+ +), (− 0), (0 0), (+ 0), (− −), (0 −), 

and (+ −) . For example, the QTCB relation (+ +)  expresses that both objects are 

moving away from each other (for more explanation about QTCB, see (Van de Weghe, 

2004)). Each time stamp/interval of movement can be represented by a QTCB relation. 

                                              
1 In (A B)B relation syntax, A refers to movement of the first object with respect to the second object at t and B refers to movement of the 
second object with respect to the first object at t. 
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In fact, depending on the temporal granularity by which movement data has been 

captured, details of the information and, consequently, the accuracy of the results will 

vary. A QTCB relation represents the interaction between two MPOs at a time stamp of 

movement and, therefore, during a time interval of interaction between two MPOs, a 

sequence of successive QTCB relations can be obtained in which some of the QTCB 

relations are instantaneous relations (e.g., (0 0) is an instantaneous relation in 

Figure  6-1). Hereafter, the term QTCB movement patterns will be replaced by 

sequences of successive QTCB relations. The longest QTCB movement pattern shows 

the whole interaction between two MPOs in terms of the QTCB relations during a time 

interval of movement, while the sub-QTCB movement patterns constructed from the 

longest movement pattern represent the sectional patterns (Figure  6-1c). In this 

instance, given that the temporal granularity of capturing the movement is one second, 

three QTCB relations, (− −), (0 0), and (+ +), were observed. Accordingly, the QTCB 

movement pattern {(− −) → (0 0) → (+ +)} represents the whole interaction between 

two bicycles a and b during a time interval of 2 s. Sub-QTCB movement patterns 

disclose the details of the interactions during a time interval. In a previous example, 

{(− −) → (0 0)} and {(0 0) → (+ +)} are two sub-QTCB movement patterns, each of 

which are made of two QTCB relations. It is noted that, following Galton’s theory of 

dominance (2001) and Forbus' equality change law (1984), a direct change from – to + 

and vice versa is impossible because such a change must pass the qualitative value 0. 

Therefore, there are some impossible direct transitions between the QTCB relations. For 

example, there must be another QTCB relation between the relations (− +) and (+ +), 

which is (0 +).  

The example shown in Figure  6-1 was simply designed to explain the QTCB relations 

and QTCB movement patterns. However, the interaction between the MPOs could be 

much more complex in reality. In this chapter, we will specifically examine the 

movement of the pairs of MPOs by using the properties of the QTCB movement 

patterns, i.e. the frequency and duration. Depending on the complexity of the movement 

between interacting MPOs, the frequency and duration of the sub-QTCB movement 

patterns will vary. To investigate the movement of the pairs of MPOs during different 

time intervals of movement, it will be sufficient to compare their sub-QTCB movement 

patterns and, respectively, their frequency and duration. A novel visual technique called 

SESI is used to map QTCB movement patterns in a 2D indexed rasterised space. SESIs 
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provide a framework for comparing the interaction of pairs of MPOs. The next 

subsection introduces the principal concept of SESI.  

6.3.2 Sequence Signature 

A Sequence Signature (in short SESI) is a fractal approach to mapping QTCB 

movement patterns that result from interactions between MPOs in an indexed raster 

space (see also Chapter  5). It is based on the concept of an iterated function system 

(IFS), which is a method of constructing fractals, as discussed in detail previously 

(Barnsley, 2000). In brief, a fractal is a geometric object that is similar to itself at all 

scales, and the overall pattern is repeated at any scale. Iterated function systems are 

methods for constructing fractals. An IFS fractal exhibits self-similarity, which means 

that its structure is constructed from the repetition of copies of itself, each copy being 

transformed by a function. The functions are typically contractive, which results in 

smaller shapes while bringing points closer together.  

Each cell in a SESI represents a specific QTCB movement pattern. The resolution of the 

cells in a SESI depends on the length of the QTCB movement patterns. A SESI with 

length 1 represents all of the basic QTCB relations, while, for example, a SESI with 

length 2 illustrates all of the QTCB movement patterns with two consecutive QTCB 

relations. Figure  6-2a illustrates the longest QTCB movement pattern from the previous 

example in a SESI with length 3. A compact SESI is a superimposition of all of the 

SESIs of any length during a given time interval. This concept will be explained later in 

this chapter.  

                 
  (a)      (b) 

Figure ‎6-2: SESI of length 1, 2, and 3 (the longest movement pattern in Figure ‎6-1 is indicated 

in the SESI of length 3) (a), continuity and event-based constraints imposed on SESIs with 

length 1, 2, and 3 (b). 

http://en.wikipedia.org/wiki/Fractal
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As mentioned before, not all QTCB transitions and, consequently, not all QTCB 

movement patterns are possible or significant. First, we exclude chronologically 

impossible combinations of QTCB relationships in SESIs of length 2 or more. Second, 

because we are typically interested in the changes in the relative motion between MPOs 

over time (i.e. events), some sequences of qualitative relationships are insignificant. 

This outcome occurs when a QTC relationship is invariant over time. For example, a 

transition from (− +) into itself is not very meaningful from a qualitative perspective. 

Figure  6-2b demonstrates SESIs of length 1, 2, and 3 after imposing both constraints. 

The black cells indicate discontinuous (and thus impossible) and non-significant 

sequences of qualitative relationships between two MPOs (for more explanation, see 

(Chapter 5)). Here, each cell in a SESI has two values, which are the frequency and 

duration of a unique QTCB movement pattern located in that cell. The frequency and 

duration of the cells are considered in the similarity measure, which will be discussed in 

detail in the methodology section. 

6.4 Methodology 

Our methodology for analysing the movement of multiple MPOs is composed of four 

steps: (i) data preparation; (ii) QTCB movement pattern extraction; (iii) building SESIs 

and hyper-SESIs for individual and multiple pairs of MPOs, respectively; and (iv) 

building a similarity measure for hyper-SESIs. Each of the steps is explained in detail 

in the following subsections. 

6.4.1 Step 1: Data Preparation 

A major step in analysing movement is the data preparation. The first issue that must be 

considered is the spatio-temporal granularity of the movement data, which in turn 

depends on the resolution of the capturing. Some applications require very high 

resolution data, such as dance analysis, while others, such as traffic flow analysis, can 

be derived from more roughly captured data. Selecting and assigning optimal spatio-

temporal resolution for capturing data are out of the scope of this chapter and will not 

be considered. In the remainder of this subsection, an experiment is designed to 

examine and validate the applicability of the proposed methodology. However, the 

proposed methodology can be applied to a wide range of applications in which 

exploring and understanding movement patterns is significant, including traffic 

management, in which building an ontology based on the movement patterns of 

vehicles can inform flow modelling; the analysis of human body movements, where 
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identifying and examining certain patterns in the interactions of different body parts of 

disabled people can help them to recover; and sports analysis, such as squash and 

football, where understanding the movement strategies of the players can be used for 

coaching. 

For illustrative purposes, this chapter will use a data set of movements of a Samba 

dancer during four different time intervals, each lasting 0.8 s. The time intervals have 

been deliberately considered short to simply recognise the similarity between 

trajectories of movements. The movements of four parts of the body of the dancer, 

including the right finger (the right hand), the left finger (the left hand), the right toe 

(the right foot), and the left toe (the left foot), are captured at each time stamp of the 

movement with a temporal granularity of 0.04 s (Figure  6-3a). The main reason for 

considering only four body parts to investigate the dance movement is their higher 

number of interactions compared with other parts of the body of the dancer.  

 
(a)       (b) 

Figure ‎6-3: An abstracted movement of a Samba dancer based on four parts of the body (right 

finger, left finger, right toe, and left toe) (a), and top view of movements of the Samba dancer 

during four different time intervals, each lasting 0.8 s (b). 

The positional information has been captured by an infrared motion capture system that 

yields the position of the markers attached to the body in three-dimensional space 

(Figure  6-3b). The data have been normalised with respect to one reference point and 

the orientation of the dancer’s body (that point is defined as the centroid of the body, 

called the root). 

In this chapter, we investigate only the movements of the listed parts of the body 

because their movement is more noticeable compared to that of other parts. We intend 

to identify, visualise, and interpret the existing movement patterns obtained from the 
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interactions between the different body parts of the dancer. Relationships between 

different parts of the body are described by QTCB relations based on the positional 

information described in the next subsection.  

6.4.2  Step 2: QTCB Movement Pattern Extraction 

In the second step, QTCAnalyst is used to extract QTCB movement patterns of MPO 

pairs by giving the trajectories. QTCAnalyst was developed as a prototype QTC-based 

information system in Visual Basic 6.5 using AutoCAD to automatically generate and 

export QTC representations that model relations among moving objects (Delafontaine 

et al., 2011b). Trajectories of MPOs can be loaded in QTCAnalyst through a GUI. 

There are possibilities for visualising the trajectories in a conventional two-dimensional 

space to see how the MPOs are interacting with each other. Here, we use QTCAnalyst 

to calculate and export the QTC information, such as the QTCB movement patterns and 

the sub-QTCB movement patterns, i.e. the chains of subsequent QTCB relations. The 

complexity of interactions between two MPOs during a given time interval gives rise to 

different QTCB movement patterns. Figure  6-4 illustrates trajectories of the right finger 

and the left toe of the Samba dancer during Time Interval 1 followed by all of the 

QTCB movement patterns at different lengths obtained from QTCAnalyst. 

 

Figure ‎6-4: Summary of the QTCB movement patterns, with their frequencies and durations, 

for the interaction between the right finger and left toe of the Samba dancer. 

From the QTCB movement patterns obtained from the interactions between the right 

finger and left toe of the dancer, we can observe that there is no regularity in the 

movement because the occurrences of all of the patterns are equal to one. In other 

words, there is no repetitive motion between these two parts of the body during the 

performance. Unlike the frequency, the durations of the QTCB movement patterns are 

different, and some of the movement patterns have lasted longer while others are 

shorter. As mentioned earlier, the temporal granularity of capturing dance movement is 

0.04 s. For the sake of simplicity, we assume every 0.04 s to be a single time unit. For 
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example, pattern {(+ −) → (0−)}  has lasted 10 time units, which is equivalent 

to 10 ∗ 0.04 = 0.4 𝑠. The variety in the movement patterns that was achieved from the 

interactions between MPOs implies that there is complexity in the relative motion, 

which is our concern in this study. 

6.4.3 Step 3: Building SESIs and Hyper-SESIs for Individual and Multiple 

Pairs of MPOs, Respectively 

In the third step, a SESI is used as an iterative mapping technique to represent QTCB 

movement patterns obtained from interactions of a pair of MPOs. As the main 

contribution of the chapter, we propose SESI as a structure to compare the QTCB 

movement patterns of pairs of MPOs and hence attain the degree of similarity between 

them. Basically, acquiring similarities as part of knowledge discovery on movement 

data is beneficial to assessing the degree of closeness of the movement behaviour of 

different pairs of MPOs. In our previous effort, the basic concept of SESI has been 

introduced. We will now extend the use of the SESI concept for documenting and 

representing the interaction of multiple pairs of MPOs, accounting for an additional 

property of movement patterns (i.e. duration) in the calculation of similarity. As 

explained earlier, SESIs are representing the QTCB movement patterns of the 

interaction of pairs of MPOs in indexed raster spaces. In addition, it is an effective way 

to provide a representation of the distribution of QTCB movement patterns. A SESI can 

have different lengths. A SESI of length 1 shows the nine base QTCB relationships, 

which are exclusively mapped in nine cells (Figure  6-2a). We do not represent length 1 

of SESIs because they do not reveal interesting information about the movement 

patterns of objects. For higher lengths, each cell is further subdivided into nine cells, to 

make each cell in a SESI of length n correspond to a unique sequence of n qualitative 

QTCB relationships. Figure  6-5 illustrates a SESI that is obtained from the interaction 

between the right toe and left finger. All QTCB movement patterns of the interaction 

have been represented in a compact SESI, which is a superimposition of all SESIs of 

any length (i.e. five lengths). To enhance the visibility of the transformed QTCB 

movement patterns, impossible and insignificant QTCB movement patterns (which 

correspond to the black cells in Figure  6-2b) are not represented. 
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Figure ‎6-5: A SESI that represents all of the QTCB movement patterns of interactions between 

the right toe and left finger of the Samba dancer. 

The values of the cells in the SESIs are either the frequency of QTCB movement 

patterns or the duration of them. Therefore, two types of SESI are defined, namely 

frequency-based SESI and duration-based SESI. Because any QTCB movement pattern 

with any length is located in an exclusive cell, it is obvious which QTCB movement 

patterns are more frequent than others or which ones last longer. More changes in the 

interactions between two MPOs results in a SESI with a greater variety of QTCB 

movement patterns spread all over the cells. Figure  6-6 demonstrates that the right toe 

and left toe of the Samba dancer have more interactions with each other during the first 

time interval of the movement than the second time interval. In this figure, from the 

frequency-based SESIs of both time intervals, we observe that the QTCB movement 

patterns {(+ +) → (+ 0)}, {(+ 0) → (+ +)}, {(+ 0) → (+ −)}, and {(+ −) → (+ 0)} 

are more frequent than others of length 2. The QTCB movement patterns {(+ +) →

(+ 0) → (+ −)}  and {(+ −) → (+ 0) → (+ +)}  are the most frequent movement 

patterns of length 3, and so forth. Considering the duration-based SESI of the second 

time interval, the QTCB movement pattern {(− +) → (0 0) → (+ −)} is one of the long 

duration patterns of length 3. This arrangement means that the right toe was moving 

towards the left toe, while at a time in between, the movement behaviour changed, with 

the left toe moving towards the right toe, while the right toe was moving away from the 

left toe. 
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Figure ‎6-6: Frequency-based SESI and duration-based SESI of the right toe and left toe of the 

Samba dancer during two equal time intervals of movement. 

Because each SESI represents the interaction between two MPOs, the interaction of 

multiple MPOs can be visualised simultaneously on a newly formed SESI called hyper-

SESI, which is tessellated into all sub-SESIs. Based on the successive QTCB relations 

of all possible pairs of MPOs during each time interval, we create hyper-SESIs for four 

equal time intervals based on the frequency and duration of the QTCB movement 

patterns (Figures 6-7 and 6-8). Because in this chapter only the movement of four parts 

of the body of a dancer has been studied, there are six possible pairs of interactions. The 

pairs of movement interactions between different body parts are shown in terms of 

hyper-SESIs for each time interval of movement in Figures 6-7 and 6-8. In each hyper-

SESI, the leftmost cell expresses the interaction between the right finger and right toe 

of the dancer, and the lowest cell represents the interaction, or in fact QTCB movement 

pattern, between the left toe and left finger. Note that only the upper parts of the main 

diagonal of the hyper-SESIs must be considered because the interactions of the moving 

parts are symmetrical. We attempt to discover whether there is a degree of 

closeness/similarity between the movement patterns of different pairs of body parts 

during different time intervals of movement. Based on the context of the movement 

data, we can interpret the hyper-SESIs. For example, we know that Samba dance is a 

rhythmical dance that has regularity in the movements. The regularities in the 

movements can be distinguished on the hyper-SESIs cells. In Figure  6-7, the upper left 

cell of hyper-SESI shows the interactions between the right finger and right toe at four 
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different time intervals. One can observe that there are more repetitive QTCB 

movement patterns during the time interval 4 because more frequent patterns are 

visualised on its hyper-SESI. This finding probably occurs because, during that time 

interval, dancers should perform some more repetitive movements. As another 

example, the SESI of right toe-left toe at the first time interval of movement are slightly 

different from the SESIs at other time intervals.  

 

Figure ‎6-7: Hyper-SESIs of four equal time intervals of movements based on the frequency of 

QTCB movement patterns. 
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Figure ‎6-8: Hyper-SESIs of four equal time intervals of movements based on the duration of 

QTCB movement patterns. 

QTCB movement patterns {(+ 0) → (+ +)}  and {(+ −) → (+ 0)}  of length 2 and 

{(+ 0) → (+ +)) → (0 +)} and {(+ −) → (+ 0) → (+ +)} of length 3 are observed in 

the first time interval of movement but not in the other intervals. From the perspective 

of visual assessment, many differences are found when we look more closely at the 

hyper-SESIs, both for frequency and duration.  

It makes more sense when we expect certain patterns with a specific frequency and 

duration. For example, in our case study, a dance tutor can ask the dance amateur to 
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perform some movements. The requested movement patterns should be observed in the 

corresponding SESIs unless the dance amateur has failed to perform successfully.  

In addition to a visual judgement of SESIs or hyper-SESIs, the quality of the dance 

performances can be measured. One might measure the similarity of the performances 

of a dancer (taken as a benchmark) with the performances of other dancers and 

investigate the quality of the performances. For this purpose, we measure the degree of 

closeness/similarity between corresponding hyper-SESIs. In fact, we can investigate not 

only the movements of each individual pair, such as the left finger-right finger at 

different time intervals of movement, but also the overall measurement of whole body 

part interactions. Corresponding SESIs are compared to drawing an analogy between 

individual pairs; however, the average of all similarity measures of individual SESIs 

creates the overall measurement. Extracting such similarities can meaningfully 

contribute to the analysis of the movement behaviour of MPOs. The similarity measure 

is discussed in detail in the next subsection. 

6.4.4 Step 4: Building a Similarity Measure for Hyper-SESIs 

Measuring the similarity between hyper-SESIs assists in discovering the degree of 

closeness in the collective movement behaviour of pairs of MPOs. Usually, selecting an 

appropriate similarity function depends on the data type and the context of the problem. 

We use a cosine-based similarity function to express the similarity between two hyper-

SESIs. The proposed similarity function is calculated based on the values of the cells in 

the SESIs (i.e. the frequency and duration of superimposed QTCB movement patterns). 

In fact, the cosine-based similarity function is a measure of similarity between two 

vectors, here two SESIs, by measuring the cosine of the angle between them (Eq. 6-1). 

The cosine-based similarity is non-negative and bounded between [0, 1] because the 

values of frequency and duration of QTCB movement patterns are non-negative. The 

distance between two SESIs can be calculated by using a distance measure (Eq. 6-2), 

which in turn can be used in traditional clustering algorithms.  

𝑆𝑖𝑚(𝐴, 𝐵) = 
𝐴.𝐵

‖𝐴‖‖𝐵‖
= 

∑ 𝐴𝑖 . 𝐵i
𝑛
𝑖=1

√∑ (𝐴𝑖 )
2𝑛

𝑖=1  ∗√∑ (𝐵𝑖 )
2𝑛

𝑖=1  
     Eq. 6-1 

𝐷𝑖𝑠 (𝐴, 𝐵) = 1 −  𝑆𝑖𝑚(𝐴, 𝐵)       Eq. 6-2 

The individual scalar components 𝐴 i and 𝐵 i are called features or attributes, which 

denotes the frequencies /durations of the i 
th 

cell in SESI A and SESI B, respectively.  
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The result of the distance measure is used in building an agglomerative hierarchical 

clustering, which yields a dendrogram that represents a nested grouping of hyper-SESIs 

based on their distance from each other. Figure  6-9 demonstrates the distances between 

SESIs of right toe-left finger at four time intervals of movement, both for frequency- 

and duration-based SESIs. In this figure, the outcomes of the distance measure are 

presented in the form of distance matrices in which each cell in the matrix represents 

the distance between the movements of right toe-left finger at two time intervals. 

Accordingly, the dendrograms represent the clusters of movements, where they confirm 

that more similar movements are grouped into a cluster. Figure  6-9 illustrates that the 

movements of right toe-left finger at time interval 1 and 4 share more similarity in 

QTCB movement patterns than at other time intervals. This finding is true for both 

measurements, those either based on the frequency or the duration values of the mapped 

QTCB movement patterns.  

To calculate the overall similarity between two hyper-SESIs, an average similarity is 

taken into account. This approach means that an average is taken from all of the 

similarity measures that were obtained from the peer to peer comparison of all of the 

SESIs (i.e. right finger-right toe, right finger-left toe, right finger-left finger, right toe-

left toe, right toe-left finger, and left toe-left finger) at each time interval of movement. 

The results are shown in Figure  6-10, where the overall performance of the Samba 

dancer at time interval 1 is more similar to that at time interval 3 considering the 

frequency values, while the results of comparing duration-based SESIs confirms the 

higher similarity between time intervals 3 and 4. The result reveals that there are not as 

many differences between hyper-SESIs at different time intervals as expected. 

Figure  6-3b shows that this result is reasonable because the trajectories of the MPOs are 

almost the same. Note that the dance application is only one example of a wide range of 

applications that the proposed methodology can be applied to. In summary, the 

proposed methodology is appropriate for comparing interactions of MPOs based on the 

generated QTCB movement patterns between them.  
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Figure ‎6-9: Distance between the movements of the right toe-left finger at four time intervals 

of movement alongside the dendrograms that represent the agglomerative hierarchical 

clustering of movements. 

 

Figure ‎6-10: Distance between hyper-SESIs at four time intervals of movement alongside the 

dendrograms that represent the agglomerative hierarchical clustering of movements. 

Throughout the chapter, we have shown the possibilities of the proposed method for 

extracting knowledge from the hyper-SESIs obtained from the interactions of MPOs. 

For example, a complex movement of a pair of MPOs is visually distinguishable from a 

simple movement by comparing the SESIs that cover the same time interval. Apart 
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from a visual analysis, however, we could also measure the similarity between hyper-

SESIs. For example, a complex movement of a pair of MPOs is visually distinguishable 

from a simple movement of a pair of MPOs by comparing the SESIs that cover the 

same time interval. 

6.5 Discussion 

This chapter has addressed the usefulness of QTC information when employed in the 

following knowledge discovery tasks: (i) representation of movement patterns obtained 

from qualitatively interpreted interactions of multiple MPOs, (ii) similarity assessment 

of movement patterns using hyper-SESIs, and (iii) clustering of collective movement. 

The applicability of the method has been presented using a dance movement data set. 

Next, we will note some strengths and weaknesses of the presented approach. 

(a) In contrast to many research areas in knowledge discovery of moving objects that 

rely on comparisons of trajectories, this research has focused more attention to the 

interaction patterns of MPOs. 

(b) The presented approach, which is based on qualitative relations, enables us to 

investigate the movement behaviour of multiple MPOs. However, it is generally 

accepted that qualitative and quantitative formalisms can complement each other. This 

statement means that quantitative approaches can be applied as well to investigate the 

outputs of our approach. 

(c) From a representational point of view, distinguishing long movement patterns in the 

SESI is challenging because of resolution issues. Given that SESIs are fractal concepts, 

mapping long movement patterns requires high resolution cells obtained by iterating the 

SESI based on the length of the considered time interval. However, from a 

computational perspective, this concern is not necessarily problematic. 

(d) Usually, the required accuracy of the results of the analysis depends on the type of 

application at hand. Representing the movement interactions with a qualitative 

representation such as QTCB (our approach) significantly reduces the accuracy of the 

result. However, other types of QTC, such as QTC Double-Cross (QTCC), can 

incorporate more relevant information about the movement. In addition to the 

Euclidean distance considered in QTCB, in QTCC, directional information between two 

moving objects is included. Consequently, to visualise the QTCC movement patterns, a 
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new high resolution hyper-SESI is needed because each QTCC relation is represented 

by a four-tuple [for more explanation about QTCC, see (Van de Weghe et al., 2005)]. 

(e) The proposed approach can be applied in different domains where the analysis of 

the interactions between objects is important. For example, the interactions between 

football players during a game can be examined by using the proposed methodology. 

However, it is a complicated task for investigating the interactions between moving 

objects in a large data set of movements, such as migratory birds. 

(f) Delineating the visualised QTCB movement patterns on SESIs might be a difficult 

task, especially for infrequent and non-durable movement patterns. However, having 

prior knowledge of which movement patterns could occur during the interactions of 

MPOs based on the context of the application can greatly help in interpreting the 

results. 

6.6 Conclusions and Future Work 

In this chapter, we introduced a new methodology for similarity detection of movement 

behaviour of multiple MPOs. This method is based on QTC. In this study, the most 

fundamental type of QTC, namely, QTC Basic (QTCB), has been used. The usefulness 

and applicability of QTC to identify, visualise and analyse the movement behaviour of 

multiple MPOs has been demonstrated, starting from raw trajectory data to hyper-

SESIs. As a future extension of our approach, we intend to develop a SESI for other 

types of QTC. Furthermore, we intend to enrich the developed approach by 

incorporating descriptive statistical analyses. These will provide summaries about QTC 

movement patterns in different time intervals of movement, to have more insight into 

the movement data. In an applied setting, it is not possible to relate interactions of 

MPOs (i.e. QTC movement patterns) to trajectory pairs. However, in a more advanced 

implementation of the work, this weakness can be addressed. 
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Science never solves a problem without creating ten more. George Bernard Shaw 
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7 ALIGNMENT OF PATTERNS 
 

Abstract: Despite the abundance of methodological research concerning knowledge 

discovery from moving object databases, only a limited number of studies have 

examined the interaction between moving point objects in space over time. This chapter 

describes a novel approach for measuring the similarity among interactions between 

moving objects. The approach is based on a qualitative formalism that describes the 

relative motion of two disjoint moving point objects in terms of distance. The proposed 

approach consists of three steps. First, we transform movement data (i.e. geographical 

coordinates of moving objects) into sequences of successive qualitative relations based 

on Qualitative Trajectory Calculus (QTC). A sequence of qualitative relations 

represents the interaction between a pair of moving objects during a particular time 

interval. Second, sequence alignment methods are applied to measure the similarity 

between the movement sequences. Finally, the movement sequences are grouped based 

on similarity by means of an agglomerative hierarchical clustering method. We seek to 

investigate the extent to which the interaction of one pair of moving objects resembles 

the interaction of another pair. The applicability of this approach is tested using 

movement data from Samba dancers. 

7.1 Introduction 

Technological advances in tracking and navigation systems make it possible to capture, 

efficiently and cost-effectively, the trajectories of a wide range of moving objects, 

including human beings (Michael et al., 2006; Wang et al., 2003), animals (DeCesare et 

al., 2005; Gagliardo et al., 2007; Gau et al., 2004; Laube et al., 2005), and vehicles 

(Brakatsoulas et al., 2005; Hvidberg, 2006). With access to an unprecedented wealth of 

accurate motion data, researchers today can apply pattern discovery techniques to 

moving object databases and generate knowledge to inform many disciplines, including 

urban planning (van Shaick & van der Spek, 2008), event management (Versichele et 

al., 2012a; Versichele et al., 2012b), crisis management (Pan et al., 2007), traffic (Ong 

et al., 2011), and tourism (Orellana et al., 2012). In addition to their usefulness for 

processing large-scale movement data sets, data mining and knowledge discovery 

techniques can also be applied to small-scale movement data sources. For example, 

movement patterns, such as walking, running, jumping, lifting, striking and swimming, 
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can be investigated for various purposes. Investigating the movement of swimmers, for 

instance, helps coaches to analyse the performance of their swimmers (Guerra-Salcedo 

et al., 2005). Nonetheless, the specific techniques and methods chosen for extracting 

movement patterns from a data set depend on the context of the movement under 

examination. Among the wide range of research methodologies, similarity analysis has 

attracted considerable attention from many researchers. The similarity between two 

entities is measured as the cost of transforming one entity into another via a similarity 

measure (Faloutsos et al., 1997). In the context of movement, trajectories (i.e. 

representative paths that moving objects follow through space as a function of time) are 

typically considered to be the entities in similarity analyses of the dynamic behaviour of 

moving objects. Among the existing research that has applied similarity analysis to the 

study of moving object trajectories, most studies have focused on the spatial dimension 

(Chen et al., 2005; Lin & Su, 2005; Vlachos et al., 2002; Yanagisawa et al., 2003), 

whereas several studies have considered both spatial and temporal aspects (Buchin et 

al., 2009; Frentzos et al., 2007; Pelekis et al., 2007; Sinha & Mark, 2005; Van Kreveld 

& Luo, 2007). However, despite extensive research in this field (Giannotti & Pedreschi, 

2008; Miller & Han, 2009), certain aspects of moving object trajectories have received 

only scant attention to date.  

In this chapter, instead of presenting a spatial or spatio-temporal similarity analysis of 

trajectories, we propose a framework in which the similarity measure is used to 

quantify similarity when pairs of moving objects interact with one another. We believe 

that a focus on the similarity in the interactions among moving object pairs may reveal 

more information on object movement than a sole focus on object trajectories.  

To form the basis of the similarity analysis, a qualitative formalism appropriate for the 

representation of spatio-temporal human cognition is used to express the interactions 

between objects. To date, researchers have proposed several formalisms for the 

qualitative analysis of spatial and temporal phenomena. However, the existing work in 

this area has been limited to either spatial or temporal qualitative calculi (Allen, 1983; 

Frank, 1996; Freksa, 1992; Randell et al., 1992), with only a few studies presenting an 

integrated, spatio-temporal treatment of object movements. One notable example of an 

integrative approach is Qualitative Trajectory Calculus (QTC) (Van de Weghe, 2004). 

QTC reduces the complexity of interacting real-world continuously disjoint moving 

objects by representing the interaction in terms of qualitative relationships (Van de 
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Weghe et al., 2007). By converting relative motion attributes (i.e. distance) into 

symbolic representations, QTC transforms quantitative data on movement (positional 

information) into qualitative data (QTC relations), resulting in the simplified 

representation of trajectory pairs. The practicality and appropriateness of QTC for 

analysing the interaction of moving objects have been successfully demonstrated in 

various applications (Delafontaine et al., 2011a; Delafontaine et al., 2012a; 

Delafontaine et al., 2011b; Van de Weghe et al., 2005b).  

In this chapter, we cross-pollinate QTC with sequence alignment methods (SAMs) to 

identify similarities in the movement behaviour between pairs of interacting moving 

objects over time. Although SAMs have long been used in bioinformatics for the 

analysis of DNA strings (Morrison, 2010), it has only recently been applied to the field 

of movement analysis (2007a). In the current study, SAM is used to assess the 

similarity between movement sequences of QTC relations for three reasons. First, 

SAMs allow us to visually distinguish movement patterns from sequences and extract 

insightful information from them. Second, the comparison of movement patterns using 

SAMs results in a quantitative measure of similarity between movement patterns. 

Finally, the results of a similarity analysis are used to cluster movement data into 

groups that share similar properties. The usefulness of our approach will be 

demonstrated in an empirical case study in which SAM is used to examine the 

movement patterns of different parts of the body of Samba dance performers.  

The remainder of this chapter is organised as follows: Section  7.2 provides a brief 

review of the background and basis of QTC and SAM. Section  7.3 presents a 

description of the data set used in this chapter is given. Section  7.4 presents the 

methodology that is applied in this research. Section  7.5 discusses the concept, 

compares it with related approaches and identifies strengths and open problems. 

Finally, Section  7.5 presents our concluding remarks and outlines the directions for 

future work. 

7.2 Background 

7.2.1 The Qualitative Trajectory Calculus  

The qualitative Trajectory Calculus (in short QTC) was introduced by Van de Weghe 

(2004) as a qualitative calculus technique to represent and reason about moving objects. 

The technique expresses the spatio-temporal relationship between two disjoint moving 
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point objects (MPOS). Different types of QTC have been developed, namely QTCB 

(QTC-Basic) (Van de Weghe et al., 2006), QTCC (QTC Double-Cross) (Van de Weghe 

et al., 2005a), QTCN (QTC-Network) (Bogaert et al., 2007), and QTCS (QTC-Shape) 

(Van de Weghe et al., 2004). For simplicity, this chapter will focus only on the basic 

level of QTCB (see Section  2.5).  

QTCB provides a qualitative representation of the two-dimensional movement of a pair 

of MPOs (Figure  7-1). Binary relations between two MPOs are evaluated based on 

Euclidean distance (Van de Weghe, 2004). QTCB relations are constructed from the 

relationships A and B introduced in Section  2.5. Accordingly, the (A B)B relationship 

syntax is used to represent the relation between two MPOs. In total, there are 9 (3²) 

base relations for QTCB (Figure  7-1b). For example, the QTCB relation (+ +) indicates 

that the two objects are moving away from each other. 

                 

Figure ‎7-1: Two MPOs k and l and their trajectories used to form QTCB base relations. The 

frame of spatial reference is illustrated by the dashed line. (a), nine QTCB base relations (b) 

The trajectory of an MPO comprises a set of observations through space and time 

(Hornsby & Egenhofer, 2002). MPOs have been used to represent different objects in 

diverse research fields ranging from animal studies to fleet management. The 

interactions between two MPOs during a time interval of movement can be expressed 

in the form of a QTC movement sequence - a chronological sequence of consecutive 

transitions between QTC relations. Figure  7-2 illustrates the movement of a pair of 

MPOs (i.e. hands of a dancer) during a 10-second interval with its QTCB relations at 

each time stamp.  

(a) (b) 
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Figure ‎7-2: QTCB relations of the movement of two hands of a dancer 

7.2.2 Sequence Alignment Methods 

Sequence alignment methods (SAMs) have played an important role in many research 

fields. In the early 1980s, biochemists began to use sequence analysis to analyse DNA 

sequences (Shoval & Isaacson, 2007a). Later, social scientists, such as the sociologist 

Abbott (1995), have applied sequence alignment to the analyses of musicians’ careers. 

More recently, sequence alignment methods have been used in fields including 

transportation (Joh et al., 2002; Wilson, 2001; Wilson, 2008), cartography (Fabrikant et 

al., 2008), tourism (Shoval & Isaacson, 2007b), and crowd behaviour analysis 

(Delafontaine et al., 2012c), among others. 

Sequence alignment is the process of aligning two or more character sequences based 

on a set of conventional operations. Specifically, dynamic programming algorithms are 

used to equate sequences with the goal of maximising a similarity measure or 

minimising a distance measure between them (Wilson, 2008). Two of the most widely 

used SAMs are pairwise alignment and multiple alignment. Pairwise alignment is the 

comparison of two sequences, whereas multiple alignment is the comparison of more 

than two sequences. Pairwise alignment and multiple alignment both operate on the 

basis of two primary types of algorithms: (i) global alignment and (ii) local alignment. 

Global alignment forces the alignment to span the entire length of all sequences, 

whereas local alignments identifies regions of similarity in long sequences (for a 

detailed explanation, see e.g., (Rosenberg, 2009)).  

Pairwise alignment equates two sequences using four conventional operations: identity, 

substitution, insertion, and deletion. Based on the scope of the research, each operation 

is associated with a numbrt of cost/penalty that is defined a priori using a scoring 

matrix. To clarify the process, an example of a pairwise alignment of two sequences is 

presented in Figure  7-3. Specifically, the character strings ‘DANCE’ and ‘TANZ’ 

Left Hand

Right Hand

QTC
B
 Relations between 
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t
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t
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[ + - ] 3
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[ + - ] 5

[ + - ] 6
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[ 0 - ] 9
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(English and its German equivalent) are subjected to pairwise alignment, which reveals 

two identities, two substitutions and one insertion/deletion. The more operations 

required for the alignment of two sequences, the greater the distance (or the lower the 

similarity) between the sequences. A scoring matrix contains the entire set of pairwise 

substitution scores. In this scoring matrix, additive scoring is defined in which identify 

denotes the highest similarity and, as a result, the highest score in the scoring matrix. 

Typically, substitution has a lower score and insertion/deletion is associated with 

negative scores (i.e. penalties). Similar to pairwise alignment, a type of multiple 

pairwise alignment is known as progressive alignment (Wilson, 2006). 

 

Figure ‎7-3: Pairwise alignment of two words dance and tanz in English and German, 

respectively 

In Section  7.4, we describe how SAMs can be used to align QTC movement sequences 

derived from the way in which dancers move different parts of their bodies and cluster 

these sequences based on similarity. Samba dance is intentionally chosen in light of the 

rhythmicality of movement patterns in Samba and similarity assessment problems using 

SAMs.  

In addition to the visual analysis of aligned QTC movement sequences, we also present 

an objective assessment regarding how well dancers (i.e. students in this case study) 

follow the instructions given by an instructor. In other words, our goal was to identify 

the aspects of students’ performances in which movement patterns of the dancers 

matched or deviated from the instructor’s movements. Samba dance is a rhythmical 

dance based on many set movements. Characterising the conformity of Samba dance 

movements is highly meaningful given that Samba is a dance that involves a group of 

dancers rather than a single one.  

Synchronicity in performance is the factor that most effectively draws people’s 

attention. Not only is synchronicity important to dancing, it may be used as a 

qualification measure for other types of movements such as synchronised swimming, 

i.e. a hybrid form of swimming, dance and gymnastics, which consists of swimmers 

http://en.wikipedia.org/wiki/Swimming_(sport)
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performing a synchronised routine of complicated moves in the water, accompanied by 

music. 

7.3 Data 

The raw data used in this study come from the movements of three Samba dancers (a 

teacher, student 1, and student 2) during a given time interval. The movements of the 

dancers’ heads, torsos, right and left hands, and right and left feet at each time stamp of 

a considered time interval of 3.64 s (temporal granularity of 0.04 s) were recorded from 

real dancers using the MoCap (MotionCapture) system owned by the Department of 

Musicology at Ghent University. MoCap is a movement retrieval technique that records 

the position of objects over time by means of reflective markers attached to these 

objects in combination with infrared cameras. It is used in a wide range of research 

fields. For example, MoCap has been used in sport sciences to capture the movement of 

athletes as part of rehabilitation, physical education and practice (Brodie et al., 2008; 

Mirabella et al., 2011). In the medical sciences, physiotherapists, orthopaedists and 

neurologists may examine MoCap measurements of human gaits in conjunction with 

biomechanical modelling to evaluate a patient’s status and develop plans for treatment 

and rehabilitation (Colombo et al., 2013). Our data set is in the following format: t (i.e. 

the time stamp of movement), x, y, and z (i.e. the local positional information in a three-

dimensional space) of each captured body part. The recorded positions of the markers 

were transformed into coordinates using the torso of a dancer’s body as origin. 

Figure  7-4 depicts the configuration of the MoCap system, consisting of 14 infrared 

cameras, used to capture the Samba dance movements of the teacher and students 

performing basic Samba movements. Across 92 time units, many repetitive movements 

were observed from the performances of the teacher and the two students.  

 

Figure ‎7-4: The MoCap system at the Institute for Psychoacoustics and Electronic Music 

(IPEM), Department of Musicology at Ghent University, where the data were captured 
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7.4 Methodology 

The existing measures of trajectory similarity can be classified into two major 

categories (Dodge, 2011): (i) spatial similarity measures that concentrate on the 

geometric shape of the trajectories; and (ii) spatio-temporal similarity measures that 

consider both the spatial and temporal dimensions of the trajectories. In contrast to 

existing methods of classification, in this study, we measure the similarity of 

interactions between pairs of MPO. In other words, instead of comparing individual 

trajectories, we compare pairs of trajectories for similarity. We follow three major steps 

(Figure  7-5). First, raw trajectories of interacting MPOs from location-aware 

technologies are converted into qualitative relations (QTCB). Second, sequences of the 

qualitative relationships are aligned for the interpretation of the movement patterns of 

MPOs. Finally, the results of the alignment are used to identify hierarchical clusters of 

qualitatively distinct sequences. Each step is discussed in depth below. To show the 

applicability of the proposed methodology, we explain and test the approach on real 

movement data from three Samba dancers.  

 

Figure ‎7-5: Process overview 

7.4.1 Step 1: Converting Raw Trajectories into Qualitative Relations  

In the first step, the relationships between different parts of the body of the three Samba 

dancers are described in terms of QTCB relations. Figure  7-6 presents the movement of 

the dancers’ heads, torsos, right and left hands, and right and left feet in a given time 

interval from both the front view and the side view (45º). The trajectories of the 

teacher’s body parts to those of the students reveal several minor differences. For 

example, from the front views displayed in Figure  7-6, we can observe that the space 

used by students to move their hands was quite different compared to that of their 

teacher. Next, for simplicity, QTCB relations were transcoded into single-character 

sequences. The corresponding character code for each base relation in QTCB is 

presented in Figure  7-1b (below each representation).   
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Figure ‎7-6: Derived trajectories of the movements of different parts of the body of Samba 

dancers using the MoCap system 

Figure  7-7 presents the entire set of transcoded sequences of QTCB relations between 

the different limbs of the teacher (i.e.  𝑛(𝑛 − 1)/2 with 𝑛 the number of body parts) in 

a movement lasting 3.64 s (temporal granularity of 0.04 s).  

 

Figure ‎7-7: All QTCB movement sequences of the teacher during 3.64 s of movement 

As stated earlier, Samba dance is a dance with numerous periodic movement patterns, 

which can be discovered via an analysis of the QTC movement sequences of dancers. 

One way to visually recognise the periodicity in movement sequences is mapping 

sequences to dot plots. From a dot plot, certain sequence features (such as ‘repeats’) can 

be visually identified (Mount, 2007). Dot plots are constructed using two sequences- 

one written along the top row and the second written along the leftmost column of a 

Index Relation

1 Head - Root

2 Head - Left Hand

3 Head - Right Hand

4 Head - Left foot

5 Head - Right Foot

6 Root - Left Hand

7 Root - Right Hand

8 Root - Left Foot

9 Root - Right Foot

10 Left Hand - Right Hand

11 Left Hand - Left Foot

12 Left Hand - Right Foot

13 Right Hand - Left Foot

14 Right Hand - Right Foot

15 Left Foot - Right Foot

1: F F F F EDD EF EEF F F EDD E F F F F F F F F F F EEF F F EE F F F EDDDDDD EF F EDDDD E EDD EF F EDDDDDDDD E F EDDDDD EDD EF F F EDDDDDD

2 : ABCCCAA AAA DGGGGH I I I I I FB ADA AAA AAAA DHHGHHGH I I I I I I I FCAA AAA ADGGGGGH I I I I I I I I FCBA AAA AADGGGGH I I I I I

3 : HGGGH I I I I I HGHCCB AAAA AADGGGH I I I I I I I HA CBCCBA AAADGGGH I I I I I I I HHCCCBAA AAA DGGGH I I I I I I I I CCCCCB AAAA

4 : I I F F I HDAAA BAA D E I I I C F I I I I I I H EA AADGA EDAA EDBC F I F F I I H EAA AADGA EDAADH EB F I F F I I I EAA AADGC F EBB E I I I F I E

5: DAADH I F I I I I I I I I HGDAA AADDAA EF I CC F FB E I I I EAAA DGGA AAA A EHB E I F EH I I I EAAA DGDAAA A E EHB F FC EH I I I I EA AAAA

6 : BB EB BBB BBB EHHHHHHHHH EBB EHHBBB BBBB EHHHHHHHHHBB EHHHHBB BBB B E EHHHHHHHHH EHHHHHBB BBB BB EHHHHHHHHHH

7: EEHHHHHHHHHHH EBB BBBB BB EEHHHHHHHHHHHHHBB BBB BBB EHHHHHHHH EEHHHH EB BBB BBB EHHHHHHHHHHHHHHB BBB BBBB

8 : H EB EHH EBBB BBB EEHHHHHHHHHBB EHHH EBB B E EB E EHHHHHHHH EB EHHH EB BB EEE EHHHHHHHHHB B EHHHBB BB EEBB EHHHHHH

9 : EBB EHHHHHHHHHB EHH EBB BB EEBB EHHHB EEEHHH EHH EB BBBB BBB EHHHHH EEHHB EHHH EBBB EEB EEHHHHH EEHHB EHH EBBBB

10 : H I I I I I I I I I HGDAAA AAAA AADH I I I I I I I I I HDA AAA AAA AAADG I I I I I I I I I HDAAAA AAA AAA DGH I I I I I I I I HDAAA AAA AAAA

11: I H FC F I I I FCBDGGGGGAAA CC FHGDC F I I I I FBDGGGGDAA CCCC EGGC F I I I FCBDGGGDAAA ACB BDGGC F I I I FCBDGGGGGA AAAA

12 : FCCC F I I I I I HDA DGGGDAA DGDBCCC F I I I I I HGDADGGDA ADGDAACC F I I I I I I HDADDADA ADGDAB CC F I I I I I I HDADGDA AAAD

13 : HGGDAAA DGGGDB CC F I I I I I I HHGGGDA AADGG ECCCC F I I I I I HGGGDAA AADGG ECCC F I I I I I I HGGGDAA AADGG ECCCC F I I I I I

14 : DGGDAAA AAA DGGH FCC F I I I I HGGGDAA AAAA ADGG FCC F I I I I HGGGDAA AACCBDGG FC I F F I I I HGGGDAA AAA BADGG FC F I I I I I

15: DAAD E I E I I I I I I I H EDDAA AADDAA D E I BC F F F EH I I HGDA AAAA AAA A E I I F I F FHH I I EAD EBAA DDA A E I I I I I F F I I I I EBA AAAA
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two-dimensional matrix. In a dot plot, each dot represents a point at which there is a 

match between the characters in the corresponding columns. Thus, it is possible to 

identify a certain number of matches in a sequence in a search window defined a priori. 

Repetitiveness in a single sequence can be assessed by plotting a sequence against itself 

in a dot plot and sections that share similarities become visible in the form of lines off 

the main diagonal. Figure  7-8 comprises dot plots of the QTCB movement sequences 

for three pairs of body parts (i.e. left hand-right hand, left foot-right foot, and right 

hand- left foot) for the teacher, student 1, and student 2. To derive the plots, we run a 

window spanning 10 characters along movement sequences in which 8 characters are 

matched. Many repetitive sequences of relative movements can be observed in the dot 

plots of left hand-right hand for all three Samba dancers, whereas almost no repetition 

is observed in the QTCB relations of left foot-right foot with a window of the same size. 

This pattern suggests that dancers focused more on the movement of their hands and 

less on the movement of their feet. In other words, regularity is more visible in the 

movement of hands than of feet. The neat straight lines in the left hand-right hand dot 

plot for the teacher indicate that regular and perfect repetitions of the teacher’s 

movements over time. The lines in the dot plots for students 1 and 2 show various 

deviations and are not as straight as those of the teacher. These deviations are caused by 

lag and lead times in the repetition of the same movements by students. Based on these 

plots, we can roughly infer that the movements of student 1 and 2 are not as regular as 

the movements of the teacher. Next, we will further examine this irregularity in the 

students’ movement via sequence alignment and attempt to identify them automatically.  

Additional information can be retrieved from the histograms of QTCB movement 

sequences (Figure  7-9). For instance, the histogram representing left hand-right hand 

relations in the dancers shows that the QTCB relations (− +) (i.e. character A) and 

(+ −) (i.e. character I) occur more frequently than other QTCB relations (Figure  7-9). 

This is due to the nature of Samba dance, in which one hand follows the other hand 

most of the time. The histogram presenting left foot-right foot relations in the dancers 

reveals the low frequency of QTCB relation (− −) (i.e. character G). This is because 

the dancers’ feet rarely moved towards/away from one another other during the 

particular dance fragment. However, it is possible for this pattern to be observed  more 

frequently in other types of rhythmic movements. The patterns observed in the 

histograms of movement sequences may change from one type of dance to another. For 

example, there are varieties of dances in which the hands move towards/away from 

http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
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each other most of the time. In these cases, the QTCB relations (− −) and (+ +) would 

create peaks in the corresponding histogram of movement sequences. 

 

Figure ‎7-8: Dot plots of QTCB movement sequences of left hand-right hand, left foot-right 

foot, and right hand-left foot for three Samba dancers 

 

Figure ‎7-9: Histograms of QTCB relations 

7.4.2 Step 2: Aligning QTC Movement Sequences 

In the second step, we align the QTC movement sequences of different body parts of 

the dancers. Using SAMs, we determine the degree of similarity between the 

movements of dancers during their performance. Finally, we cluster QTC movement 

sequences based on similarity and evaluate the overall performance of each dancer.  
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The main challenge is to optimally align the QTC movement sequences of the students 

with the movement sequences of the teacher. SAM is applied to identify the parts of the 

students’ performance that matched or mismatched the performance of the teacher. 

When the difference between the aligned QTC movement sequences of the teacher and 

the student is sufficiently small, we can conclude that the student has performed her/his 

movement very well on the basis of the teacher’s movements as the choreographic 

benchmark. Clearly, not all movements of the student’s body comply with the 

benchmark. To visualise and analyse the (dis)similarity between the body movement of 

the students with respect to that of the teacher, we examine a time interval of 3.64 s of 

their performances. We deliberate keep the time interval short to make it easier to 

recognise (dis)similarity in the movement sequences and study the basic movements of 

dancers.  

As mentioned earlier, the alignment of two sequences is based on minimising the 

distance between them (using a pre-defined scoring matrix). Running SAM on two 

sequences yields two measures: (i) the distance (or similarity) between two sequences 

and (ii) the best possible alignment of the two sequences, which is the alignment that 

minimises the overall distance between the two sequences. 

A scoring matrix is developed based on the conceptual distance of QTCB relations. The 

conceptual distance is defined as a measure of closeness of two QTCB relations by 

counting the number of changes in the symbols of the QTCB representation (A B)B 

(Van de Weghe & De Maeyer, 2005). The smallest conceptual distance is zero (i.e. the 

distance between a QTCB relation and itself). The conceptual distance between ‘0’ and 

‘+’ or ‘’ is one. The conceptual distance between ‘’ and ‘+’ equals two (one for ‘’ to 

‘0’ and one for ‘0’ to ‘+’) because direct transition is impossible (Galton, 2001). The 

overall conceptual distances between two QTCB relations can then be calculated by 

summing up the conceptual distance over both relation symbols and multiplying by 2.5 

to rescale it to the interval [0 10]. Therefore, a similarity score between two QTCB 

relations can be calculated as (10  2.5 ∗ conceptual distance). Table  7-1 presents the 

resultant QTCB scoring matrix. An exact character match is assigned a similarity score 

of 10 (maximal similarity) and a mismatch is given a similarity score of 0 (maximum 

conceptual distance). For example, the conceptual distance between the two QTCB 

relations ( +) (i.e. character A) and ( 0) (i.e. character D) is equal to one. For every 
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conceptual distance unit, the similarity score decreases by 2.5 units from the maximal 

similarity score of 10. Therefore, the similarity score between A and D is equal to 7.5.  

Two parameters that need to be set in the process of sequence alignment are gap 

opening and gap extension. In this study, insertion/deletion penalties for gap opening 

and for gap extensions are,  5 and  3, respectively. In SAMs, dynamic programming 

algorithms are used in the search for optimal alignment to either maximise a similarity 

measure or minimise a distance measure based on the predefined scoring matrix 

(Wilson, 2008).  

Each dancer has 15 possible QTCB movement sequences representing 15 interacting 

pairs of body parts. Because the dancer’s torso is used as a reference point for the 

movement of other body parts, movement sequences involving torso (i.e. root) are not 

considered in the alignment process. Using the specified similarity scores and penalties 

(Table  7-1), a multiple alignment of QTCB movement sequences is generated with the 

ClustalTXY software package (Wilson, 2008) based on the progressive alignment 

procedure. At a given time, three corresponding QTCB movement sequences (i.e. of the 

teacher and the two students) are aligned followed by a multiple alignment using a 

global alignment (Needleman & Wunsch, 1970).  

Table ‎7-1: Sequence alignment scoring matrix for QTCB relations 

QTC
B
 Relations Code

(− +)

(0 +)

(− −)

(+ −)

(0 −)

(+ +)

(+ 0)

(0 0)

(− 0)

A

 B

G

I

 H

C

F

 E

D

Similarity Matrix A B C D E F G H I

A 10 7.5 5 7.5 5 2.5 5 2.5 0

B 7.5 10 7.5 5 7.5 5 2.5 5 2.5

C 5 7.5 10 2.5 5 7.5 0 2.5 5

D 7.5 5 2.5 10 7.5 5 7.5 5 2.5

E 5 7.5 5 7.5 10 7.5 5 7.5 5

F 2.5 5 7.5 5 7.5 10 2.5 5 7.5

G 5 2.5 0 7.5 5 2.5 10 7.5 5

H 2.5 5 2.5 5 7.5 5 7.5 10 7.5

I 0 2.5 5 2.5 5 7.5 5 7.5 10

 

Figure  7-10 presents the results of the alignment of QTCB movement sequences. For 

clarity, the characters (i.e. transcoded QTCB relations) have been colour-coded. The 

line above the aligned sequences is used to mark strongly conserved positions. Four 

characters to indicate the degree of matches: '#' indicates positions that are 80%-100% 

identical, '*' indicates positions that are 60% -80% identical, ':' indicates positions that 

are 40% -60% identical, '.' indicates positions that are 20% -40% identical. The curve 

below the movement sequences represents the rate of changes in the match and 

mismatch of characters at each time stamp of movement after sequence alignment. Less 
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fluctuation in curves with highly matched characters at each time stamp indicates more 

similarity between movement sequences. The results show (the lack of) regularity in 

dance movement patterns. For instance, the sequences representing the left hand-right 

hand relations exhibit periodicities in the dancers’ movements. This pattern can be 

observed from the succession of colours and attributed to the way in which dancers paid 

more attention to the movement of hands than to other parts of the body. Moreover, the 

relative movements of head and hands show more regularity than the relative 

movements of head and feet, suggesting that dancers were more successful in adjusting 

the movement of the upper part of their body relative to the lower part. From the 

sequences of left foot-right foot relations, it can be observed that the rate of changes in 

movement patterns is rather high compared to those of the hands. 
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Figure ‎7-10: Multiple alignment of QTCB movement sequences of dancers’ body movements 

Using sequence alignment, repetitive movement patterns for each dancer can be 

individually assessed as smaller units of the entire performance. For this purpose, the 

rhythm in the music is used to mark the starting and ending points of the repetitive 

movement patterns. In our case, the entire performance lasts 91 time units and consists 

of 3 complete repetitive patterns that each lasts 22 time units. Aligning these repetitive 

movements allows us to examine the degree of similarity between the performances of 

dancers across successive beats. Figure  7-11 presents the results of aligning the 

movement sequences for each pair of body parts in relation to musical beat.   
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 Figure  7-11: Multiple alignment of QTCB movement sequences based on the beats of 

the music 

In addition to visually characterising the similarities/differences in movement patterns 

of dancers based on the rhythm of the music (i.e. TB1, TB2, TB3, S1B1, S1B2, S1B3, S2B1, 
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S2B2, and S2B3)
2
, we further present a numerical measure based on alignment scores and 

represented in the form of hierarchical clusters of movement sequences.  

7.4.3 Step 3: Hierarchical Clustering of Movement Sequences 

Clustering enables the detection of objects that share similar properties. Clustering is 

typically application dependent. In this study, we attempt to cluster the dancers’ 

movements based on the relative motions of various body parts. We use a hierarchical 

clustering method to build a hierarchy of clusters (i.e. the movement sequences of the 

teacher and the students). Based on the multiple alignment of QTCB movement 

sequences shown in Figures 7-10 and 7-11, (dis)similarity matrices are constructed to 

cluster the sequences. The results of clustering are represented in the form of 

dendrograms in Figure  7-12. A dendrogram supports the determination of a typology of 

different movement behaviour of dancers. The results of applying SAM on real dance 

data suggest that certain movements were harder to follow by the students than other 

movements. Figure  7-12 shows the agglomerative hierarchical clustering in the form of 

dendrograms for the sequences as presented in Figure  7-11.  

The height of the branch points shows the extent to which clusters differ from one 

another: the greater the height, the greater the difference. The value 0 represents the 

minimum distance after aligning the movement sequences, whereas 1 represents the 

maximum distance. As shown in the dendrograms, distances vary from one pair of body 

parts to another. In Figure  7-12, for example, the relative motion of the teacher’s hands 

did not differ significantly from that of the students, as demonstrated by the relatively 

short distance in the left hand-right hand dendrogram. In contrast, the head-left foot 

dendrogram shows a significant difference between the last two beats of the teacher and 

the other beats. Based on this method of alignment and clustering, we observe that the 

performance of student 1 is better than that of student 2. Furthermore, this method 

allows us to identify the pairs of student body parts that more closely resembled those 

of the teacher. These results can assist instructors in recognising the strengths and 

weaknesses in their students’ performance in the process of learning dance. 

 

 

                                              
2
 Teacher beat 1 (TB1), Teacher beat 2 (TB2), Teacher beat 3 (TB3), Student 1 beat 1 (S1B1), Student 1 beat 2 (S1B2), 

Student 1 beat 3 (S1B3), Student 2 beat 1 (S2B1), Student 2 beat 2 (S2B2), and Student 2 beat 3 (S2B3). 

http://en.wikipedia.org/wiki/Hierarchy
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Left Hand-Right Hand 

 

Left Hand-Left Foot 

 

Left Hand-Right Foot 

 

Head-Left Hand 

 
Head-Right Hand 

 

Head-Left Foot 

 

Head-Right Foot 

 

Right Hand-Left Foot 

 
Right Hand-Right Foot 

 

Left Foot-Right Foot 

 

Figure ‎7-12: Dendrograms based on the results of alignment in Figure ‎7-11 

7.5  Discussion 

Much progress has been made regarding the theories, methodologies, and applications 

for analysing, modelling, and interpreting movement data. Researchers have focused on 

different aspects in this area, including analysing the sequential aspects within the 

spatial and temporal dimensions of movement data (e.g., (Delafontaine et al., 2012b; 

Dodge et al., 2012; Shoval & Isaacson, 2007a; Yuan & Raubal, 2014)). For example, in 

(Dodge et al., 2012), key parameters that characterise the movement of objects, the so-

called movement parameters (MPs) such as speed, acceleration, or direction and 

derived from the trajectories of objects were taken into account for finding similar 

trajectories. They compared sequences of class labels as symbolic representation of 

MPs for the similarity measure. In this section, we compare our approach in this chapter 
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with respect to two well-known techniques, namely RElative MOtion (REMO) and 

Dynamic Time Warping (DTW).  

As a key contribution of this chapter, we addressed the applicability of the SAM 

approach to analyse movements of MPOs. The method is comparable to, for example, 

REMO and DTW. REMO is an approach that describes motion patterns by changes in 

the motion attributes of objects such as the speed and motion azimuth of individual 

MPOs over time (Laube et al., 2005). The comparison of motion attributes is performed 

using a two-dimensional matrix in which the horizontal dimension represents 

successive points in time and the vertical dimension represents different objects. The 

entries of the matrix correspond to motion attribute values. Consequently, the motion 

patterns of a group of MPOs are reflected in a single REMO matrix. The DTW is an 

algorithm for measuring the similarity between two time series that may vary in time or 

speed (Müller, 2007). Unlike traditional distance measures such as Euclidean distance, 

DTW can calculate the similarity between two time series that may feature some noise 

and displacements. We have comprehensively compared REMO with DTW and 

featured some of the advantages and drawbacks of both techniques with respect to the 

same case study in the next chapter.  

Although the concept of REMO, DTW and SAM are uncomplicated and applicable to 

many research domains, the understanding of these techniques requires some expert 

knowledge. Throughout this chapter, we had this idea to highlight the usefulness of 

qualitative information in the analysis and reasoning movement data. QTC information 

built based on changing Euclidean distances between two MPOs was cross-pollinated 

with SAM. This point of view has not been considered in the next chapter. 

Unlike DTW, both REMO and SAM can reveal interesting information about motion 

events retrieved from the interrelation among multiple MPOs. With this difference that 

QTC considers the relative motion of one object with respect to another object (i.e. 

relative movements) and REMO allow the identification and quantification of 

individual motion behaviour, events of distinct group motion behaviour, so as to relate 

the motion of individuals to groups (Laube et al., 2005). In the DTW approach, we may 

not investigate movements of multiple objects simultaneously and find such interesting 

patterns. 
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The superiority of SAM and DTW over the REMO approach is that REMO is very 

sensitive to noises, shifts, and distortions in movement data. Thus, drawing analogy 

between REMO matrices based on such data is challenging. SAM and DTW overcome 

this limitation and give intuitive distance measurements between time series by 

handling both global and local shifting of the time dimension. Another advantage of 

DTW and SAM is the ability to handle time series with different lengths, while this is 

quite challenging with REMO approach.  

From the visual analysis point of view, REMO and SAM support more human’s 

intuition in order to interpret the visual results. Therefore, the high dependency on 

expert knowledge can be counted as a weakness of DTW approach.  

7.6 Conclusions and Future Work 

To analyse the similarity in the movements of moving objects, we proposed an 

innovative approach in which the sequence alignment method (SAM) was used to align 

and assess qualitative movement sequences. The proposed methodology can be applied 

to any domain in which an understanding of object movement patterns is important.  

In this chapter, the movements of three Samba dancers were analysed to measure the 

degree of (dis)similarity between the dancers’ movements. Characterising 

similarity/dissimilarity contributes to a better understanding of how dancers move. 

QTC information was used to form QTC movement sequences. The results of a 

similarity assessment of QTC movement sequences were presented in the form of 

dendrograms, in which similar movement sequences were grouped in the same clusters. 

In other words, our strategy clustered the movement of moving objects based on  their 

movement patterns. Contrary to most existing work that uses very detailed data for 

movement analysis, we were able to achieve our goals based on a summary of the 

movement data (i.e. QTC information describing the qualitative vision of the relative 

movement of MPOs). Thus, this work did not involve any of the existing geometry-

based similarity analyses.  

We showed that the detected and analysed patterns formed based on the discretised and 

qualitative movement data were informative and useful. A comprehensive study can 

reveal the compromised levels of discretisation and qualitativness of data without 

losing much valuable information. 
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Extra information, e.g. directional information can also be considered to identify 

motion patterns using other types of QTC, e.g.  QTC Double-Cross (QTCC). QTCC 

provides more detail than QTCB but increases the problem complexity. 

The examples presented in this chapter were based on a relatively short time interval. In 

future work, we intend to apply the approach to larger trajectory data sets. Another 

avenue for future work will be developing a prototype that allows instructors to assess 

the movement of dancers interactively. We hope to report on these extensions in the 

near future. 
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8 RELATIVE MOTION & DYNAMIC TIME WARPING 
 

Abstract: Recent advances in location-aware technologies have led to the exploitation 

of geospatial methods to uncover valuable information from large movement data sets. 

The focus of this chapter is on choreographic information. In particular, the goal is to 

visualise and analyse the motion patterns of Samba dancers during their performance by 

means of two complementary methods. The first method performs map algebra with 

RElative MOtion (REMO) matrices to study the evolution of motion attributes, such as 

speed, motion azimuth, and vertical angle over time. The second method applies 

dynamic time warping (DTW) to time series of motion attributes. The results 

demonstrate that both methods are useful in numerically comparing the performance of 

Samba dancers and visually exploring the motion patterns of different body parts. 

8.1 Introduction 

Motion is the change in position of objects, such as vehicles, animals, hurricanes or oil 

spills, with respect to time. Recent technological progress in location-aware 

technologies, including Bluetooth sensors, RFID
3
, and GPS

4
, have made it possible to 

track changes in the positions of such objects and gather enormous amounts of 

movement data, often as a series of discrete observations of moving objects represented 

as tuples of x, y, z coordinates and time t. This enormous amount of positional data has 

led researchers from different disciplines to develop new ways to explore movement 

data. Particular attention has been directed towards analysing human movement. For 

example, Sigal et al. (2010) developed a hardware system to capture synchronised 

video and ground-truth 3D motion. Chaudhry et al. (2009) presented an activity 

recognition method that classifies the human activities in video sequences. Nagashima et al. 

(2012) demonstrated a method for analysing the principal components of human motion 

in time series and estimating the functional mode of the human motion. Yuan and 

Raubal (2012) developed a technique for analysing dynamic mobility patterns of 

mobile phone datasets using Dynamic Time Warping (DTW). Observations of human 

motion may be related to individual or collective motion behaviour (Andrienko et al., 

2008a), and human motion has been studied in various research domains, such as social 

                                              
3
 Radio Frequency Identification 

4
 Global Positioning System 

http://en.wikipedia.org/wiki/Position_(vector)
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sciences, geomarketing, transportation, political sciences, biomedical analysis, and 

sports and recreation.    

Due to the large amount of movement data that is becoming available through mobile 

sensors, data mining methods are necessary to uncover useful, hidden information that 

can be used for different purposes. In this study, we aim at understanding the motion 

patterns of moving point objects (MPOs) through similarity analysis. Because motion 

patterns are clearly visible in many rhythmic dances, we used some basic movements of 

Samba as a case study to investigate two approaches to measure similarity in motion 

patterns, namely RElative MOtion (REMO) and Dynamic Time Warping (DTW).  

The concept of REMO was introduced in (Laube & Imfeld, 2002; Laube et al., 2005). 

In short, REMO takes different motion attributes such as the speed and motion azimuth 

of individual MPOs into account to be compared over space and time. This comparison 

is performed using a two-dimensional matrix in which the horizontal dimension 

represents successive points in time and the vertical dimension represents different 

objects. The entries of the matrix correspond to motion attribute values. Consequently, 

the motion patterns of a group of MPOs are reflected in a single REMO matrix. 

Dynamic Time Warping (DTW), on the other hand, is an algorithm for measuring the 

similarity between two sequences that may vary in time or speed.  

This chapter will apply and refine both methods using dance data. In the next section, 

we briefly provide a background of the basic concepts of REMO and DTW. In 

Section  8.3, we apply both approaches to evaluate the performance of novice Samba 

dancers with respect to that of their teacher. In Section 8-4, we discuss our findings. 

Finally, the conclusions of this study and suggestions for future work are presented in 

Section  8.5. 

8.2 Background 

8.2.1 RElative MOtion (REMO) 

Our research seeks to contribute to the exploration of the motion patterns of multiple 

objects. One relevant concept in this respect is REMO (Laube & Imfeld, 2002; Laube et 

al., 2005), a method that describes motion patterns by changes in the motion attributes 

of objects (e.g., change in speed or motion azimuth over time). The REMO 

representation transforms trajectories of MPOs into a matrix that allows for the 

matching of motion patterns (Laube et al., 2005). In this matrix, a row represents the 
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motion attribute values of an object over time and a column represents time stamps of 

the movement. Figure  8-1 shows an example of a REMO matrix based on a part of the 

Samba dance dataset used throughout this chapter. Here, the movements of five body 

parts of a dancer over a time interval lasting 13 * 0.04 s form a REMO matrix in which 

the values of the cells represent the speed of each body part at each time stamp.   

According to Laube & Imfeld (2002), the purpose of forming matrices of motion 

attributes (i.e. REMO matrices) is to recognise interrelations between the motion of 

groups of point objects. There are various types of motion patterns that can be detected 

in REMO matrices, such as those that occur over time, across objects, and the 

combination of both (for further details, see (Laube & Imfeld, 2002)). To better 

understand the aforementioned motion patterns, we have highlighted some of them in 

Figure  8-1. For example, the left toe of the Samba dancer was moving with a constant 

speed of 0.7 m/s over the interval t7 to t9, demonstrating constancy. In contrast, there is 

a motion pattern across all body parts of the dancer revealing that they had an identical 

speed at t11.  

 

Figure ‎8-1: REMO matrix based on the movements of five body parts of a Samba dancer over 

a given time interval 

In this chapter, the REMO matrices of an object's motion are considered to be the basis 

for all further analyses. Instead of categorising motion attributes into discrete classes, as 

the originally conceived in REMO (Laube & Imfeld, 2002), the original values of 

motion attributes are retained. A REMO matrix thus represents the performance of a 

dancer over a time interval of movement using a set number of descriptive attributes for 

each time stamp.  
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8.2.2 Dynamic Time Warping (DTW) 

A traditional comparison of two time series reveals whether the two time series are 

similar (Das et al., 1997; Morse & Patel, 2007). Generally, a traditional distance 

measure such as Euclidean distance can be used to quantify the difference between two 

time series. However, this measure is not the best choice for comparing time series that 

may feature some noise and displacements. To overcome this problem, many 

algorithms have been proposed to measure the similarity between two time series, 

among which Dynamic Time Warping (DTW) has attracted the attention of many 

researchers from different disciplines, including speech recognition (Sakoe & Chiba, 

1978), pattern recognition (Oveneke et al., 2012; Yuan & Raubal, 2012), handwriting 

recognition (Qiao & Yasuhara, 2006), and music retrieval (Lijffijt et al., 2010). DTW 

can calculate the similarity between two time series based on finding an optimal match 

between them even if they are not identical in size. An illustrative example is when 

speech recognition tries to compare two recordings of the same phrase and one person 

talks slower than the other or uses varying pauses between words.  

One of the common challenges in analysing dance is a lack of clear synchronisation 

between dancers’ movements over a specific time interval. The main advantage of 

DTW is that one can obtain a robust measurement from the comparison of two time 

series even if they are partially out of sync.  

 

(a)                                                            (b) 

Figure ‎8-2: DTW cost matrix of the right finger time series of teacher and student 1 (a), and the 

corresponding trajectories (b) 
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Figure  8-2 illustrates the procedure of calculating the DTW distance between two given 

time series of a Samba dance teacher and one of his students, student 1, following 

Salvador and Chan (2007). Consider two time series A and B of length 22:  

1 2 22

1 2 22

[ , ,..., ,..., ]

[ , ,..., ,..., ]

i

j

A a a a a

B b b b b




 

To determine the DTW distance, the time series are warped non-linearly in the time 

dimension. A warp path W is denoted as follows:  

1 2[ , ,..., ]KW w w w , with max(| |,| |)  | | | |K AA B B   , 

where K is the length of the warp path, the k
th

 element of the warp path is ( , )k k kw i j , 

ki  is an index of time series A, and 
kj  is an index of time series B. The warp path starts 

at the bottom-left corner of Figure  8-2a (i.e. 1 1 1( , )w  ) and finishes at the top-right 

corner of the matrix (i.e. 22 22( , )Kw  ). There is also a constraint on the warp path that 

forces 
ki  and 

kj  to be increasing in the warp path as indicated below. 

1 1 1( , ), ( , )k k k k k kw i j w i j    , with 
1 11, 1k k k k kk i i j j ji        , 

The optimal warp path is the minimum distance warp path (MDWP). The distance of a 

warp path is calculated based on the following equation: 

 
1

( , ) ( , )
k k

K

i j

k

Dist A B d a b


  , Eq. 8-1 

where ( , )
k ki jd a b is the distance between two entities of the time series A and B. In this 

study, three motion attributes, namely, speed, motion azimuth, and vertical angle, form 

time series for each individual body part. For those time series with speed values, 

( , )i jd a b in the DTW procedure is calculated based on the Euclidean distance. Because 

motion azimuth and vertical angle are both angular data, the following equation is used 

to calculate the distance to overcome the circularity problem in the angular data (for a 

detailed explanation, see (Fisher, 1995)): 

 ( , ) 1-cos( - ) / 2i j i jd a b a b , Eq. 8-2 

Dynamic programming is employed to find the MDWP from the beginning to the  

(i, j)
th

 cell. To find the minimum distance warp, every cell should be filled in the cost 

matrix. There is a constraint to find the MDWP: the warp path should either increase by 
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one or remain the same along the i and j axes. Therefore, the value of each cell in the 

cost matrix is as follows (for a detailed explanation, see (Salvador & Chan, 2007)): 

 ( , ) ( , ) min( ( 1, ), ( , 1), ( 1, 1))C i j Dist i j C i j C i j C i j      , Eq. 8-3 

Figure  8-2 shows an example of a cost matrix and the MDWP traced through it from 

C(1, 1) to C(22, 22). The warp path highlighted in the cost matrix in Figure  8-2a (i.e. 

DTW distance between the two series) represents the minimum distance required to 

find the best match between these two sequences. The regions of low cost are indicated 

by dark colours and regions of high cost are indicated by light colours in the cost matrix.  

8.3 Analysing Motion Patterns of Samba Dance 

8.3.1 Samba Dataset 

The Samba dance data used in this chapter was obtained by using a motion capture 

(MoCap) system that records the positions of objects over time via reflective markers 

attached to the objects in combination with infrared cameras. Because in the present 

study we seek to examine the motion patterns of Samba dancers, only a very basic 

dataset including the 3D dimensional coordinates of five body parts of each Samba 

dancer is considered. The data include basic movements of Samba performed by three 

dancers: one teacher and two students. The data were generated by the Institute for 

Psychoacoustics and Electronic Music (IPEM), Department of Musicology at Ghent 

University, Ghent, Belgium. At the beginning, the movements of 27 body parts of each 

dancer were collected using a motion capture (MoCap) system, but data for only five 

body parts, namely, the head (H), right finger (RF), left finger (LF), right toe (RT), and 

left toe (LT), were used in this study. In the MoCap system, the movements of one or 

more objects can be sampled many times per second. Infrared markers attached to parts 

of a dancer’s body were tracked via a number of infrared cameras. The positional 

information of the body parts was logged in a local coordinate system. The five body 

parts were selected to recognise regular and cyclic movements of the Samba dance.  

Samba is an old Brazilian style of dance that is lively and rhythmical. The characteristic 

motion of Samba is bouncing. This is a gentle, rhythmic action felt through the knees 

and ankles. This bouncing action is quite difficult to master, but is essential to the 

overall character of the Samba dance. Generally, the Samba dance has a quick beat that 

requires fast footwork. Moreover, regularity in the motion patterns of the hands and feet 

can be detected from the REMO matrices discussed in the next subsection. The data 

http://www.dancelovers.com/learn_samba.html
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feature a time interval of 3.68 s and a total of 92 time stamps with an equal interval of 

0.04 s. The Samba dancers were supposed to perform exactly the same movements over 

any given time interval. However, there may have been some slight differences between 

the movements of the teacher and those of the students. The aim of this chapter is to 

explore these differences through REMO and DTW analyses.  

As an example, Figure  8-3a illustrates some frames of the movements of the teacher 

and student 1. The data in the illustrated frames were created based on information 

gathered from the 27 markers. Figure  8-3b demonstrates the 3D movements of the three 

dancers by visualising all point data along three orthogonal directions: front view, left, 

and top view. The blue dots represent the point locations of the teacher’s head, left 

fingers, right fingers, left foot, and right foot. The green dots represent those of student 

1 and the pink dots those of student 2. The overlayed dots in the three colours show 

how the dancers were similar or different in general during the dance. For example, 

locations of student 2’s arms tend to move farther from those of teacher than student 1’s 

arms. 

(a) 

 

… teacher 

… student 1 
… student 2 

                 (b) 
 

Figure ‎8-3: Five frames of the movements of the teacher and student 1 (frames 14-18; a), and 

3D visualisation of the dancers’ movements for the entire dataset (b) 
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8.3.2 REMO 

A REMO analysis can compare the motion attributes of different objects at different 

time stamps (Laube & Imfeld, 2002). We consider three basic motion attributes, speed, 

motion azimuth, and vertical angle, to populate the REMO matrices in this study. Each 

REMO matrix thus consists of 92 columns (time stamps) and five rows (the five body 

parts). The motion attributes were measured based on the absolute x, y, and z 

coordinates of temporally consecutive points. The motion attribute speed was measured 

based on the Euclidean distance between two consecutive points. As defined in (Laube 

& Imfeld, 2002), motion azimuth represents the direction of movement in a 2D plane 

ranging between 0° and 360°. Vertical angle represents the direction of movement in a 

vertical dimension ranging between -90° and 90°. Unlike a crisp categorisation of 

motion attribute values, such as that performed in (Laube & Imfeld, 2002), which may 

add some imprecision to the outputs, we analyse and visualise REMO matrices based 

on the original values of these attributes.  

The performance of the teacher is considered the benchmark for comparison with the 

two students. Figures 8-4, 8-5, and 8-6 illustrate the REMO matrices of the teacher and 

the students for all three motion attributes. Regular and cyclic motion patterns can be 

detected in the figures. As mentioned previously, there are more movements in the feet 

of dancers than the hands due to the nature of this type of dance.  

   

 

Figure ‎8-4: REMO matrices of teacher, student 1, and student 2 for speed attribute 

Figure  8-4 shows variations in the speed of the dancers’ body parts. The figure clearly 

shows how the hands of student 2 at some time during his performance moved more 

rapidly than those of the teacher and student 1. We can also see that the dancers did not 
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move their heads (H) much. In addition, we can identify certain repeated motion 

patterns in the movements of the body parts. For example, the speed of the teacher’s 

right finger (RF) and left finger (LF) were alternately high and low every 10 time 

stamps (i.e. 10 * 0.04 s).  

The REMO matrices of motion azimuth and vertical angle show changes in the 

direction of movements horizontally and vertically. For example, Figure  8-5 shows that 

the Samba dancers performed certain movements regularly. However, it also reveals 

that the motion patterns of students 1 and 2 were not as regular as those of the teacher. 

The REMO matrix in Figure  8-6 shows that the teacher moved his hands up and down 

regularly. The movements of the right/left toes captured in Figure  8-6 indicate regular 

patterns with faster variations than those of the hands. Clearly, one of the advantages of 

REMO is that it visualises the motion patterns of all objects at once. In the following 

subsection, we will discuss in further detail how we can measure similarity between the 

REMO matrices of different dancers/objects. 

 

Figure ‎8-5: REMO matrices of teacher, student 1, and student 2 for motion azimuth attribute 
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Figure ‎8-6: REMO matrices of teacher, student 1, and student 2 for vertical angle attribute 

 

8.3.2.1 Map Algebra for Analysing Relative Motion of Dancers 

The Samba dancers were supposed to perform analogous movements over a given time 

interval, with the teacher’s performance as a benchmark. To examine the degree of 

similarity between the REMO matrices discussed in the previous section, we use an 

existing approach from Geographic Information Science (GIScience), namely, map 

algebra (Tomlin, 1990). In this section, we apply a simple raster subtraction operation 

to the two REMO matrices. Figure  8-7 shows the results of this operation, where a cell 

with a negative value in the resulting matrix indicates that the speed of the body part of 

Samba dancer 1 was lower than that of Samba dancer 2 at the same time stamp. 

 

Figure ‎8-7: Schematic map algebra operation (subtraction) applied to the REMO matrices of 

two Samba dancers 
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Clearly, this approach is very sensitive to temporal shifting; hence, the movement data 

should be first synchronised before applying the map algebra operation. As shown in 

Figure  8-5, there exist some lags and leads in the performances of students 1 and 2 with 

respect to the performance of the teacher. To synchronise the lags and leads in the data, 

we measure the correlation coefficient of the movements of the three dancers. A 

correlation coefficient can measure the strength and direction of linear relationships 

between two time series variables. After synchronising the data based on the correlation 

coefficients, we draw an analogy between the REMO matrices of the teacher and 

students in the next subsection.  

8.3.2.2 Results of Comparing REMO Matrices Using Map Algebra  

Ideally, the results of the subtraction between the REMO matrices of the teacher and 

the students should be minimal (i.e. zero) at every time stamp (i.e. each column in the 

REMO matrix) and for each body part (i.e. each row in the REMO matrix), though this 

rarely occurs, particularly for beginners. Figure  8-8 depicts the results of the subtraction 

of the REMO matrices of the teacher from those of the students in the form of matrices 

(Figure  8-8a) and graphs (Figure  8-8b) with speed as the motion attribute.  

Based on the REMO matrices and the colour bar shown in Figure  8-8a, one may 

recognise that differences between the movements of the teacher and students are most 

of the time insignificant, whereas at some moments in time, the differences are 

noticeable. In Figure  8-8b, we also show the results of the comparison in the form of 

graphs. Several fluctuations can be observed in Figure  8-8b, which might be because 

either the students did not perform similar to the teacher or there were slight shifts in 

the timing of their movements relative to those of the teacher. In Figure  8-8, positive 

values indicate that the speed of the students’ movements was lower than those of the 

teacher and negative values indicate that the speed of the students’ movements was 

higher than those of the teacher. 

 (a) 



 

 

167 Relative Motion & Dynamic Time Warping 

 

Figure ‎8-8: Results of the subtraction of REMO matrices of the teacher from those of the 

students with speed as the motion attribute in the form of matrices (a), and graphs (b) 

Whereas simple subtraction functions well in comparing movement speed, the motion 

azimuth and vertical angle require a slight modification due to their respective 

measurement scales. For example, the difference between the two motion azimuth 

values 5º and 355º is ±350º using a simple operator subtraction, whereas the real 

absolute difference is 10º. In addition to angles, orientations, and rotations, this issue is 

also present in other data types such as temporal cycles, e.g., days, weeks, months, and 

years (Fisher, 1995). To overcome this problem, Eq. 8-2 in Subsection  8.2.2 is applied 

to the REMO matrices of motion azimuth and vertical angle. In this equation, ai  and bi 

are the cell values of the first and second REMO matrices, respectively, and the results 

of subtraction thus range between 0 and 1. The difference is 0 when the values of the 

cells between the matrices are identical and 1 when there are 180º differences between 

the values of the cells. In other words, when two body parts are moving in the opposite 

direction, the distance is maximum at 1.  

Figure  8-9 demonstrates the results of subtracting the teacher’s matrices from the 

students’ matrices based on Eq. 8-2 for both motion azimuth and vertical angle. From 

the bar graphs, we observe high frequencies when the difference in the directions of 

body part motion is 0º (i.e. same direction) or 180º (i.e. opposite direction). More 

information regarding the movements of each individual body part can be extracted 

from the bar graph. For example, in Figure  8-9c, there exists a considerable difference 

of movement in the left toe (LF) between student 1 and the teacher.  

(b) 
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Figure ‎8-9: Distribution of distances between the REMO matrices of the teacher and students 

for motion azimuth and vertical angle, calculated based on Eq. 8-2 

Figure  8-10 demonstrates a sample assessment of the performances of the Samba 

dancers measured based on the normalised absolute sum of differences over all time 

stamps. Figure  8-10a shows that the speeds of the heads of the students were similar to 

the speed of the teacher’s head. The speed of the hands of student 1 is more similar to 

that of the teacher’s hands than that of the hands of student 2. This result can also be 

observed in the REMO matrices of the students in Figure  8-4. However, the speed of 

the lower body parts of student 2 (i.e. feet) was more similar to that of the teacher than 

that of student 1. From a directional point of view, both horizontally and vertically, the 

students performed quite similarly to each other. For instance, student 2 succeeded in 

moving his right finger (RF) horizontally and vertically better than student 1. Moreover, 

student 2 moved his left toe (LF) vertically in a manner more similar to that of the 

teacher than did student 1(Figure  8-4c).  

 

Figure ‎8-10: A sample assessment of the performances of the students 

The synchronised data of the entire dance consist of three sets of repeated movement 

patterns with 22 time stamps each. We evaluate the performances of the students for 

each set, called “beats” of music: beat 1 (B1; Figure  8-11a, d, and g), beat 2 (B2; 

(a) (b) 

(c) (d) 

(a) (b) (c) 
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Figure  8-11b, e, and h), and beat 3 (B3; Figure  8-11c, f, and i). We create REMO 

matrices of B1, B2, and B3 and apply the subtraction operation to them. Figure  8-11 

presents the results of the comparison of the teacher and students for all three beats and 

all three motion attributes. The results show which body parts of the students were 

moving correctly with respect to the teacher’s movements.  

 

Figure ‎8-11: Assessment of performances of the students at each beat separately for different 

motion attributes 

As shown in Figure  8-11a, b, and c, student 2 could not match the movements of his 

left finger (LF) to those of the teacher, whereas student 1 succeeded in moving his right 

finger (RF) in a manner highly consistent with that of his teacher. Moreover, student 2 

showed that he could control the speed of his feet over time, whereas student 1 did not 

move his right toe (RT) in a manner similar to that of the teacher in the second beat of 

the dance. Generally, both students showed a similar performance in following the 

direction of movement of the teacher. As mentioned previously, the method developed 

in this study is very sensitive to the degree of temporal shifting in the original data. 

Thus, REMO is mostly suitable in detecting deviations in movement according to the 

rhythm of the dance, i.e. the degree to which two objects move synchronously.  

Analogous situations in geography can be studied in the analysis of animal movements 

and their individual behavioural responses linked to environmental variables, weather, 

(d) (e) (f) 

(g) (h) (i) 

(b) (c) (a) 
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and ecosystem. For example, Laube and Imfeld (2002) tried to find behavioural patterns 

in animal observation data. Interesting observations on seasonal range and migration 

patterns of Porcupine Caribous were obtained from the investigation of the REMO 

matrices based on GPS observations. In (Laube et al., 2005), an example was given on 

how to use REMO in order to analyse the behaviour of players during a soccer game. 

If we are more interested in the timing than motion pattern, REMO would not provide 

the best solution. To address such situations, we apply the DTW approach to the same 

dataset to eliminate the effects of shifting as much as possible in assessing the 

performances of the dancers. 

8.3.3 DTW  

In Subsection  8.2.2, the DTW approach was explained in detail. Generally, the 

approach requires the appropriate data type (i.e. time series data) and expert knowledge 

of the data. In this subsection, we use DTW to investigate the overall performance of 

dancers. First, we begin with the time series of speed for each individual body part over 

the entire dance. Figure  8-12 illustrates DTW cost matrices comparing the teacher with 

students 1 and 2 for all five individual body parts.  

 

Figure ‎8-12: DTW cost matrices of all five body parts with speed as motion attribute 

In each cost matrix in Figure  8-12 , the vertical axis represents the related time series of 

each body part of the teacher and the horizontal axis represents the time series of the 

students. Each matrix also shows a diagonal highlighted that indicates the warp path. 
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Ideally, the warp path should appear as a perfect diagonal along the matrix when the 

two time series compared are identical. Any deviation from the perfect diagonal 

indicates a mismatch, which may be due to temporal shifting. The top-rightmost cell of 

each DTW cost matrix represents the accumulated value of matches for the two time 

series. In this chapter, the DTW distance (i.e. the accumulated value of MDWP at the 

top-rightmost cell of the cost matrix) can be taken as an indicator of the performances 

of the students. In addition, the cost matrix itself presents informative patterns 

regarding the movement time series. For example, checker patterns are visible in all of 

the DTW cost matrices in Figure  8-12, which indicate that some repetitive temporal 

patterns exist. The longer the repetition period is, the greater the size of the squares 

becomes. As mentioned previously, the Samba dance has a quick beat that requires fast 

footwork. Thus, the size of the squares shown in the DTW cost matrices of the RT/LT 

is smaller compared to that of the RF/LF cost matrices in Figure  8-12.  

Similarly, the movements of the lower body parts of the students are noticeably more 

consistent with respect to those of the teacher than their upper body parts. For example, 

in Figure  8-12, many fluctuations can be observed in the minimum time warp paths 

(MTWP) of the RF/LF obtained from the comparison between the time series of the 

teacher and student 2. The contribution of each of the fluctuations can be analysed 

through the smaller components of dance (i.e. beats).  

For example, Figure  8-13 shows the DTW cost matrix of each beat separately 

determined from the comparison of the time series of the teacher and student 2 for the 

RF/ LF with speed as the motion attribute. As shown in Figure  8-13, student 2 moved 

his right finger (RF) in the second beat and his left finger (LF) in the third beat in a 

manner similar to that of the teacher because fewer fluctuations can be observed in the 

MTWPs.  

The DTW cost matrices and MTWPs shown in Figure  8-13 are measured based on the 

Euclidean distance and using dynamic programming for the time series with speed as 

the motion attribute. However, for the time series with motion azimuth and vertical 

angle as the motion attributes, as discussed previously in this chapter, Eq. 8-2 is applied 

to form the DTW cost matrices and MTWPs. 
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Figure ‎8-13: DTW cost matrix of RF/LF separately for each beat with speed as motion 

attribute for time series of teacher and student 2 

For example, Figure  8-14 shows the DTW cost matrices of all body parts for time series 

with motion azimuth as the attribute, and Figure  8-15 shows the DTW cost matrices of 

the RF/LF for different beats.  

 

Figure ‎8-14: DTW cost matrices of all five body parts with motion azimuth as motion attribute 

In comparing the matrices, for example, it may be concluded that the movement of the 

right finger of student 2 at the first beat was more similar to that of the teacher than the 

movement of his left finger (see Figure  8-15). 
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The minimum warp paths shown in the DTW cost matrices are considered criteria for 

comparing the performances of the different body parts of the dancers. The overall 

assessment and evaluation of the performances at each beat are illustrated in 

Figure  8-16 and Figure  8-17, respectively. The results are not on the same scale as 

those presented in Figures 10 and 11 and should be interpreted independently. 

Figure  8-16 shows that student 1 kept the speed of his hands as similar to that of his 

teacher than did student 2, whereas both students moved their feet at a pace similar to 

that of their teacher. From a directional point of view, specifically with respect to 

vertical angle, one may recognise a considerable difference between the movements of 

the left toe of student 1 and student 2. In addition, Figure  8-17 illustrates the assessment 

of the performances of the students with respect to smaller dance components, i.e. beats 

 

Figure ‎8-15: DTW cost matrix of RF/LF separately for each beat with motion azimuth as 

motion attribute 

The following results could therefore be important in terms of handling noise caused by 

the temporal shift in movements. In many cases, the results from the DTW approach 

confirm the results from the REMO approach unless temporal shifting has a large 

impact on the output. The DTW results in this chapter suggest that the approach may be 

useful in studies of geographic phenomena that show repetitive and/or changing 

patterns over either long or short time periods, such as currents, earthquake, and 

tsunami (Gurgel et al., 2011; Kennedy & Crozier, 2010; Lipa et al., 2012; Shimamura 

et al., 2011; Wu et al., 2010)  
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Figure ‎8-16: Overall assessment of performances of the students with respect to their teacher’s 

performance 

 

Figure ‎8-17: Assessment of performances of the students at each beat separately for different 

motion attributes 

The DTW results in this study suggest that the approach may be useful in studies of 

other phenomena such as evacuations, earthquakes, etc. (Gurgel et al., 2011; Kennedy 

& Crozier, 2010; Lipa et al., 2012; Shimamura et al., 2011; Wu et al., 2010). For 

example, the DTW approach might be well integrated with other existing methods in 

mass event management to examine the behavioural patterns of tracked people and 

extract insightful information from sequences within such data (for example see 

(Delafontaine et al., 2012; Versichele et al., 2012)). The DTW approach could also be 

useful to deal with specific natural phenomena such as earthquakes. For example, Kaya 

et al., (2011) developed a novel change detection algorithm  based on Discrete Cosine 
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Transform (DCT) and DTW to assess the damages in Haiti earthquake by using very 

high resolution imagery.  In the proposed technique, the DTW algorithm was applied to 

correct spatial drifts caused by the change of sensors in the pre- and post-earthquake 

images and thereby minimize the issues caused by poorly registered images. In another 

area of the Earth sciences namely Geophysics, DTW is used to estimate relative time 

(or depth) shifts between two seismic images in seismic data processing (Hale, 2013). It 

is quite ubiquitous in seismic data processing to assess relative shifts in time (or depth) 

between seismograms.  

8.4 Discussion  

As a key contribution of this chapter, we addressed the applicability of the REMO and 

DTW approaches to analyse dance movements. With respect to the case study, both 

methods have some advantages and drawbacks.  

Laube (2005) comprehensively identified the strengths and weaknesses of REMO. 

REMO is a true integration of space and time, simple and understandable, applicable to 

many research domains, and extensible. Besides these advantages, REMO suffers from 

some weaknesses such as its dependency on expert knowledge and discretisation of 

continuous data. Dynamic Time Warping (DTW) is a widely used method for warping 

two temporal signals and it is applicable in different domains including speech 

recognition, signature recognition, robotics, manufacturing, medicine, and shape 

matching.  

The most commonly used approach to instruct dance skills is the demonstration-

performance method (Maes et al., 2012). In addition, Ahlqvist et al (2010) introduced a 

viable tool for exploration, analysis, and knowledge construction from dance data sets 

in which the demonstrations and the illustrative animations were advantageous to 

identify differences and similarities in movement patterns. In this chapter, we showed 

that both REMO and DTW could be used in a dance educational context to explore and 

investigate the basics of dance movements. However, the understanding of the 

proposed visualisations requires some expert knowledge. For example, changing the 

order of entities in the layout of the REMO matrices may add some difficulties in 

understanding REMO representations. Therefore, automatic recognition algorithms can 

drastically enhance the determination of the quality of a student’s performance in 

response to the music and in relation to the performance of the teacher in complex 

dance sequences. 
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The superiority of DTW over the Euclidean distance has been fully addressed in 

literature (e.g. (Aach & Church, 2001; Bar-Joseph et al., 2002; Chen et al., 2005b)). In 

this study, we applied a simple mathematical operation (i.e. subtraction) to draw 

analogy between REMO matrices. This approach is very sensitive to small distortions 

in the time axis. Assume two identical REMO matrices but one is shifted slightly along 

the time axis. The results of the comparison based on the subtraction operation say that 

the REMO matrices are very different. DTW overcomes this limitation and gives 

intuitive distance measurements between time series by ignoring both global and local 

shifting of the time dimension (Salvador & Chan, 2007). 

Another advantage of DTW is the ability to handle time series with different lengths, 

while this is quite challenging with the REMO approach. This property is highly 

important to examine movements that suffer from data imperfection. Trajectories may 

contain quite some noise, usually caused by sensor failures and errors in detection 

techniques. Although outliers are less apparent in trajectories of objects captured by 

Infrared cameras compared to trajectories captured by GPS, it is challenging whether 

all captured data are free of any error and usable. For example, in the Tango dance, 

pairs of dancers perform very close to each other and this may result in some gaps in 

the tracked data because not all Infrared markers attached to the body parts of dancers 

are tracked properly. 

As stated in (Laube et al., 2005), the REMO analysis helps us to investigate movements 

of many individual moving objects concurrently and thus allows detection of short- and 

long-term patterns such as convergence, divergence, and repetition as well as inter-

object relationships. In the DTW approach, we may not investigate movements of 

multiple objects simultaneously and find such interesting patterns.   

In the present work, we rate the quality of students’ performances stimulating the 

students to improve their performances. However a common drawback to the presented 

techniques is the lack of an immediate feedback indicating how well students imitate 

teacher’s movement. This is even more significant when motion time series are 

assessed together with the corresponding music and where rhythm and timing are 

dependently considered. 

In spite the fact that segmentation of complex time series into smaller units eases 

perception and learning processes (Brown et al., 2006; Zacks & Swallow, 2007), the 
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usefulness of  the REMO and DTW methods with an O(N
2
) time and space complexity 

are limited only to small time series. 

Generally, when performing a dance, specific motion patterns in synchrony with the 

music may be established (Maes et al., 2012). It is of particular interest to examine how 

the changing sampling rate (i.e. granularity) of time series may influence the results. In 

order to shed light on this important issue, we investigate the results of REMO and 

DTW when data is down sampled to a lower resolution. In addition, we illustrate how 

the use of original values in the time series instead of discretising them may lead to 

better results to understand movement patterns. 

In Figure  8-17a, we illustrate the REMO matrix of the teacher motion azimuth for the 

first 50 time units of the movement data. Figure  8-17b represents discrete instances of 

change in motion azimuth rather than trying to perceive the entire motion processes. In 

this case, we transform continuous movement data (i.e. motion azimuth time series) to 

discrete classes. Although we concur with Laube’s opinion that analysing with 

delimited change is easier than analysing the processes themselves, a comprehensive 

study in this regard can reveal the compromised levels of discretisation without losing 

much valuable information for that specific application. By looking at Figure  8-17b, in 

general, we may state that the formation of patterns on the REMO matrix is quite the 

same as the one detected in Figure  8-17a. But if we look more closely at the REMO 

matrix in Figure  8-17b, we may realise some significant differences due to the 

classification of the motion azimuth values. This issue not only affects the results 

obtained from the REMO approach, but also the results of the DTW approach. For 

example, the DTW results of the left finger (i.e. LF) of the teacher and student 2 are 

represented in Figure  8-17. In Figure  8-17b less detailed information appears compared 

to Figure  8-17a. In addition, the warp path in Figure Figure  8-17b is often straight and 

close to the main diagonal implying convincing performance by student 2, while even 

slight differences in the performances of student 2 compared to the teacher are reflected 

in the warp path attained from the original data (Figure  8-17a). In general, the low-

resolution data limits the power of analysis and changes the results of the analysis. For 

example, the results of the REMO and DTW approaches for a lower sampling rate are 

illustrated in Figure  8-17c and Figure  8-17c. In Figure  8-17c, it is quite challenging to 

detect movement patterns and interrelations among moving objects. We also see that 

low-resolution has a significant impact on the results of DTW (Figure  8-17c). All these 
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issues are open research problems and should be comprehensively investigated in the 

future. 

 

 

Figure  8-18: The REMO matrices of the teacher for (a) original data (b) discretised data (c) 

low-rate sampled data    

 

Figure  8-19: The DTW results of comparison left finger’movements of teacher and student 2 

for (a) original data (b) discretized data (c) low-rate sampled data 

(a) (b) (c) 

(a) 

(b) 

(c) 

(a) (b) (c) 
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8.5 Conclusions and Future Work  

Similarity analysis of movements is recognised as an important task in many domains. 

This chapter demonstrated how to employ two well-known approaches, REMO and 

DTW, in the context of dance movements. Detecting and analysing patterns in 

movements is useful in a number of scenarios. The case study presented in this work 

involved several basic movements of Samba dancers that presented many regular 

patterns. REMO was applied to visualise and analyse similarity, particularly with 

respect to timing and synchronous motion patterns. In this chapter, three motion 

attributes, speed, motion azimuth, and vertical angle, were studied. Map algebra was 

employed to compare and measure similarity among REMO matrices. One of the 

characteristics of this method was its sensitivity to any displacement or shift in the base 

dataset. Therefore, DTW was proposed as a complementary method for analysing 

similarity among the motion patterns of moving objects. DTW calculates the similarity 

between two time series based on determining the optimal match between the series 

even if they are not identical in size.  

Our contribution consisted in providing a sample case study to address, first, individual 

responses to spatio-temporal events and, second, higher-resolution data of individual 

movement using modular units exhibiting motion, i.e. body parts; in contrast, most 

existing studies use a single data unit for an individual. Using such higher-resolution 

data may be useful in gathering more information regarding individual behaviour. The 

proposed methodology can also be applied to a large number of dancers to examine 

their improvement throughout the course of a learning program.  
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Stay hungry, stay foolish.  Steve Jobs 

 

 

http://www.brainyquote.com/quotes/quotes/s/stevejobs416874.html


 

 

184 Chapter 9 

9  GENERAL DISCUSSION AND CONCLUSIONS 
 

The aim of this chapter is to summarise and discuss the contributions of this thesis in 

the light of the research questions. 

RQ 1: How do we enhance the practical usefulness of QTC? 

RQ 2: Is it possible to use QTC in the context of knowledge discovery from movement 

data? 

RQ 3: How do we appropriately employ visualisation techniques in the analysis of 

movement data? 

Within each of the previous chapters, a detailed description of the achievements was 

presented. In this chapter we supply a link between these findings and criticise the 

proposed methodologies. Issues and challenges for future research will be discussed.  

9.1 Summary 

In recent years, different domains (particularly GIS) paid much attention to the analysis 

of movement data, in particular moving objects. Although analysis of trajectories is 

generally considered as the starting phase to get insight into the behaviour of moving 

objects, analysis of interactions between MPOs can be an appropriate alternative 

approach. Given that the Qualitative Trajectory Calculus (QTC) is a unique qualitative 

spatio-temporal calculus to handle interactions among moving objects, this study made 

an effort to show the power of QTC in knowledge discovery from movement data.  

Earlier theories introducing topological relationships between objects, such as the 

Region Connection Calculus (RCC) (Randell et al., 1992), Projective 9
+
-Intersection 

Model (Billen & Kurata, 2008), and the 9-Intersection Model (Egenhofer & Franzosa, 

1991), did not take into account the reasoning about continuously disjoint MPOs until 

the emergence of  QTC (Van de Weghe, 2004). The idea behind QTC was to formalise 

the interaction between moving objects on the basis of the changing distance between 

them over time. In (Bogaert, 2008; Delafontaine, 2012; Van de Weghe, 2004), the 

properties of QTC were extensively defined and examined. Inspired by the former 

results, in this study, we highlighted a set of advantages of QTC in knowledge 

discovery from movement data over other existing techniques which focus more on 
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geometric shapes of moving object trajectories rather than interrelations between 

objects. The proposed methods were illustrated in different case studies from different 

domains such as dance and squash games. In each chapter we discussed the structure of 

movement data and its properties that might have an effect on the analysis method and 

outcomes. In addition, since one of the characteristics of a beneficial knowledge 

discovery technique is to provide visual exploration contexts to intuitively interpret the 

retrieved information, each of the previously presented methodologies was 

accompanied with specific visualisation techniques to enhance the power of inferences. 

Visualisation offers an explicit image of outcomes and brings extra insight that cannot 

be easily obtained through traditional analysis techniques.  

9.2 Discussion and General Conclusions 

Each of the chapters in this dissertation focuses on different aspects of one or more 

research questions. Different contributions are discussed in relation to each research 

question. In Chapter 2, we presented a brief background on the principles of QTC. 

Then, an introduction to the concept of the Continuous Triangular Model (CTM) was 

given in Chapter 3.  Chapters 4-8 included four papers that made up the core of the 

thesis. Here, we point out some of the strengths and weaknesses of the methodologies. 

By addressing these issues we can construct a blueprint for building an effective 

knowledge discovery technique. 

To begin with, Chapter 4 described a methodology to identify, visualise and interpret 

repetitive movement patterns in groups of MPOs. This chapter dealt with the use of the 

CTM to visually explore movement patterns. In (Qiang et al., 2013), we demonstrated 

how to display linear data in different intervals in the CTM, constituting a basis for a 

multi-scale analysis. We also pointed out some of the advantages of CTM over other 

traditional multi-scale visualisation approaches. For example, in the CTM, moving 

statistics during intervals of different lengths can be displayed in one diagram, which 

offers an explicit overview of patterns in different scales.  

In addition, the CTM is accompanied by a novel indexing technique. For example, in 

Chapter 4, we could reversely identify the reference point to those compared movement 

patterns representing a specific amount of similarity. Without delving deeper into the 

domain of choreography, we successfully showed that the integration of QTC and CTM 

is well-suited to study those dynamic phenomena in which repetitive behaviour is 

intrinsic. 
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In Chapters 5 and 6, we explained how to efficiently index and map movement patterns. 

We used a fractal-based indexing structure named sequence signature (SESI) to project 

movement patterns resulting from the MPO interactions. Similar to every other tree-

data structure, such as quadtree, in the SESI, a two-dimensional space was recursively 

subdivided into smaller partitions (i.e. square cells). Each cell belongs exclusively to a 

specific movement pattern and embodied properties are related to that movement 

pattern such as frequency and duration. In more detail, Chapter 5 studied the use of 

SESI to visually summarise the relative movements of two MPOs, while we further 

developed the idea of SESI to explore and visualise the relative movements of multiple 

MPOs in Chapter 6.  

The use of SESI increased our understanding of movement patterns. We could identify 

those patterns that had significant impact on the grouping interactive behaviour of 

objects in the case studies under investigation. Moreover, a structure to compare 

patterns during different time periods of movement was provided by which similar 

interactions (i.e. patterns) were detected and clustered.  

Given the event-based approach introduced in Chapters 5 and 6, major patterns were 

typically short in length and therefore easily identifiable in the SESIs. A weak point of 

the methodology is nevertheless the inability to distinguish movement patterns in the 

higher lengths of SESIs due to the complex iterative nature of SESIs. Although the use 

of most basic QTC, i.e. QTCB, involving a fair degree of abstraction of complex 

interactive movements of objects, was considered in the development of SESIs, 

readability of SESIs upon other types of QTC, such as QTC Double-Cross (QTCC), will 

be even more challenging.  

In Chapter 7, we investigated the extent to which the interactions of one pair of MPOs 

resembles the interactions of another pair. Generally, interaction is defined as a kind of 

action in which two or more objects have an effect upon one another (Andrienko et al., 

2008b). We have designed our approach to study such patterns. For this purpose, the 

Sequence Alignment Method (SAM) and Edit Distance were applied to the sequences 

of QTC relations, representing the interactions among multiple MPOs during different 

time intervals of movement. The results confirmed the potential usage of SAM in 

exploring such patterns.  
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In Chapter 8, we explained and applied two well-defined methods, namely RElative 

MOtion (REMO) and Dynamic Time Warping (DTW). In the first method, we 

investigated the evolution of motion attributes of MPOs, such as speed and motion 

azimuth over time based on the REMO matrices. Laube (2005) comprehensively 

identified some of the strengths and weaknesses of REMO. For example, REMO is a 

true integration of space and time, simple and understandable, applicable to many 

research domains, and extensible. Besides these advantages, REMO suffers from some 

weaknesses such as its dependency on expert knowledge and discretisation of 

continuous data. In Chapter 8, REMO matrices provided effective representations to 

proficiently detect various types of patterns such as convergence, divergence, and 

repetition. The second approach comprised DTW of time series of the same motion 

attributes. Generally, a traditional distance measure such as Euclidean distance is not 

the best choice for comparing time series that may feature some noise and 

displacements. To overcome this problem, we considered DTW distance as an indicator 

to investigate the time series of dancers which may include noise and displacements.  

Mining periodic patterns is crucial to model regularities in movement, predicting future 

trajectories and detecting outlying behaviour (Li, 2012). A number of techniques have 

been proposed in data mining literature to discover periodic patterns (e.g. (Han et al., 

1999; Nishi et al., 2013; Yang et al., 2003; Yang et al., 2002)), but less in movement 

data (e.g. (Gudmundsson & Wolle 2010; Guochen et al., 2014; Turdukulov et al., 

2014)). In this study, we delved deeper into periodicity and object relationships in 

movement data. Searching for partial periodic patterns in spatio-temporal databases is 

equally important to finding complete periodic patterns. This is more significant in 

movement-related datasets in which not all of the possible periodic patterns are 

complete, due to several factors such as failures in data collection procedure. In this 

regard, in Chapter 4, we could differentiate complete periodic patterns from partial ones 

in the CTM based on the definition of the proposed similarity measure. While, in 

Chapters 5 and 6, we paid less attention to this issue. There, the notion of similarity was 

merely the exact string-matching. Therefore, partially periodic patterns were neglected 

and thus not delineated in the SESIs. Inspired by prior studies, such as (Han et al., 

1999; Ma & Hellerstein, 2001), the proposal of new periodicity detection algorithms 

that efficiently deal with partial periodic patterns is of vital importance. Indexing and 

representing partial periodic patterns in the SESIs assists us in fully comprehending the 

movement behaviour of objects. 
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In Chapters 7 and 8, we were able to differentiate both complete and partial periodic 

patterns by employing well-known data mining techniques for time series data. In fact, 

both SAM and DTW techniques are robust in the presence of shifting noise and, they 

may thus present a remarkable opportunity to discover knowledge contained in 

incomplete movement datasets.  

The scope of the analysis of movement patterns is very wide. To understand movement 

patterns which may differ in various applications, we essentially require domain-

specific expert knowledge. We claim that visual representation of patterns can assist us 

in the knowledge discovery procedure even if there is no abundant prior knowledge of 

data. Different visualisation techniques were proposed in this study. They were 

considered to be simple but informative so as to inspire one’s analytical interest and 

facilitate analytical thinking. Prior knowledge about the movement data might support 

interpreting represented patterns, but not necessarily. The analytical usability of the 

visualisation techniques were demonstrated through some case studies. However, we 

need more evidence to confirm that non-expert users can effectively use the proposed 

representations. 

Based on the definition by Mackinlay (1986), visual encoding is a projection of raw 

data records into graphical attributes. Graphical characteristics such as shape, size, and 

colour play important roles in increasing understandability of the visualised data. In this 

regard, many studies have been done to examine the perceptual effectiveness of various 

visual encodings (e.g. (Nowell, 1997)). We argue that the comprehension of the 

visualised patterns based on the employed encoding techniques in this thesis might 

need some expertise. A study can be conducted to determine the perceptual 

effectiveness of each visual encoding technique based on the nature of the attributes of 

the encoded data. 

Clustering, or in other words grouping entities in such a way that entities in the same 

cluster are more similar to each other than to those in other clusters, finds numerous 

applications in diverse domains, such as financial markets, medical sciences, earth 

sciences, and, also, GIS. In a related study (Li, 2012), clustering of moving objects is 

categorised into two groups: moving object cluster discovery and trajectory clustering 

(see for example (Chen et al., 2005a; Gaffney et al., 2007; Pelekis et al., 2012; Vlachos 

et al., 2002)). In the former, the aim is to find clusters of objects with similar movement 

patterns or behaviour, whereas the latter puts an emphasis on the geometry to cluster 
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trajectories (Li, 2012). We mainly contributed to the first group where the investigation 

of movement patterns is more significant. 

Reliability and robustness of the results of clustering is extremely dependent on the 

proposed similarity measure (i.e. distance function) in the clustering procedure. Many 

of the existing distance functions, such as Euclidean distance and Longest Common 

Subsequences (LCSS), are sensitive to noise, shifts and scaling of data which are 

usually caused by sensor failures, errors in detection techniques, different sampling 

rates, etc. (Chen et al., 2005a). Comparing the results of clustering achieved in this 

research with the results of other distance functions, such as Edit Distance on Real 

sequence (EDR) (Chen et al., 2005a), which are most robust against the data 

imperfections is worthwhile.  

Movement data themselves are complex. Accordingly, this may increase the 

computational complexity of models and methods of handling such data. Hence, we 

need to increase the general performance of the proposed methods through the use of 

efficient algorithms. Furthermore, the complexity of data conversion should also be 

considered. In all cases in this study, raw movement data were converted into other 

forms so they could easily be used in the study. In Chapter 4 for example, movement 

data of multiple point objects were transformed into QTC matrices. Although the 

proposed QTC matrix representation offered an elegant solution to analyse movement 

of multiple objects, such an amount of data increased computational costs 

exponentially. There are some possibilities to reduce computational costs, for example  

by employing data-reduction techniques in spatio-temporal pre-processing phases, 

without information loss (Rodríguez et al., 2003; Rodríguez et al., 2004).  

9.3 Directions for Future Work 

Chapters 4-7 augmented the potential applicability of QTC in knowledge discovery 

from movement data that were missed in earlier works. We then verified and confirmed 

that those achieved results were comparable with results obtained from the purely 

quantitative approaches applied in Chapter 8. We hope to address some of the below 

issues in future work. 

In Chapter 4, the observed patterns in the CTM resulted from complex movements of 

multiple MPOs and implied interesting phenomena. Strategies taken to analyse and 

interpret such information are highly application dependent. Even though the visual 
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comparison and interpretation of CTMs is worthwhile, based on the considerations and 

issues described in (Qiang et al., 2013), map algebra can insteadbe engaged in the 

process of manipulating and analysing CTMs. By applying map algebra to the CTM of 

dancers, patterns can be compared at different scales and more precisely answer the 

question ‘whether the performance of student 1 or student 2 is more similar to that of 

the teacher’ according to all possible intervals within the considered time frame.  

Two types of granularity, namely the sampling granularity and the analysis granularity, 

were distinguished by Laube (2005). Choosing appropriate sampling and analysis 

granularity influences the interpretation of results. For example, in dance, as the main 

case study of this thesis, changing the granularity by milliseconds may significantly 

impact the outcome. While in other domains, such as ecology and in particular animal 

movement analysis, considering a granularity of hours might be adequate enough to 

reveal the most important aspects of the animal behaviour. Given that those patterns 

detected at a specific granularity may not be detected at other granularities, changing 

granularity may be used as an exploratory strategy to disclose interesting patterns in 

SESIs as well as in other approaches used throughout this thesis.  

Movement data can be imperfect due to any combination of inaccuracy, imprecision, 

and vagueness. Uncertainties are often present with such kinds of data. Tackling 

vagueness and uncertainties associated with movement data is often complicated. In his 

doctoral dissertation, Van de Weghe (2004) presented the adequacy of QTC in dealing 

with incomplete knowledge about moving objects. There are possibilities to take this 

subject into account with the approaches proposed in this thesis. For example, to 

identify periodic movement patterns, in Chapters 4, 5 and 6, we proposed some 

similarity measures in which QTC conceptual animations (i.e. QTC relations hold 

between pairs of moving objects) were compared. However, QTC conceptual 

animations are not always complete, for example, due to lack of equal-interval 

observations or other error sources in the collection of movement data. Hence, some 

improvements are still needed with respect to the proposed similarity measures to 

handle such imperfect data. This enhancement would be of vital importance to 

effectively understand real-life cases.  

Another crucial issue is the applicability of the proposed approaches to large sets of 

MPOs in geographic contexts. We applied our methodologies to several real-life cases. 

The examples throughout this thesis were kept intentionally as simple, clear and 
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unambiguous as possible to stress major aspects of the reasoning power of the QTC 

calculus. The datasets used in all chapters of this thesis included rather small numbers 

of MPOs. It is direction for future research to study movement patterns of large number 

of objects. For example, in Chapter 8, we may examine the performances of  hundreds 

of dancers based upon the data collected from all body parts. Note that this thesis did 

not attempt to technically describe specific applications. However, we illustrated that 

the given applications and the analysis tasks may impose limitations on the use of the 

proposed approaches. 

We discussed and illustrated the adequacy of QTCB in the procedure of knowledge 

discovery from movement data. In spite of increasing challenges and complexities, a 

dedicated extension to formally incorporate other types of QTC in this procedure would 

be a significant, complementary step. Moreover, extra attention should be paid to 

highlight the added value of QTC versus other formalisms, such as those of Dylla et al. 

(2007), Wolter et al. (2007), Hallot & Billen, (2008), Hornsby & King (2008), 

Golinska-Pilarek & Munoz-Velasco (2012), and Muñoz-Velasco et al. (2014) in this 

procedure. 

In this thesis, we paid less attention to building up query-based analyses of movement 

data. Today, we witness a significant growth in the development of visual and dynamic 

query tools to be integrated with GIS and other analytical systems. We intend to 

support query tools in the proposed techniques. Such query tools play a crucial role in 

exploratory data analysis and enhance human-computer interactivity (Andrienko & 

Andrienko, 2006). In this respect, we may take some inspiration from the work in this 

area. For example, the use of the Triangular Model (TM) was fully investigated in 

visualising and analysing time intervals (Qiang et al., 2012). They offered not only a 

compact visualisation of the distribution of intervals, but also provided an innovative 

temporal query mechanism that relies on geometries in the two-dimensional space. 

Evolved from the TM, the CTM proposed in Chapter 4 may take advantage of such 

queries after making some modifications.  

The proposed techniques in Chapters 5 and 6 may allow users to benefit from a 

frequently used query technique called brushing (Monmonier, 1989). With this 

technique, users are able to directly and flexibly select the movement patterns in the 

SESIs at different lengths they find interesting. Additionally, they may explore SESIs 

by successively making queries concerning the frequency and duration of movement 
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patterns at different lengths and observe the visual answers in the SESIs. The 

effectiveness of such techniques increases when more complex queries can be handled 

such as those involving  imperfect knowledge of movement data. 

Weaver (2008) developed multidimensional query techniques for visual analysis of 

spatio-temporal information on the basis of Improvise. Improvise is a fully-

implemented Java software architecture and user interface that enables users to build 

and browse highly-coordinated visualisations interactively (Weaver, 2006). For this 

purpose, he added the REMO algorithms (Laube et al., 2005) as new data 

transformation modules to the Improvise library (Weaver, 2004). The results showed 

the suitability of this approach to facilitate a flexible interactive querying framework 

across multiple data dimensions. As a part of Chapter 8, we employed the REMO 

approach to explore movement patterns of dancers. Accordingly, we may take 

advantage of this multidimensional query technique to increase the effectiveness of 

visualisations for data exploration. 

We have restricted our detailed approaches to the analysis of those phenomena which 

are perceived as point objects. Indeed, not all moving objects in the real-world can be 

assumed as point objects. Future studies will consider how to handle movement of 

spatially extended objects. Inspired by (Van de Weghe et al., 2004), the movement of 

even more complex objects, of which the shape changes over time, can be studied as a 

further possible extension of this work. 

From the start, this research was a multidisciplinary project, involving sports, dance, 

and transport. We believe that this research on exploring movement data can be 

employed in many other domains as well where discovering unexpected patterns, trends 

and relationships hidden in massive movement data are critical such as in social 

sciences, surveillance, and security. It is one of our interests to investigate behavioural 

patterns in animal observation data. Fine-grained data on animal movements are rapidly 

growing. Consequently, many substantial repositories of animal tracking data such as 

Movebank
5

 are available to apply advanced methods for studying the movement 

behaviour of animals in their natural environment. In this regard, there is an ongoing 

collaboration with the animal ecology research group at the Edmund Mach 

Foundation
6
. We tend to integrate QTC into existing analytical approaches in order to 

                                              
5
 https://www.movebank.org/ 

6
 http://cri.fmach.eu/ 

http://www.cs.ou.edu/~weaver/improvise/architecture.html
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extract general patterns from an otherwise indiscernible collection of animal trajectories 

and, thus, create new insights into the territoriality and ecosystems of animals. 

Recent advances in motion capture technologies have made it possible to record video 

images and motion data from patients with movement disorders. As a result, these latest 

technologies provide tremendous insight into the patient’s health status and treatment 

progress. We believe that each of the techniques presented in this thesis might be 

integrated with existing analytical approaches, such as gait analysis, to increase our 

understanding of rehabilitation procedures. For example, SESI, representing the 

movement patterns of patients, may assist therapists to better detect abnormalities and 

improvements in the movement skills of patients, and therefore judge the patient’s 

status, treatment and rehabilitation. 

Undoubtedly, making use of appropriate analysis tools to analyse movement data 

allows us to effectively understand such complex phenomena (Andrienko et al., 2007). 

In this respect, few qualified  data mining software and prototype tools are available for  

the flexible and scalable analysis of a mass of moving object, such as MoveMine (Li et 

al., 2010), SECONDO (Güting et al., 2010), V-Analytics
7
, QTCAnalyst (Delafontaine et 

al., 2011), GeoTM (Qiang et al., 2012), T-Pattern Miner
8
, and Weka

9
. During this 

research, we have also implemented some different small-scale tools to demonstrate the 

practical use of QTC in reasoning and analysing the movement of objects but not 

uniformly. This is direction for future research to design and develop a QTC prototype 

to interactively mine and explore other movement patterns such as flocks, leadership, 

avoidance, pursuit/evasion, and chasing, along with novel visualisation techniques. 
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SAMENVATTING (DUTCH SUMMARY) 
Door de technologische ontwikkeling in positionerings- en trackingsystemen, zoals 

GPS, mobiele positionering met Bluetooth en Wi-Fi, en videotracking, zijn er enorme 

hoeveelheden verplaatsingsgegevens beschikbaar voor analyse. Met zulke gegevens 

zijn er reeds een groot aantal studies gedaan met betrekking tot de analyse van 

trajecten, de extractie van bewegingspatronen en experimentele visuele analyses (zie 

bijvoorbeeld (Andrienko & Andrienko, 2007; Andrienko & Andrienko, 2012; Bak et 

al., 2012; Dodge, 2011; Giannotti & Pedreschi, 2008; Imfeld, 2000; Laube et al., 2005; 

Mountain, 2005)). 

Ondanks deze inspanningen, is er weinig aandacht besteed aan het kwalitatief redeneren 

over bewegende objecten. Kwalitatieve formalismen, geschikt om kwalitatieve 

ruimtelijke en temporele relaties tussen entiteiten uit te drukken, worden algemeen 

aanvaard als een nuttige benadering om abstractie van de echte wereld te maken en op 

die manier de complexiteit van het denken over bewegende objecten te vereenvoudigen. 

De kwalitatieve traject calculus (QTC), die werd geïntroduceerd door Van de Weghe 

(2004), vertegenwoordigt een krachtige calculus voor de beoordeling van de interactie 

tussen disjunct bewegende puntobjecten (MPOs). 

In dit proefschrift trachten wij kennis te verwerven uit verplaatsingsgegevens met 

gebruik van QTC. We halen zinvolle informatie uit bewegende objecten databases, 

ontdekken interessante patronen, en interpreteren ze op een plausibele manier.  De 

volgende drie onderzoeksvragen (OV) werden behandeld:  

OV 1: Hoe kunnen we de praktische bruikbaarheid van QTC verbeteren? 

OV 2: Is het mogelijk om QTC te gebruiken bij het ontdekken van kennis uit 

verplaatsingsgegevens? 

OV 3: Hoe kunnen we visualisatietechnieken gebruiken bij de analyse van 

verplaatsingsgegevens? 

In de rest van deze samenvatting bespreken we hoe deze onderzoeksvragen in het 

proefschrift behandeld werden. In dit proefschrift hebben we vooral geprobeerd om ons 

begrip van het verplaatsingsgedrag van een of meer bewegende objecten uit te breiden. 

De inhoud van het proefschrift is onderverdeeld in hoofdstukken die werden 
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gepubliceerd, aanvaard of ingediend ter beoordeling in internationale peer-reviewed 

tijdschriften of boeken op het moment van schrijven. Om ervoor te zorgen dat deze 

hoofdstukken zelfstandig van elkaar gelezen kunnen worden, zijn er een aantal 

onvermijdelijke overlappingen in de afzonderlijke hoofdstukken zoals het 

literatuuronderzoek en de beschrijving van het basisconcept van de Kwalitatieve Traject 

Caculus. 

Na de algemene inleiding in Hoofdstuk 1 waarin de motivatie voor het onderzoek 

geschetst wordt, wordt in Hoofdstuk 2 een overzicht gegeven van de theoretische basis 

van de Kwalitatieve Traject Calculus (Qualitative Trajectory Calculus of afgekort QTC) 

en hoe deze calculus kan worden geïmplementeerd en uitgebreid om ruwe bewegende 

objecten te vertegenwoordigen en te beredeneren. QTC wordt geïntroduceerd als een 

tijdruimtelijke kwalitatieve calculus waarbij een veranderende afstand tussen twee 

objecten wordt bijgehouden doorheen de tijd. Tussen de verschillende types van QTC 

zoals QTC-Basis (QTCB), QTC-Dubbel-Kruis (Double-Cross) (QTCC), en QTC-

Network (QTCN), richten we ons op het meest eenvoudige type (d.w.z. QTCB1). In 

QTCB1, worden complexe bewegingen vereenvoudigd via relaties tussen paren van op 

elkaar inwerkende gescheiden puntobjecten. In totaal zijn er negen QTCB1 basisrelaties 

tussen twee disjuncte bewegende objecten. In dit proefschrift tonen we de 

mogelijkheden tot redeneren met zulke eenvoudige relaties en de extractie van kennis 

uit bewegingen. 

In Hoofdstuk 3 wordt een innovatieve visuele representatie voor tijdreeksen, namelijk 

het Continue Triangulaire Model (Continous Trangular Model of afgekort CTM), 

geïntroduceerd. In CTM kunnen alle subintervallen van een tijdreeks in een 

tweedimensionaal continue gebied. Elk punt vertegenwoordigt een subinterval van de 

tijdreeks en de waarde die het punt vertegenwoordigt wordt verkregen via een bepaalde 

functie (bijvoorbeeld het gemiddelde of de som) over de tijdreeks binnen het 

subinterval. Het CTM geeft dus een expliciet overzicht van tijdreeksen op alle 

verschillende schalen. Naast tijdreeksen kan CTM ook worden toegepast op lineaire 

gegevens.  

In Hoofdstuk 4 gebruiken wij het concept van QTC en CTM voorgesteld in 

Hoofdstukken 2 en 3. Dit hoofdstuk stelt een methode voor bestaande uit drie fases 

voor de identificatie, visualisatie en interpretatie van repetitieve bewegingspatronen in 

groepen van bewegende puntobjecten. Bewegingen van lichaamsdelen van dansers 
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worden beschreven  door opeenvolgingen van QTCB matrices, die op hun beurt worden 

gebruikt om de herhalende bewegingspatronen te identificeren (OV 1). Vervolgens 

wordt een vergelijkende analyse gemaakt om de mate van gelijkenis tussen paren van 

sequenties te bepalen (OV 2). Ten slotte wordt CTM toegepast om de mate van 

gelijkenis tussen alle paren van sequenties weer te geven. In dit hoofdstuk konden wij 

zien hoe CTM de visuele analyse van bewegingspatronen vergemakkelijkt (OV 3). 

De ontdekking van kennis uit trajecten van bewegende objecten is een belangrijk en 

uitdagend probleem in veel onderzoeksdomeinen. In Hoofdstuk 5 stellen wij een 

nieuwe benadering voor voor het identificeren, vertegenwoordigen en clusteren van 

bewegingspatronen. Sequenties van QTC relaties van de beweging van objecten 

worden geïndexeerd en weergegeven in een Sequence Signature (SESI) (OV 1). Een 

SESI is een fractaalfunctie die een visuele samenvatting geeft van de 

bewegingspatronen van twee MPOs (OV 2&3). We vergelijken SESIs met behulp van 

een afstandsfunctie, waardoor het mogelijk is om clusters van kwalitatief onderscheiden 

trajectparen te identificeren. De voorgestelde methode wordt geïllustreerd aan de hand 

van twee real-world voorbeelden van MPO interactie: auto's op een snelweg en squash 

spelers. Deze eenvoudige voorbeelden tonen het nut van onze benadering aan voor het 

blootleggen van bewegingspatronen die zijn verborgen in tijdruimte traject databases. 

In Hoofdstuk 6 breiden wij het concept van SESI verder uit om kennis uit beweging 

van meer dan twee MPOs teverwerven. De toepasbaarheid van de voorgestelde 

methodologie wordt geïllustreerd aan de hand van een praktisch voorbeeld, de samba 

dans. Daarbij worden de bewegingen van dansers tijdens verschillende tijdsintervallen 

vergeleken. De resultaten tonen aan dat de voorgestelde methode effectief kan worden 

gebruikt om interacties van meerdere MPOs in verschillende domeinen te analyseren. 

Om de gelijkenissen in beweging tussen bewegende objecten te analyseren wordt in 

Hoofdstuk 7 een innovatieve aanpak voorgesteld waarbij de sequentie-

aligneringsmethode (Sequence Alignment Method, afgekort SAM) wordt gebruikt voor 

het aligneren en beoordelen van QTC-sequenties. QTC-informatie werd gebruikt om 

QTC-sequenties te vormen (OV 1). SAM vergemakkelijkt de identificatie en 

visualisatie van bewegingspatronen van interacties tussen bewegende objecten (OV 

2&3). De voorgestelde methode kan worden toegepast in elk domein waarbij inzicht in 

bewegingspatronen belangrijk is. In dit hoofdstuk werden de bewegingen van drie 

samba danseressen geanalyseerd om de mate van (on)gelijkheid tussen de bewegingen 
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van de dansers te meten. Gelijkheid / ongelijkheidsanalyse draagt bij tot een beter 

begrip van hoe de dansers bewegen. De resultaten van de gelijkheidsanalyse van QTC-

sequenties worden gepresenteerd in dendrogrammen, waarbij de sequenties worden 

gegroepeerd in clusters. 

In Hoofdstuk 8 worden in plaats van QTC twee andere kwantitatieve methodes gebruikt 

om beweging te analyseren. De eerste methode gebruikt kaartalgebra met relatieve 

beweging (RElative MOtion afgekort REMO) matrices om de evolutie van 

bewegingsattributen, zoals snelheid en bewegingsazimut, in de tijd te bestuderen. De 

tweede methode is «Dynamic Time Warping, afgekort DTW» om tijdreeksen van 

bewegingsattributen te analyseren. De resultaten tonen aan dat beide methoden nuttig 

zijn in het numeriek vergelijken van de bewegingen van samba dansers en om visuele 

bewegingspatronen te herkennen (OV 2&3). 

Het laatste hoofdstuk van dit proefschrift bevat een uitgewerkte algemene discussie met 

betrekking tot de initiële onderzoeksvragen. Hierbij wordt ingegaan op problemen en 

toekomstige uitdagingen.  
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