A Model of Competing Narratives*

Kfir Eliaz and Ran Spiegler†

January 3, 2019

Abstract

We formalize the argument that political disagreements can be traced to a “clash of narratives”. Drawing on the “Bayesian Networks” literature, we model a narrative as a causal model that maps actions into consequences, weaving a selection of other random variables into the story. An equilibrium is defined as a probability distribution over narrative-policy pairs that maximize a representative agent’s anticipatory utility - capturing the idea that public opinion favors hopeful narratives. Our equilibrium analysis sheds light on the structure of prevailing narratives, the variables they involve, the policies they sustain and their contribution to political polarization.

*Financial support by ERC Advanced Investigator grant no. 692995 is gratefully acknowledged. We thank Alessandra Cassela, Elhanan Helpman, Ariel Rubinstein, Heidi Thysen, Stephane Wolton, as well as seminar and conference audiences at Bonn, Haifa, Penn, Princeton, Johns Hopkins, Boston College, University, ESSET and CCET for helpful comments.

†Eliaz: School of Economics, Tel-Aviv University and Economics Dept., Columbia University. E-mail: kfire@post.tau.ac.il. Spiegler: School of Economics, Tel-Aviv University and Economics Dept., University College London and CFM. E-mail: rani@post.tau.ac.il.
1 Introduction

The idea that political disagreements can be traced to a “clash of narratives” has become commonplace. According to this view, divergent opinions involve more than heterogeneous preferences or information: they emanate from fundamentally different interpretations of reality that take the form of stories. Consequently, a policy gains in popularity if it can be sustained by an effective narrative; and politicians and public-opinion makers spend considerable energy on trying to shape the popular narratives that surround policy debates.

There are countless expressions of this idea in popular and academic discourse. For instance, a recent profile of a former aide of President Obama begins with the words “Barack Obama was a writer before he became a politician, and he saw his Presidency as a struggle over narrative”.\footnote{See https://www.newyorker.com/magazine/2018/06/18/witnessing-the-obama-presidency-from-start-to-finish.} Likewise, two public policy professors write in an LSE blog that “there can be little doubt then that people think narratives are important and that crafting, manipulating, or influencing them likely shapes public policy”. They add that narratives simplify complex policy issues “by telling a story that includes assertions about what causes what, who the victims are, who is causing the harm, and what should be done”\footnote{See http://blogs.lse.ac.uk/impactofsocialsciences/2018/07/18/mastering-the-art-of-the-narrative-using-stories-to-shape-public-policy/.}.

In this paper we offer a formalization of the idea that battles over public opinion involve competing narratives. Of course, the term “narrative” is vague and any formalization inevitably leaves many of its aspects outside the scope of investigation. Our model is based on the idea that in the context of public-policy debates, narratives can be regarded as causal models that map actions to consequences. Following the literature on probabilistic graphical models in Statistics, Artificial Intelligence and Psychology (Cowell et al. (1999), Sloman (2005), Pearl (2009)), we represent such causal models by directed acyclic graphs (DAGs).

In our model, what defines a narrative is the variables it incorporates
and the way these are arranged in the causal mapping from actions to consequences. For instance, consider a debate over US trade policy and its possible implications for employment in the local manufacturing sector. Suppose that the public has homogenous preferences over actions and consequences; disagreements only arise from different beliefs. The DAG

$$\text{trade policy} \rightarrow \text{imports from China} \rightarrow \text{employment} \quad (1)$$

represents a narrative that weaves a third variable (imports from China) into a causal story about the consequences of trade policy for employment.

The nodes in the DAG represent variables (not the values they can take), and the links represent perceived direct causal effects (but not the sign or magnitude of these effects). The variables are coarse-grained, such that the narrative does not describe an individual historical episode. Instead, it addresses numerous historical episodes, alerting the public’s attention to long-run correlations between adjacent variables along the causal chain and inviting them to impose a causal interpretation on these correlations.

We refer to the narrative represented by (1) as a “lever narrative” because it regards imports from China as a “lever” (or a mediator, to use statisticians’ jargon) - i.e., an endogenous variable that is influenced by policy and in turn influences the target variable. Intuitively, this narrative supports a protectionist policy: imports from China are negatively correlated with both protectionism and employment in the local manufacturing sector, and it is natural to interpret these correlations in terms of the causal chain (1). But while the support is intuitive, it is illusory if the narrative is false - e.g. if the actual correlation between imports from China and employment is due to the confounding effect of exogenous technological change.

The following is another example of a lever narrative in the context of a foreign policy debate. The policy question is whether to impose economic sanctions on a rival country with a hostile regime. The public considers destabilizing the regime a desirable outcome. A lever narrative that intuitively
gives support to a hawkish policy is

sanction policy \rightarrow economic situation in rival country \rightarrow regime stability

The following is a lever narrative that involves a different “lever”:

sanction policy \rightarrow nationalism in rival country \rightarrow regime stability

This narrative intuitively supports a *dovish* policy to the extent that nationalistic sentiments in the rival country are positively correlated with the stability of its regime and ameliorated by a soft stance on sanctions.

Thus, two narratives may have the same “lever” structure but differ in the selection of variables that function as “levers”, and consequently in the policies they support. Likewise, the same variable can be assigned different roles in the causal scheme. For instance, the following is a foreign-policy narrative that treats nationalism as an *exogenous* variable:

sanction policy \rightarrow regime stability \leftarrow nationalism in rival country

We refer to a narrative with this structure as a “threat/opportunity narrative”, because it regards the third variable that it weaves into the story as an external variable that the policy responds to rather than influences it. In the context of our foreign-policy example, this narrative intuitively favors a hawkish policy because it regards the prospect of waning nationalism in the rival country as an opportunity for toppling its regime, which tough sanction policy can exploit.

Thus, foreign-policy narratives can differ in the variables they weave into the story or in the role that these variables play in the causal mapping from actions to consequences. This is akin to a dramatist’s decision as to which events to include as ingredients in a story and how to construct a plot around them. Different narratives can generate different beliefs regarding the mapping from actions to consequences - and therefore lend support to different policies - because they alert the audience’s attention to correlations between different sets of variables and manipulate the causal interpretation of these
correlations. A public-opinion maker who wishes to promote a particular policy will therefore devise a narrative that “sells” it most effectively.

Our objective is to define a notion of equilibrium in public-policy debates, in which narrative-policy pairs vie for dominance in public opinion. When the public adopts a narrative, we assume - following Spiegler (2016) - that it constructs a belief over the narrative’s variables, by factorizing their objective joint distribution according to the Bayesian-Network factorization formula. The public then relies on this belief to evaluate policies. The factorization captures the notion of fitting the causal model to objective data. A wrong causal model can induce a distorted belief regarding the mapping from actions to consequences.

Given that different narratives may induce different beliefs about the effectiveness of policies, a natural question arises: How does the public respond when confronted with competing narratives and policies? We assume that the public selects between narrative-policy pairs “hedonically” - i.e., according to the indirect anticipatory utility that each one of them generates. We find it particularly natural to assume that in public-policy debates, people are drawn to hopeful narratives. By “hopeful”, we do not mean that the narratives portray a rosy picture of reality, but rather that they offer “hope for a better future” if a particular policy is implemented. Precisely because individuals have little influence over public policy, they incur negligible decision costs when indulging in hopeful fantasies. It is therefore realistic to assume that anticipatory feelings are a powerful driving force behind political positions.

We define an equilibrium as a long-run distribution over narrative-policy pairs, such that every element in the support maximizes a representative agent’s anticipatory utility. We refer to this concept as “equilibrium” rather than mere optimization because the action frequencies that are induced by a given distribution over narrative-policy pairs affects the belief (and hence the anticipatory utility) that each narrative generates. This feedback effect is fundamental to the idea of beliefs that result from fitting a wrong causal model to objective long-run data (see Spiegler (2016)), and it is what creates the need for an equilibrium approach to the notion of prevalent narratives.
We employ our equilibrium concept to explore several questions: Which narratives are attached to various policies - that is, what is their causal structure and what kind of variables do they involve? Can we account for divergent popular policies by the notion of competing narratives? Are swings between conflicting dominant narratives fundamental to battles over public opinion? The results we present demonstrate the formalism’s potential to shed light on the role of narratives in political debates and public policy.

Related literature

The idea that people think about empirical regularities in terms of “causal stories” that can be represented by DAGs has been embraced by psychologists of causal reasoning (e.g. Sloman (2005), Sloman and Lagnado (2015)). Spiegler (2016) adopted this idea as a basis for a model of decisions under causal misperceptions, in which the decision maker forms a subjective belief by fitting a subjective causal model to objective long-run data. This continues to be a building block of the model in this paper, which goes beyond it in two major directions. First, the collection of variables that can appear in a causal model of a given size is not fixed but selected endogenously. Second, we assume “hedonic” selection between competing causal models.

We are aware of at least three papers in economics that draw attention to the role of narratives in economic contexts. Given that the term “narrative” has such a loose meaning, it should come as no surprise that it has received very different formalizations. Shiller (2017) does not provide an explicit model of what a narrative is. Instead, he regards certain terms and expressions that appear in popular discourse as indications of specific narratives and proposes to use epidemiological models to study their spread. Benabou et al. (2016) focus on moral decision making and formalize narratives as messages or signals that can affect decision makers’ beliefs regarding the externality of their actions. Levy and Razin (2018) use the term “narrative” to describe information structures in game-theoretic settings that people postulate to explain observed behavior.

The idea that people adopt distorted beliefs to enhance their anticipatory utility has several precedents in the economics literature (Akerlof and Dickens 1982), Benabou and Tirole (2002,2016), Brunnermeier and Parker
Relative to this literature, the key innovation here is that the object of agents’ choice is not beliefs but (causal) models: beliefs emerge as a consequence of fitting the model to historical data. This feature constrains agents’ ability to delude themselves and leads to novel equilibrium effects. Recently, Montiel Olea et al. (2018) studied “competing models” in a different context of experts who compete for the right to make predictions. Each expert believes in a linear regression model that differs in the set of variables it admits. Winning models thus maximize the indirect expected utility they induce when estimated against a random sample.

Finally, our paper joins a handful of works in so-called “behavioral political economics” that study voters’ belief formation according to misspecified subjective models or wrong causal attribution rules - e.g., Spiegler (2013), Esponda and Pouzo (2017).

2 The Model

Let $X = X_1 \times \cdots \times X_m$, where $m > 2$ and $X_i = \{0, 1\}$ for each $i = 1, \ldots, m$. For every $N \subseteq \{1, \ldots, m\}$, denote $X_N = \times_{i \in N} X_i$. For any $x \in X$, the components x_1 and x_m - also denoted a and y - are referred to as an action and a consequence. Let $p \in \Delta(X)$ be an objective probability distribution that satisfies the following properties. First, $p(a = 1) = \alpha$, interpreted as a historical action frequency, to be endogenized below. Second, $p(y = 1) = \mu \in (0, 1)$, independently of a. This means in particular that actions have no causal effects on consequences. Finally, the conditional distribution $(p(\cdot | a, y))$ over the variables x_2, \ldots, x_{m-1} has full support for every a, y.

A directed acyclic graph (DAG) is a pair (N, R), where $N \subseteq \{1, \ldots, m\}$ is a set of nodes and $R \subseteq N \times N$ is a set of directed links. Acyclicity means that the graph contains no directed path from a node to itself. We use iRj or $i \rightarrow j$ to denote a directed link from the node i into the node j. Abusing notation, let $R(i) = \{j \in N \mid jRi\}$ be the set of “parents” of node i. We will often suppress N in the notation of a DAG and identify it with R. Following Pearl (2009), we interpret a DAG as a causal model, where the link $i \rightarrow j$ means that x_i is perceived as an immediate cause of x_j. Directedness and
acyclicity of R are consistent with basic intuitions regarding causality. The causal model is agnostic about the sign or magnitude of causal effects.

Let \mathcal{R} be a collection of DAGs (N, R) satisfying the following restrictions. First, $\{1, n\} \subseteq N$. Second, $|N| \leq n$, where $n \in \{2, ..., m\}$ is an exogenously given constant. Finally, there is no directed path from n to 1 - i.e., the consequence variable is not perceived as a (possibly indirect) cause of the action. (In the DAGs that appear in all the examples we will examine, 1 is an ancestral node (i.e., $R(1) = \emptyset$) and n is the unique terminal node (i.e., $n \notin R(i)$ for every $i \in N$ and there is no other node with this property). However, these properties are not necessary for our general analysis in Section 4.) We refer to an element in \mathcal{R} as a narrative.

From narratives to beliefs

Given an objective distribution p, the narrative $R \in \mathcal{R}$ induces a subjective belief over $\Delta(X_N)$, defined as follows:

$$p_R(x_N) = \prod_{i \in N} p(x_i \mid x_{R(i)})$$

(2)

The full-support assumption ensures that all the terms in this factorization formula are well-defined.

The conditional distribution of x_m given x_1 induced by p_R is computed in the usual way. It has a simple expression when 1 is an ancestral node:

$$p_R(x_m \mid x_1) = \sum_{x_{N-\{1,m\}}} \left(\prod_{i \in N-\{1\}} p(x_i \mid x_{R(i)}) \right)$$

(3)

For illustration, when $n = m = 4$ and the DAG is $R : 1 \rightarrow 3 \rightarrow 4 \leftarrow 2$, the narrative (p, R) induces

$$p_R(x_1, x_2, x_3, x_4) = p(x_1)p(x_2)p(x_3 \mid x_1)p(x_4 \mid x_2, x_3)$$

and

$$p_R(x_4 \mid x_1) = \sum_{x_2, x_3} p(x_2)p(x_3 \mid x_1)p(x_4 \mid x_2, x_3)$$
The interpretation of this belief formation process is as follows. A narrative R selects up to $n - 2$ variables (other than the action and the consequence) and incorporates them into a causal story. This is akin to a novelist who conjures up a collection of events, and then organizes their unfolding according to a plot. The narrative generates a subjective belief regarding the mapping from actions to consequences, by alerting the audience’s attention to particular correlations - those that the causal model deems relevant - and combining them according to the causal relations the model postulates. The correlations themselves are accurate - i.e., each of the terms in the factorization formula (2) is extracted from the objective distribution p. However, the way they are combined may lead to distorted belief, such that $p_R(y = 1 | a) \neq \mu$ for some a.

Policies and anticipatory utility

Let $D = [\varepsilon, 1 - \varepsilon]$, where $\varepsilon > 0$ is arbitrarily small. A policy $d \in D$ is a proposed frequency of playing the action $a = 1$. We define a policy as a continuous variable rather than identifying it with the binary action a to prevent certain interesting effects from being obscured or trivialized.

A representative agent has a utility function $u(y, d) = y - C(d - d^*)$, where $d^* \in D$ is the agent’s ideal policy, and C is a symmetric, convex cost function that satisfies $C(0) = C'(0) = 0$. Thus, $y = 1$ is the agent’s desirable outcome, and the function C represents the intrinsic disutility he experiences when deviating from his ideal policy. If the agent had rational expectations, he would realize that y is independent of a and find no reason to deviate from d^*.

Given p, a narrative-policy pair (R, d) induces the following gross anticipatory utility:

$$V(R, d | \alpha) = d \cdot p_R(y = 1 | a = 1) + (1 - d) \cdot p_R(y = 1 | a = 0) \quad (4)$$

This is simply the subjective probability of a good outcome $y = 1$ under the policy d that is induced by p_R. The notation $V(R, d | \alpha)$ highlights that α is an endogenous aspect of p (whereas $(p(x_2, ..., x_m | x_1))$ is exogenous and fixed). It also reflects the crucial feature that a change in α (namely the
marginal of p over a) can alter $p_R(y \mid a)$, and therefore the gross anticipatory utility induced by (R,d). In Section 3, we will see this effect in action. This effect would be impossible under rational expectations: By definition, $p(y = 1 \mid a = 1)$ is invariant to α. The agent’s net anticipatory utility from the narrative-policy pair (R,d) given p is

$$U(R, d \mid \alpha) = V(R, d \mid \alpha) - C(d - d^*)$$

Equilibrium
The exogenous components of the model are the conditional distribution $(p(x_2, ..., x_m \mid a))$ (which satisfies in particular that $p(y = 1 \mid a) = \mu$ for all a), the set of feasible narratives \mathcal{R} and the cost function C. We are now ready to define our notion of equilibrium, which endogenizes α.

Definition 1 An action frequency $\alpha \in [0,1]$ and a probability distribution σ over narrative-policy pairs (R,d) constitute an equilibrium if two conditions hold:

$$\text{Supp}(\sigma) \subseteq \arg \max_{(R,d) \in \mathcal{R} \times D} U(R, d \mid \alpha)$$

and

$$\alpha = \sum_{(R,d)} \sigma(R,d) \cdot d$$

This concept captures a steady state in the battle over public opinion. The first condition requires that prevailing narrative-policy pairs are those that maximize the representative agent’s net anticipatory utility, given the historical action frequency. Thus, public opinion’s criterion for selecting between competing narrative-policy pairs is net anticipatory utility - in other words, it chooses the narrative it prefers to believe in. This captures the idea that voters do not adjudicate between narratives using “scientific” methods; rather, they are attracted to narratives with a hopeful message. The second condition requires the historical action frequency to be consistent with the marginal steady-state distribution over policies. The lower and upper limits on d are thus introduced in order to ensure that α is interior.
We offer two interpretations of the distribution σ. A static, “cross-section” interpretation is that σ describes the relative popularity of various narrative-policy pairs. The actual policy α is a popularity-weighted average of the various policies. An alternative interpretation is “ergodic”. At any point in time, a particular policy rises to dominance because its pairing with a particular narrative maximizes the public’s anticipatory payoff. Over time, as the long-run action frequency gravitates toward the dominant policy, the anticipatory payoff induced by various narrative-policy pairs can change. As a result, a different narrative-policy pair can become dominant. The distribution σ is the average action frequency that results from the periodic swings between dominant narrative-policy pairs. As in the case of conventional solution concepts like Nash or competitive equilibrium, this interpretation raises the question of whether it could be backed by an explicit dynamic mechanism. We will return to this question in the sequel.

Proposition 1 An equilibrium exists.

Our next basic observation provides a simple rational-expectations benchmark. Suppose that R consists of a single narrative $R : a \rightarrow y$. Then, $p_R(y \mid a) \equiv p(\mu \mid a)$ - i.e. the agent has rational expectations. In this case, $V(R, d \mid \alpha) = \mu$ for every α, d, such that deviating from the ideal policy d^* does not produce any kick to the agent’s anticipatory utility. Therefore, there is a unique equilibrium (α, σ), in which σ assigns probability one to d^* such that $\alpha = d^*$. In the next section, we will begin to see departures from this sharp benchmark when other narratives are admitted.

3 An Example: Foreign-Policy Narratives

Let $m = n = 3$, $\mu = d^* = \frac{1}{2}$ and $C(\Delta) = k \Delta^2$, where $k > \frac{\sqrt{k}}{4}$. Take ε (in the definition of D) to be vanishingly small. Suppose that the objective distribution p satisfies

$$p(x_2 = 1 \mid a, y) \approx a(1 - y)$$

(6)
The approximate equality is due to an arbitrarily small perturbation of the exact specification $x_2 = a(1 - y)$, in order to ensure that p has full support. The set \mathcal{R} consists of all DAGs with two or three nodes in which a is represented by an ancestral node.

Interpret the three variables as follows. The action a represents foreign policy toward a rival country having a hostile regime, where $a = 1$ (0) denotes hawkish (dovish) policy. The consequence y represents the stability of that regime, where $y = 1$ (0) indicates regime change (regime stability). Finally, the variable x_2 represents nationalistic attitudes in the rival country’s population, where $x_2 = 1$ (0) indicates that these attitudes are strong (weak).

The distribution p satisfies the following properties. First, foreign policy has no causal effect on the stability of the rival country’s regime. Second, hawkish (dovish) policy tends to strengthen (weaken) nationalism in the rival country. Finally, nationalism and regime stability are positively correlated. In particular, regime change can only happen when nationalistic attitudes are weak. Yet, this correlation is not causal; rather, it is due to confounding by exogenous variables that are excluded from the causal models our narrators employ (e.g. changes in culture or communication technologies).

Claim 1 There exists a unique equilibrium (α, σ), where $\alpha \approx 2 - \sqrt{2}$ and $\text{Supp}(\sigma)$ consists of two narrative-policy pairs: (i) a lever narrative $\mathcal{R}^l: a \rightarrow x_2 \rightarrow y$ coupled with a dovish policy $d^l \approx \frac{1}{2} - \frac{\sqrt{2}}{8k}$, and (ii) an opportunity narrative $\mathcal{R}^o: a \rightarrow y \leftarrow x_2$, coupled with a hawkish policy $d^l \approx \frac{1}{2} + \frac{\sqrt{2}}{8k}$.

Proof. For the sake of the calculations in this proof, we treat the approximate-equality definition of $p(x_2 \mid a, y)$ as if the equality were exact. We will also suppose that the equilibrium policies are interior and given by first-order conditions. We will later verify that the equilibrium is unique.

Consider the opportunity DAG \mathcal{R}^o. By (3), we have

$$p_{\mathcal{R}^o}(y = 1 \mid a) = \sum_{x_2 = 0, 1} p(x_2)p(y = 1 \mid a, x_2)$$
We can calculate these terms under the specification (6) and the assumption that $\mu = \frac{1}{2}$, and obtain

\[
p_{R^e}(y = 1 \mid a = 0) = \frac{2 - \alpha}{4}
\]

\[
p_{R^e}(y = 1 \mid a = 1) = \frac{2 - \alpha}{2}
\]

such that

\[U(R^e, d \mid \alpha) = d \cdot \frac{2 - \alpha}{2} + (1 - d) \cdot \frac{2 - \alpha}{4} - k(d - \frac{1}{2})^2 \] (7)

Therefore,

\[\frac{\partial U(R^e, d \mid \alpha)}{\partial d} = \frac{2 - \alpha}{4} - 2k(d - \frac{1}{2}) \] (8)

Because this derivative is strictly positive at $d \leq \frac{1}{2}$ and strictly decreasing in $d > \frac{1}{2}$, there is a unique policy $d^o > \frac{1}{2}$ that maximizes $U(R^e, d \mid \alpha)$.

Now consider the lever DAG R^l. By (3), we have

\[p_{R^l}(y = 1 \mid a) = \sum_{x_2=0,1} p(x_2 \mid a)p(y = 1 \mid x_2) \] (9)

We can calculate these terms under the specification (6) and the assumption that $\mu = \frac{1}{2}$, and obtain

\[
p_{R^l}(y = 1 \mid a = 0) = \frac{1}{2 - \alpha}
\]

\[
p_{R^l}(y = 1 \mid a = 1) = \frac{1}{2(2 - \alpha)}
\]

such that

\[U(R^l, d \mid \alpha) = d \cdot \frac{1}{2(2 - \alpha)} + (1 - d) \cdot \frac{1}{2 - \alpha} - k(d - \frac{1}{2})^2 \] (10)

Therefore,

\[\frac{\partial U(R^l, d \mid \alpha)}{\partial d} = -\frac{1}{2(2 - \alpha)} - 2k(d - \frac{1}{2}) \] (11)

Because this derivative is strictly negative at $d \geq \frac{1}{2}$ and strictly decreasing in
$d > \frac{1}{2}$, there is a unique policy $d^l < \frac{1}{2}$ that maximizes $U(R^l, d \mid \alpha)$. It follows that $Supp(\sigma)$ must be some weak subset of $\{(R^o, d^o), (R^l, d^l)\}$.

Let us first suppose that $Supp(\sigma)$ coincides with this set and that d^o and d^l are given by first-order conditions. Then,

$$\frac{\partial U(R^o, d \mid \alpha)}{\partial d} \bigg|_{d=d^o} = \frac{\partial U(R^l, d \mid \alpha)}{\partial d} \bigg|_{d=d^l} = 0$$

(12)

(13)

By plugging (7)-(11) into the above equations, we can verify that they are satisfied at the values for (d^o, d^l, α) that are given in the statement of the claim. The assumption on k ensures that the solution is well-defined. The exact weights that σ assigns to the two points in the support can be extracted from the condition $\alpha = \sum_{(s,d)} \sigma(s, d) \cdot d$.

To verify uniqueness, consider first equilibria in which $Supp(\sigma)$ has two elements. Note that $U(R^o, d^o \mid \alpha)$ monotonically decreases with α, while $U(R^l, d^l \mid \alpha)$ monotonically increases with α. This means that for a given (d^o, d^l), there is a unique α that solves equation (12). Given α, equations (12)-(13) are linear in (d^o, d^l) and hence, have a unique solution. It follows that there is a unique triplet (d^o, d^l, α) that solves (12)-(13). Now suppose that $Supp(\sigma)$ consists of a single point (R^l, d) ((R^o, d)) only. Then, $\alpha = d$. In this case, a simple calculation establishes that the narrative-policy pair $(R^o, 1-d)$ ($(R^l, 1-d)$) delivers a higher net anticipatory utility, a contradiction.

This example has a number of noteworthy features.

Coupling of narratives and policies

Although x_2 is the only variable (other than a and y) that narrators can incorporate into their stories in this example, its location in the narrative’s causal scheme turns out to depend on the policy the narrative is meant to sustain. To sustain a hawkish policy $d > d^*$, the narrative treats the variable x_2 as an exogenous opportunity. In contrast, to sustain a dovish policy $d < d^*$, the narrative treats the variable x_2 as a lever.

The reason that the lever narrative promotes dovish policies is that according to p, a and x_2 are positively correlated, whereas x_2 and y are neg-
atively correlated. The lever narrative puts these correlations together as if they reflected a causal chain $a \rightarrow x_2 \rightarrow y$. As a result, $p_{R'}$ predicts a negative indirect causal effect of a on y.

The intuition for why the opportunity narrative is coupled with a hawkish policy is more intricate. The conditional belief $p_{R^o}(y = 1 \mid a)$ is given by (9). Because $x_2 = a(1 - y)$ with near certainty, $p_{R^o}(y = 1 \mid a = 1)$ is approximately $p(x_2 = 0)p(y = 1 \mid a = 1, x_2 = 0)$. The event $a = 1, x_2 = 0$ that the second term conditions on is relatively rare: $p(a = 1, x_2 = 0) \approx \alpha \mu = \alpha/2 < 1/2$. Yet the rarity is unaccounted for by p_{R^o}, which sums over x_2 without conditioning on a. Furthermore, $p(x_2 = 0) = \alpha \mu + 1 - \alpha > 1/2$. At the same time, $p(y = 1 \mid a = 1, x_2 = 0) \approx 1$ - conditional on the combination of hawkish policy and weak nationalism, the regime is almost surely unstable.

In reality, this strong correlation is not causal, yet the opportunity narrative interprets it as if it were causal. Thus, the opportunity narrative uses weak nationalistic attitudes ($x_2 = 0$) to endorse a hawkish action ($a = 1$), even though in actuality, nationalistic attitudes are weak in periods where the action is dovish. The combination of these two effects leads to an exaggerated belief in the probability of $y = 1$ conditional on $a = 1$.

Equilibrium polarization

The marginal equilibrium distribution over policies assigns weight to two policies: one on each side of the agent’s ideal point. This effect can be interpreted in terms of cross-sectional political polarization: At any moment in time, there are two narrative-policy pairs that dominate public opinion. It also has an “ergodic” interpretation: Different narrative-policy pairs rise to dominance at different points in time, and the distribution σ captures the long-run frequency with which each of them is dominant.

The latter interpretation can be substantiated by an explicit dynamic-stability argument, thanks to a “diminishing returns” property of the two narratives: their ability to deceive the agent about the effect of a on y decreases with the historical frequency of the action they support. Suppose that we perturb α above its equilibrium level. Then, the lever narrative (coupled with a policy near d_l) becomes more appealing than the opportunity narrative, and therefore the prevailing policy will be dovish for some time. This
will move α back toward its equilibrium level. A similar argument applies to downward perturbation of α.

Mutual narrative refutation

In our model, the representative agent does not reason “scientifically” about conflicting narratives. Rather than actively seeking data about $p(y \mid a)$ in order to test the contending narratives, he allows “narrators” to determine the data he pays attention to. Thus, the lever narrative calls his attention to the conditional probabilities $p(x_2 \mid a)$ and $p(y \mid x_2)$, whereas the opportunity narrative calls his attention to the marginal probabilities $p(x_2)$ and the conditional probabilities $p(y \mid a, x_2)$. When evaluating a given narrative (p, R), the agent only considers the data that the narrative calls attention to and uses it to evaluate the narrative’s anticipatory value, via the factorization formula p_R. This is analogous to how decision makers evaluate belief-action pairs in Brunnermeier and Parker’s (2005) “optimal expectations” model.

If our agent were somewhat less passive in his approach to data, he could notice that the data that one narrative employs actually refutes the other narrative. The data $p(y \mid a, x_2)$ referred to by the opportunity narrative demonstrates that unlike what the lever narrative assumes, y and a are not independent conditional on x_2. Conversely, the data $p(x_2 \mid a)$ referred to by the lever narrative demonstrates that unlike what the opportunity narrative assumes, x_2 and a are not independent. But how would the agent respond to this observation? A critical reaction would be to distrust all narratives and develop a more “scientific” belief-formation method. However, an equally natural reaction would be to conclude that “all narratives are wrong” and stick to the one that makes the agent feel more hopeful about the future - especially in the political context, where the agent has virtually no “skin in the game”.

Finally, note that this scenario would not arise in a modified version of our example, in which there are two distinct variables with the same conditional distribution. In this case, the two conflicting narratives could invoke different variables, such that the above mutual refutation would be infeasible.

Hawkish bias and distortion of the status quo
For a given absolute policy distance from the ideal point $d^* = \frac{1}{2}$, the opportunity narrative leads to a higher anticipatory utility than the lever narrative. As a result, the average equilibrium policy lands on the hawkish side (even though d^o and d^l are equally far from the ideal point) - i.e., $\alpha > \frac{1}{2}$.

The fundamental reason behind this effect is that given p, the lever narrative has the property that $V(R^l, \alpha \mid \alpha) = \mu$, whereas the opportunity narrative satisfies $V(R^o, \alpha \mid \alpha) > \mu$. In other words, while the lever narrative exaggerates the probability of $y = 1$ under a counterfactual dovish movement away from the steady-state policy, it does not distort the consequences of a policy that adheres to the status quo. In contrast, the opportunity narrative also distorts the status-quo.

This ability to spin tales not just about counterfactual events but also about the status quo gives the opportunity narrative an advantage over the lever narrative. A plausible criterion for refining our notion of equilibrium is to rule out such distortions of the status quo because the public is less likely to fall for a narrative that misrepresents the status quo. Our analysis in the next section will introduce such a restriction. In the current example, it rules out the opportunity narrative. The following result summarizes the effect of this restriction on the equilibrium analysis.

Claim 2 Suppose that R includes all the DAGs in the original specification except $a \to y \to x_2$. Then, there exists an essentially unique equilibrium (α, σ), where $\alpha \approx \frac{3}{4} - \frac{1}{4}\sqrt{9 + \frac{2}{k}}$, and $\text{Supp}(\sigma)$ consists of the following narrative-policy pairs: (i) a lever narrative $R^l : a \to x_2 \to y$ coupled with a dovish policy $d^l \approx 2 - \frac{1}{2}\sqrt{9 + \frac{2}{k}}$, and (ii) any distribution over the remaining DAGs in R coupled with the policy d^o. The proof follows the same outline as in the previous claim, except that the policy d^* coupled with any DAG that induces rational expectations (e.g. $a \to y$) replaces (R^o, d^o). Thus, when the opportunity narrative is ruled out, the equilibrium exhibits a dovish bias, mixing between the rational-expectations policy d^* and a dovish policy that is sustained by the lever narrative.
4 Analysis

Toward the end of the previous section, we pointed out that while narratives distort the effect of a on y, a plausible restriction is that this distortion only involves counterfactual deviations from the steady-state policy. It is one thing to stoke illusions about the consequences of counterfactual policies, and quite another to present a wrong picture about the consequences of actual policies, because the latter is relatively easy to check against the long-run observation of $p(y)$. Hence, it seems sensible to restrict attention to narratives that do not distort beliefs about the effectiveness of the status-quo policy. In this section, we implement this desideratum by restricting the set of feasible DAGs \mathcal{R}.

Definition 2 (Perfect DAGs) A DAG (N, R) is perfect if whenever $i \mathcal{R} k$ and $j \mathcal{R} k$ for some $i, j, k \in N$, it is the case that $i \mathcal{R} j$ or $j \mathcal{R} i$.

Thus, in a causal model that is represented by a perfect DAG, if two variables are perceived as direct causes of a third variable, then there must be a perceived direct causal link between them. Equivalently, for every $i \in N$, the nodes in $R(i)$ are fully connected. E.g., $1 \rightarrow 2 \rightarrow 3$ is perfect, and so is the more elaborate DAG:

$$
\begin{array}{cccc}
1 & \rightarrow & 2 & \rightarrow \\
\downarrow & \downarrow & \downarrow & \downarrow \\
3 & \rightarrow & 5 & \\
\end{array}
$$

In contrast, the DAG $1 \rightarrow 3 \leftarrow 2$ is imperfect because $1 \mathcal{R} 3$ and $2 \mathcal{R} 3$, yet there is no direct link between 1 and 2.

Perfection is a familiar property in the Bayesian Networks literature. In our context, the crucial properties of perfect DAGs are the following:

- **Correct marginals.** Let (N, R) be a perfect DAG. Then, $p_{R}(x_{i}) = p(x_{i})$ for every $i \in N$. That is, the subjective distribution induced by the DAG does not distort the objective marginal distribution over individual variables.

- **No status-quo distortion** (NSQD). Let (N, R) be a perfect DAG. Then, $V(R, \alpha | \alpha) = \mu$. That is, the DAG never distorts the consequences of following a pol-
icy that coincides with the historical action frequencies.

Indeed, Spiegler (2017, 2018) shows that the class of perfect DAGs is the largest that satisfies these properties for all objective distributions. This observation can be extended: For a generic p, imperfect DAGs will violate both properties. Thus, the significance of the restriction to perfect DAGs is that it is necessary for the NSQD property, given a generic distribution p. Throughout this section, we assume that \mathcal{R} is the set of all perfect DAGs having up to n nodes.

Another concept that will serve us in this section is richness. Fix $2 < n < m$. Let Q^* be the set of all conditional distributions that assign an element in $\Delta(\{0, 1\})^{n-2}$ to every element in $\{0, 1\}^2$. I.e., Q^* is the set of all potential distributions over the auxiliary variables $(x_2, ..., x_{n-1})$, conditional on the realizations of the action and outcome (x_1, x_m). However, not every potential distribution is consistent with the true objective distribution p over $(x_1, ..., x_m)$. Now fix p. Let \mathcal{M} be the set of subsets $M \subset \{2, ..., m-1\}$ such that $|M| = n - 2$. For every $M \in \mathcal{M}$, let q^M be the conditional distribution $(p(x_M | x_1, x_m))$. Denote $Q = \{q^M\}_{M \in \mathcal{M}}$. That is, Q is the set of conditional distributions over $n - 2$ variables that can be implemented (given the true p) by selecting $n - 2$ variables from the collection $x_2, ..., x_{m-1}$.

Definition 3 (Richness) An objective distribution p is rich if for every conditional distribution in Q^*, there is an arbitrarily close distribution in Q.

Richness is a plausible property only when $m \gg n$. In this parameter regime, there is an “ocean” of variables that narrators can incorporate into their stories. A narrative employs up to $n - 2$ variables (in addition to the action and the consequence). When m is much larger than n, there are many collections of $n - 2$ variables that the narrator can select. Every such collection has a characteristic conditional distribution. Richness means that every possible conditional distribution in Q^* can be approximately implemented by a suitable selection of $n - 2$ variables. The precise notion of “closeness” in the definition is not crucial (e.g. Euclidean or Hausdorff distance).
4.1 Linear Narratives

In this sub-section we investigate the structure of narratives. Specifically, we focus on the notion of linear DAGs.

Definition 4 A DAG \((N, R)\) is linear if 1 is the unique ancestral node, \(n\) is the unique terminal node, and \(R(i)\) is a singleton for every non-ancestral node.

A linear DAG is thus a causal chain \(1 \to \cdots \to m\). Every linear DAG is perfect because by definition, no node in a linear DAG has more than one parent. Linear DAGs capture the simplest form of narrative. They consist of a single causal chain and correspond to the notion of stories as “one thing after another”. In addition, they are simple in the sense that they only call attention to correlations between pairs of variables (this property characterizes any causal tree - indeed, linear DAGs are degenerate trees with a single terminal node). Relatedly, an \(n\)-node linear DAG has the fewest links among all connected \(n\)-node perfect DAGs.

The simplicity and intuitive appeal of linear DAGs raises the question of whether there is some loss of generality in restricting attention to them. Formally, we pose the following question. Consider a non-linear perfect DAG \(R \in \mathcal{R}\). Recall that \(\mathcal{R}\) is the set of all perfect DAGs having up to \(n\) nodes. Is there a linear DAG with weakly fewer nodes such that \(p_{R'}(y \mid a) \approx p_R(y \mid a)\) for every \(a, y\)?

Looking at the illustrative perfect DAGs at the beginning of this section, one might get the impression that the answer is obvious. For instance, in the DAG given by (14), we could collapse the subsets \(\{2, 3\}\) and \(\{4, 5\}\) into a pair of "mega-nodes" \(x'_2 = (x_2, x_3)\) and \(x'_4 = (x_4, x_5)\), such that the six-node perfect DAG, denoted \(R\), would be reduced to a four-node linear DAG \(R' : 1 \to 2' \to 4' \to 6\). However, note that the original DAG \(R\) induces

\[
p_R(x_1, \ldots, x_6) = p(x_1, x_2, x_3)p(x_4 \mid x_2, x_3)p(x_5 \mid x_3, x_4)p(x_6 \mid x_4, x_5)
\]
whereas the reduced DAG leads to a factorization that can be written as

\[p_{R'}(x_1, ..., x_6) = p(x_1, x_2, x_3)p(x_4 \mid x_2, x_3)p(x_5 \mid x_2, x_3, x_4)p(x_6 \mid x_4, x_5) \]

The third terms in these two expressions are different. Therefore, for arbitrary \(p \), we will have \(p_{R'} \neq p_R \).

Proposition 2 If \(p \) is rich then, for every non-linear perfect DAG \(R \) with \(n \) nodes, there exists a linear DAG \(R' \) with strictly fewer nodes such that \(p_{R'}(y \mid a) \approx p_R(y \mid a) \) for every \(a, y \).

Thus, for every non-linear narrative \(R \), we can find a linear narrative \(R' \) that involves a smaller, different selection of variables, which will induce an arbitrarily close conditional subjective distribution. The intermediate nodes in \(R' \) represent variables that are derived from the original variables via a non-trivial sequence of transformations, which employs the basic tool of “junction trees” in the Bayesian Networks literature. Richness of \(p \) ensures that these “artificially” derived variables can be approximately simulated by actual variables. Since the constructed linear narrative is simpler than the original non-linear narrative, it will be strictly favored if we enrich our model by assuming that the representative agent has a strict preference for simpler narratives.

4.2 Polarization

As shown at the end of Section 2, equilibrium assigns probability one to the ideal policy \(d^* \) under rational expectations. This provides a stark benchmark for the following result.

Proposition 3 Let \(\mathcal{R} \) be the set of all perfect DAGs with up to \(n \) nodes and assume \(p \) is rich. Then in any equilibrium \((\alpha, \sigma)\), \(\sigma \) assigns positive probability to exactly two policies, \(d_r > d^* \) and \(d_l < d^* \).

Proof. Fix an equilibrium \((\alpha, \sigma)\). First, we establish that the support of \(\sigma \) must include at least two distinct policies. Assume the contrary - i.e., the
marginal of \(\sigma \) over \(d \) is degenerate. Then by definition, it assigns probability one to the steady-state policy \(\alpha \). By the NSQD property of perfect DAGs, \(V(R, \alpha \mid \alpha) = \mu \) for every feasible narrative \(R \).

There are two cases to consider. Suppose \(\alpha \neq d^* \). Then any narrative \(R \) in the support of \(\sigma \) delivers \(U(R, d^* \mid \alpha) = \mu - C(\alpha - d^*) \). However, by richness, there is a feasible narrative \(R \) such that without loss of generality, \(p_R(y = 1 \mid a = 1) > p_R(y = 1 \mid a = 0) \). To see why, note that richness means that there exists \(k \in \{2, \ldots, m - 1\} \) such that for every \(a, y, x_k = (1 - a)(1 - y) \) with probability close to one. Let \(R' \) be a lever narrative in the support of \(\sigma \) that is slightly larger than \(d^* \). Using essentially the same calculation as in the example of Section 3, we can see that coupling the narrative \(R' \) with such a policy \(d' \) will deliver \(U(R', d') > \mu \), a contradiction.

Now suppose that the support of \(\sigma \) contains at least two distinct policies. We argue that at least two of these policies, denoted \(d_l \) and \(d_r \), satisfy \(d_l < \alpha \) and \(d_r > \alpha \). Note that every \((R, d) \in \text{Supp}(\sigma) \) must deliver \(U(R, d) \geq \mu \) because the narrative-policy pair \((a \rightarrow y, d^*) \) induces \(U = \mu \). Let us now show that the narrative \(R_1 \) that accompanies the policy \(d_r \) satisfies \(p_{R_1}(y = 1 \mid a = 1) > \mu > p_{R_1}(y = 1 \mid a = 0) \), and that the narrative \(R_0 \) that accompanies \(d_l \) satisfies \(p_{R_0}(y = 1 \mid a = 1) < \mu < p_{R_0}(y = 1 \mid a = 0) \).

By the definition of equilibrium, any narrative \(R \) that accompanies any \(d \) in the support of \(\sigma \) maximizes

\[
U(R, d \mid \alpha) = V(R, d \mid \alpha) - C(d - d^*)
\]
where

\[V(R, d \mid \alpha) = d \cdot p_R(y = 1 \mid a = 1) + (1 - d) \cdot p_R(y = 1 \mid a = 0) \]

Because any feasible \(R \) is perfect, it satisfies \(V(R, \alpha \mid \alpha) = \mu \). This means that we can rewrite \(V(R, d \mid \alpha) \) as follows:

\[
V(R, d \mid \alpha) = \frac{d - \alpha}{1 - \alpha} \cdot p_R(y = 1 \mid a = 1) + \frac{1 - d}{1 - \alpha} \cdot \mu \tag{15}
\]

It follows that the set of narratives that maximize \(U \) for given \((d, \alpha)\) only depends on the ordinal ranking between \(d \) and \(\alpha \). Specifically, if \(d > \alpha \), then \(R \) should maximize \(p_R(y = 1 \mid a = 1) \); if \(d < \alpha \), then \(R \) should maximize \(p_R(y = 1 \mid a = 0) \); and if \(d = \alpha \), then all feasible narratives induce \(U = \mu - C(d - d^*) \). As we saw above, richness implies that there is \(R \) such that the slope of \(V(R, d \mid \alpha) \) with respect to \(d > \alpha \) is strictly positive, and there is \(R \) such that the slope of \(V(R, d \mid \alpha) \) with respect to \(d < \alpha \) is strictly negative.

It follows that the value function \(\max_R V(R, d \mid \alpha) \) is piecewise linear in \(d \): It is linearly increasing (decreasing) in \(d \geq \alpha \) (\(d \leq \alpha \)). Let \(R_1 \in \max_R V(R, d \mid \alpha) \) in the \(d \geq \alpha \) range, and let \(R_0 \in \max_R V(R, d \mid \alpha) \) in the \(d \leq \alpha \) range. Since \(C \) is strictly convex, \(U(R_1, d \mid \alpha) \) is convex in \(d \geq \alpha \), and \(U(R_0, d \mid \alpha) \) is convex in \(d \leq \alpha \). Therefore, there is a unique maximizer \(d_r \) of \(U(R_1, d \mid \alpha) \) in the range \(d \geq \alpha \), and a unique maximizer \(d_l \) of \(U(R_0, d \mid \alpha) \) in the range of \(d \leq \alpha \). In both cases, \(\alpha \) cannot be the maximizer. To see why, recall that \(U(R, \alpha \mid \alpha) = \mu - C(\alpha - d^*) \) for any feasible \(R \). We noted above that every \((R, d) \in Supp(\sigma)\) must deliver \(U(R, d) \geq \mu \). It follows that if \(\alpha \in \arg \max_d U(R, d \mid \alpha) \), then \(\alpha = d^* \).

But since \(C' = 0 \) at \(d = d^* \), it follows from (15) that any narrative \(R \) with \(p_R(y = 1 \mid a = 0) > 0 \) satisfies \(\max_{d > \alpha} U(R, d \mid \alpha) \geq \mu \). Likewise, any narrative \(R \) with \(p_R(y = 1 \mid a = 0) > 0 \) satisfies \(\max_{d < \alpha} U(R, d \mid \alpha) \geq \mu \). We conclude that \(d_r > \alpha \) and \(d_l < \alpha \), and therefore the support of the marginal of \(\sigma \) over \(d \) is weakly contained in \(\{d_l, d_r\} \). Because we have already established
that this support cannot be a singleton, the containment must be an identity.

It remains to establish that \(d_r > d^* \) and \(d_l < d^* \). Assume the contrary such that without loss of generality, \(d_l \geq d^* \). Recall that \(d_l \) is accompanied by a narrative \(R_0 \) for which \(p_{R_0}(y = 1 \mid a = 0) > 0 \). Therefore, the derivative of \(U(R, d \mid \alpha) \) with respect to \(d \) is strictly negative at \(d = d_l \), which means that switching from \(d_l \) to a slightly lower policy (without changing the accompanying narrative) would generate a higher net anticipatory utility, a contradiction. ■

Thus, under the perfection and richness conditions, equilibrium must induce exactly two policies. Each of the two policies deviates from the ideal point \(d^* \) in a different direction. As the proof of the result indicates, this polarization result does not directly rely on the notion of narratives as causal models. Indeed, any model of belief distortion that satisfies NSQD and allows for a sufficiently rich set of distorted beliefs would lead to the same result. Causal models only play an indirect role in this sub-section, in the sense that NSQD is implied by perfection. They will return to play a direct role in the next sub-section.

4.3 Short Narratives

In this sub-section we provide a complete equilibrium characterization for the following specification. Let \(n = 3 \), such that \(\mathcal{R} \) is the set of perfect DAGs with two or three nodes in which \(a \) is represented by an ancestral node. The only DAGs in this class that do not induce \(p_{R}(y \mid a) = \mu \) for all \(a \) are the lever DAGs \(1 \rightarrow k \rightarrow m \), for \(k = 2, ..., m - 1 \). Finally, we continue to assume that \(p \) is rich.

Our analysis in the previous sub-section implies that in any equilibrium \((\alpha, \sigma)\), \(\text{Supp}(\sigma) \) consists of two elements: a policy \(d_r > d^* \) and a policy \(d_l < d^* \), both sustained by lever narratives that employ different variables. The following result refines this characterization.
Proposition 4 There is an essentially unique equilibrium \((\alpha, \sigma)\).\(^3\) In particular:

(i) The policy \(d_r\) is accompanied by a lever narrative \(a \to x_r \to y\), where the variable \(x_r\) is selected such that \(x_r = y + a(1 - y)\) with probability close to one.

(ii) The policy \(d_l\) is accompanied by a lever narrative \(a \to x_l \to y\), where the variable \(x_l\) is selected such that \(x_l = y + (1 - a)(1 - y)\) with probability close to one.

(ii) \(\alpha \in (\frac{1}{2}, d^*)\) when \(d^* > \frac{1}{2}\), and \(\alpha = \frac{1}{2}\) when \(d^* = \frac{1}{2}\).

Proof. We established in the previous sub-section that \(d_r\) is accompanied by a narrative \(R\) that maximizes \(p_R(y=1 \mid a=1)\); and likewise, \(d_l\) is accompanied by a narrative \(R\) that maximizes \(p_R(y=1 \mid a=0)\). The only DAGs that can induce non-constant \(p_R(y \mid a)\) are the lever DAGs \(1 \to k \to m\), where \(k = 2, \ldots, m - 1\). Therefore, the narratives that accompany both \(d_r\) and \(d_l\) both have this structure, and can only differ in the identity of \(k\). By richness, the problem of finding the value of \(k\) that will accompany \(d_r\) is approximated by finding the quadruple \(p^* = (p(z = 1 \mid a, y))_{a, y = 0, 1}\) (where \(z\) is some binary variable) that maximizes

\[
\sum_{z = 0, 1} p(z \mid a = 1) p(y = 1 \mid z)
\]

\[
= \sum_z \left(\sum_{y'} p(y') p(z \mid a = 1, y') \right) \frac{\mu \sum_{a'} p(a') p(z \mid a', y = 1)}{\sum_{y''} \sum_{a''} p(a'') p(y'') p(z \mid a'', y'')}\]

In the Appendix, we show that the solution to this problem is \(p^*(z = 1 \mid a, y) = y + a(1 - y)\), such that

\[p_{R_1}(y = 1 \mid a = 1) \approx \frac{\mu}{\mu + \alpha(1 - \mu)}\]

and, by NSQD,

\[p_{R_1}(y = 1 \mid a = 0) \approx \frac{\mu^2}{\mu + \alpha(1 - \mu)}\]

\(^3\)By essential uniqueness we mean that the identity of the variable that serves as a lever is not pinned down.
Therefore,

\[V(R_1, d \mid \alpha) \approx d \frac{\mu}{\mu + \alpha(1 - \mu)} + (1 - d) \frac{\mu^2}{\mu + \alpha(1 - \mu)} \]

\[= \mu + \frac{\mu(1 - \mu)}{\mu + \alpha(1 - \mu)} (d - \alpha) \]

Likewise, by richness, the problem of finding the value of \(k \) that will accompany \(d_1 \) is approximated by finding the quadruple \(p^{**} = (p(z = 1 \mid a, y))_{a,y=0,1} \) (where \(z \) is some binary variable) that maximizes

\[
\sum_{z=0,1} p(z \mid a = 0)p(y = 1 \mid z) = \sum_z \left(\sum_{y'} p(y')p(z \mid a = 0, y') \right) \frac{\mu \sum_{a'} p(a')p(z \mid a', y = 1)}{\sum_{y''} \sum_{a''} p(a'')p(y'')p(z \mid a'', y'')} \]

In the Appendix, we show that the solution to this problem is \(p^{**}(x_2 = 1 \mid a, y) = y + (1 - a)(1 - y) \), such that

\[
p_{R_0}(y = 1 \mid a = 0) \approx \frac{\mu}{\mu + (1 - \alpha)(1 - \mu)} \]

\[
p_{R_0}(y = 1 \mid a = 1) \approx \frac{\mu^2}{\mu + (1 - \mu)(1 - \alpha)} \]

Therefore,

\[
V(R_0, d \mid \alpha) \approx d \frac{\mu^2}{\mu + (1 - \mu)(1 - \alpha)} + (1 - d) \frac{\mu}{\mu + (1 - \mu)(1 - \alpha)} \]

\[= \mu - \frac{\mu(1 - \mu)}{\mu + (1 - \alpha)(1 - \mu)} (d - \alpha) \]

Denote

\[
U_r(\alpha) = U(R_1, d_r \mid \alpha) = V(R_1, d_r \mid \alpha) - C(d_r - d^*) \]

\[
U_l(\alpha) = U(R_0, d_l \mid \alpha) = V(R_0, d_l \mid \alpha) - C(d_l - d^*) \]

26
Denote $\Delta = |d - \alpha|$, $e = \alpha - d^*$. Then, we can write

\[
U_r(\alpha) \approx \max_{\Delta \leq 1-\varepsilon-\alpha} \left[\mu + \frac{\mu(1 - \mu)}{\mu + \alpha(1 - \mu)} \Delta - C(\Delta + e) \right]
\]

\[
U_l(\alpha) \approx \max_{\Delta \geq \alpha - \varepsilon} \left[\mu + \frac{\mu(1 - \mu)}{\mu + (1 - \alpha)(1 - \mu)} \Delta - C(\Delta - e) \right]
\]

Recall that by assumption, $d^* \geq \frac{1}{2}$. Suppose $\alpha > d^*$. Then, $\alpha > \frac{1}{2}$ and $e > 0$. It is then clear from (16) that $U_r(\alpha) < U_l(\alpha)$, contradicting equilibrium. Now suppose $\alpha < \frac{1}{2}$. Then, $e < 0$, and it is clear from (16) that $U_r(\alpha) > U_l(\alpha)$, again contradicting equilibrium. It follows that $\alpha \in [\frac{1}{2}, d^*]$. Furthermore, since $U_r(\alpha)$ is strictly decreasing in α while $U_l(\alpha)$ is strictly increasing in α, there is at most one value of α for which $U_r(\alpha) = U_l(\alpha)$, hence equilibrium must be unique.

The characterization has a number of noteworthy properties. First, the lever narrative that sustains either of the two equilibrium policies selects an intermediate variable that it is highly correlated with both the desired outcome $y = 1$ and the advocated policy. Specifically, the selected variable is such that one particular value is attained with probability close to one whenever $y = 1$ or the favored action is taken.

For illustration, recall the US trade policy debate described in the Introduction. In this context, our characterization approximates the following prevailing narratives. The lever narrative that sustains a policy with a protectionist bias (relative to the agent’s ideal point) will involve a variable like “imports from China”, because low imports are associated with trade restrictions as well as high employment in the local manufacturing sector, even if the latter correlation is not causal but due to a confounding factor (such as exogenous technology changes that affect outsourcing of production). Likewise, the lever narrative that sustains a trade policy with a liberalized bias will select a variable like "industrial exports".

Second, the anticipatory utility induced by the equilibrium narratives exhibits the diminishing-returns property noted in Section 3. That is, when α increases (decreases), the narrative that advocates right-leaning (left-leaning) policies has lower anticipatory value. For instance, the lever narrative that
sustains the action $a = 1$ induces the following subjective probability that $y = 1$, conditional on $a = 1$:

\[
\frac{\mu}{\mu + \alpha(1 - \mu)}
\]

This property is intuitive: narratives generate false hopes about counterfactual policies; as the historical action frequency leans toward the policy advocated by the narrative, the ability to sell this illusion diminishes. The diminishing-returns property implies two features of equilibrium: essential uniqueness (specifically, the marginal equilibrium distribution over policies is unique) and a “centrist bias” (i.e., the historical action frequency lies between $\frac{1}{2}$ and d^*).

5 Opportunity Narratives

Our analysis in the previous section ruled out imperfect DAGs, which include the opportunity narrative we encountered in Section 3. In this section we explore the implication of allowing for imperfect DAGs. We focus our analysis on the case in which only a single auxiliary variable can be used - i.e., $n = 3$. Thus, \mathcal{R} is the set of all DAGs with up to three nodes in which a is represented by an ancestral node. The only imperfect DAGs in this class are $1 \rightarrow k \leftarrow m$ for some $k = 2, ..., m - 1$. We assume throughout that $d^* = \frac{1}{2}$ and that p is rich.

The following result establishes a polarization result akin to that of Section 4.2.

Proposition 5 Any equilibrium assigns positive probability to at least one policy $d > d^*$ and one policy $d < d^*$.

Proof. Assume the contrary - without loss of generality, there is an equilibrium (α, σ) that assigns probability one to policies $d \geq d^* = \frac{1}{2}$. Therefore, $\alpha \geq \frac{1}{2}$. If DAGs of the form $1 \rightarrow m \leftarrow k$ are never played in this equilibrium, we are back with the model of Section 4.2, where this possibility was ruled out.
Now suppose that $\text{Supp}(\sigma)$ includes a narrative-policy pair (R, d) in which $R : 1 \rightarrow m \leftarrow k$ for some $k = 2, \ldots, m - 1$. Let us first establish that, for one such pair, $p_R(y = 1 \mid a = 1) \neq p_R(y = 1 \mid a = 0)$. Assume the contrary for every such R. This means that if we switched to the DAG $R' : m \leftarrow k$, we would have $p_{R'}(y \mid a) = p_R(y \mid a)$, thus reducing σ to the case of Section 4.2, which again leads to a contradiction. Thus, from now on, assume without loss of generality that $p_R(y = 1 \mid a = 1) \neq p_R(y = 1 \mid a = 0)$ for every narrative-policy pair $(R, d) \in \text{Supp}(\sigma)$ in which $R : 1 \rightarrow m \leftarrow k$ for some $k = 2, \ldots, m - 1$.

Suppose $d = d^*$ for some $(R, d) \in \text{Supp}(\sigma)$. By the same arguments as in Section 4.3, richness of p implies the existence of a deviation to a narrative-policy pair (R', d'), where $p_R(y = 1 \mid a = 1) > p_R(y = 1 \mid a = 0)$ and d' is slightly higher than d^*, such that (R', d') generates a higher net anticipatory payoff, a contradiction. Therefore, $d > d^* = \frac{1}{2}$ for every $(R, d) \in \text{Supp}(\sigma)$. Therefore, $\alpha > \frac{1}{2}$. If $p_R(y = 1 \mid a = 1) < p_R(y = 1 \mid a = 0)$ for some $(R, d) \in \text{Supp}(\sigma)$, then a switch to the narrative-policy pair $(R, 1 - d)$ would increase gross anticipatory utility without changing C, a contradiction.

Thus, $\alpha > \frac{1}{2}$ and $\text{Supp}(\sigma)$ includes a narrative-policy pair (R, d) in which $R : 1 \rightarrow m \leftarrow k$ for some $k = 2, \ldots, m - 1$, $d > \frac{1}{2}$ and $p_R(y = 1 \mid a = 1) > p_R(y = 1 \mid a = 0)$. Write down the explicit formula for $p_R(y \mid a)$:

$$p_R(y = 1 \mid a) = \sum_{x_k} p(x_k)p(y = 1 \mid a, x_k)$$

$$= \sum_{x_k} \left(\sum_{a''} p(a'') \sum_{y''} p(y'')p(x_k \mid a'', y'') \right) \frac{p(a)(p(y = 1))p(x_k \mid a, y = 1)}{\sum_{y'} p(y')p(a)p(x_k \mid a, y')}$$

$$= \mu \sum_{x_k} \sum_{y'} \frac{p(x_k \mid a, y = 1)}{p(y')p(x_k \mid a, y')} \sum_{a''} p(a'') \sum_{y''} p(y'')p(x_k \mid a'', y'')$$
For \(a = 1 \), this expression becomes

\[
\mu \sum_{x_k} p(x_k \mid a = 1, y = 1) \frac{\alpha \sum_y p(y)p(x_k \mid a = 1, y) + (1 - \alpha) \sum_y p(y)p(x_k \mid a = 0, y)}{\sum_y p(y)p(x_k \mid a = 1, y)}
\]

\[
= \mu \sum_{x_k} p(x_k \mid a = 1, y = 1) \left[\alpha + (1 - \alpha) \frac{\sum_y p(y)p(x_k \mid a = 0, y)}{\sum_y p(y)p(x_k \mid a = 1, y)} \right]
\]

\[
= \mu \left[\alpha + (1 - \alpha) \frac{\sum_{x_k} p(x_k \mid a = 1, y = 1) \sum_y p(y)p(x_k \mid a = 0, y)}{\sum_y p(y)p(x_k \mid a = 1, y)} \right]
\]

Likewise, for \(a = 0 \), (17) becomes

\[
\mu \left[(1 - \alpha) + \alpha \sum_{x_k} p(x_k \mid a = 0, y = 1) \frac{\sum_y p(y)p(x_k \mid a = 1, y)}{\sum_y p(y)p(x_k \mid a = 0, y)} \right]
\]

Denote

\[
A = \sum_{x_k} p(x_k \mid a = 1, y = 1) \frac{\sum_y p(y)p(x_k \mid a = 0, y)}{\sum_y p(y)p(x_k \mid a = 1, y)}
\]

\[
B = \sum_{x_k} p(x_k \mid a = 0, y = 1) \frac{\sum_y p(y)p(x_k \mid a = 1, y)}{\sum_y p(y)p(x_k \mid a = 0, y)}
\]

Since \(p_R(y = 1 \mid a = 1) > p_R(y = 1 \mid a = 0) \), \(A > B \). And since \(p_R(y = 1 \mid a = 1) > \mu \), \(A > 1 \). The net anticipatory utility generated by \((R, \alpha)\) can thus be written as

\[
d \cdot p_R(y = 1 \mid a = 1) + (1 - d) \cdot p_R(y = 1 \mid a = 0) - C(d - \frac{1}{2})
\]

\[
= \mu [d(\alpha + (1 - \alpha)A) + (1 - d)((1 - \alpha) + \alpha B)] - C(d - \frac{1}{2})
\]

Now consider a deviation to the narrative-policy pair \((R', 1 - d)\), where \(R' \):
for every a, y. That is, the conditional distributions of x_k and $x_{k'}$ are mirror images. By richness, we can find such k'. Define \tilde{A} and \tilde{B} accordingly. By construction, $\tilde{A} = B$ and $\tilde{B} = A$. Therefore, the net anticipatory utility generated by $(R', 1 - d)$ is

\[(1 - d) \cdot p_{R'}(y = 1 \mid a = 1) + d \cdot p_{R'}(y = 0 \mid a = 0) - C((1 - d) - \frac{1}{2}) \]

\[\approx \mu [(1 - d)(\alpha + (1 - \alpha)B) + d((1 - \alpha) + \alpha A)] - C(\frac{1}{2} - d)\]

Since $d, \alpha > \frac{1}{2}$ and $A > 1$, this expression exceeds (18), a contradiction. □

Unlike the case of perfect DAGs, the opportunity DAG $a \rightarrow y \leftarrow x_k$ does not satisfy the NSQD property, and therefore the proof resorts to other arguments. The key question is whether, assuming all equilibrium policies lie on one side of $d^* = \frac{1}{2}$, a narrative-policy pair $(a \rightarrow y \leftarrow x_k, d) \in \text{Supp}(\sigma)$ can be destabilized by a deviation to a “mirror” pair $(a \rightarrow y \leftarrow x_l, 1 - d)$ for some $l \neq k$. The answer is not obvious, and our proof relies on the particular structure of the opportunity narrative.

The result is weaker than its analogue in Section 4.2. In particular, we are unable to determine whether equilibrium will sustain exactly one policy on each side of d^* for general cost functions. However, when costs are sufficiently small, we obtain a stronger characterization.

Proposition 6 If $C'(\cdot)$ and ε are sufficiently small, there is a unique equilibrium, in which $\alpha = \frac{1}{2}$ and $\text{Supp}(\sigma)$ consists of:

(i) An opportunity narrative $a \rightarrow y \leftarrow x_r$ where $x_r \equiv y + (1 - a)(1 - y)$ with probability close to one, coupled with a policy $d_r \approx 1$.

(ii) An opportunity narrative $a \rightarrow y \leftarrow x_l$ where $x_l \equiv y + a(1 - y)$ with probability close to one, coupled with a policy $d_l \approx 0$.\(^4\)

Proof. In Section 4.3, we derived, for each $a = 0, 1$, a lever narrative that sustains $p_{R}(y = 1 \mid a) - p_{R}(y = 1 \mid 1 - a) > 0$ for any given $\alpha \in (0, 1)$.

\(^4\)If $d^* > \frac{1}{2}$, a similar result holds, where the only difference is that $\alpha \in (\frac{1}{2}, d^*)$.

31
Since this difference is a lower bound on the derivative of V with respect to d, it follows that if C' is sufficiently small, the only policies that survive in equilibrium are the extreme points $d = 1 - \varepsilon$ and $d = \varepsilon$. It follows that in order to characterize equilibrium in the low ε limit, we only need to look for the narratives R that maximize $p_R(y = 1 \mid a)$ for each $a = 0, 1$.

In Section 4.3, we saw that the largest $p_R(y = 1 \mid a = 1)$ and $p_R(y = 1 \mid a = 0)$ that lever narratives can attain are $\mu/|\mu + (1 - \mu)\alpha|$ and $\mu/|\mu + (1 - \mu)(1 - \alpha)|$, respectively. In the Appendix, we show that the largest $p_R(y = 1 \mid a = 1)$ and $p_R(y = 1 \mid a = 0)$ that opportunity narratives can attain are $1 - \alpha(1 - \mu)$ and $1 - (1 - \alpha)(1 - \mu)$, respectively. A simple calculation establishes that

$$1 - \alpha(1 - \mu) > \frac{\mu}{\mu + (1 - \mu)\alpha}$$

for any $\alpha \in (0, 1)$. It follows that the prevailing narrative-policy pairs in any equilibrium in the $\varepsilon, \delta \to 0$ limit are as described in the statement of the proposition. In equilibrium, these pairs must deliver the same net anticipatory utility:

$$1 - \alpha(1 - \mu) - C(1 - \frac{1}{2}) = 1 - (1 - \alpha)(1 - \mu) - C(-\frac{1}{2})$$

which holds if and only if $\alpha = \frac{1}{2}$. ■

Thus, when p is rich, the set of feasible three-node DAGs is unrestricted and the cost C is low, the narratives that prevail in equilibrium are opportunity narratives and they sustain the two extreme policies. Surprisingly, the opportunity narrative that sustains an extreme right (left) policy employs the same third variable that was employed by the equilibrium lever narrative that sustained the extreme left (right) in Section 4.3. We saw an inkling of this effect in the illustrative example of Section 3: The same variable can feature in narratives that support radically different policies; what changes is the role that this variable plays in the narrative’s causal structure.
6 Conclusion

The model presented in this paper formalized a number of intuitions regarding the role of narratives in the formation of popular political opinions. Our model was based on two main ideas.

What are narratives and how do they shape beliefs? In our model, narratives are formalized as causal models (represented by DAGs) that describe how actions map into consequences. Different narratives employ different intermediate variables and arrange them differently in the causal scheme. Narratives shape beliefs in the sense that beliefs emerge from fitting causal models to long-run correlations between the variables that appear in the narrative. These beliefs are used to evaluate policies.

How does the public select between competing narratives? Our behavioral assumption was that in the presence of conflicting narrative-policy pairs, the public (a representative agent in this paper) selects between them “hedonically” - i.e., according to the anticipatory utility induced by each of these pairs. This is consistent with the basic intuition that people are drawn to stories with a “hopeful” message.

The main insights that emerged as results of our formalism can be summarized as follows. First, prevailing narratives are misspecified causal models that “sell false hopes” regarding the consequences of counterfactual policies. Second, the same variable can serve two conflicting narratives with a different causal structure (e.g., “lever narrative” vs. “opportunity narrative”) in the service of conflicting policies. Third, multiplicity of dominant narrative-policy pairs is an intrinsic property of long-run equilibrium in the “battle over public opinion” (as long as the supply of intermediate variables is sufficiently rich). Indeed, in specific settings, we saw that growing popularity of one policy can weaken the appeal of the narrative that promotes it. This “diminishing returns” property leads to additional properties of equilibrium (uniqueness, centrist bias) in these settings. Finally, when we rule out narratives that convey false beliefs regarding the status quo, linear narratives entail almost no loss of generality.
Our analysis leaves a number of open technical problems. First, Section 4.3 provided a complete equilibrium characterization for perfect DAGs and rich p in the case of $n = 3$. We also know that for $n = 4$, equilibrium narratives have the longer linear form $a \rightarrow x_k \rightarrow x_{k'} \rightarrow y$. Naturally, we conjecture that for general n, prevailing narratives are linear chains of length n. But what are the conditional beliefs over consequences that these prevailing narratives would induce? Finally, the case of general n and an unrestricted set of feasible DAGs (including imperfect ones) is almost entirely open. A broad question that is common to these two cases is whether our definition of equilibrium generates a force that favors narratives that involve many variables. Such a force can only be offset by introducing an explicit preference for simpler narratives.

References

Appendix: Proofs

Proof of Proposition 1
Consider an auxiliary two-player game. Player 1’s strategy space is \(D \), and \(\alpha \) denotes an element in this space. Player 2’s strategy space is \(\Delta(\mathcal{R} \times D) \), and \(\beta \) denotes an element in this space. The payoff of player 1 from the strategy profile \((\alpha, \beta)\) is

\[
\sum_{(R,d)} \beta(R,d)U(R,d | \alpha)
\]

Note that since \(p_R \) is a continuous function of \(\alpha \), so is \(U \). The payoff of player 2 from \((\sigma, \alpha)\) is

\[
- \left(\alpha - \sum_{(R,d)} \beta(R,d) \right)^2
\]

A Nash equilibrium in this auxiliary game is equivalent to our notion of equilibrium. The strategy spaces and payoff functions of the two players in the auxiliary game satisfy standard conditions for the existence of Nash equilibrium.

Proof of Proposition 2
The proof proceeds in the three main steps.

Step 1: Deriving an auxiliary “clique factorization” formula
Consider a non-linear perfect DAG \((N, R)\), where \(1, m \in N \) and \(|N| = n > 2\).
We say that a subset of nodes \(C \subseteq N \) is a clique if for every \(i, j \in C, iRj \) or \(jRi \). We say that a clique is KaxiKal if it is not contained in another clique. Let \(C \) be the collection of maximal cliques in the DAG.

The following is standard material in the Bayesian-Networks literature. Because \((N, R)\) is perfect, we can construct an auxiliary (non-directed) Kree whose set of nodes is \(C \), such that for every pair of nodes \(C \) and \(C' \) in this tree, \(C \cap C' \) is contained in any \(C'' \) that lies along the path that connects \(C \) and \(C' \) (the path is unique, by the definition of a tree). Such a tree is referred to in the literature as a junction tree. Given a junction tree, we say that \(S \subseteq N \) is a separator if there are two adjacent tree nodes \(C \) and \(C' \) such that \(S = C \cap C' \). Let \(S \) be the set of separators for a given junction tree
constructed from \(\mathcal{C} \). Then, for any distribution \(p' \in \Delta(X) \) with full support that is consistent with \((N, R)\) (i.e., in the sense that \(p_R = p \)),

\[
p'(x) = \frac{\prod_{C \in \mathcal{C}} p'(x_C)}{\prod_{S \in \mathcal{S}} p'(x_S)}
\]

For an exposition of these results, see Cowell et al. (1999), pp. 52-69.

Now, our objective distribution \(p \) is no\(K \) necessarily consistent with \(R \). However, \(p_R \) is consistent with \(R \) by definition. Furthermore, a key feature of perfect DAGs is that they do not distort the marginal distributions over cliques - i.e., \(p_R(x_C) \equiv p(x_C) \) for every \(C \in \mathcal{C} \) (see Spiegler (2017) for further details). It follows that for every objective distribution \(p \) and a perfect DAG \((N, R)\), we can write

\[
p_R(x) \equiv \frac{\prod_{C \in \mathcal{C}} p(x_C)}{\prod_{S \in \mathcal{S}} p(x_S)}
\]

where \(\mathcal{C} \) is the set of maximal cliques in \((N, R)\) and \(\mathcal{S} \) is the set of separators in some junction tree constructed out of \(\mathcal{C} \).

Let \(C_1, C_K \in \mathcal{C} \) be two cliques in \((N, R)\) that include the nodes 1 and \(m \), respectively. Furthermore, for a given junction tree representation of the DAG, select these cliques to be minimally distant from each other - i.e., 1, \(m \notin C \) for every \(C \) along the junction-tree path between \(C_1 \) and \(C_K \).

If \(C_1 = C_K \), then by our earlier observation that perfect DAGs do not distort the marginals of collections of variables that form a clique, it follows that \(p_R(x_1, x_m) \equiv p(x_1, x_m) \) and therefore \(p_R(x_m | x_1) \equiv p(x_m | x_1) \) - i.e. we can replace the original DAG with the degenerate linear DAG \(1 \rightarrow m \) and obtain the same subjective conditional distribution over \(x_m \). The same deviation holds if there is no junction-tree path between \(C_1 \) and \(C_K \), because this means that \(x_1 \perp x_m \) according to \(p_R \), and therefore \(p_R(x_m | x_1) \equiv p(x_m | x_1) \).

Thus, from now on, assume that \(C_1 \neq C_K \) and there is a junction-tree path between \(C_1 \) and \(C_K \). Enumerate all the nodes in the junction tree and turn it into a directed tree, such that \(C_1 \) is its root node. For every \(k = 2, ..., |\mathcal{C}| \), let \(pa(k) \) denote the index of the direct parent of \(C_k \) - i.e. the
junction tree has a direct link \(C_{\text{pa}(k)} \to C_k \). In particular, let \(C_1, C_2, \ldots, C_K \) be the tree nodes along the path between \(C_1 \) and \(C_K \), such that this path is \(C_1 \to C_2 \to \cdots \to C_K \). By the definition of a junction tree, if \(i \in C_k, C_j \) for some \(1 \leq k < j \leq K \), then \(i \in C_h \) for every \(h = k+1, \ldots, j-1 \). And since the cliques \(C_1, \ldots, C_K \) are maximal, it follows that every \(C_k \) along the sequence \(C_0, \ldots, C_{K+1} \) must introduce at least one element \(i \notin \cup_{j<k} C_j \). As a result, it must be the case that \(K \leq n-1 \). Furthermore, if \((N, R)\) is not linear, the inequality is strict.

Now, repeatedly apply the identity

\[
p(x_{C_k}) = p(x_{C_k \cap C_{\text{pa}(k)}})p(x_{C_k \setminus C_{\text{pa}(k)}})
\]

to (19) for every \(k \geq 2 \), and obtain the following equivalent formula:

\[
p_R(x) = p(x_{C_1}) \cdot \prod_{k=2}^{K} p(x_{C_k \setminus C_{\text{pa}(k)}}) \cdot p(x_{C_k \cap C_{\text{pa}(k)}})
\]

Furthermore, by the definition of the junction tree, for every \(k > K \), \(C_k - C_{\text{pa}(k)} \) and \(C^* = C_1 \cup \cdots \cup C_K \) are mutually disjoint. Therefore,

\[
p_R(x_{C^*}) = p(x_{C_1}) \prod_{k=2}^{K} p(x_{C_k \setminus C_{k-1}}) \cdot p(x_{C_k \cap C_{k-1}})
\]

\((20)\)

Step 2: Obtaining a linear-DAG factorization

We begin this step by deriving the subjective conditional probability \(p_R(x_m \mid x_1) \) from (20). Recall that from the definition of \(C_1 \) and \(C_K \) it follows that \(1 \in C_1, m \in C_K \), and \(1, m \notin C_k \) for every \(k = 2, \ldots, K-1 \). Denote \(C_0 = \{1\} \) and observe that \(p(x_{C_1}) = p(x_1)p(x_{C_1 \setminus \{1\}} \mid x_1) \). Then,

\[
p_R(x_m \mid x_1) = \sum_{x_{C^* \setminus \{1, m\}}} \prod_{k=1}^{K} p(x_{C_k \setminus C_{k-1}} \mid x_{C_k \cap C_{k-1}})
\]

\((21)\)

We can draw an immediate conclusion from this formula. Suppose that there is some \(i \in C^* \setminus \{1, m\} \) such that \(i \in C_k \) for a unique \(k = 1, \ldots, K \). Then, the variable \(x_i \) appears in only one term in (21), namely \(p(x_{C_k \setminus C_{k-1}} \mid x_{C_k \cap C_{k-1}}) \).
Moreover, by assumption, \(i \in C_k - C_{k-1} \). Therefore, we can rewrite this term as follows:

\[
p(x_{C_k - C_{k-1}} \mid x_{C_k \cap C_{k-1}}) = p(x_{C_k - (C_{k-1} \cup \{i\})} \mid x_{C_k \cap C_{k-1}}) p(x_i \mid x_{(C_k \cup C_{k-1}) - \{i\}})
\]

This means we can rewrite \(p_R(x_m \mid x_1) \) as follows:

\[
\sum_{x_{C^* - \{1,m\}}} \prod_{h \neq k} p(x_{C_h - C_{h-1}} \mid x_{C_h \cap C_{h-1}}) p(x_{C_k - (C_{k-1} \cup \{i\})} \mid x_{C_k \cap C_{k-1}}) p(x_i \mid x_{(C_k \cup C_{k-1}) - \{i\}}) =
\]

\[
\sum_{x_{C^* - \{1,m\}}} \prod_{h \neq k} p(x_{C_h - C_{h-1}} \mid x_{C_h \cap C_{h-1}}) p(x_{C_k - (C_{k-1} \cup \{i\})} \mid x_{C_k \cap C_{k-1}}) \sum_{x_i} p(x_i \mid x_{(C_k \cup C_{k-1}) - \{i\}}) =
\]

\[
\sum_{x_{C^* - \{1,m\}}} \prod_{h \neq k} p(x_{C_h - C_{h-1}} \mid x_{C_h \cap C_{h-1}}) p(x_{C_k - (C_{k-1} \cup \{i\})} \mid x_{C_k \cap C_{k-1}})
\]

This is the same formula we would have if we removed \(i \) (and the links associated with this node) from the original DAG in the first place. Therefore, without loss of generality, we can assume that every \(i \in C^* - \{1, m\} \) belongs to at least two cliques \(C_k, k = 1, \ldots, K \). Furthermore, by the definition of a junction tree, these two cliques are consecutive, \(C_k \) and \(C_{k+1} \). In particular, this means that \(C_1 - C_2 = \{1\}, C_K - C_{K-1} = \{m\}, \) and \(C_k - C_{k-1} \subseteq C_{k+1} \cap C_k \) for every \(k = 1, \ldots, K - 1 \). The latter observation implies that for every \(k = 1, \ldots, K - 1, (C_{k+1} \cap C_k) - (C_k - C_{k-1}) \) is weakly contained in \(C_k \cap C_{k-1} \). Therefore, \(p(x_{C_k - C_{k-1}} \mid x_{C_k \cap C_{k-1}}) = p(x_{C_{k+1} \cap C_k} \mid x_{C_k \cap C_{k-1}}) \), such that we can replace the term \(p(x_{C_k - C_{k-1}} \mid x_{C_k \cap C_{k-1}}) \) in (20) with the equivalent term \(p(x_{C_k \cap C_{k-1}} \mid x_{C_k \cap C_{k-1}}) \). Finally, perform another change in (20), by replacing \(p(x_{C_i}) \) with the equivalent term \(p(x_1)p(x_{C_2 \cap C_1} \mid x_1) \). After these changes are performed, (20) is transformed into a Bayesian-network factorization formula with respect to a linear DAG

\[
1 \to (C_2 \cap C_1) \to (C_3 \cap C_2) \cdots \to (C_K \cap C_{K-1}) \to K
\]

This DAG has at most \(K + 1 \leq n \) nodes. Moreover, when the original DAG is non-linear, the inequality is strict.

Step 3: Transforming the intermediate linear-DAG nodes into binary vari-
For every $k = 2, \ldots, K - 1$, define $z_k = x_{C_k \cap C_{k-1}}$, and let z_k^* be one arbitrary value that the variable z_k can get. (Because p has full support, at least two values of each z_k have positive probability.) Observe that

$$p_R(y \mid a) = \sum_{z_2, \ldots, z_{K-1}} p(z_2 \mid a)p(z_3 \mid z_2) \cdots p(z_{K-1} \mid z_{K-2})p(y \mid z_{K-1})$$

is equal to

$$\sum_{z_2, \ldots, z_{k-1}} p(z_2 \mid a) \cdots p(z_{k-1} \mid z_{k-2}) \sum_{z_k} \left(\sum_{z_k} p(z_k \mid z_k-1)p(z_{k+1} \mid z_k) \right) \cdots \sum_{z_{K-1}} p(z_{K-1} \mid z_{K-2})p(y \mid z_{K-1})$$

The expression in the large parenthesis can be written as

$$p(z_k = z_k^* \mid z_{k-1})p(z_{k+1} = z_k^*) + p(z_k \neq z_k^* \mid z_{k-1})p(z_{k+1} \neq z_k^*)$$

This is the only place in the formula for $p_R(y \mid a)$ where z_k makes an appearance. Therefore, without loss of generality, we can transform z_k into a binary variable that gets the value 1 when $z_k = z_k^*$ and the value 0 when $z_k \neq z_k^*$. The distribution p' over a, y and the other $K - 2$ binary variables is thus derived from p via the above series of steps. The requirement that p' has full support is therefore satisfied because z_k gets at least two values.

Missing step in the proof of Proposition 4

Let $R^L : a \rightarrow x_k \rightarrow y$. Our objective is to show that

$$p_R^L(y = 1 \mid a = 1) \leq \frac{\mu}{\mu + \alpha (1 - \mu)}$$

$$p_R^L(y = 1 \mid a = 0) \leq \frac{\mu}{\mu + (1 - \alpha) (1 - \mu)}$$

To derive these upper bounds, note first that

$$p_{R^L}(y = 1 \mid a = 1) = \sum_{x_k = 0,1} p(x_k \mid a = 1)p(y = 1 \mid x_k)$$

Using the notation $p_{ay} = p(x_k = 1 \mid a, y)$, $p_{R^L}(y = 1 \mid a = 1)$ can be rewritten
as

\[
\frac{\mu \alpha p_{11} + (1-\alpha)p_{01}}{(1-\mu)(\alpha p_{10} + (1-\alpha)p_{00}) + \mu\alpha p_{11} + (1-\alpha)p_{01}}
\]

\[
+ \frac{\mu [1-\alpha p_{11} - (1-\alpha)p_{10}]}{(1-\mu)[1-\alpha p_{10} - (1-\alpha)p_{00}] + \mu[1-\alpha p_{11} - (1-\alpha)p_{01}]}
\]

This expression is a convex combination of two expressions,

\[
\frac{\mu \alpha p_{11} + (1-\alpha)p_{01}}{(1-\mu)[\alpha p_{10} + (1-\alpha)p_{00}] + \mu\alpha p_{11} + (1-\alpha)p_{01}}
\] (22)

and

\[
\frac{\mu [1-\alpha p_{11} - (1-\alpha)p_{10}]}{(1-\mu)[1-\alpha p_{10} - (1-\alpha)p_{00}] + \mu[1-\alpha p_{11} - (1-\alpha)p_{01}]}
\] (23)

Suppose (22) is greater or equal to (23). Then \(p_{R^\mu}(y = 1 \mid a = 1) \) attains a maximum only if \(p_{10} = p_{11} = 1 \). Given this, (22) attains a maximum at \(p_{01} = 1 \) and \(p_{00} = 0 \). At these values,

\[
p_{R^\mu}(y = 1 \mid a = 1) = \frac{\mu}{\mu + \alpha(1-\mu)}
\]

and indeed, (22) is greater than (23).

Using analogous arguments,

\[
p_{R^\mu}(y = 1 \mid a = 0) \leq \frac{\mu}{\mu + (1-\alpha)(1-\mu)}
\]

where \(p_{01} = p_{00} = p_{11} = 1 \) and \(p_{10} = 0 \) attain this upper bound.

Missing step in the proof of Proposition 6

Let \(R^\alpha : a \to y \leftarrow x_k \). Our objective is to show that

\[
p_{R^\alpha}(y = 1 \mid a = 1) \leq 1 - \alpha(1-\mu)
\]

\[
p_{R^\alpha}(y = 1 \mid a = 0) \leq 1 - (1-\alpha)(1-\mu)
\]
To derive these upper bounds, note first that

\[p_{R^c}(y = 1 \mid a) = \sum_{x_k=0,1} p(x_k)p(y = 1 \mid a, x_k) \]

Denote \(p_{ay} \equiv p(x_k \mid a, y) \). Then \(p_{R^c}(y = 1 \mid a = 1) \) is equal to

\[
\frac{[\alpha \mu p_{11} + \alpha (1 - \mu) p_{10} + (1 - \alpha) \mu p_{01} + (1 - \alpha)(1 - \mu)p_{00}]\mu \alpha p_{11} +}{\alpha[\mu p_{11} + (1 - \mu)p_{10}]} + \\
\frac{[\alpha \mu (1 - p_{11}) + \alpha (1 - \mu)(1 - p_{10}) + (1 - \alpha)\mu(1 - p_{01}) + (1 - \alpha)(1 - \mu)(1 - p_{00})]\mu \alpha (1 - p_{11})}{\alpha[\mu (1 - p_{11}) + (1 - \mu)(1 - p_{10})]}
\]

which simplifies into

\[
[1 + \frac{1 - \alpha}{\alpha}(\frac{\mu p_{01} + (1 - \mu)p_{00}}{\mu p_{11} + (1 - \mu)p_{10}})]\mu \alpha p_{11} + [1 + \frac{1 - \alpha}{\alpha}(\frac{\mu(1 - p_{01}) + (1 - \mu)(1 - p_{00})}{\mu(1 - p_{11}) + (1 - \mu)(1 - p_{10})})]\mu \alpha (1 - p_{11})
\]

(24)

Note that this expression is a convex combination of two expressions,

\[
\frac{\mu p_{01} + (1 - \mu)p_{00}}{\mu p_{11} + (1 - \mu)p_{10}}
\]

(25)

and

\[
\frac{\mu(1 - p_{01}) + (1 - \mu)(1 - p_{00})}{\mu(1 - p_{11}) + (1 - \mu)(1 - p_{10})}
\]

(26)

Suppose (25) is greater or equal to (26). Then (24) attains a maximum only if \(p_{11} = 1 \). Given this, (25) attains a maximum at \(p_{01} = p_{00} = 1 \) and \(p_{10} = 0 \). Plugging these values into (24) gives

\[p_{R^c}(y = 1 \mid a = 1) = 1 - \alpha(1 - \mu) \]

and (25) is greater than (26).

By analogous arguments,

\[p_{R^c}(y = 1 \mid a = 0) \leq 1 - (1 - \alpha)(1 - \mu) \]

and \(p_{01} = p_{11} = p_{10} = 1, p_{00} = 0 \) attain this upper bound. ■