
Learning convolution filters for inverse covariance
estimation of neural network connectivity

George O. Mohler∗
Department of Mathematics and Computer Science

Santa Clara University University
Santa Clara, CA, USA
gmohler@scu.edu

Abstract

We consider the problem of inferring direct neural network connections from Cal-
cium imaging time series. Inverse covariance estimation has proven to be a fast
and accurate method for learning macro- and micro-scale network connectivity
in the brain and in a recent Kaggle Connectomics competition inverse covariance
was the main component of several top ten solutions, including our own and the
winning team’s algorithm. However, the accuracy of inverse covariance estima-
tion is highly sensitive to signal preprocessing of the Calcium fluorescence time
series. Furthermore, brute force optimization methods such as grid search and
coordinate ascent over signal processing parameters is a time intensive process,
where learning may take several days and parameters that optimize one network
may not generalize to networks with different size and parameters. In this paper
we show how inverse covariance estimation can be dramatically improved using a
simple convolution filter prior to applying sample covariance. Furthermore, these
signal processing parameters can be learned quickly using a supervised optimiza-
tion algorithm. In particular, we maximize a binomial log-likelihood loss function
with respect to a convolution filter of the time series and the inverse covariance
regularization parameter. Our proposed algorithm is relatively fast on networks
the size of those in the competition (1000 neurons), producing AUC scores with
similar accuracy to the winning solution in training time under 2 hours on a cpu.
Prediction on new networks of the same size is carried out in less than 15 minutes,
the time it takes to read in the data and write out the solution.

1 Introduction

Determining the topology of macro-scale functional networks in the brain and micro-scale neural
networks has important applications to disease diagnosis and is an important step in understanding
brain function in general [11, 19]. Modern neuroimaging techniques allow for the activity of hun-
dreds of thousands of neurons to be simultaneously monitored [19] and recent algorithmic research
has focused on the inference of network connectivity from such neural imaging data. A number
of approaches to solve this problem have been proposed, including Granger causality [3], Bayesian
networks [6], generalized transfer entropy [19], partial coherence [5], and approaches that directly
model network dynamics [16, 18, 14, 22].
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Several challenges must be overcome when reconstructing network connectivity from imaging data.
First, imaging data is noisy and low resolution. The rate of neuron firing may be faster than the
image sampling rate [19] and light scattering effects [13, 19] lead to signal correlations at short
distances irrespective of network connectivity. Second, causality must be inferred from observed
correlations in neural activity. Neuron spiking is highly correlated both with directly connected
neurons and those connected through intermediate neurons. Coupled with the low sampling rate
this poses a significant challenge, as it may be the case that neuron i triggers neuron j, which then
triggers neuron k, all within a time frame less than the sampling rate.

To solve the second challenge, sparse inverse covariance estimation has recently become a popular
technique for disentangling causation from correlation [11, 15, 23, 1, 9, 10]. While the sample
covariance matrix only provides information on variable correlations, zeros in the inverse covariance
matrix correspond to conditional independence of variables under normality assumptions on the
data. In the context of inferring network connectivity from leaky integrate and fire neural network
time-series, however, it is not clear what set of random variables one should use to compute sample
covariance (a necessary step for estimating inverse covariance). While the simplest choice is the raw
time-series signal, the presence of both Gaussian and jump-type noise make this significantly less
accurate than applying signal preprocessing aimed at filtering times at which neurons fire.

In a recent Kaggle competition focused on inferring neural network connectivity from Calcium
imaging time series, our approach used inverse covariance estimation to predict network connec-
tions. Instead of using the raw time series to compute sample covariance, we observed improved
Area Under the Curve (receiver operating characteristic [2]) scores by thresholding the time deriva-
tive of the time-series signal and then combining inverse covariance corresponding to several thresh-
olds and time-lags in an ensemble. This is similar to the approach of the winning solution [21],
though they considered a significantly larger set of thresholds and nonlinear filters learned via coor-
dinate ascent, the result of which produced a private leaderboard AUC score of .9416 compared to
our score of .9338. However, both of these approaches are computationally intensive, where predic-
tion on a new network alone takes 10 hours in the case of the winning solution [21]. Furthermore,
parameters for signal processing were highly tuned for optimizing AUC of the competition networks
and don’t generalize to networks of different size or parameters [21]. Given that coordinate ascent
takes days for learning parameters of new networks, this makes such an approach impractical.

In this paper we show how inverse covariance estimation can be significantly improved by applying
a simple convolution filter to the raw time series signal. The filter can be learned quickly in a
supervised manner, requiring no time intensive grid search or coordinate ascent. In particular, we
optimize a smooth binomial log-likelihood loss function with respect to a time series convolution
kernel, along with the inverse covariance regularization parameter, using L-BFGS [17]. Training
the model is fast and accurate, running in under 2 hours on a CPU and producing AUC scores
that are competitive with the winning Kaggle solution. The outline of the paper is as follows. In
Section 2 we review inverse covariance estimation and introduce our convolution based method for
signal preprocessing. In Section 3 we provide the details of our supervised learning algorithm and
in Section 4 we present results of the algorithm applied to the Kaggle Connectomics dataset.

2 Modeling framework for inferring neural connectivity

2.1 Background on inverse covariance estimation

Let X ∈ Rn×p be a data set of n observations from a multivariate Gaussian distribution with p
variables, let Σ denote the covariance matrix of the random variables, and S the sample covariance.
Variables i and j are conditionally independent given all other variables if the ijth component of
Θ = Σ−1 is zero. For this reason, a popular approach for inferring connectivity in sparse networks
is to estimate the inverse covariance matrix via l1 penalized maximum likelihood,

Θ̂ = arg max
Θ

{
log

(
det(Θ)

)
− tr(SΘ)− λ‖Θ‖1

}
, (1)
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[11, 15, 23, 1, 9, 10], commonly referred to as GLASSO (graphical least absolute shrinkage and
selection operator). GLASSO has been used to infer brain connectivity for the purpose of diagnosing
Alzheimer’s disease [11] and determining brain architecture and pathologies [23].

While GLASSO is a useful method for imposing sparsity on network connections, in the Kaggle
Connectomics competition AUC was the metric used for evaluating competing models and on AUC
GLASSO only performs marginally better (AUC≈ .89) than the generalized transfer entropy Kag-
gle benchmark (AUC≈ .88). The reason for the poor performance of GLASSO on AUC is that
l1 penalization forces a large percentage of neuron connection scores to zero, whereas high AUC
performance requires ranking all possible connections.

We therefore use l2 penalized inverse covariance estimation [23, 12],

Θ̂ =

(
S + λI

)−1

, (2)

instead of optimizing Equation 1. While one advantage of Equation 2 is that all connections are
assigned a non-zero score, another benefit is derivatives with respect to model parameters are easy
to determine and compute using the standard formula for the derivative of an inverse matrix. In
particular, our model consists of parametrizing S using a convolution filter applied to the raw Cal-
cium fluorescence time series and Equation 2 facilitates derivative based optimization. We return to
GLASSO in the discussion section at the end of the paper.

2.2 Signal processing

Next we introduce a model for the covariance matrix S taking as input observed imaging data from a
neural network. Let f be the Calcium fluorescence time series signal, where f it is the signal observed
at neuron i in the network at time t. The goal in this paper is to infer direct network connections
from the observed fluorescence time series (see Figure 1). While f it can be used directly to calculate
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Figure 1: (A) Fluorescence time series f i for neuron i = 1 (blue) of Kaggle Connectomics network
2 and time series for two neurons (red and green) connected to neuron 1. Synchronized firing of
all 1000 neurons occurs around time 1600. (B) Neuron locations (gray) in network 2 and direct
connections to neuron 1 (green and red connections correspond to time series in Fig 1A). The task is
to reconstruct network connectivity as in Fig 1B for all neurons given time series data as in Fig 1A.
(C) Filtered fluorescence time series σ(f i ∗α + αbias) using the convolution kernel α (inset figure)
learned from our method detailed in Section 3.

covariance between fluorescence time series, significant improvements in model performance are
achieved by filtering the signal to obtain an estimate of nit, the number of times neuron i fired
between t and t + ∆t. In the competition we used simple thresholding of the time series derivative
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∆f it = f it+∆t − f it to estimate neuron firing times,

nit = 1{∆fi
t>µ}. (3)

The covariance matrix was then computed using a variety of threshold values µ and time-lags k. In
particular, the (i, j)th entry of S(µ, k) was determined by,

sij =
1

T

T∑
t=k

(nit − ni)(n
j
t−k − n

j), (4)

where ni is the mean signal. The covariance matrices were then inverted using Equation 2 and
combined using LambdaMart [4] to optimize AUC, along with a restricted Boltzmann machine and
generalized linear model. In Figure 2, we illustrate the sensitivity of inverse covariance estimation
on the threshold parameter µ, regularization parameter λ, and time-lag parameter k. Using the raw
time series signal leads to AUC scores between 0.84 and 0.88, whereas for good choices of the
threshold and regularization parameter Equation 2 yields AUC scores above 0.92. Further gains are
achieved by using an ensemble over varying µ, λ, and k.
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Figure 2: (A) AUC scores for network 2 using Equations 2, 3, and 4 with a time lag of k = 0 and
varying threshold µ and regularization parameter λ. (B) AUC scores analogous to Figure 2A, but
for a time lag of k = 1. (C) AUC scores corresponding to inverse covariance estimation using raw
time series signal. For comparison, generalized transfer entropy [19] corresponds to AUC≈ .88 and
simple correlation corresponds to AUC≈ .66.

In this paper we take a different approach in order to jointly learn the processed fluorescence signal
and the inverse covariance estimate. In particular, we convolve the fluorescence time series f i with
a kernel α and then pass the convolution through the logistic function σ(x),

yi = σ(f i ∗α + αbias). (5)

Note for α0 = −α1 (and αk = 0 otherwise) this convolution filter approximates the threshold filter
in Equation 3. However, it turns out that the learned optimal filter is significantly different than time
derivative thresholding (see Figure 1C). Inverse covariance is then estimated via Equation 2, where
the sample covariance is given by,

sij =
1

T

T∑
t=1

(yit − yi)(y
j
t − yj). (6)

The time lags no longer appear in Equation 6, but instead are reflected in the convolution filter.
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2.3 Supervised inverse covariance estimation

Given the sensitivity of model performance on signal processing illustrated in Figure 2, our goal is
now to learn the optimal filter α by optimizing a smooth loss function. To do this we introduce a
model for the probability of neurons being connected as a function of inverse covariance.

Let zij = 1 if neuron i connects to neuron j and zero otherwise and let Θ(α, λ) be the inverse
covariance matrix that depends on the smoothing parameter λ from Section 2.1 and the convolution
filter α from Section 2.2. We model the probability of neuron i connecting to j as σij = σ(θijβ0 +
β1) where σ is the logistic function and θij is the (i, j)th entry of Θ. In summary, our model for
scoring the connection from i to j is detailed in Algorithm 1.

Algorithm 1: Inverse covariance scoring algorithm

Input: f α αbias λ β0 β1 \\ fluorescence signal and model parameters
yi = σ(f i ∗α + αbias) \\ apply convolution filter and logistic function to signal
for i← 1 to N do

for j ← 1 to N do
sij = 1

T

∑T
t=1(yit − yi)(y

j
t − yj) \\ compute sample covariance matrix

end
end
Θ = (S + λI)−1 \\ compute inverse covariance matrix
Output: σ(Θβ0 + β1) \\ output connection probability matrix

The loss function we aim to optimize is the binomial log-likelihood, given by,

L(α, λ, β0, β1) =
∑
i 6=j

χzij log(σij) + (1− χ)(1− zij) log(1− σij), (7)

where the parameter χ is chosen to balance the dataset. The networks in the Kaggle dataset are
sparse, with approximately 1.2% connections, so we choose χ = .988. For χ values within 10% of
the true percentage of connections, AUC scores are above .935. Without data balancing, the model
achieves an AUC score of .925, so the introduction of χ is important. While smooth approximations
of AUC are possible, we find that optimizing Equation 7 instead still yields high AUC scores.

To use derivative based optimization methods that converge quickly, we need to calculate the deriva-
tives of Equation 7. Defining,

ωij = χzij(1− σij)− (1− χ)(1− zij)σij , (8)

then the derivatives of the loss function with respect to the model parameters are specified by,

dL

dβ0
=
∑
i 6=j

ωijθij ,
dL

dβ1
=
∑
i 6=j

ωij , (9)

dL

dλ
=
∑
i 6=j

β0ωij
dθij
dλ

,
dL

dαk
=
∑
i 6=j

β0ωij
dθij
dαk

. (10)

Using the inverse derivative formula, we have that the derivatives of the inverse covariance matrix
satisfy the following convenient equations,

dΘ

dλ
= −

(
(S(α) + λI)−1

)2
,
dΘ

dαk
= −(S(α) + λI)−1 dS

dαk
(S(α) + λI)−1, (11)

where S is the sample covariance matrix from Section 2.2. The derivatives of the sample covariance
are then found by substituting dyit

dαk
= yit(1− yit)f it−k into Equation 6 and using the product rule.
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3 Results

We test our methodology using data provided through the Kaggle Connectomics competition. In the
Kaggle competition, neural activity was modeled using a leaky integrate and fire model outlined in
[19]. Four 1000 neuron networks with 179,500 time series observations per network were provided
for training, a test network of the same size and parameters was provided without labels to determine
the public leaderboard, and final standings were computed using a 6th network for validation. The
goal of the competition was to infer the network connections from the observed Fluorescence time
series signal (see Figure 1) and the error metric for determining model performance was AUC.

There are two ways in which we determined the size of the convolution filter. The first is through
inspecting the decay of cross-correlation as a function of the time-lag. For the networks we consider
in the paper, this decay takes place over 10-15 time units. The second method is to add an additional
time unit one at a time until cross-validated AUC scores no longer improve. This happens for the
networks we consider at 10 time units. We therefore consider a convolution filter with k = 0...10.

We use the off-the-shelf optimization method L-BFGS [17] to optimize Equation 7. Prior to applying
the convolution filter, we attempt to remove light scattering effects simulated in the competition by
inverting the equation,

F it = f it +Asc
∑
j 6=i

f jt exp

{
− (dij/λsc)

2

}
. (12)

Here F it is the observed fluorescence provided for the competition with light scattering effects (see
[19]) and dij is the distance between neuron i and j. The parameter values Asc = .15 and λsc =
.025 were determined such that the correlation between neuron distance and signal covariance was
approximately zero.

We learn the model parameters using network 2 and training time takes less than 2 hours in Matlab
on a laptop with a 2.3 GHz Intel Core i7 processor and 16GB of RAM. Whereas prediction alone
takes 10 hours on one network for the winning Kaggle entry [21], prediction using Algorithm 1
takes 15 minutes total and the algorithm itself runs in 20 seconds (the rest of the time is dedicated to
reading the competition csv files into and out of Matlab). In Figure 3 we display results for all four of
the training networks using 80 iterations of L-BFGS (we used four outer iterations with maxIter= 20
and TolX= 1e− 5). The convolution filter is initialized to random values and at every 20 iterations
we plot the corresponding filtered signal for neuron 1 of network 2 over the first 1000 time series
observations. After 10 iterations all four networks have an AUC score above 0.9. After 80 iterations
the AUC private leaderboard score of the winning solution is within the range of the AUC scores of
networks 1, 3, and 4 (trained on network 2). We note that during training intermediate AUC scores
do not increase monotonically and also exhibit several plateaus. This is likely due to the fact that
AUC is a non-smooth loss function and we used the binomial likelihood in its stead.

4 Discussion

We introduced a model for inferring connectivity in neural networks along with a fast and easy to
implement optimization strategy. In this paper we focused on the application to leaky integrate and
fire models of neural activity, but our methodology may find application to other types of cross-
exciting point processes such as models of credit risk contagion [7] or contagion processes on social
networks [20].

It is worth noting that we used a Gaussian model for inverse covariance even though the data
was highly non-Gaussian. In particular, neural firing time series data is generated by a nonlinear,
mutually-exciting point process. We believe that it is the fact that the input data is non-Gaussian that
the signal processing is so crucial. In this case f it and f js are highly dependent for 10 > t − s > 0
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Figure 3: (A) Networks 1-4 AUC values plotted against L-BFGS iterations where network 2 was
used to learn the convolution filter. The non-monotonic increase can be attributed to optimizing
the binomial log-likelihood rather than AUC directly. (B-F) Every 20 iterations we also plot a
subsection of the filtered signal of neuron 1 from network 2. The filter is initially given random
values but quickly produces impulse-like signals with high AUC scores. The AUC score of the
winning solution is within the range of the AUC scores of held-out networks 1, 3, 4 after 80 iterations
of L-BFGS.

and j → i. Empirically, the learned convolution filter compensates for the model mis-specification
and allows for the “wrong” model to still achieve a high degree of accuracy.

We also note that using directed network estimation did not improve our methods, nor the methods
of other top solutions in the competition. This may be due to the fact that the resolution of Cal-
cium fluorescence imaging is coarser than the timescale of network dynamics, so that directionality
information is lost in the imaging process. That being said, it is possible to adapt our method for
estimation of directed networks. This can be accomplished by introducing two different filters αi
and αj into Equations 5 and 6 to allow for an asymmetric covariance matrix S in Equation 6. It
would be interesting to assess the performance of such a method on networks with higher resolution
imaging in future research.

While the focus here was on AUC maximization, other loss functions may be useful to consider. For
sparse networks where the average network degree is known, precision or discounted cumulative
gain may be reasonable alternatives to AUC. Here it is worth noting that l1 penalization is more
accurate for these types of loss functions that favor sparse solutions. In Table 1 we compare the ac-
curacy of Equation 1 vs Equation 2 on both AUC and PREC@k (where k is chosen to be the known
number of network connections). For signal processing we return to time-derivative thresholding
and use the parameters that yielded the best single inverse covariance estimate during the competi-
tion. While l2 penalization is significantly more accurate for AUC, this is not the case for PREC@k
for which GLASSO achieves a higher precision.

It is clear that the sample covariance S in Equation 1 can be parameterized by a convolution kernel
α, but supervised learning is no longer as straightforward. Coordinate ascent can be used, but given
that Equation 1 is orders of magnitude slower to solve than Equation 2, such an approach may not be
practical. Letting G(Θ,S) be the penalized log-likelihood corresponding to GLASSO in Equation
1, another possibility is to jointly optimize

ρG(Θ,S) + (1− ρ)L(Θ,S) (13)
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λl1 = 5 · 10−5 λl1 = 1 · 10−4 λl1 = 5 · 10−4 λl2 = 2 · 10−2

Network1 .894/.423 .884/.420 .882/.420 .926/.394
Network2 .894/.417 .885/.416 .885/.415 .924/.385
Network3 .894/.423 .885/.425 .884/.427 .925/.397

Table 1: AUC/PREC@k for l1 vs. l2 penalized inverse covariance estimation (where k equals
the true number of connections). Time series preprocessed by a derivative threshold of .125 and
removing spikes when 800 or more neurons fire simultaneously. For l1 penalization AUC increases
as λl1 decreases, though the Rglasso solver [8] becomes prohibitively slow for λl1 on the order of
10−5 or smaller.

where L is the binomial log-likelihood in Equation 7. In this case both the convolution filter and the
inverse covariance estimate Θ would need to be learned jointly and the parameter ρ could be deter-
mined via cross validation on a held-out network. Extending the results in this paper to GLASSO
will be the focus of subsequent research.
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