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Abstract

Communities are adversely affected by heterogeneous social harm events, e.g. crime,

traffic crashes, medical emergencies, drug use. Police, fire, health and social service

departments are tasked with mitigating social harm through various types of inter-

ventions. While social harm indices have been proposed for allocating resources to

spatially fixed hotspots, the risk of social harm events is dynamic and new algorithms

and software systems capable of quickly identifying risks and triggering appropriate

public safety responses are needed. We propose a modulated Hawkes process for this

purpose that offers a flexible approach for both i) incorporating leading indicators for

variance reduction in the case of more rare event categories (e.g. homicide) and ii)

capturing dynamic hotspot formation through self-excitation. We present an efficient

l1-penalized EM algorithm for estimation of the model that simultaneously performs

feature selection for spatial covariates of each incident type. We provide simulation

results using data provided by the Indianapolis Metropolitan Police Department to

illustrate the advantages of the modulated Hawkes process model of social harm over

recently introduced social harm indices and property crime Hawkes processes.
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1 Introduction

Crime is highly concentrated in urban communities and hotspot or “predictive” policing

efforts aim to apply limited resources to high intensity geographic areas and time intervals

to disrupt crime opportunities, leading to aggregate crime rate reductions [4, 19, 22, 30].

A number of algorithmic methods have been proposed for estimating crime hotspot risk

including multivariate models [15,16,16,28,28], kernel density estimation [3,5,9,13,14] and

spatio-temporal point processes [18, 20]. Point processes and density estimation have the

advantage of capturing near-repeat effects and only require event data as input, whereas

multivariate models gain variance reduction through the introduction of spatial covariates.

Field trials of predictive policing using a property crime Hawkes process were conducted

in [19] where patrols directed through the Hawkes process led to statistically significant

crime rate reductions compared to analyst directed patrols [19].

However, police serve other roles in the community beyond crime response and prevention,

including traffic enforcement, EMS response, and more generally dealing with events related

to social harm [21]. Despite these multiple and disparate daily challenges, existing hotspot

and predictive policing algorithms and intervention strategies focus on single or groups of

related sub-categories of social harm events. Scholars have recently called for the next

evolution of hotspots policing to move beyond crime counts in space and time to the more

expansive and hierarchical approach of policing “social harm” [21] [29] [25]. Put simply,

a focus on social harms builds on hotspots policing by applying similar methodological

approaches, but broadens the list of harm incidents to more accurately reflect day-to-day

policing demands (e.g., crime, medical emergencies, vehicle crashes, etc.) while weighting

these various incidents to reflect the degree of severity they may inflict upon society.

Though few studies have empirically explored this notion of policing social harm, pre-

liminary findings suggest the inclusion, and weighting, of various harm incidents holds sub-

2



stantive promise for police practice and intervention. To date, the most common approach

to weighting social harms is to apply sentencing guidelines – often referred to as gravity or

severity scales [21] [29] [25]. This method leverages suggested sentencing lengths to rank

the “harm” of a given offense. For example, a criminal homicide may have a sentencing

guideline of 24 years in prison, armed robbery may elicit a 12-year sentence, and residential

burglary a 6-year sentence. In such a weighting scenario, criminal homicide would be twice as

severe or harmful as armed robbery and four times more harmful than residential burglary.

Weighting by sentencing guidelines can take many forms and the discussion presented here

is limited to the importance of weighting crimes and other incidents by severity. Indeed,

“neither criminology nor the adjacent social sciences have made a serious effort to system-

atically identify, evaluate or compare the harms associated with different crimes” [12] and

that “focusing merely on counts, rather than on the severity or harm of crime is somewhat

crude and imprecise” [29]. In [25] Sherman and his colleagues provide a robust discussion of

varying weighting procedures using sentencing guidelines.

Studies employing this approach have concluded that social harm is variable across police

patrol districts [21] and that a small proportion of crime victims are exposed to greater levels

of social harm [8]. Most closely related to the current study, in [29] Weinborn et al employed

the Cambridge Harm Index (CHI) [25] wherein crimes are weighted by the number of days in

prison for a given offense as outlined in the Home Office Sentencing Guidelines to examine

the spatio-temporal concentration of crime counts versus CHI social harm. Their results

indicated social harm to be three times more concentrated when compared to crime counts

alone across 15 councils in England and Wales during a 12-month period. Interestingly, and

salient to call for scholars to consider a variety of social harms beyond traditional hotspot

policing strategies, the authors observed that only 25% of crime count hotspots overlapped

with social harm locations, or “harmspots”. Thus, while conducting spatiotemporal analyses

of crime counts alone can be insightful for focusing police strategies, it appears prudent to
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account for the severity of harm crime may cause as all crimes are not created equal and more

harmful incidents may display spatiotemporal variation from less harmful events. Moreover,

as harmspots exhibit different spatiotemporal patterns than hotspots, they too may have

different corollary relationships with community structure than do hotspots; thus one focus

of the present study.

The present study further contributes to the social harm policing literature through the

inclusion of multiple harm types that have yet to be examined in a single study. The present

study includes a range of Part 1 and Part 2 criminal offenses as well as vehicle crashes and

drug overdoses – the latter of which is currently regarded as one of the most concerning

social harms to society as drug overdose deaths have more than quadrupled since 1999 [23].

Furthermore, unlike static social harm indices that are fixed for several weeks or months,

our methodology accounts for intraweek and intraday fluctations that exist in social harm

event patterns.

In this work we introduce a modulated Hawkes process for modeling dynamic social harm

hotspots. The model combines several advantageous aspects of both existing multivariate

regression and point process models. In particular, the model is comprised of a background

modulated Poisson process that links spatial covariates (census variables, average crime rate,

etc.) to the risk of each social harm event category. While for high volume event types this

component, which serves to reduce variance, may be un-necessary, for more rare event types

where there may be only O(100) events in a data set this step is necessary. Our estimation

procedure also includes automatic variable selection to prevent over-fitting and determine

important covariates for model explanation. Secondly, the point process approach allows for

the incorporation of self-excitation present in some event categories as well as inter-day and

inter-week fluctuations in the rate of events. Because the output of the modulated Hawkes

process is a conditional intensity each event type, a dynamic social harm index can be easily

defined through calculating the expected cost of a given spatial region and time interval.
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The outline of the paper is as follows. In Section 2, we provide the mathematical de-

tails of the modulated Hawkes process and a l1-penalized Expectation-Maximization (EM)

algorithm for parameter estimation. In Section 3, we give an overview of the data set

used in our study and the methods used to estimate the average societal cost of each event

type. In Section 4, we run several experiments validating the model, including validation

tests on synthetic data and retrospective forecasts using data provided by the Indianapolis

Metropolitan Police Department and Emergency Medical Services. In Section 5, we discuss

the implications of dynamic social harm prediction and future research directions.

2 Modeling and estimation framework

2.1 The modulated Hawkes process

Following [19], we consider a Hawkes process defined on a grid G with conditional intensity

determined by,

λg,m(t) = µg,m +
∑
t>ti
~xi∈g
mi=m

θmωm exp(−ωm(t− ti)). (1)

Here the intensity is defined for each category m of event type and each grid cell g ∈ G,

where mi denotes the category (mark) of event i, ti the time, and ~xi the spatial location.

When viewed as a branching process, the parameter θm determines the expected number

of events triggered by each event and the expected waiting time between a parent-daughter

event pair is given by ω−1m .

To introduce spatial covariates, we define µm as a modulated Poisson process [7, 27],

µg,m = exp(~am · ~zg), (2)

where the background intensity µg,m in grid cell g for event category m is log-linear with
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coefficients ~am for event type m and spatial covariates zg in each grid cell g. Here we use

zipcode level variables provided by the American Community Survey along with the average

historical number of events of each type to serve as a leading indicator. Other variables one

might consider include locations of crime attractors (liquor stores, schools, etc.), locations

of parolees, housing density, satellite imagery and other sensor data.

2.2 l1-penalized Expectation-Maximization

The Model given by Eq. 1 can be viewed as a branching process [20] [26] where events

occur according to a stationary Poisson process µg,m and then each event generates a Poisson

process with intensity θmωm exp(−ωm(t−ti)). Let uij = 1 when event i is the direct offspring

of event j and 0 otherwise and uii = 1 when event i is a “background” or “spontaneous”

event generated by the background Poisson process (and 0 otherwise). Given knowledge of

uij, the estimation problem decouples into several independent Poisson estimation problems.

In particular, the complete data log-likelihood is given by,

L =
M∑

m=1

∑
g∈G

{ ∑
i:~xi∈g
mi=m

uii~am · ~zg −
∫ T

0

exp(~am · ~zg)dt|g|
}
− χm‖~am‖1 + (3)

M∑
m=1

∑
g∈G

{ ∑
ti>tj :
~xi,~xj∈g

mi=mj=m

uij log(θmωm exp(−ωm(ti − tj)))−
∑
i:~xi∈g
mi=m

∫ T

ti

θmωm exp(−ωm(t− ti)dt
}
, (4)

where |g| denotes the area of grid cell g and ‖ · ‖1 denotes the l1 norm that we have added

to enforce sparsity of the spatial covariate coefficients. Given an initial guess for model

parameters, the EM algorithm then proceeds iteratively by alternating between the E-step

of updating the current guess of the branching structure and then the M-step of maximizing

the complete data log likelihood with respect to the model parameters. Given the estimated

branching structure ûij, in the M-step maximization is decoupled for the modulated Poisson
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coefficients and the Hawkes parameters. The Hawkes MLE parameters are determined by

weighted sample means for exponential and Poisson random variables [19]. At each iteration

of the EM algorithm, the l1 maximization problem given by Equation 3 must be solved.

For this purpose we use the FASTA package [11] and select the regularization parameter χm

for each crime type using 10-fold cross validation within the EM algorithm. The branching

structure ûij can be estimated in the E-step using the ratio of the background rate and

triggering kernel components to the overall intensity at each event as is done in [19]. We

have included Matlab code for simulation and estimation of the modulated Hawkes process

on Github [1].

2.3 Adding daily, weekly, and seasonal effects

Let h(ti), d(ti) and s(ti) denote the hour, day of week, and month of event ti respectively.

Assuming separability, we incorporate these time based effects in Equation 1,

Λg,m(t) = fh
m(h(t)) · fd

m(d(t)) · f s
m(s(t)) · λg,m(t), (5)

where fh
m is the hour mass function of events of type m, fd

m is the day of the week mass

function and f s
m is the month of the year mass function. We estimate these functions using

a histogram, where for hour of the day we use 4-hour bins.

2.4 Social harm index and model evaluation

For each event type m we have a secondary mark c(m) representing the average societal cost

of an event of type m. Given this cost mark, we can then define a dynamic social harm index
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SIg(t) in each grid cell g as the expected cost per unit time,

SIg(t) =
M∑

m=1

c(m)Λg,m(t). (6)

The dynamic social harm index can then be used to rank hotspots over a given time interval,

where the top k hotspots are flagged for intervention. Because this type of ranking is common

in hotspot analysis and policing, a popular accuracy metric is the Predictive Accuracy Index

(PAI). The PAI is the percentage of events captured in the top k hotspots divided by the

percentage of city area that the k hotspots comprise. In other words, PAI is area normalized

recall@k. We therefore propose a social harm variant of PAI for assessing social harm indices

that we will refer to as S-PAI,

S-PAI@k =
% societal cost captured in top k hotspots

% city area covered by k hotspots
. (7)

3 Indianapolis Social Harm Data

All crime, drug overdose, and vehicle crash data for years 2012-2013 were provided electron-

ically from the appropriate government agency and included time and data stamp as well as

state-plane coordinates for each incident that were converted to WGS84 coordinates. Crime

data was provided by the Indianapolis Metropolitan Police Department (IMPD), drug over-

dose from the Indianapolis Emergency Medical Services, Department of Public Safety, and

vehicle crash data from the Indiana State Police using the Automated Reporting Informa-

tion Exchange System (ARIES). Indiana motor vehicle collisions have two key characteristics

that are used to determine whether or not an incident requires completion and submission

of an Indiana crash report; if the incident resulted in personal injury or death, or property

damage to an apparent extent greater than $1,000.
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Rather than relying upon sentencing guidelines as a weighting mechanism to determine

social harm, the present study employs monetary cost estimates. This decision was driven

primarily by 1) a lack of variation in Indiana’s sentencing guidelines that are restricted to

four classifications within six larger levels of offenses (as compared to the 415 categories

available used in [29]); and 2) monetary costs reflect tangible measures of harm impact

on society as opposed to the offender alone and demonstrate the potential financial gains

that could be achieved through improved interventions. Social harm weights were derived

from established crime, drug, and vehicle crash cost estimation studies. Costs for homicide,

rape, robbery, aggravated assault, arson, motor vehicle theft, residential burglary, larceny,

embezzlement, forgery, fraud, and vandalism were gleaned from estimates of crime costs to

society [17]. Vehicle crashes resulting from drugs or alcohol, simple assault, and driving while

impaired costs were derived from monetary estimates of crime prevention [6]. Lastly, cost

estimates based on per-incident occurrences in the United States were utilized for suicide

attempts [24], vehicle crashes not related to drugs or alcohol [2], and drug overdoses [10].

Each of these latter three estimates were calculated by dividing the total annual costs for

each incident type by the total number of each incident in a given year. Admittedly, crime

cost estimates are not pristine and assume ubiquitous impact across individuals in a society.

However, the cost estimates leveraged in the present study are validated to the extent they

capture the financial severity of crime and harm costs to society.

In Table 1 we provide summary statistics for Indianapolis social harm including the

volume of incidents over 2012 and 2013, the estimated cost per event to society, and the

total cost over the two year period attributed to each event category. In Indianapolis, the

top three categories in terms of cost to society are simple assault, vehicle crash (no alcohol

influende) and homicide respectively.
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Table 1: Summary statistics for Indianapolis social harm 2012 & 2013

Type Count Cost Per Event Total

Suicide Attempt 134 $5,251.00 $703,634.00
DWI Arrest 3546 $500.00 $1,773,000.00
Forgery 481 $5,265.00 $2,532,465.00
Embezzlement 876 $5,480.00 $4,800,480.00
Arson 723 $16,428.00 $11,877,444.00
Drug Overdose 4112 $3,922.00 $16,127,264.00
Rape 1160 $41,247.00 $47,846,520.00
Vehicle Crash Drugs or Alcohol 1610 $30,000.00 $48,300,000.00
Fraud 11371 $5,032.00 $57,218,872.00
Vandalism 13641 $4,860.00 $66,295,260.00
Motor Vehicle Theft 9081 $10,534.00 $95,659,254.00
Residential Burglary 21468 $6,170.00 $132,457,560.00
Robbery 6386 $21,398.00 $136,647,628.00
Larceny 53241 $3,523.00 $187,568,043.00
Aggravated Assault 11797 $19,537.00 $230,477,989.00
Homicide 220 $1,278,424.00 $281,253,280.00
Vehicle Crash No Influence 40718 $7,864.00 $320,206,352.00
Simple Assault 30802 $11,000.00 $338,822,000.00
Total 211367 $1,980,567,045.00
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4 Results

4.1 Synthetic Data

We first validate the EM algorithm for Equation 1 on simulated data from a modulated

Hawkes process. In particular, we define a 50x50 grid where each cell has 100 covariates

drawn from independent uniform random variables. We also simulate coefficients by setting

half to uniform random numbers between −1 and 1 and half equal to zero. We let θ = .8

and ω = 1 and simulate the process for T = 1000 time units. In Figure 1 we plot parameter

estimates for 100 simulations along with the true parameter values in red. We find good

agreement between the estimated parameters and the true values. On the left we plot the 90%

range for the estimated spatial covariate coefficients. We find the in 90% of the simulations

the coefficients stay within 10% of their true values.
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Figure 1: Parameter estimates for 100 realizations of a modulated Hawkes process with true values
in red. On the left, 90% range for estimated spatial covariate coefficients.

4.2 IMPD Social Harm Data

Next we apply our methodology to Indianapolis social harm data from 2012 and 2013. We

use a 100x100 grid to cover Indianapolis and for spatial covariates we use 46 demographic

and economic population variables from the American Community Survey at the zipcode
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Table 2: Hawkes parameters
type θ ω # non-zero a
DWI Arrest 0.0032 10.0647 19
Drug Overdose 0.0477 0.0452 20
Vandalism 0.0522 0.1652 14
Fraud 0.0369 0.1387 34
Suicide Att 0.0237 12.000 8
Forgery 0.0105 0.5244 16
Embezzlement 0.2253 0.0221 7
Larceny 0.1651 0.074 16
Res Burg 0.0648 0.0988 13
Veh Crash No Inf 0.2018 0.0521 15
MVT 0.0294 0.1237 17
Simple Assault 0.0585 0.0867 12
Arson 0.0267 0.3322 13
Agg Assault 0.0165 0.1574 13
Robbery 0.0377 0.0537 17
Veh Crash Drug/Alc 0.0024 23.999 16
Rape 0.0106 0.0641 24
Homicide 0.0188 1.7143 39

level, along with 18 variables defined as the grid cell crime rate over the first half of 2012

for each of the 18 event categories. The census population variables were whitened to have

mean zero and variance one. We then train the model over the second half of 2012. In Table

2 we list the Hawkes parameter values for each event type along with the number of non-zero

spatial covariate coefficients selected by the l1-penalized EM algorithm.

For each 4-hour interval for each day in 2013, we use the social harm Hawkes intensity

given in Equation 6 to rank the top 100 hotspots (1% of the city) and compute the S-PAI

over 2013. We compare to a social harm index of the form,

SIg =
∑
i∈g

c(mi), (8)

that is the total cost in each cell over 2012, similar to recently introduced social harm indices

that sum prison sentence length. We also compare the Hawkes process model used in [19]
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Table 3: S-PAI comparison

Method S-PAI Std. Error

Soc. Harm Hawkes 12.596 0.514
Property Hawkes 8.308 0.525
Soc. Harm Index 3.685 0.224

trained only on motor vehicle theft and residential burglary event data.

In Table 3 we compare the S-PAI values of the three methods. The static social harm

index is 4x better than random chance at ranking the top 100 hotspots each day, where 4%

of the cost of social harm is captured in 1% of the city each day. However, the property

Hawkes process is significantly better capturing 8% of social harm cost in the same number

of hotspots. The S-PAI for the social harm Hawkes process is over 12, meaning that over

$120 million of the total annual $1billion in social harm cost to Indianapolis can be captured

in 1% of the city.

In Figure 2, we plot an example hotspot map from a day in 2013. We color code each

hotspot by the most frequent event type occurring in the grid cell. Here we see four main

types of hotspots, namely vehicle crash, burglary, larceny, and assault hotspots. Police

interventions would need to be tailored to each event type across these disparate types of

social harm.

We note that while these categories are the most prevalent, all 18 categories are captured

to some degree within the top 100 hotspots. In Figure 3, we plot the number of crimes

captured by each of the three methods disaggregated by event type. As expected, the

property crime Hawkes process captures the most property crime, whereas the social harm

Hawkes process captures significantly more larceny, vehicle crashes, and assaults. Thus there

is a tradeoff when using a social harm based model for hotspot policing.

In Table 4, we display the top three spatial covariates for each event category. Here we

find several patterns that emerge. Vacant housing is a strong indicator for crimes such as
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Figure 2: Example social harm hotspot map for a day in 2013 in Indianapolis. Hotspots are color
coded by the most frequent event type in the cell.

vandalism, arson, and burglary. Vehicle crashes where alcohol is not involved are strongly

correlated with spatial areas where a large number of the population leave to work between

7 and 7:30am. Some unexpected leading indicators also emerge, for example the average

rate of motor vehicle theft in a hotspot is a good predictor for fraud, larceny and simple

assault. These covariates may provide some insight into long-term problem-oriented solutions

to social harm because they are based on census variables reflecting long-term characteristics

of a spatial region of the city.

5 Discussion

We showed how social harm indices may be improved using dynamic point process models

of social harm. Social harm indices suffer from high variance, as high severity / low volume

events may dominate the risk estimate of hotspots where they occur. On the other hand,

single crime type models (or those focusing solely on property or violent crime) fail to prop-

erly weight social harm events by their severity. To address these problems, we introduced a
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Table 4: Top three spatial covariates for each event type

Event type z1 z2 z3

DWI Arrest DWI Arrest White MVT
Drug Overdose Income.10k-15k Drug Overdose White
Vandalism Vacant.Housing MVT Vandalism
Fraud MVT Unemployment.Rate Embezzlement
Suicide Att Simple Assault Mean.Travel.Time.Min Asian
Forgery Forgery MVT Vacant.Housing
Embezzlement Robbery Veh Crash No Inf Leave.to.Work.7.730am
Larceny MVT Res Burg Vandalism
Res Burg Vacant.Housing Res Burg Black
Veh Crash No Inf Leave.to.Work.7.730am MVT DWI Arrest
MVT MVT Res Burg Income.75k-100k
Simple Assault MVT Res Burg Income.150k.200k
Arson Vacant.Housing MVT Res Burg
Agg Assault Income.75k-100k MVT Res Burg
Robbery Robbery Vacant.Housing Income.75k-100k
Veh Crash Drug/Alc White DWI Arrest Veh Crash No Inf
Rape Rape Income.10k-15k MVT
Homicide Income.10k-15k Poverty.Rate Hispanic
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Figure 3: Number of crimes captured by each of the three methods disaggregated by event type.

novel sparse modulated Hawkes process for modeling disparate social harm event categories,

incorporating spatial covariates, near-repeat effects (self-excitation), and periodic trends.

This methodology significantly improves upon existing social harm indices and single crime

type point processes in terms of the S-PAI.

While this methodology shows promise, field trials are needed to assess the efficacy of

such an approach similar to predictive policing trials focusing on property crime [19]. Pre-

dictive policing trials focusing on social harm will present challenges in that a wider range of

interventions will be necessary given the wider range of event types and collaborations with

other city agencies and community stake holders may be necessary. In practice, not all event

categories may be easily prevented by police, for example fraud and embezzlement, as such

events occur largely outside the reach of day-to-day police operations. Crime deterrence is

achieved through an offender’s increased perception of apprehension, thus police presence

and activity. As such, effective deterrence interventions should follow empirical evidence that

suggests a focus on social harm events that occur primarily “on the streets” where police are

most likely to generate crime prevention benefits. Though it has not been empirically tested,
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it may be plausible to assume that increased – or focused – police activity in a high social

harm risk area could translate to crime prevention or displacement of “off the street” events

such as fraud and embezzlement as such offenders may seek offending locations away from

potential police contact. Future research employing an operational social harm experiment

should seek to capture this potential crime prevention benefit.

Future research may also focus on improving dynamic models of social harm. Both

statistical models and machine learning methods may be able to further improve the accuracy

of dynamic social harm indices and should be tested on historical data. Software applications

will also need to be re-envisioned that effectively communicate the information contained

in dynamic social harm indices in near real time to officers in the field. This is especially

true if collaborations with other city agencies are reflected in social harm based predictive

analytics applications. These questions will be addressed in future research.
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