Deep learning for driving detection on mobile phones
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ABSTRACT

Sensor based activity recognition is a critical component of
mobile phone based applications aimed at driving detection.
Current methodologies consist of hand-engineered features
input into discriminative models, and experiments to date
have been restricted to small scale studies of O(10) users.
Here we show how convolutional neural networks can be
used to learn features from raw and spectrogram sensor time
series collected from the phone accelerometer and gyroscope.
While with limited training data such an approach under
performs existing models, we show that convolutional neural
networks outperform currently used discriminative models
when the training dataset size is sufficiently large. We also
test performance of the model implemented on the Android
platform and we validate our methodology using sensor data
collected from over 2000 mobile phone users.
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1. INTRODUCTION

With the growth of usage based car insurance (UBI) and
safe-driving incentives, there is a need for low cost mobile
applications that are able to accurately capture vehicle trips,
mileage, and driving behavior from sensor data collected on
mobile phones[9, 3]. A critical component of such appli-
cations is a classifier that takes as input time series from
the accelerometer, gyroscope, magnetometer, and GPS ra-
dio and outputs a probability or prediction of the current
activity state of the phone.

There is a large body of research on mobile phone based
activity detection and a good review of the field is given
in [19]. The types of models used for classifying sensor
segments include decision trees [2, 14], SVM [1, 6], KNN
[12], Naive Bayes [13], feed-forward neural networks [10,
11], HMM [16] and ensembles of these approaches. In these
studies, accelerometer is almost always used, either alone
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or in combination with a magnetometer, gyroscope and/or
GPS. In all cases, features are engineered from raw time se-
ries samples using a variety of techniques including sample
statistics over a window [8, 16], sample statistics of the FF'T
of the data [8, 16], and auto-regressive coefficients [10].

The main contribution of our work here is to show how
convolutional neural networks can be used to train an end-
to-end activity classifier with no feature engineering. This
approach has two advantages, the first being avoiding the
time-intensive process of designing features as instead con-
volution filters are learned during supervised training of the
model. The second advantage this approach has is higher ac-
curacy compared to the common approach of inputting engi-
neered features into a discriminative classifier. We note that
this is not the first study of activity detection using neural
networks and in [10, 11], accelerometer based features (au-
toregressive coefficients, signal-magnitude area, and tilt an-
gle) are input into a multi-layer perceptron as the classifier.
However to our knowledge no work to date has considered
convolutional neural networks for driving detection where
features are learned from raw accelerometer time series.

Our focus in this work is on battery efficient methods
for driving detection that rely on the phone accelerometer
and/or gyroscope rather than the GPS radio. A similar
goal is considered in [8] where the authors classify activ-
ity segments into seven classes including walking, several
public transportation categories, and car. Features are en-
gineered from a high frequency, gravity-corrected accelerom-
eter (60hz/100hz) and input into a classifier that combines
a kinematic HMM with Adaboost. Using data from 16 in-
dividuals and 150 hours of samples, the authors achieve ap-
proximately 85% precision and recall, a 20% improvement
over GPS based approaches [16] and accelerometer based
approaches without gravity correction [23]. We will use the
accelerometer based approach of [8] for comparison in this
study. However GPS features could also be added to our
model either in the initial input layer as an added channel
or appended in a dense layer.

The outline of this paper is as follows. In Section 2, we
discuss our proposed deep learning model architecture. Our
approach makes use of 2D convolutional neural networks by
transforming raw sensor time series into spectrograms using
a FFT. In Section 3, we discuss our methodology of data
collection. Whereas past studies have often focused on 10-
20 users, we collected sensor data from over 2,000 mobile
phones for our experiments. In Section 4, we present our
experimental results that illustrate the advantages of the
deep learning approach to activity and driving detection.



2. MODEL ARCHITECTURE

Feature engineering based approaches to activity recogni-
tion heavily rely on either frequency domain features, such
as the FFT procedure[15, 16, 17, 18, 24], or time domain
features[4, 7, 12]. In our end to end learning system, we
eliminate the process of feature engineering and instead al-
low the CNN to learn powerful features from different rep-
resentations of the data.

The frequency domain representation of temporal data
has been shown to be useful in discriminatory problems, and
has been widely used in literature on various domains rang-
ing from audio waves [5] to accelerometer sensors[19]. The
spectrogram is a time-frequency representation of a signal
obtained by stacking FFT responses of sliding windows over
the signal. Hence it has a good basis to be a useful repre-
sentation of the data. The spectrograms are generated from
accelerometer and gyroscope sensor data. Since both the
sensors on a mobile phone are usually tri-axial, the sensor
data is a three dimensional temporal stream. The spectro-
gram is generated independently for each axis, resulting in a
three dimensional matrix for each data sample. This matrix
is then used as the input to the CNN in Figure la. Al-
though spectrograms are usually represented as images, we
elect to not transform the matrix into a color space, thus
eliminating a lossy, noise-inducing transformation and sav-
ing on resources.

In addition to using spectrograms, we have also experi-
mented with 1D convolutions of sensor data. If the spectro-
gram CNNs can be thought of as analogous to frequency do-
main feature engineering approaches, the time series CNNs
can be considered to be analogous to the time domain fea-
ture engineering approaches.

Finally, a multi-stream CNN (Figure 1c), loosely based
on [20], is learned, where spectrograms of accelerometer and
gyroscope data form the two streams. Each stream’s param-
eters are learned independently before merging the results of
the final dense layer and feeding it then to the softmax layer
for prediction. This approach is superior to feeding a con-
catenated version of the two spectrograms in a single stream
as it allows for flexibility in model structure by treating the
two streams independently.

The architecture of the CNNs is illustrated in Figure 1. All
convolution and dense layers were activated with ReLU [25],
and dropout [21] was used for regularization. Standard prac-
tices were used in training and parameter selection. Train-
ing was performed using Lasagne on four NVIDIA GeForce
GTX TITAN X GPUs.

3. DATA COLLECTION

Data were collected from 2,133 drivers, using Android
platform consumer smartphones. Two minute samples from
each device were recorded at random points in time. For
each sample, we retained the platform specific activity la-
bels along with the accelerometer and gyroscope measure-
ments. Since a large number of these samples were recorded
when the user was likely to be sleeping or inactive, we re-
moved recordings when the activity labels and the sensor
measurements suggested the phone was inactive. In total,
the data covers roughly 5,400 hours, excluding the inactive
recordings.

Each recording was split into 30 second windows with 50
percent overlap. Because the underlying sensor hardware

differs across phones, sensor measurements are recorded at
time varying frequency both on a particular phone and across
different phones. To standardize these recordings, we inter-
polate sensor measurements to a fixed frequency, 50hz for
the accelerometer and 10hz for the gyroscope.

Some of the models tested required converting the sensor
measurements to spectrograms, which represent the sensor
measurements in time-frequency space. We create spectro-
grams for each axis at the window level, after interpolation
to a fixed frequency. Figure 2 presents two sample spectro-
grams from each class. The spectrogram is in the jet color
map, with blue representing a low gray scale value and red
representing a high value. Conceptually, when the sensors
are stationary, there will be very little response in the fre-
quency domain, as demonstrated by the mostly blue color
palette in the still class spectrograms in Figure 2. The au-
tomotive class will have responses in the higher frequencies
due to vibrations in the vehicle and the walking movement
will have high responses across the frequency range.

The final component of data collection relates to labeling
each window for the purposes of supervised learning. In each
user’s primary vehicle, we installed an iBeacon device which
allowed us to detect when the phone was in close proximity.
Hence portions of recordings were labeled as driving when
the smartphone was paired with the iBeacon. To mitigate
the risk that driving can occur in other vehicles, we selected
drivers that only had a single vehicle listed on their associ-
ated insurance policy.

4. RESULTS

We first evaluate the efficacy of our approach by setting
up a transportation mode detection problem, with the ap-
proach from [8] as a baseline measure. Next, we evaluate
the performance of our deep learning architectures on the
novel problem of driving detection. Finally, we describe the
android prototype for driving detection in real time with
Convolutional Neural Networks.

4.1 Baseline Experiments

Hemminki et. al [8] perform transportation mode clas-
sification by modeling three learners, the kinematic motion
classifier distinguishes between pedestrian and other modes
at a coarse level. The stationary classifier classifies between
stationary and motorized transportation modes and the mo-
torized classifier differentiates between various modes of mo-
torized transport. Due to the differences in our dataset and
objectives, we have modified their experimental setup as fol-
lows. Since the dataset lacks labels for mode of motorized
transport, the motorized classifier is no longer necessary.
Also, in order to conserve energy on the users phone, the
prediction is done exclusively over a short window and not
continuously for the duration of the activity.

Table 1: Baseline features

Domain Features
Mean, STD, Variance, Median, Min,
Statistical | Max, Range, Interquartile range

Kurtosis, Skewness, RMS
Time Integral, Zero-Crossing Rate
FFT DC first five frequency responses,

Frequency Wavelet Entropy, Wavelet Magnitude
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Figure 1: CNN architecture. The numbers indicate filter/kernel sizes. All convolution and dense layers are activated with
ReLU. The two approaches illustrated here are (a) spectrogram CNNs, (b) 1D convolutions over raw sensor data and (c)
multi-stream CNN with accelerometer and gyroscope spectrograms.

For each window in our dataset, we extract the features
described in Table 1. The random forest classifier was chosen
its accuracy after experiments with alternative discrimina-
tive classifiers (logistic regression, SVM, KNN, boosting).
The data set is then split into two roughly equal training
and testing sets, while ensuring that mobile phone users in

the training set are not present in the test set. Approach AUC
Baseline 0.84

4.2 Activity Recognition Accelerometer Spectrogram CNN 0.89
The activity recognition problem, also referred to as the Accelerometer Temporal CNN 0.83
transportation mode detection, is a classification problem Accelerometer and Gyroscope CNN | 0.89

amongst the three classes in the dataset (i) Walking, (ii)
Automotive, and, (iii) Stationary.

Figure 2 presents the t-sne [22] visualization of the spec-
trogram representation of the dataset. From the figure, it
is clear that there is little overlap between the three classes,
and that there might be confusion between the automotive
and the still class. A hint of which two classes might have
confusion is apparent from the overlap of data points from
the automotive and the still class. This is corroborated by
both the sample images and the experimental result.

The activity recognition problem was modeled by the base-
line process and the three CNNs described in section 2. The
AUC scores are presented in Table 2. The accelerometer
spectrogram appears to be the best representation of the

data as it performs well individually or with the gyroscope
spectrogram. The gyroscope frequency domain does not
contribute to improving accuracy.

Table 2: Activity recognition results

The confusion matrix in Figure 3 is generated from the
predictions of the accelerometer spectrogram CNN. On ex-
amination, it appears that the automotive class is the hard-
est class to classify and it is most confused with the still
class. This implies that the accelerometer data is insuffi-
cient to distinguish between still and automotive classes. In
the accelerometer frequency domain, a phone at rest in a
stationary location and a phone at rest in an automobile
differs only in high frequency vibrations. Additional sensor
data, such as GPS, would easily improve the accuracy.

4.3 Effect of training dataset size

Experiments with various dataset sizes are conducted to
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Figure 2: t-sne[22] visualization of the activity recognition problem.
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Figure 3: Confusion matrix for activity recognition

evaluate its effect on model performance. In an attempt to
replicate the dataset size in [8], we pick a random subset of
recordings of approximately equal dimensions.

The results of this experiment are presented in Table 3,
where the baseline process is compared with the accelerom-
eter CNN from Figure la. The results follow the familiar
pattern of deep learning techniques improving significantly
with increasing dataset size. For example, with 50 hours
of training data the baseline model outperforms the CNN,
given the random forests ability to reduce variance and the
low dimensionality of the features. However, at 500 hours

of training data and above the CNN has the higher perfor-
mance and at 1300 hours of training data the AUC of the
CNN is 0.89 compared to 0.83 for the random forest.

Table 3: AUC scores for activity recognition with varying
dataset sizes

Dataset Size | Baseline | Accelerometer CNN
50 hours 0.82 0.78
150 hours 0.82 0.82
500 hours 0.84 0.86
1000 hours 0.84 0.88
1300 hours 0.83 0.89

4.4 Driving Detection

A second application we consider is driving detection. For
usage based insurance, accurately tracking a vehicle and re-
moving trips on public transit and in other vehicles is of high
importance.

We restrict our attention to the automotive subset of the
data and label each sample as driving vs. other using the
presence or absence of the mobile phone within the geo-fence
of the iBeacon device in each vehicle. There are 362 unique
vehicle models in the dataset, the top ten occurring vehicles
are displayed in Figure 4.

Our results are presented in Table 4, where we again
see the CNN applied to accelerometer spectrograms are the
highest performing models. As discussed in Section 3, neg-
ative class samples may include data from other vehicles
which likely contributes to the lower overall AUC values.
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Figure 4: Frequency of top ten vehicles in driving detection
dataset.

In practice, low confidence predictions can be supplemented
with user generated labels to remove spurious trips. The
CNN model discussed here is useful for limiting the number
of labels requested from the user and/or incorporating the
labels in an active learning framework.

4.5 Android Prototype

In order to study the real world performance of the model,
the accelerometer spectrogram CNN was also ported to an
Android application. The goal of the app was to perform
predictions on the device itself, so as to limit data, memory
and processing resource usage. A trained driving detection
model, which takes up about 8MB of storage, is packaged
into the app. The app collects accelerometer data for the du-
ration of the window length, generates a spectrogram from
the collected data, and performs driving detection. In order
to support the entire spectrum of devices in the market, the
entire prediction operation runs on the CPU. The average
run time for the spectrogram generation process is about
0.5s and the prediction process takes about 3.5 seconds.

Table 4: Driving detection results

Approach AUC
Baseline 0.67
Accelerometer Spectrogram CNN 0.77
Accelerometer Temporal CNN 0.75
Accelerometer and Gyroscope CNN | 0.77

S. CONCLUSION

We showed how deep learning techniques, in particular
convolutional neural networks, are well suited for mobile
phone based activity and driving detection. With enough
training data, the CNN achieves higher accuracy compared
to commonly used approaches, requires no engineering of
features, and can be implemented efficiently directly on the
mobile phone.

While our focus here was on accelerometer based models
that limit battery drain, accuracy would be improved by
incorporating other data such as GPS. For example, a GPS
based classifier could be combined with the CNN through

an ensemble approach, or additional time series such as GPS
speed could be added as channels in the initial layer of the
network.
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