Periodontally diseased tooth roots used for lateral alveolar ridge augmentation. A proof-of-concept study


Abstract

Objectives: To assess the efficacy of periodontally diseased tooth roots used as autografts for lateral ridge augmentation and two-stage early osseointegration of titanium implants.

Material and Methods: Ligature-induced periodontitis lesions were established at the maxillary premolars in n = 8 foxhounds. Extracted, scaled and root planed pre-molar roots (PM-P) as well as retromolar cortical autogenous bone (AB) blocks were used for horizontal ridge augmentation of mandibular chronic-type defects. At 12 weeks, titanium implants were inserted and left to heal for another 3 weeks. Histological analyses included crestal ridge width (CW), augmented area (AA) and bone-to-implant contact (BIC).

Results: Both PM-P and AB grafts were gradually organized and replaced by newly formed bone. Median CW (PM-P: 3.83 versus AB: 3.67 mm), AA (PM-P: 10.18 versus AB: 9.82 mm²) and BIC (PM-P: 50.00% versus AB: 35.21%) values did not reach statistical significance between groups (p > 0.05, respectively). Histologically, PM-P grafts were not associated with any inflammatory cell infiltrates.

Conclusions: PM-P autografts may reveal a structural and biological potential to serve as an alternative autograft to AB.

It is well-known that the anorganic and organic composition of dentin closely resembles that of bone (Brudevold et al. 1960, Linde 1989). In particular, its organic matrix is also dominated by collagen type I fibres and features non-collagenous proteins, such as phosphoproteins, osteocalcin, proteoglycans and glycoproteins (Becker et al. 1986; Linde 1989).

Accordingly, previous and recent experimental studies have focused on the usage of dentin as potential bone substitute in several defect models. Basically, it was reported that dentin used either as particulated or block autograft featured osteoconductive as well as osteoinductive properties and got involved in the bone remodelling process (Catanzaro-Guimaraes et al. 1986, Andersson et al. 2009, Andersson 2010, Bormann et al. 2012, Atiya et al. 2014, Qin et al. 2014). In a most recent experimental animal study performed in the canine, extracted tooth roots were also successfully used for localized horizontal alveolar ridge augmentation and a staged osseointegration of titanium implants. At 12 weeks, the application of differently conditioned

Conflict of interest and source of funding statement

The authors declare that they have no conflict of interests related to this study. The study was funded by an unrestricted research grant of the International Team of Oral Implantology (ITI, Basel, Switzerland).
(i.e. endodontically treated and untreated healthy) extracted premolars resulted in a clinically important gain in ridge width, thus allowing the insertion of common two-piece titanium implants. Histologically, the transplanted roots were replaced by newly formed bone and equally supported the early phase of osseointegration. In particular, the median bone-to-implant contact (BIC) ranged from 36.96% to 50.79% and was comparable to those values (32.53% to 64.10%) noted for cortical autogenous bone blocks (Schwarz et al. 2016). Another potential clinical source to obtain autogenous dentin might also be periodontally diseased teeth that are scheduled for extraction. However, it is currently unknown to what extent an infected root surface may compromise bone formation at the defect site.

Therefore, this study aimed at histologically evaluating the efficacy of periodontally diseased tooth roots used as autografts for lateral ridge augmentation and two-stage early osseointegration of titanium implants in a canine model.

Material and Methods

Animals

A total of eight foxhounds (7 males, 1 female, age 22.9 ± 13.9 months, mean weight 40.3 ± 3.8 kg) with a fully erupted permanent dentition were included. During all experimental phases, the animals were fed once per day with soft-food diet and water ad libitum. The study protocol was approved by the appropriate local authority (Landesamt für Natur und Verbraucherschutz, Recklinghausen, Germany) and did conform to the ARRIVE Guidelines (Kilkenny et al. 2010). The experimental part of the study started after an adaption period of 4 weeks.

Anaesthesia protocol and experimental procedures

Each surgical intervention followed a standardized anaesthesia protocol (Schwarz et al. 2014, 2016). In particular, intramuscular sedation was accomplished with 0.01 mg/kg acepromazine (Vetranqui 1%; Ceva Tiergesundheit, Düsseldorf, Germany). Subsequently, anaesthesia was initiated employing 21.5 mg/kg thiopental-sodium (Trapanal 2.5%; Altana GmbH, Konstanz, Germany) and inhalation anaesthesia performed by the use of oxygen and nitrous oxide and isoflurane. While anaesthetized, all animals received a constant rate infusion of lactated Ringer’s solution to maintain hydration. Depth of anaesthesia was improved by intravenous injection of either 0.1 mg/kg pirritramid (Dipidolor®, Janssen-Cilag GmbH, Neuss, Germany) or 0.1 mg/kg l-methadon. Intra-operative analgesia was accomplished by injecting 4.5 mg/kg carprofene (Rimadyl®; Pfizer Pharma GmbH, Karlsruhe, Germany). For post-operative analgesia, 0.01 mg/kg buprenorphin (days 1–3, subcutaneous application twice per day) and 4.5 mg/kg carprofen (days 1–7, per os) were applied.

Experimental phases

This study was subdivided into three experimental phases.

Phase 1

In both upper quadrants, the maxillary premolars (PM2–PM4) were randomly allocated (RandList®; DatInf GmbH, Tübingen, Germany) to either a ligature induction of periodontitis lesions (PM-P) or were left untreated. In brief, at respective teeth of the PM-P group, the plaque control regimen was stopped and a mesial premolars (PM2 and PM4) were carefully removed from the chronic-untreated healthy (PM-P and PM-C groups. In each hemimandible, the available three defects were randomly (RandList®) augmented with 2 × PM (i.e. PM-P or PM-C) and 1 × AB, thus resulting in a total of 2 × PM-P, 2 × PM-C and 2 × AB grafts per animal. Specimens of the PM-C group as well as the corresponding AB group were scheduled for biomechanical analyses (i.e. removal torque testing). These results will be presented elsewhere. Accordingly, the present analysis reports on the contra-lateral hemimandibles having received PM-P and AB grafts.

In the upper jaws, PM-P were carefully extracted after vertical tooth separation (n = 3 teeth) (Fig. 1a). Thereafter, the crown was horizontally decapitated at the cemento-enamel junction, and the exposed dental pulp was preserved. Each surface of the extracted roots was adequately debrided and planed [i.e. scaling and root planing (SRP)] using Gracey curets (Hu-Friedy Co., Chicago, Illinois, USA) (Fig. 1b). The absence of calculus was evaluated by tactile sensation with a periodontal probe (PCP12; Hu-Friedy Co.).

Subsequently, mucoperiosteal flaps were elevated in the lower jaws and all the granulation tissue was carefully removed from the chronic-type defects (n = 24 experimental sites) (Fig. 1c). Both roots of each PM-P were size adapted in a way that their coronal-apical extension matched at best the mesio-distal width of the respective defect site. Whenever possible, two roots were aligned parallel to the alveolar bone crest (upper root: epicrestal position; lower root: rotated by 180 degree to fit at best the closest caudal position) with their inter-proximal (i.e. mesial or distal) surfaces facing the defect wall (Schwarz et al. 2016) (Fig. 1d and Supplementary Fig. S1). To support ankylosis at these (downward
aspects of the roots (Andreasen 1980), the layer of cementum was carefully removed using a diamond bur under copious saline irrigation. At the upward and lateral aspects of the roots, the cementum was preserved. In each hemimandible, one cortical AB block exhibiting a surface area and thickness similar to the PM-P grafts was harvested from the retromolar area using a carbide bur and copious saline irrigation. PM-P and AB grafts were fixed with titanium osteosynthesis screws (P/5, 1.5 × 9 mm; Medicon, Tuttlingen, Germany) (Fig. 1d). The resulting horizontal width at each augmented site was measured using a calliper (i.e. from the most crestal aspect of the alveolar ridge to the most peripheral and coronal aspect of the graft). Coronally advanced mucoperiosteal flaps were fixed with mattress sutures (Resorba®) to ensure a tension-free submerged healing condition.

Phase 3

At 12 weeks, full thickness flaps were prepared and implant bed preparation was performed at the transition between the host bone and the grafted area. Two-piece Bone Level® SLA® titanium implants (4.1 × 10 mm; Institut Straumann AG, Basel, Switzerland) were inserted with primary stability (i.e. lack of clinical implant mobility) in a way so that the implant shoulder (IS) at best coincided with the buccal aspect of the grafted area (Fig. 1e,f). Mucoperiosteal flaps were advanced, repositioned coronally and fixed with mattress sutures (Resorba®) in a way to ensure submerged healing for another 3 weeks.

Sample size calculation

Calculation of the sample size was based on a non-inferiority testing of PM-P to AB blocks (Schwarz et al. 2016). For the power analysis, a standard normal distribution was assumed. The probability of a Type I error was set at 0.05, whereas the probability of a Type II error was set at 0.20. Sigma was estimated based on the standard deviations observed in previous pre-clinical studies employing the same defect model (Schwarz et al. 2008, 2010). Defining ridge width as primary outcome variable, a clinically relevant difference was arbitrarily set at 2 mm. To achieve 95% power, a sample size of eight animals was calculated (Power and Precision, Biostat, Englewood, USA).

Retrieval of specimens

At the end of phase 3, the animals were euthanized with an overdose of sodium pentobarbital 3%. The jaws were dissected and blocks containing the experimental specimens were obtained. All specimens were fixed in 10% neutral buffered formalin solution for 4–7 days.

Histological preparation

Histological preparation was performed according to a standardized procedure reported previously (Schwarz et al. 2011). In brief, the tissue biopsies were dehydrated using ascending grades of alcohol and xylene, infiltrated and embedded in methylmethacrylate (MMA) (Technovit 9100 NEU, Heraeus Kulzer, Wehrheim, Germany) for non-decalcified sectioning. Two sections approximately 300 μm in thickness were prepared from the most central
aspect of the implant in the vestibulo-oral direction using a diamond band saw (Exakt®; Apparatebau, Norderstedt, Germany) and ground to a final thickness of approximately 40 μm. All sections were stained with toluidine blue (TB) to evaluate new bone formation and to identify the histological landmarks (Schanz et al. 1984). With this technique, old bone stains light blue, whereas newly formed bone stains dark blue because of its higher protein content (Schenk et al. 1984).

Histological analysis

Digital images (original magnification ×200) were taken from each section and evaluated using a software program (Cell D®; Soft Imaging System, Münster, Germany).

The following landmarks were identified in the stained sections at the vestibular aspect (Schwarz et al. 2016): IS, the bottom of the bone defect (BD) and the most central vertical axis (VA) of the implant. At or below the level of IS, the crestal width (CW) of the augmented alveolar ridge was measured as the horizontal linear distance from VA to the most peripheral and coronal aspect of the bone crest (BC) (mm). The new bone-to-implant contact (BIC) was measured from IS to BD, serving as 100%. In addition, the surface of the augmented area (AA) (mm²) was measured from IS to BD (Fig. 2).

Statistical analysis

The statistical analysis was performed using a commercially available software program (SPSS Statistics 22.0; SPSS Inc., Chicago, IL, USA). Mean values and standard deviations among animals were calculated for each variable and group. The data rows were examined with the Kolmogorov–Smirnov test for normal distribution. Within-group comparisons (i.e. PM-P versus AB) defining the animal as statistical unit were accomplished using the unpaired t-test. The alpha error was set at 0.05.

Results

Clinical observations

The clinical width of the augmented area at phase 2 was 4.31 ± 0.66 in the PM-P and 4.1 ± 0.33 mm in the corresponding AB group, respectively. Health status, behaviour and feeding habits of each animal were uneventful during the course of the experimental phases.

A premature exposure of the augmented area was noted at 5 of 24 sites (i.e. AB = 2; PM-P = 3).

Clinically, the exposed grafts were not associated with any signs of wound infection, but separated from the host bone, thus preventing implant placement during phase 3. The remaining experimental sites were characterized by a persistence of the grafted volume and organization of PM-P and AB grafts by a newly formed hard tissue. A primary implant stability could not be obtained at four defects (i.e. AB = 2; PM-P = 2), thus resulting in a successful placement of n = 15 implants at respective sites (Fig. 1e,f).

Histomorphometrical analysis

The mean and median values of CW, AA and BIC in PM-P and AB groups are presented in Table 1.

In particular, median CW was 3.83 mm in the PM-P and 3.67 mm in the AB group. Median AA was 10.18 mm² in the PM-P and 9.82 mm² in the AB group. Median BIC was 50.00% in the PM-P and 35.21% in the AB group. The statistical analysis failed to reveal any significant differences in mean CW, AA and BIC values between PM-P and AB groups (p > 0.05; unpaired t-test, respectively (Table 1).

Histological description

Histological analysis revealed that PM-P grafts were gradually involved in the bone remodelling process. This was commonly characterized by the deposition of a parallel-fibred

© 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
woven bone circumferentially along the external surface of the transplanted roots. Bone formation appeared to be originating from the adjacent alveolar bone and clearly demarcated the autografts at respective sites (Fig. 3).

In all specimens investigated, there were clear histological signs for a replacement resorption of PM-P. However, the extend of graft resorption varied considerably between and within animals, and even among the PM-P specimens in the same defect area. The majority of the experimental sites were characterized by the co-existence of PM-P grafts showing either initial to more advanced or even completed stages of replacement resorption (Fig. 3a–c). In particular, the initial stages were characterized by a peripheral resorption of the transplanted roots by macrophages. This was commonly accompanied by the concomitant deposition of a well-vascularized, connective tissue matrix exhibiting numerous spots of mineralization (Fig. 3d). At more advanced sites, the outer surface of the roots was homogeneously replaced by a parallel-fibred woven bone, which also extended restiformly, thus invading the dentinal matrix in various directions. The interface between the root fragments and the adjacent implant surface was homogeneously filled by a thin layer of woven bone, thus establishing an intimate BIC (Fig. 3e). At some sites, the transplanted roots were completely resorbed and substituted by a network of woven bone originating from the surrounding areas. Bone formation was obviously bridged by residual root fragments, which were occasionally noted in the most central aspects of AA at respective sites (Fig. 3c,f).

In none of the sites investigated, PM-P grafts were associated with the establishment of any inflammatory cell infiltrates.

Histological analysis also revealed signs for a replacement resorption of AB grafts. However, the ratio between graft resorption and new bone formation distinctly varied among the specimens investigated. In particular, at some sites, bone remodelling just comprised the most crestal compartment of the block graft, whereas AB was almost unaltered within the central compartment of AA (Fig. 3g). However, at other sites, the bone remodelling process was more pronounced and resulted in a resorption of larger parts of AB without a concomitant..
Discussion

This proof-of-concept study aimed at assessing the influence of a liga-
ture-induced periodontal infection on the structural and biological
potential of extracted tooth roots to serve as alternative autografts to AB
for horizontal alveolar ridge aug-
mentation and two-stage early
osseointegration of two-piece tita-
nium implants in a standardized
experimental animal model (Schwarz
et al. 2008). Basically, it was
observed that the clinical and histo-
logical outcomes of healing follow-
ing application of PM-P grafts were
comparable to those noted at the
control sites investigated. In particu-
lar, both types of autografts (i.e.
PM-P and AB) resulted in a clini-
cally important gain in ridge width
as well as similar median CW and
AA values. Notably, median BIC
measured at 3 weeks after implant
placement was even elevated in the
PM-P group (i.e. 50.00% versus
35.21%), however, this difference
did not reach statistical signifi-
cance over the AB group. Moreover, both
PM-P and AB grafts were associated
with comparable exposure rates, which
mainly had to be attributed to this
challenging experimental model
(Rothamel et al. 2009, Schwarz et al.
2010).

When interpreting these results, it
must be emphasized that a potential
drawback of the study protocol was
the lack of healthy roots serving as
ditional control group (PM-C).
Even though these PM-C grafts were
implemented in the contra-lateral
hemimandibles, they were considered
for biomechanical measurements (i.e.
removal torque testing) at respective
sites (Becker et al. 2016). However,
since a most recent study employing
the same defect model and experi-
mental procedures reported on the
histological analysis of PM-C grafts
(Schwarz et al. 2016), this experi-
mental set-up was modified to com-
ply with the 3R principle and reduce
the number of animals. When com-
paring the data of this analysis with
those findings reported in the latter
study, however, it might be sug-
gested that the histological out-
ces of healing did not seem to differ
between PM-P and PM-C groups. In
particular, for PM-C autografts, median CW, AA and BIC values were
2.70 mm, 7.55 mm², and
36.96%, respectively. In the corre-
sponding AB group, these values
amounted to 3.30 mm, 8.56 mm²
and 64.10%, respectively. The differ-
ences between PM-C and AB grafts
also failed to reach statistical signifi-
cance (Schwarz et al. 2016).

These BIC values mainly reflect the
early stage of osseointegration,
and were also within the range of
those data noted when SLA surfaced
titanium implants were inserted at
pristine bone sites. After a sub-
merged healing period of 2 weeks in
the lower jaws of the canine, respec-
tive BIC values ranged between
58.8% and 59.3% (Schwarz et al.
2007a,b).

All these data, taken together
with the results of this study, seem
to indicate that a meticulous SRP
procedure appeared to be sufficient
to restore the structural and biologi-
cal potential of PM autografts that
were exposed to a liga-ture-induced
periodontal infection. In this con-
text, one has to realize that a peri-
odontal regeneration has also been
shown on previously diseased root
surfaces (Sculean et al. 2008, 2015),
thus implying that SRP is a feasible
measure to restore the biocompati-
bility of an infected layer of cemen-
tum. Moreover, it must be empha-
ized that the present surgical
protocol considered a complete
cementum removal and dentin expo-
sure at the downward aspect of the
roots to facilitate ankylosis at the
defect site. The rational for this pro-
cedure was based on previous find-
ings that damages to the periodontal
ligament or root surface were more
likely to result in ankylosis and sub-
sequently a replacement resorption
(Andreasen 1980). In contrast, to
reduce a peripheral graft resorption,
the cementum was preserved at the
upward and lateral aspects of the
roots. However, when further evalu-
at ing the present histological analysis,
it was obvious that a replacement
resorption commonly happened at
both inward (i.e. dentin) and
outward (i.e. cementum) surface lay-
ers of PM-P grafts. This closely
corroborates the histological out-
ces noted following fixation of
autogenous tooth grafts in the
mandible of rabbits. In particular,
the specimens were positioned with
the dentin layer towards the defect
and the enamel layer facing the
mucosal compartment. At 6 months,
the authors reported on a homoge-
nous and comparable replacement
resorption at both outer and inner
layers of the grafts (Qin et al.
2014).

Similar stages and histological
features of a replacement resorption
were also noted for PM-C speci-
mens (Schwarz et al. 2016), thus
suggesting that the dentin matrix of
both PM-C and PM-P grafts was
comparably integrated in the bone
remodelling process. However, it
was also noted that the trans-
planted roots in the PM-P group
were more homogeneously replaced
by newly formed bone than the AB
grafts. Indeed, previous studies have
indicated that cortical bone blocks
are associated with an incomplete
revascularization and a “creeping
substitution process”, which results
in a composition of non-vital necro-
tic and newly formed vital bone
(Burchardt & Enneking 1978, Bur-
chardt 1983). Accordingly, the
remodelling process associated with
PM seems to be more similar to
that reported for cancellous bone
blocks, also undergoing a more
rapid and complete replacement
resorption (Burchardt & Enneking
1978, Burchardt 1983). In this con-
text, however, one has to emphasize
that the extend of PM-P resorption
varied considerably among the sites
and specimens investigated. Similar
histological variations were also
noted for PM-C as well as endodontically treated PM grafts
(Schwarz et al. 2016). This might be
explained by potential differences in
the size and shape of the trans-
planted grafts, but also variations
in the thickness of the cementum
layer. Accordingly, future studies
should further elaborate on the
potential influence of the macro-and
microanatomical characteristics of
PM grafts on the process of
replacement resorption.

Within the limitations of this
proof-of-concept study, it was con-
cluded that PM-P autografts may
reveal a structural and biological
potential to serve as an alternative
autograft to AB.

© 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
Acknowledgements

We kindly appreciate the skills and commitment of Ms. Brigitte Hartig and Ms. Tina Hagena in the preparation of the histological specimens, as well as the competent assistance of PD Dr. Martin Sager, Ms. Eva Engelhardt and Ms. Iris Schrey (ZETT Institute, Heinrich Heine University, Düsseldorf, Germany).

References


Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Orientation and fixation of PM-P grafts to match the coro- nal-apical and mesio-distal extensions of respective defect sites.

Address:
Ilja Mihatovic
Department of Oral Surgery
Universitätsklinikum Düsseldorf
Westdeutsche Kieferklinik
D-40225 Düsseldorf, Germany
E-mail: Ilja.Mihatovic@med.uni-duesseldorf.de

Clinical Relevance

Scientific rationale for the study: Differently conditioned (i.e. endodontically treated and untreated) extracted tooth roots were successfully used for localized alveolar ridge augmentation and a staged osseointegration of titanium implants. Periodontally diseased teeth (PM-P) may also serve as potential clinical source to obtain autogenous dentin.

Principal findings: Following SRP, the application of PM-P was associated with a marked gain in horizontal ridge width. Histologically, the transplanted roots were gradually replaced by newly formed bone and supported the early osseointegra- tion of titanium implants on a level equivalent to that noted for AB.

Practical implications: Following SRP, periodontally diseased roots were successfully used for localized alveolar ridge augmentation and a staged osseointegration of titanium implants.