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In this thesis we consider three different issues of analytic number theory. Firstly, we

investigate how residues modulo q may be expressed as products of small primes. In

Chapter 1, we work in the regime in which these primes are less than q, and present

some partial results towards an open conjecture of Erdős. In Chapter 2, we consider

the kinder regime in which these primes are at most qC , for some constant C that is

greater than 1. Here we reach an explicit version of Linnik’s Theorem on the least

prime in an arithmetic progression, saving that we replace ‘prime’ with ‘product of

exactly three primes’. The results of this chapter are joint with Prof. Olivier Ramaré.

The next two chapters concern equidistribution modulo 1, specifically the notion

that an infinite set of integers is metric poissonian. This strong notion was introduced

by Rudnick and Sarnak around twenty years ago, but more recently it has been linked

with concepts from additive combinatorics. In Chapter 3 we study the primes in this

context, and prove that the primes do not enjoy the metric poissonian property, a

theorem which, in passing, improves upon a certain result of Bourgain. In Chapter 4

we continue the investigation further, adapting arguments of Schmidt to demonstrate

that certain random sets of integers, which are nearly as dense as the primes, are

metric poissonian after all.

The major work of this thesis concerns the study of diophantine inequalities. The

use of techniques from Fourier analysis to count the number of solutions to such

systems, in primes or in other arithmetic sets of interest, is well developed. Our

innovation, following suggestions of Wooley and others, is to utilise the additive-

combinatorial notion of Gowers norms. In Chapter 5 we adapt methods of Green and

Tao to show that, even in an extremely general framework, Gowers norms control the

number of solutions weighted by arbitrary bounded functions. We use this result to

demonstrate cancellation of the Möbius function over certain irrational patterns.
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Chapter 0

Preliminaries

Throughout this thesis we will need to refer to some standard results from fields other

than analytic number theory. For ease of reference, we devote this preliminary section

to recalling the precise statements of these results, as well as to fixing our notation.

0.1 Notation

We will use standard asymptotic notation O, o, and Ω. We do not, as is sometimes

the convention, for a function f and a positive function g choose to write f = O(g) if

there exists a constant C such that |f(N)| 6 Cg(N) for N sufficiently large. Rather

we require the inequality to hold for all N in some pre-specified range. If N is a

natural number, the range is always assumed to be N unless otherwise specified. (For

us, 0 /∈ N).

It will be a convenient shorthand to use these symbols in conjunction with minus

signs. So, by convention, we determine that expressions such as −O(1),−o(1),−Ω(1)

are negative, e.g. N−Ω(1) refers to a term N−c, where c is some positive quantity

bounded away from 0 as the asymptotic parameter tends to infinity.

It will also be convenient to use the Vinogradov symbol �, where for a function

f and a positive function g we write f � g if and only if f = O(g). We write f � g if

f � g and g � f . We also adopt the κ notation from [38]: κ(x) denotes any quantity

1



that tends to zero as x tends to zero, with the exact value being permitted to change

from line to line.

In Chapter 5, all the implied constants may depend on the dimensions of the un-

derlying spaces. These will be obvious in context, and will always be denoted by m,

d, h, or s (or, in the case of Proposition 5.3.8, by n). If an implied constant depends

on other parameters, throughout the thesis we will denote these by subscripts, e.g.

Oc,C,ε(1), or f �ε g.

If N is a natural number, we use [N ] to denote {n ∈ N : n 6 N}, whereas [1, N ]

will be reserved for the closed real interval. For x ∈ R, we write [x] := bx+ 1
2
c for the

nearest integer to x, and ‖x‖ for |x− [x]|. This means that there is slight overloading

of the notation [N ], but the sense will always be obvious in context. When other

norms are present, we may write ‖x‖R/Z for ‖x‖ to avoid confusion. For x ∈ Rm, we

let ‖x‖Rm/Zm denote supi |xi − [xi]|.

We always assume that the vector space Rd is written with respect to the standard

basis. If X, Y ⊂ Rd for some d, we define

dist(X, Y ) := inf
x∈X,y∈Y

‖x− y‖∞.

If X is the singleton {x}, we write dist(x, Y ) for dist({x}, Y ). By identifying sets

of m-by-d matrices with subsets of Rmd simply by identifying the coefficients of the

matrices with coordinates in Rmd, we may also define dist(X, Y ) when X and Y are

sets of matrices of the same dimensions.

We let ∂(X) denote the topological boundary of X. If A and B are two sets with

A ⊆ B, we let 1A : B −→ {0, 1} denote the indicator function of A. (The relevant set
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B will usually be obvious from context). We will also sometimes use the notation 1A.

The notation for logarithms, log, will always denote the natural log. For θ ∈ R, and

e being Euler’s constant, we also adopt the standard shorthand e(θ) to mean e2πiθ.

In section 5.8, if x ∈ Rd and if a and b are two subscripts with 1 6 a 6 b 6 d, we

use the notation xb
a to denote the vector (xa, xa+1, · · · , xb)T ∈ Rb−a+1.

The letters µ, λ, ϕ, σ, χ, etc. will be too important to reserve solely for their

number-theoretic meanings (Möbius function, Liouville function, etc.). If they un-

dertake a special number-theoretic meaning, this will be explicitly stated.

Throughout the thesis, and most pertinently in chapter 5, we will consider a linear

map L : Rd −→ Rm to be synonymous with the m-by-d matrix that represents L with

respect to the standard bases. The norm ‖L‖∞ will refer to the maximum absolute

value of the coefficients of this matrix.

0.2 Additive combinatorics

We begin with some standard definitions.

Definition 0.2.1 (Additive convolution). Let f, g : R −→ C be two bounded mea-

surable functions with compact support. We define their additive convolution f ∗ g :

R −→ C to be the function

(f ∗ g)(x) :=

∫
y∈R

f(x− y)g(y) dy.

In Chapter 1 it will be natural to represent finite abelian groups multiplicatively,

and so we record the definition of convolution in this context.
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Definition 0.2.2 (Multiplicative convolution). Let G be a finite abelian group, writ-

ten multiplicatively. For two functions f, g : G −→ C, we define their multiplicative

convolution f ? g : G −→ C to be the function

(f ? g)(x) :=
∑
y∈G

f(xy−1)g(y).

Of course all this theory may be placed in a common abstract framework of locally

compact abelian groups (see [72]), but there is no reason to do so in this thesis.

Definition 0.2.3 (Product set). Let G be an abelian group, written multiplicatively,

and let A be a subset of G. Let k be a natural number. We then define the k-fold

iterated product-set Ak by

Ak := {a1a2 · · · ak : ai ∈ A}.

If B is another subset of G, we also use the notation A ·B for the product set

{ab : a ∈ A, b ∈ B}.

Definition 0.2.4 (Inverse set). Let G be an abelian group, written multiplicatively,

and let A be a subset of G. We write

A−1 := {a−1 : a ∈ A}.

Definition 0.2.5 (Additive energy). Let G be an abelian group, written multiplica-

tively, and let A be a finite subset of G. Define the additive energy E(A) to be

|{(a1, a2, a3, a4) ∈ A× A× A× A : a1a2 = a3a4}|.

In Chapter 3 we will need to consider the additive energy of a subset of Z, a group
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that is written additively. The corresponding definition of additive energy is as in

Definition 0.2.5, mutatis mutandis.

We recall the following easy Cauchy-Schwarz argument.

Lemma 0.2.6. Let G be a finite abelian group, written multiplicatively, and let A be

a subset of G. Then |A · A| > |A|4/E(A).

Proof. We have the immediate identities |A|2 =
∑

x∈G(1A ? 1A)(x), and E(A) =∑
x∈G(1A ? 1A)(x)2. Note that the function (1A ? 1A) is only supported on the

product set A · A. Then by the Cauchy-Schwarz inequality we deduce that |A|2 6

|A · A| 12E(A)
1
2 . This rearranges to give the lemma.

We will use three standard results concerning |A · A|, when A is a subset of

an abelian group. First, recall the following simple combinatorial lemma of Freiman,

which renders precise the notion that being contained in a coset is the only obstruction

to a set having reasonable doubling.

Lemma 0.2.7 (Freiman). Let G be an abelian group, written multiplicatively, and let

A be a finite subset of G. Suppose that A is not contained in any proper coset of G.

Then either A · A−1 = G or |A · A| > 3
2
|A|.

A reference for the proof of this lemma is somewhat difficult to locate. It originally

appeared in [24], in Russian, and the statement appears as Proposition 1.1 of [76],

and as Exercise 2.6.5 of [85]. Fortunately, the brevity of the argument allows us to

give it here in full.

Proof. Suppose that |A·A| < 3
2
|A|; we show that A·A−1 is closed under multiplication.

Indeed, let w, x, y, z ∈ A. The set {a ∈ A : wa ∈ zA} has size greater than 1
2
|A|,

since |A ·A| < 3
2
|A|. Similarly the set {a ∈ A : xa ∈ yA}| has size greater than 1

2
|A|.

Therefore these two sets intersect, and we have a, az, ay ∈ A such that wa = zaz and
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xa = yay. Hence

(wx−1)(yz−1) = waa−1x−1yz−1 = zaza
−1
y y−1yz−1 = aza

−1
y .

Therefore A · A−1 is a subgroup of G (the other axioms are trivial), and as A is

not contained in any proper coset of G we conclude that A · A−1 must be the whole

of G.

This lemma is sharp: consider the case where A is the union of a subgroup and a

single non-trivial coset of the same subgroup.

We will also need the Ruzsa triangle inequality.

Lemma 0.2.8 (Ruzsa triangle inequality). Let G be an abelian group, written mul-

tiplicatively, and let A, B, and C be finite subsets of G. Then

|A · C−1| 6 |A ·B
−1||B · C−1|
|B|

.

This is proved in Lemma 2.6 of [85].

Corollary 0.2.9. Let G be an abelian group, written multiplicatively, and let A be a

finite subset of G. Then

|A · A−1| 6 |A · A|
2

|A|
.

This corollary is proved by putting A = C and B = A−1 in Lemma 0.2.8.

The final result concerning the size of product sets will be Kneser’s Theorem.

Theorem 0.2.10 (Kneser’s Theorem). Let G be a finite abelian group, written mul-

tiplicatively, and let A and B be subsets of G. Let H be the stabiliser of A · B, i.e.

the subgroup of G consisting of those elements h such that h · A · B = A · B. Then
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we have

|A ·B| > |A ·H|+ |B ·H| − |H|.

Proof. Originally from [51], but more easily read in [85, Theorem 5.5] or [63, Theorem

4.3].

0.3 Gowers norms

There are several existing accounts of the basic theory of Gowers norms – for example

in [35] and [84] – and the reader looking for an introduction to the theory in its full

generality should certainly consult these references, as well as Appendices B and C

of [38]. However, in the interests of making this thesis as self-contained as possible,

we use this section to pick out the central definitions and notions that will be used

in the main text.

Definition 0.3.1. Let N be a natural number. For a function f : Z/NZ −→ C, and a

natural number d, define the Gowers Ud norm ‖f‖Ud(N) to be the unique non-negative

solution to

‖f‖2d

Ud(N) =
1

Nd+1

∑
x,h1,··· ,hd

∏
ω∈{0,1}d

C|ω|f(x+ h · ω), (1)

where |ω| =
∑
i

ωi, h = (h1, · · · , hd), C is the complex-conjugation operator, and the

summation is over x, h1, · · · , hd ∈ Z/NZ.

For example,

‖f‖U1(N) =
∣∣∣ 1

N

∑
x

f(x)
∣∣∣,

and

‖f‖U2(N) =

(
1

N3

∑
x,h1,h2

f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2)

) 1
4

.

It is not immediately obvious that the right-hand side of (1) is always a non-negative

real, nor why the Ud norms are genuine norms if d > 2: proofs of both these facts
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may be found in [85].

The functions in the main text do not have a cyclic group as a domain but rather

the interval [N ], but the theory may easily be adapted to this case.

Definition 0.3.2. Let N,N ′ be natural numbers, with N ′ > N . Identify [N ] with

a subset of Z/N ′Z in the natural way, i.e. [N ] = {1, · · · , N} ⊆ {1, · · · , N ′}, which

we then view as Z/N ′Z. For a function f : [N ] −→ C, and a natural number d, we

define the Gowers norm ‖f‖Ud[N ] to be the unique non-negative real solution to the

equation

‖f‖2d

Ud[N ] =
1

|R|
∑

x,h1,··· ,hd

∏
ω∈{0,1}d

C|ω|f1[N ](x+ h · ω), (2)

where f1[N ] is the extension by zero of f to Z/N ′Z, the summation is over

x, h1, · · · , hd ∈ Z/N ′Z, and the set R is the set

R := {x, h1, · · · , hd ∈ Z/N ′Z : for every ω ∈ {0, 1}d, x+ h · ω ∈ [N ]}.

One can immediately see that this definition is equivalent to

‖f‖Ud[N ] = ‖f1[N ]‖Ud(N ′)/‖1[N ]‖Ud(N ′),

and is also independent of the choice of N ′ as long as N ′/N is large enough (in terms of

d). Taking N ′ = O(N) we have ‖1[N ]‖Ud(N ′) � 1, and thus ‖f‖Ud[N ] � ‖f1[N ]‖Ud(N ′).

(See [38, Lemma B.5] for more detail on this).

We observe that there is only a contribution to the summand in equation (2)

when x ∈ [N ] and for every i we have hi ∈ {−N,−N + 1, · · · , N − 1, N} modulo N ′.

Further, it may be easily seen that |R| � Nd+1. Therefore, choosing N ′/N sufficiently
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large, we conclude that

‖f‖Ud[N ] �

 1

Nd+1

∑
x,h1,··· ,hd∈Z

∏
ω∈{0,1}d

C|ω|f(x+ h · ω)

 1

2d

. (3)

The relation (3) is implicitly assumed throughout the main text.

In order to succinctly state Theorem 5.8.1 in Chapter 5, we will have to refer to a

Gowers norm Ud(R), which has been used in some recent work on linear patterns in

subsets of Euclidean space (see [15, Lemma 4.2], [19, Proposition 3.3]). This Gowers

norm is a less well-studied object, as the theory was originally developed over finite

groups. Nevertheless it may be perfectly well defined, and even deep aspects of its

inverse theory may be deduced from the corresponding theory of the discrete Gowers

norm (see [83]).

Definition 0.3.3. Let f : [0, 1] −→ C be a bounded measurable function, and let d

be a natural number. Then we define the Gowers norm ‖f‖Ud(R) to be the unique

non-negative real satisfying

‖f‖2d

Ud(R) =

∫
(x,h)∈Rd+1

∏
ω∈{0,1}d

C|ω|f(x+
d∑
i=1

hiωi) dx dh1 · · · dhd (4)

where |ω| =
∑
i

ωi, and C is the complex-conjugation operator.

Let N be a positive real, and let g : [−N,N ] −→ C be a measurable function.

Define the function f : [0, 1] −→ C by f(x) := g(2Nx−N), and then set

‖g‖Ud(R) := ‖f‖Ud(R).
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Explicitly, a change of variables shows that

‖g‖2d

Ud(R) �
1

Nd+1

∫
(x,h)∈Rd+1

∏
ω∈{0,1}d

C|ω|g(x+
d∑
i=1

hiωi) dx dh1 · · · dhd. (5)

Expression (5) will be used throughout Chapter 5.

We require one further fact about Gowers norms.

Proposition 0.3.4 (Gowers-Cauchy-Schwarz inequality). Let d be a natural number,

and, for each ω ∈ {0, 1}d, let fω : [0, 1] −→ C be a bounded measurable function.

Define the Gowers inner-product

〈(fω)ω∈{0,1}d〉 :=

∫
(x,h)∈Rd+1

∏
ω∈{0,1}d

C|ω|fω(x+
d∑
i=1

hiωi) dx dh1 · · · dhd.

Then

|〈(fω)ω∈{0,1}d〉| 6
∏

ω∈{0,1}d
‖fω‖Ud(R).

Proof. See [85, Chapter 11] for the proof in the finite group setting. The modification

to the setting of the reals is trivial.

0.4 Lipschitz functions

In Chapter 5 we will use properties of Lipschitz functions.

Definition 0.4.1 (Lipschitz functions). We say that a function F : Rm −→ C is

Lipschitz, with Lipschitz constant at most M , if

M > sup
x,y∈Rm
x 6=y

|F (x)− F (y)|
‖x− y‖∞

.
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We say that a function G : Rm/Zm −→ C is Lipschitz, with Lipschitz constant at

most M , if

M > sup
x,y∈Rm/Zm

x 6=y

|F (x)− F (y)|
‖x− y‖Rm/Zm

.

We record the three properties of Lipschitz functions that we will require.

Lemma 0.4.2. Let N be a positive real, let m be a natural number, let K be a convex

subset of [−N,N ]m, and let σ be some parameter in the range 0 < σ < 1/2. Then

there exist Lipschitz functions Fσ, Gσ : Rm −→ [0, 1] supported on [−2N, 2N ]m, both

with Lipschitz constant at most O( 1
σN

), such that

1K = Fσ +O(Gσ)

and
∫
x
Gσ(x) dx = O(σNm). Furthermore, Fσ(x) > 1K(x) for all x ∈ Rm, and G is

supported on {x ∈ Rm : dist(x, ∂(K)) 6 σN}.

This is [38, Corollary A.3]. It will be used in Lemmas 5.5.9 and 5.5.11 to replace

sums with sharp cut-offs by sums with Lipschitz cut-offs.

Lemma 0.4.3. Let X be a positive real, with X > 2. Let F : Rm/Zm −→ C be a

Lipschitz function such that ‖F‖∞ 6 1 and the Lipschitz constant of F is at most M .

Then

F (x) =
∑
k∈Zm
‖k‖∞6X

cX(k)e(k · x) +Om

(
M

logX

X

)
(6)

for every x ∈ Rm/Zm, for some function cX(k) satisfying ‖cX(k)‖∞ � 1.

This is [37, Lemma A.9], and will be used in Lemma 5.4.3 as a way of bounding the

number of solutions to a certain inequality.

Lemma 0.4.4. Let X,N,C be positive reals, with X > 2 and N > 1. Let F : Rm −→

C be a Lipschitz function, supported on [−CN,CN ]m, such that ‖F‖∞ 6 1 and the

11



Lipschitz constant of F is at most M . Then

F (x) =

∫
ξ∈Rm
‖ξ‖∞6X

cX(ξ)e(
ξ · x
N

) dξ +Om,C

(
MN

logX

X

)
(7)

for every x ∈ Rm, for some function cX(ξ) satisfying ‖cX(ξ)‖∞ �m,C 1.

Lemma 0.4.4 is very similar to Lemma 0.4.3, and may be easily proved by adapting

that standard harmonic analysis argument found in [37, Lemma A.9] from Rm/Zm to

Rm. For completeness, we sketch the proof.

Sketch proof. By rescaling the variable x by a factor of N , we reduce to the case

where F is supported on [−C,C]m and has Lipschitz constant at most MN .

Let

KX(x) :=
m∏
i=1

1

X

(
sin(πXxi)

πxi

)2

.

Then

K̂X(ξ) =
m∏
i=1

max(1− |ξi|
X
, 0).

We have

(F ∗KX)(x) =

∫
ξ∈Rm
‖ξ‖∞6X

F̂ (ξ)K̂X(ξ)e(ξ · x) dx,

and, since |F̂ (ξ)| 6 ‖F‖1 �C 1, letting cX(ξ) := F̂ (ξ)K̂X(ξ) gives a main term of

the desired form.

It remains to show that

‖F − F ∗KX‖∞ �m,C MN
logX

X
.

12



By writing

|F (x)− (F ∗KX)(x)| =
∣∣∣ ∫
y∈Rm

(F (x)− F (y))KX(x− y) dy
∣∣∣,

one sees that it suffices to show that

∫
‖z‖∞62C

‖z‖∞KX(z) dz�m,C
logX

X
.

But this bound follows immediately from a dyadic decomposition.

We will use Lemma 0.4.4 extensively in the Generalised von Neumann Theorem

argument in section 5.8.

0.5 Probability

In Chapter 4 we will need to use a few of the standard tools of probability theory.

Lemma 0.5.1 (The first Borel-Cantelli Lemma). Let Ω be a probability space, and

let E1, E2, · · · be a sequence of events in Ω. Suppose that
∞∑
i=1

P(Ei) <∞. Then

P(
∞⋂
n=1

⋃
i>n

Ei) = 0.

This is an extremely standard result. See Lemma 1.2 of [85], say.

Lemma 0.5.2 (Chebyshev’s inequality). Let X be a random variable with expectation

µ and variance σ2. Then, for any positive λ,

P(|X − µ| > λ) 6
σ2

λ2
.
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Again, this result is extremely standard. See Theorem 4.1.1 of [4].

Theorem 0.5.3 (Large deviation bound). Let Y be the sum of mutually independent

indicator random variables, and let µ be the expectation of Y . Then

P(|Y − µ| > εµ) < 2 exp(−cεµ),

where cε is a positive constant that depends only on ε.

This is Corollary 1.14 of [4], and is a useful version of a Chernoff-type large deviation

bound.

14



Chapter 1

Writing residues as products of few

primes

1.1 Introduction

Let q be a large prime. In [22], Erdős made the following conjecture:

Conjecture 1.1.1 (Erdős, 1987). Every co-prime residue a modulo q may be ex-

pressed as the product of exactly two primes, each less than q.

One may consider Conjecture 1.1.1 as a multiplicative analogy of the famous Gold-

bach conjecture on sums of two prime numbers, and it is still open, even assuming the

Generalised Riemann Hypothesis. The authors of [22] remark that the conjecture,

“is almost certainly true, but will be hopelessly difficult to prove,” and certainly we

do not prove it in this thesis. Rather, the purpose of this chapter is to present our

various unconditional partial results. The main theorems may be found in our paper

[91], but here we have sharpened several of the bounds and thresholds.

We will be interested in establishing when certain naturally defined subsets of

(Z/qZ)× generate that entire group. More precisely, if S ⊆ (Z/qZ)×, we will be
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interested in when Sk = (Z/qZ)× for some k, where Sk denotes the k-fold iterated

product-set (see Definition 0.2.3). Reserving q to denote the fixed large prime in-

troduced above, and with p denoting an arbitrary prime, for a quantity η 6 1 we

define

Pη := {p : p < ηq}

In this language, Erdős conjectured that P 2
1 = (Z/qZ)×, if q is large enough. The

problem of showing that P k
η is a large set is obviously the more difficult the smaller

the value of η.

When S is a certain kind of subset of Z/qZ, most notably an interval, the case

S2 has been extensively studied, and is known as the modular hyperbola problem (see

the survey of Shparlinski [80]). The case of primes has received less attention. The

original paper of Erdős, Odlyzko, and Sárközy [22] shows that, under the Generalised

Riemann Hypothesis, there are at most c log5 q residues a less than q that may not

be expressed as the product of two primes less than q (where c is a small absolute

positive constant).

Unsurprisingly, the large sieve may be used to recover results of a similar strength,

unconditionally, for almost all q. Indeed, consider the follow theorem, which is (part

of) Theorem 1 of Friedlander, Kurlberg and Shparlinski [27].

Theorem 1.1.2. Let x,M > 2. Then

Rπ(x,M)� (M−1x4 +Mx2)(log x)−2,

where

Rπ(x,M) :=
∑

M<q62M
q prime

q−1∑
a=1

( ∑
p16x
p26x

p1p2≡a(mod q)

1− π(x)2

q − 1

)2

.

By putting M equal to x, one immediately concludes the following: if M is a large
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real parameter, then for all primes q in the dyadic range M < q 6 2M there are at

most log4 q residues a less than q that may not be expressed as the product of two

primes less than q, with the exception of a set of primes q of size o(M/ logM). By

putting M = x2−ε, one may deduce the following, which concerns a much smaller

value of η: if M is a large real parameter, then for all primes q in the dyadic range

M < q 6 2M one has P 3
η = (Z/qZ)×, with η = q−

1
2

+ε, apart from an exceptional

set of primes q of size oε(M/ logM). Corollary 1 of [48] by Heath-Brown and Li is a

similar result about this range of parameters. We do not dwell on these results, as

the case of almost all q seems to be a rather different issue to the main work of this

chapter.

The most relevant previous work for fixed q, which only came to our attention after

the publication of our first preprint [90] on this topic, was undertaken by Shparlinski

in [81].

Theorem 1.1.3. [81, Corollary of Theorem 3] Let m be a large enough natural num-

ber, and let r be a residue modulo m satisfying (r,m) = 1. Then we may find p and

s such that

r ≡ ps (modm), (1.1)

where p, s 6 m0.997, p is prime, and s is the product of at most 17 primes.

Applying this theorem to our setting as a black box, it immediately implies the

following:

Corollary 1.1.4. Let q be a large enough prime. Then setting η := q−0.003, we have

18⋃
i=1

P i
η = (Z/qZ)×.

Shparlinski’s approach proceeds by employing a bound of Garaev [29] on exponen-

tial sums over reciprocals of primes, generalised to composite moduli m. In our work,
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we aim to prove results stronger than Corollary 1.1.4, by more direct methods. In

this endeavour we are successful, though of course we do not derive any improvement

on Theorem 1.1.3 itself, which concerns a different sieving situation.

In response to our publication [91] of the theorems described in this chapter,

Shparlinski has sharpened his method, and published a preprint [79] improving on

many1 of these results. Thus, regrettably, not all the work in this chapter represents

the current state-of-the-art. Yet, having been an important part of the efforts of the

community at large, we believe the work still merits inclusion in this thesis.

We now state the main results of this chapter.

Theorem 1.1.5. Let q be prime, and let ε > 0. Then:

(1) |P 2
1 | > 1

64
(1− o(1))q;

(2) if η = q−
1
2

+ε, then |P 2
η | �ε q.

To describe in brief, the proof of part (2) of the above theorem is a mixture of

two elements: an application of an asymptotic expression for the fourth moment of a

multiplicative character sum, given by Ayyad, Cochrane, and Zheng in [6], combined

with an introduction of sieve weights. The manoeuvre of switching to a fourth moment

means that the implied constant is necessarily rather small. To prove the tighter

result for |P 2
1 | given in part (1), we employ a different method, using sieve weights

to upper-bound the number of solutions to the equation p1p2 ≡ a (mod q), for a fixed

a, directly, from which we conclude that the support of P 2
1 cannot be too small.

The key feature here, which we believe to be relatively novel, is that while we lose

information by switching to sieve weights we also gain information by accessing the

stronger L1 bounds of the sieve weights’ Fourier transform. In [81, 79], this positive

density question is not considered.

1Not all the results have been improved. We will carefully note which of our bounds remain the
best known.
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Theorem 1.1.6. Let ε > 0. There then exists a natural number q0(ε) such that, if q

is a prime number satisfying q > q0(ε), then the following holds:

(1) every non-zero residue modulo q can be expressed as the product of at most 6

primes, each less than q
15
16

+ε;

(2) there exist a natural number k(ε) such that every non-zero residue modulo q can

be expressed as the product of at most k(ε) primes, each less than q
1
4

+ε.

Note that 15
16

= 0.9375, so part (1) of the above theorem represents an improve-

ment over Corollary 1.1.4. However, several subsequent results of Shparlinski in [79]

improve further over part (1). In particular he proves that every non-zero residue

modulo q may be expressed as the product of at most 5 primes less than q0.905.

Part (2) is a substantial improvement over the analogous result we proved pre-

viously in [91], in which the primes were at most q
3
4

+ε. It is also stronger than the

analogous result from [79], in which the primes are at most q
1
2

+ε. The method is

adapted from work of Harman and Shparlinksi [45], though we have not been able to

mimic their method for reducing the threshold2 further to q
1

4
√
e

+ε
, which they achieve

in the case of generation of (Z/qZ)× by small integers.

Finally, we deduce that every residue may be expressed as the product of a fixed

number of small primes.

Theorem 1.1.7. Let ε > 0. Then there exists a natural number q0(ε) such that, if q

is a prime number satisfying q > q0(ε), the following holds:

(1) if η = q−
1
16

+ε, then P 20
η = (Z/qZ)×;

(2) if η = q−
3
4

+ε, then there exists a natural number K(ε) such that P
K(ε)
η = (Z/qZ)×.

2Shparlinski (personal communication) believes that an estimate of Norton might be able to
achieve this, but the details are currently unclear.
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Part (2) of this theorem, as well as part (2) of the previous theorem, may be

viewed as multiplicative analogies of the classical Schnirelmann’s theorem that every

sufficiently large integer is the sum of at most 37000 primes, proved in [78] (see

exposition in [64]). There is an analogy to be made too between the methods of proof:

we use Theorem 1.1.5 to establish a positive density result, and then an argument

from additive combinatorics to show that this dense set expands.

To facilitate this argument, it will be necessary to preclude the following phe-

nomenon. Consider q = 5: we see P1 = {2, 3} consists entirely of quadratic non-

residues, and P 2
1 = {1, 4}, P 3

1 = {2, 3}, P 4
1 = {1, 4} etcetera, and so Theorem 1.1.7

fails to hold. The obstruction arises as P1 is entirely contained within a coset of a

non-trivial subgroup of (Z/qZ)×, or equivalently has a non-trivial Fourier coefficient

of maximal value. In Lemma 1.3.1 we establish that, for large enough q, the primes

less than q
1
4

+ε cannot be trapped in such a coset. On the suggestion of Schlage-

Puchta we establish this using his version of the large sieve for sequences supported

on primes, from [70], which gives the best quantitative results we know of. We also

present a very different proof based on the Selberg-Delange method. This was our

original approach, and is rather shorter.3 However, it yields slightly poorer constants

in Theorem 1.1.7 than the large sieve method.

Remark 1.1.8. For simplicity we restrict to q prime throughout this chapter. The

methods we use to prove Theorems 1.1.5 and 1.1.6 admit a modification to q com-

posite, although the technical details become increasingly complicated. However, it

is far from clear to me that the Selberg-Delange argument we use in connection with

Lemma 1.3.1 admits such a modification. Shparlinki’s results in [81, 79] are framed

for q composite, but, in the original motivating paper [22], Conjecture 1.1.1 is only

framed for q prime.

3We initially thought the approach via the Selberg-Delange method was a little idiosyncratic, yet
it was subsequently rediscovered independently by Pollack in the first version of the preprint [68],
later published without this result in [69].
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Remark 1.1.9. As will become evident in the coming sections, a great many different

methods may be applied to attack the problems in this chapter. One can use additive

Fourier transforms, multiplicative Fourier transforms, replace expressions by higher

moments that are easier to estimate, and all possible combinations of the above.

As such it is very difficult to establish whether one has proved an optimal result,

or whether some more intricate combination of these tools could improve the various

constants. At some point one must balance the length and readability of the argument

against the quality of the results that are proved. We try to strike such a balance

here.

1.2 Sieve constructions

The proofs of Theorems 1.1.5 and 1.1.6 will be applications of the existence of certain

sieve weights. In this section we collect together the precise results we require, and

discuss suitable references. For reasons discussed below, we opt for ‘off-the-shelf’

estimates, rather than constructing bespoke weights for this problem.

Lemma 1.2.1 (Upper-bound sieve). Let γ > 0, let ξ be a fixed real number satisfying

0 < ξ < 1
2
− γ

2
, and let x be a large integer, i.e. let x satisfy x > x0(γ) for some

x0(γ). Define z := xξ and D := x2ξ. Let ν(d) denote the number of distinct prime

factors of d. Then there exists a weight function w+ : [x] −→ R>0 such that:

(i) if n has no prime factors less than z then w+(n) > 1;

(ii)
x∑

n=1

w+(n) 6 (1 + o(1)) x
ξ log x

; and

(iii) w+(n) =
∑
d|n
λ+
d , where (λ+

d )d>1 is a sequence of real numbers satisfying λ+
d = 0

for d > D, λ+
d = 0 if d not square-free, and |λ+

d | 6 3ν(d) for all d.

Proof. The standard Selberg sieve weights suffice. A comprehensive reference is [26],

though the relevant estimates are a little difficult to locate. Specifically, one should
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take λ+
d to be equal to the weight λd constructed on page 92 between expressions

(7.25) and (7.26), where one has taken g(p) ≡ 1
p

for all primes. Then, considering

expressions (7.4) and (7.5) of that volume, along with the bound (7.27), if we define

w+(n) to be
∑
d|n
λd then w+ satisfies condition (iii) from the statement of Lemma 1.2.1.

Note that in the hypotheses of Lemma 1.2.1, the sieving level z is equal to
√
D.

Letting P (z) be the product of all primes less than z, and considering expressions

(7.2), (7.3) and (7.5) from [26], one has

w+(n) =
(∑

d|n

ρd

)2

=
( ∑

d|n
d|P (z)

ρd

)2

,

which, since ρ1 = 1, is at least 1 if n has no prime factors less than z. So property

(i) of Lemma 1.2.1 holds.

For property (ii), we take A = (an) to be the sequence supported on [x] where

an ≡ 1 for all n at most x. Then, in the notation of [26], Ad = x/d+O(1). Then the

sum
∑
n6x

w+(n) is equal to the right-hand side of expression (7.30), where the error

rd(A) is O(1). So it remains to estimate the right-hand side of (7.30). Employ the

asymptotic expression for J(D) in the regime z >
√
D (for sieving dimension κ equal

to 1), which begins page 118 of [26]. Then use (7.27) to estimate the error term∑
d<
√
D

λdrd(A) as O(x2ξ+o(1)). Since ξ < 1
2
− γ

2
, property (ii) follows.

Lemma 1.2.2 (Lower-bound sieve). Let γ, δ > 0, let ξ be a fixed real number satisfy-

ing 0 < ξ < 1
2
− γ

2
− δ

2
, and let x be a large integer, i.e. x > x0(γ, δ) for some x0(γ, δ).

Define z := xξ and D := x2ξ+δ. Then there exists a weight function w− : [x] −→ R

such that:

(i) if n has no prime factors less than z then w−(n) 6 1;

(ii) if n has some prime factor that is less than z, then w−(n) 6 0;

(iii) there exists a positive real c(δ) such that
x∑

n=1

w−(n) > c(δ) x
ξ log x

; and
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(iv) w−(n) =
∑
d|n
λ−d , where (λ−d )d>1 is a sequence of real numbers satisfying λ−d = 0

for d > D and |λ−d | 6 1.

Proof. The weight w− is essentially the definition of a lower-bound sieve weight. To

get a result of the required quality, take A = (an) to be the sequence supported on

[x], where an ≡ 1 for all n at most x, and construct the weights λ−d according to the

optimal linear sieve4 (applied to the sequence A). The required results are proved

in Chapter 11 of [26] and summarised at the beginning of Chapter 12 of the same

volume.

Again, let us try to be more specific about where the relevant estimates may be

located. The optimal linear sieve is an optimised version of the beta sieve, which

is a combinatorial sieve, meaning that the weights are either equal to µ(d) or 0.

Now, when sieving A with any lower-bound combinatorial linear sieve (λ−d ), with

sieving level z and level of support D as given in the hypotheses of Lemma 1.2.2, by

construction the weight w−(n) =
∑
d|n
λ−d immediately satisfies parts (i), (ii) and (iv) of

the above theorem. [The closest to an exact reference for this assertion is the general

framework of sieve weights described in section 5.3 of [26], in particular expressions

(5.20) and (5.21).]

To establish part (iii), we note that the right-hand-side of equation (12.13) of [26]

is exactly an estimate for the quantity
x∑

n=1

w−(n) with optimised weights. In those

authors’ notation, with our choice of parameters z and D, we have s = 2ξ+δ
ξ

. This

is at least 2 + 2δ, and in particular is at least 2: therefore f(s) > 0, and the main

term of (12.13) is of the order required in part (iii). As in the proof of property (ii)

in Lemma 1.2.1, the errors |rd(A)| are O(1), and since D 6 x1−γ the error R(A, D)

is O(x1−γ). This is negligible compared to the main term (provided x is large enough

in terms of γ and δ). The lemma is proved.

Another useful reference for the linear sieve is Chapter 8 of [42], in which Theorem

4also known as the Rosser-Iwaniec sieve
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8.4 may alternatively be used for this proof.

One may remark that, in Lemma 1.2.1, we could have used the upper-bound

weights in the optimal linear sieve, instead of the Selberg weights, and referred to

expression (12.12) of [26] to estimate
∑
n6x

w+(n). We do not rule out the possibility

that such a switch may improve5 the constant 64 appearing in part (1) of Theorem

1.1.5, as one will be able to take the values of the parameters z and D to be much

closer together in this framework (logD/ log z ≈ 1 as opposed to logD/ log z ≈ 2).

Computing the optimal result would be rather complicated. By contrast, the Selberg

sieve is a significantly simpler object than the optimal linear sieve, and may still

be used to derive a perfectly respectable constant6 in Theorem 1.1.5: we choose to

proceed with this method.

Analogously, the replacement of the optimal linear sieve by a weighted linear sieve

could potential decrease the constant in Theorem 1.1.6 from 6 to 5, but at the cost

of significantly added complications.

In the sequel we shall only use the properties of these weights stated in Lemmas

1.2.1 and 1.2.2. Once x is fixed, we shall freely consider these weights as functions on

N, supported on [x].

To finish this section, let us develop some results on the Fourier theory of sieve

weights. We recall the usual definitions, if only to fix normalisations. For an arbitrary

function f : Z/qZ −→ C and r ∈ Z/qZ, identifying [q] and Z/qZ in a harmless

5although the complicated piecewise definition of the function F (s) occurring in expression (12.12)
of [26] will render rather fiddly the act of calculating the best constant that can be derived from
this sieve; a numerical integrator would probably be required.

6By contrast, instead of 64, our first drafts ended up with a constant somewhere in the thousands.
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manner, we define the additive Fourier coefficient

f̂(r) =
∑

a∈Z/qZ

f(a)e

(
−ra
q

)
.

Taking χ : (Z/qZ)× −→ C to be a multiplicative character, we define the multiplica-

tive Fourier coefficient

f̂(χ) =
∑

x∈(Z/qZ)×

f(x)χ(x).

Sieve weights, being weighted sums of arithmetic progressions, enjoy cancellation

in their non-trivial Fourier coefficients, both additive and multiplicative. The fol-

lowing two lemmas formalise this notion; versions hold for the weights coming from

either of the two previous propositions but, for ease of application, we state them

only for the weights to which they will be applied.

Lemma 1.2.3. Let w+ be as in Lemma 1.2.1, with its associated large integer x. Let

q be a prime number satisfying q > x. Then

q−1∑
r=1

|ŵ+(r)| � qx2ξ+o(1) log q. (1.2)

Proof. The left-hand-side of (1.2) may be written explicitly as

q−1∑
r=1

∣∣∣∣∣∣
x∑

n=1

∑
d|n

λ+
d e

(
−rn
q

)∣∣∣∣∣∣ .
Swapping the summation over d and n, and using the pointwise bound 3ν(d) � do(1),

the above expression is at most

xo(1)

q−1∑
r=1

∑
d6x2ξ

∣∣∣∣∣∣
∑
y6x

d

e

(
−rdy

q

)∣∣∣∣∣∣ . (1.3)
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We denote the inner sum by S. By the standard estimate

∣∣∣∣∣∑
x6X

e

(
ax

q

)∣∣∣∣∣� max

(
q

a
,

q

q − a

)

for any a in the range 1 6 a 6 q − 1, and for any X, we conclude that

|S| � max

(
q

(rdmod q)
,

q

q − (rdmod q)

)
. (1.4)

Here rdmod q is the least positive residue congruent to rd modulo q, and we have

noted that rd is never a multiple of q. Substituting the bound (1.4) into (1.3) yields

q−1∑
r=1

|ŵ+(r)| � xo(1)

q−1∑
r=1

∑
d6x2ξ

max

(
q

(rdmod q)
,

q

q − (rdmod q)

)
.

Swapping the sums over r and d, we see that for each fixed d the value rdmod q

achieves each value from 1 to q − 1 exactly once. Splitting the sum into those r for

which rdmod q is less than q
2
, and those for which rdmod q is greater than q

2
, we

obtain the lemma.

We now use the Pólya-Vinogradov theorem to bound the non-trivial multiplicative

Fourier coefficients of sieve weights with small support.

Theorem 1.2.4 (Pólya-Vingoradov theorem). Let q be a natural number and let χ

be a non-principal Dirichlet character modulo q. Then, for any natural numbers M

and N ,
M+N−1∑
n=M

χ(n)� q
1
2 log q.

Proof. This was first proved in 1918 by Pólya and Vinogradov, independently. See

Chapter 23 of [16] for details.

The following short argument was suggested to us by Adam Harper.
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Lemma 1.2.5. Let w− be the weight from Lemma 1.2.2, with its associated large

integer x. Let q be a prime number satisfying q > x. Then for every non-principal

character χ we have the bound

|ŵ−(χ)| � x2ξ+δq
1
2 log q.

Proof. For χ a non-trivial character we have

|ŵ−(χ)| = |
∑
n6x

w−(n)χ(n)|

6
∑

d6x2ξ+δ

|λ−d ||
∑
n6x
d|n

χ(n)|

6
∑

d6x2ξ+δ

|
∑
m6x

d

χ(md)|

6 x2ξ+δq
1
2 log q

with the final line following from the multiplicativity of χ and the Pólya-Vinogradov

theorem applied to χ.

In the case where x is equal to q
1
4

+ε, one may fruitfully employ the Burgess bound

in place of Pólya-Vinogradov.

Theorem 1.2.6 (Burgess bound, simplified form). Let q be prime, and let χ be a non-

principal Dirichlet character modulo q. Let ε be a parameter in the range 0 < ε 6 1/2.

Then there is an absolute positive constant c such that

|
∑

n6q
1
4+ε

χ(n)| � q
1
4

+ε−cε2 .

Proof. This is the simplified form of the Burgess bound [13], given in Lemma 12 of

[45].
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Applying Theorem 1.2.6 in the context of Lemma 1.2.5, instead of applying Pólya-

Vinogradov, we derive the following lemma.

Lemma 1.2.7. Let ε be a parameter in the range 0 < ε 6 1/2. Let w− be the

weight from Lemma 1.2.2, with its associated large integer x. Suppose further that

the parameters ξ and δ from the statement of Lemma 1.2.2 are small enough in terms

of ε. Suppose that q is a prime number, with q
1
4

+ε � x. Then for every non-principal

character χ modulo q we have the bound

|ŵ−(χ)| � q
1
4

+ε−cε2 , (1.5)

where c is an absolute positive constant.

Although both very easy to prove, it turns out that these estimates will suffice for

the deductions of Theorems 1.1.5 and 1.1.6.

1.3 Subgroup obstructions

This section will be devoted to the proof and discussion of the following lemma, which

will be important in the proof of Theorem 1.1.7.

Lemma 1.3.1. Let ε > 0, and let q be prime. Suppose that η := q−
3
4

+ε. Then

there exists a constant C(ε) such that if q > C(ε) then there does not exist a proper

subgroup H ⊆ (Z/qZ)× and an x ∈ (Z/qZ)× such that Pη ⊆ xH.

This is equivalent to proving that there is no non-principal character of (Z/qZ)×

taking constant values on Pη.

Unfortunately, we cannot show that the primes p less than q enjoy any equidis-

tribution in cosets of (Z/qZ)×, and so we are restricted to using very general combi-
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natorial arguments such as Lemma 0.2.7, in lieu of Fourier analytic techniques. We

remark again that Lemma 1.3.1 was later rediscovered independently by Pollack7 in

[68].

Let us briefly discuss why proving equidistribution may be a genuinely difficult

problem8. Proving equidistribution is equivalent to exhibiting some cancellation for

the character sum
∑
p<ηq

χ(p), and the standard method for doing this is to use the

zero-free region of the Dirichlet L-function L(s, χ). For example, consider the result

([49] p. 124)

∑
p<x

χ(p)�A
√
qx(log x)−A (1.6)

for any non-principal character χ modulo q. Regrettably this result is worse than

trivial for our applications, as x 6 q. Though the use of
√
q in (1.6) by Iwaniec-

Kowalksi is a little wasteful (one may do better by referring back directly to the

prime number theorem as given in (5.51) of the same volume [49]), nothing better

than trivial may be achieved, and this is more than just a phenomenon of Siegel

zeros: even the q dependence in the zero-free region σ > 1 − c
log(q(|t|+2))

is too poor,

and this bound has resisted improvement for 80 years9. In Theorem 2 of Chapter 9

of [58], Montgomery gives an upper bound for the length of an interval on which a

character is surjective when restricted to primes. This is a stronger conclusion than

that of Lemma 1.3.1, but Montgomery’s bounds are unfortunately conjectural on a

larger zero-free region around s = 1 than that which is currently known. Of course,

conditional on the Generalised Riemann Hypothesis the left hand side of (1.6) enjoys

7The main theorem of Pollack’s paper (the final published version is [69]) is a useful result in this
general task of finding non-residues in short intervals. But it doesn’t contribute directly towards
Lemma 1.3.1, as the non-residues found might nonetheless lie in the same coset.

8Of course we cannot rule out that we may have missed some trivial argument.
9There is some work (some theorems from [28], for example) showing that for sums over short

intervals there are only a few exceptional conductors for which a better cancellation fails to hold,
but this does not assist with the consideration of fixed conductor q.
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almost square-root cancellation, with only logarithmic dependence on q. An easy

Fourier argument would then imply that three primes sufficed.

Proposition 1.3.2. Assume the Generalised Riemann Hypothesis. Then there exists

a positive constant C such that for all primes q > C one has P 3
1 = (Z/qZ)×.

Proof. Assuming GRH, one has the character sum bound
∑
p6x

χ(p)� x
1
2 (log xq)2 for

all non-principal χ. (See [62, Exercise 7.4.8]). Then for any a ∈ (Z/qZ)× we have

1P1 ? 1P1 ? 1P1(a) =
1

q − 1

∑
χ

1̂P1(χ)3χ(a)

=
1

q − 1
|P1|3 +O

(
q−1

∑
χ 6=χ0

|1̂P1(χ)|3
)

=
1

q − 1
|P1|3 +O

(
q−1+ 1

2 log2(q|P1|)
∑
χ 6=χ0

|1̂P1(χ)|2
)

� q2

log3 q
−O(q

3
2 (log q)

1
2 )

> 0

for large enough q, where the penultimate line follows from Parseval’s identity. This

immediately implies the proposition.

An alternative approach to ruling out hypothetical conspiracies of characters at

primes is to convert such behaviour into a conspiracy over an interval, obtaining a

contradiction to the various known estimates for character sums over intervals. For

example, using such an approach, one may show that there are prime quadratic non-

residues and residues less than q
1
4

+ε. The non-residue case is due to Burgess [12], and

is an immediate application of his famous character sum bound10 (Theorem 1.2.6);

the residue case is due to Vinogradov and Linnik in [88], although Pintz gave a much

10By a further argument Burgess showed that there is a prime quadratic non-residue at most

q
1

4
√

e
+ε

, but this tweak does not seem to be available for prime quadratic residues.
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simpler proof in [67]. Pintz’s method will be an inspiration for work in the next

chapter.

A natural generalisation of this method for nth-power residues, undertaken by

Elliott in [21], shows that there are primes p less than q
n−1
4

+ε that are nth-power

residues modulo q. The equivalent statement for a non-residue follows immediately

from Burgess. Collecting these results together, we see that the following result is

already known:

Proposition 1.3.3. Let ε > 0, and let q be prime. Suppose that η := q−
1
4

+ε. Then

there exists a constant C(ε) such that if q > C(ε) then the following holds: if H ⊆

(Z/qZ)× is a subgroup with index 2, 3, or 4, then there does not exist x ∈ (Z/qZ)×

such that Pη ⊆ xH.

1.3.1 A Selberg-Delange approach

Having discussed at some length the problems surrounding Lemma 1.3.1, let us pro-

ceed with the first proof.

Proof of Lemma 1.3.1. Let η be equal to q−
3
4

+ε and suppose that Pη is contained

in some coset of a non-trivial subgroup of (Z/qZ)×: equivalently, some Dirichlet

character χ with conductor q (necessarily primitive) is constant on Pη. We may

preclude the case when χ is the quadratic character by the result of Pintz [67, Theorem

1] mentioned above, so without loss of generality χ is complex. If χ(p) ≡ z for all

primes p satisfying p < ηq, where z is some root of unity, then χ(n) agrees with

the function zΩ(n) for all natural numbers n satisfying n < ηq, where Ω(n) is the

number of prime factors of n counted with multiplicity. It will be important that z

is bounded uniformly away from −1; w.l.o.g. we may assume, by replacing χ with a

suitable power of χ, that Re(z) > Re(e
2πi
3 ) = −1

2
.

We have Burgess’s character sum estimate from [13]. We have already stated a
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version of this bound in Theorem 1.2.6 , but here we give the more familiar version,

namely that for every natural number k one has

∑
n6x

χ(n)� x1− 1
k q

k+1

4k2 (log q)
1
k . (1.7)

A proof of this formulation may be found as [49, Theorem 12.6], with the strength-

ening given in equation (12.58).

We obtain a contradiction by observing that the equivalent sum, with zΩ(n) re-

placing χ(n), does not enjoy the same cancellation as that which is given in (1.7).

Indeed, Theorem 5.2 in [86] shows that for any root of unity z (apart from z = −1)

∑
n6x

zΩ(n) = x(log x)z−1


∏
p

(
1− z

p

)−1 (
1− 1

p

)z
Γ(z)

+O

(
1

log x

)
with implicit constant independent of z. The result is proved using the Selberg-

Delange method, though is in essence originally due to Sathe [77].

Since Re(z) > −1
2
, z lies on a segment of the unit circle on which Γ(z) is uni-

formly bounded, and hence 1
Γ(z)

is bounded away from zero. Further, as |z| = 1, the

factor
∏
p

(
1− z

p

)−1 (
1− 1

p

)z
is bounded away from zero (immediately seen by taking

logarithms). Therefore, for large enough q,

∣∣∣ ∑
n6ηq

zΩ(n)
∣∣∣� ηq

log
3
2 (ηq)

(1.8)

for all z with |z| = 1 and Re(z) > −1
2
, where the implicit constant is uniform in all

such choices of z. For large enough q and k, depending on ε, (1.8) is contradictory to

(1.7) taken with x equal to ηq. This concludes the proof of Lemma 1.3.1.
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1.3.2 A large sieve approach

Some time after the original publication of the above work in [91], it was suggested

to us by Prof. Jan-Christoph Schlage-Puchta that one of his results (a large sieve

inequality adapted for sequences supported on primes) could be used to derive a

stronger version of Lemma 1.3.1. This is indeed the case, and although the resulting

bounds do not imply any form of equidistribution, they will enable us to modestly

improve Theorem 1.1.7 part (2) over the equivalent result in [91].

Let us state Schlage-Puchta’s theorem11. This is a special case of Theorem 3 of

[70].

Theorem 1.3.4 (Schlage-Puchta, [70]). Let (ap)p∈P be any sequence of complex num-

bers supported on primes. Let q be a fixed large prime, x a large real number, and R

some real parameter satisfying 1 < R < x
1
2 . Let k be a natural number, and δ be a

positive real number. Finally, let C be any collection of characters modulo q. Then,

if k > 2 is a natural number,

∑
χ∈C

∣∣∣∣∣∑
p6x

apχ(p)

∣∣∣∣∣
2

6

(
x

logR
+ ck,δx

1− 1
k q

k+1

4k2
+δ|C|R

2
k

)∑
p6x

|ap|2. (1.9)

The proof uses a linear-algebraic sieving principle of Bombieri [57, Lemma 1.5]

and the stronger decay bounds which are available by passing to sieve weights. In

that sense, the method is of a similar spirit to the proofs of this chapter. Using it,

11We take this opportunity to fill in a slight gap in the proof of this theorem in [70]. The second
display equation of page 147 of that paper does not seem to follow from the author’s definition of inner
product space and vector (âp), as the interfering factors of f(p) have been miscalculated. Rather,

one should take âp = f(p)−1elog
2 p/Nap for p prime in the range (R2, N ], and 0 otherwise. Define χ̂

to be equal to χ, as in the paper. With these definitions, one has apχ(p) = f(p)e− log2 p/N âpχ̂(p), and
so the inner sum of the left-hand side of the second display equation on page 147 can be interpreted
as an inner product of (âp) and (χ̂(p)), as the author intends. Following this alteration through,
the right-hand side of the second display equation on page 147 has a different final multiplicative
factor, namely

∑
|ap|2e− log2 p/Nf(p)−1. But then we note that f(p) > 1, as f is an upper bound

sieve weight, and so this multiplicative factor may be upper bounded by the multiplicative factor
which appears in the paper. The rest of the argument in the paper, building on the second display
equation of page 147, is correct.
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we prove the following lemma, which strengthens Lemma 1.3.1 in all the regimes of

interest.

Lemma 1.3.5. Let ε, δ > 0, with δ sufficiently small in terms of ε. Let q be prime,

and let η := q−
3
4

+ε. Let C be a positive real and d a natural number, and suppose

that d 6 Cqδ. Let χ be a non-principal character modulo q, of order d. Then the size

of the image |χ(Pη)| is at least (1 − oC,δ(1))
(

1
2
− 1

2+8ε
−O(

√
δ)
)
d, where the errors

terms are uniform over all choices of χ satisfying the hypotheses.

We remark that the bound 1
2
− 1

2+8ε
tends to zero as ε tends to zero, so this lemma

has nothing to say about primes p satisfying p 6 q
1
4 , as expected. Furthermore, even

if ε = 3
4

and d = 2, the size of the image |χ(P1)| guaranteed by this lemma is only

(1 − o(1))3
8
d. Since 3

8
< 1

2
, even with Lemma 1.3.5 in place we still need the results

of Pintz on prime quadratic residues in order to conclude Lemma 1.3.1.

Proof. We apply Theorem 1.3.4. Given the parameters in the statement of Lemma

1.3.5, we then take x to be equal to ηq, ap to be equal to 1 for all primes, δ to be as

given, and the set of characters C to be the powers of χ, namely {χ0, χ, χ
2, · · · , χd−1}

(where χ0 denotes the principal character). Theorem 1.3.4 then shows that

d∑
a=1

∣∣∣∣∣∑
p<ηq

χa(p)

∣∣∣∣∣
2

6 (1 + o(1))

(
ηq

logR
+ ck,δC(ηq)1− 1

k q
1
4k

+ 1
4k2

+2δR
2
k

)
ηq

log ηq
, (1.10)

for any R satisfying 1 < R < (ηq)1/2, and for any natural number k at least 2.

Let us find a lower bound for the left-hand side. Indeed, by applying Parseval’s

identity to a suitable quotient of (Z/qZ)×, or arguing directly from orthogonality of

characters, we have

d∑
a=1

∣∣∣∣∣∑
p<ηq

χa(p)

∣∣∣∣∣
2

= d

d∑
a=1

|{p : p < ηq, χ(p) = za}|2,
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where z is some fixed primitive dth root of unity. Now, suppose that there are θd

values of a for which there exists some prime p less than ηq with χ(p) = za. By the

Cauchy-Schwarz inequality, we have that

d

d∑
a=1

|{p < ηq : χ(p) = za}|2 > d

θd

(
d∑
a=1

|{p < ηq : χ(p) = za}|

)2

> (1− o(1))
1

θ

(ηq)2

(log ηq)2
. (1.11)

We now manipulate the right-hand side of (1.10). Let us write b := log η/ log q+1,

so that ηq = qb. Let us also choose some parameter c < b/2, and write R := qc (the

condition c < b/2 ensures that R < (ηq)1/2). Combining (1.11) with (1.10), and using

these variables, we get

1

θ

qb

b log q
6 (1 + o(1))

(
1

c

qb

log q
+ ck,δCq

bq
1
k

(−ε+2c+ 1
4k

)+2δ

)
. (1.12)

Assume that δ is small enough in terms of ε. Choose c = ε
2
− 5
√
δ, and choose

k = d1/
√
δe. With these choices of parameters, c < b/2 (since b/2 = 1/8 + ε/2) and

the first term on the right-hand side of (1.12) dominates (if q is large enough in terms

of δ and C), i.e.

1

θ

1

b
6 (1 + oδ,C(1))

1

c
.

Rearranging, we may conclude that

θ > (1− oδ,C(1))

(
1

2
− 1

2 + 8ε
−O(

√
δ)

)

as claimed.
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1.4 Proofs of main theorems

In this section we present the proofs of the three main theorems, using arguments

from Fourier analysis.

Proof of Theorem 1.1.5. We begin with part (1). Let ε > 0, and without loss of

generality also assume that ε 6 1
4
. By adjusting the o(1) term in the statement of

part (1) of Theorem 1.1.5, we may also assume that q is sufficiently large. Taking η

to be equal to q−
1
4

+ε, we will proceed to show that

|P 2
η | >

(
2ε

3 + 4ε

)2

q(1− o(1)),

which will yield part (1) after the substitution ε = 1
4
.

To do this, we let a be an element of (Z/qZ)×, and let Sa denote the number of

solutions to the equation

p1p2 ≡ a(mod q)

with p1, p2 ∈ Pη. We proceed to give an upper bound for Sa.

We make an initial reduction. Let S∗a denote the number of solutions counted by

Sa in which p1, p2 > q
1
2 . Observe that |Sa−S∗a| = O(q

1
2 ), which is negligible compared

to the upper bound for S∗a which we will eventually give in (1.15). So we proceed to

bound S∗a.

Now let ξ and γ be certain positive real numbers, to be chosen later, satisfying

the inequality ξ < 1
2
− γ

2
. Assume that q is large enough12 in terms of γ. Let x be

defined to be bηqc, and let w+ be the weight constructed in Lemma 1.2.1 using these

constants ξ and γ.

By our above reductions, and property (i) of Lemma 1.2.1, we have the upper

12We will eventually let γ := 1/2, and so in fact all that is required is for q to be sufficiently large.
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bound

S∗a 6
q−1∑
n=1

w+(n)w+(an∗),

where n∗ denotes the multiplicative inverse modulo q. By the additive Fourier inver-

sion formula, this is equal to

1

q2

q∑
r=1

q∑
s=1

ŵ+(r)ŵ+(s)

q−1∑
n=1

e

(
rn+ san∗

q

)
. (1.13)

By property (ii) of Lemma 1.2.1, the contribution from the term where r = s = 0

is at most (1 + oγ(1)) η2q
ξ2 log2 ηq

. The remaining contribution is at most T1 + T2 + T3,

where

T1 :=
1

q2

q−1∑
r=1

q−1∑
s=1

|ŵ+(r)||ŵ+(s)|

∣∣∣∣∣
q−1∑
n=1

e

(
rn+ san∗

q

)∣∣∣∣∣ ;
T2 := (1 + oγ(1))

η

qξ log ηq

q−1∑
r=1

|ŵ+(r)|

∣∣∣∣∣
q−1∑
n=1

e

(
rn

q

)∣∣∣∣∣ ;
T3 := (1 + oγ(1))

η

qξ log ηq

q−1∑
s=1

|ŵ+(s)|

∣∣∣∣∣
q−1∑
n=1

e

(
san∗

q

)∣∣∣∣∣ .
In T1 the inner sum is the Kloosterman sum Kl2(r, sa; q) (see Chapter 11 of [49])

which enjoys the Weil bound

Kl2(r, sa; q) 6 2
√
q.

The other two exponential sums are trivially of size 1, and the sums of the Fourier

coefficients of w+ are precisely of the form estimated in Lemma 1.2.3. Hence we may

conclude that

T1 �γ η
4ξq4ξ+ 1

2
+o(1);

T2 �γ
η1+2ξq2ξ+o(1)

ξ
;
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T3 �γ
η1+2ξq2ξ+o(1)

ξ
.

Substituting η = q−
1
4

+ε, a short calculation demonstrates that the term with r = s = 0

dominates, as q tends to infinity with γ and ξ fixed, provided that the constant ξ

satisfies

ξ <
2ε

3 + 4ε
. (1.14)

We choose ξ to satisfy this bound. Note that since ε 6 1
4

we have that ξ < 1
8
.

Hence we may let γ := 1
2

and satisfy the hypotheses of Lemma 1.2.1. The final

conclusion is that

S∗a 6 (1 + oξ(1))
q

1
2

+2ε

ξ2 log2 ηq
(1.15)

for any ξ satisfying (1.14). By our initial remarks, the same bound holds for Sa.

Now we sum (1.15) over all a in P 2
η . This yields, using the Prime Number Theo-

rem13

(1 + o(1))
η2q2

log2 ηq
6 (1 + oξ(1))|P 2

η |
q

1
2

+2ε

ξ2 log2 ηq
.

Making the substitution η = q−
1
4

+ε and rearranging gives |P 2
η | > ξ2q(1 − oξ(1)) for

any ξ satisfying (1.14).

Now we let ξ depend on q, tending to 2ε
3+4ε

from below suitably slowly as q tends

to infinity. We then conclude

|P 2
η | >

(
2ε

3 + 4ε

)2

q(1− o(1)).

After the substitution ε = 1
4
, this proves part (1).

Now let us consider part (2) of Theorem 1.1.5. First note that we may assume that

ε 6 1/2. Then apply Lemma 0.2.6 with G = (Z/qZ)× and A = Pη, that connects the

13In fact Chebyshev’s elementary estimates would suffice for the proof
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size of the product set Pη · Pη with the additive energy E(Pη). Together, this shows

that part (2) of Theorem 1.1.5 may be deduced from the following upper bound on

E(Pη).

Proposition 1.4.1. Let q be prime, and let ε be in the range 0 < ε 6 1/2. Let

η := q−
1
2

+ε. Then E(Pη)�ε
η4q3

log4 q
.

We proceed to prove Proposition 1.4.1, noting for future reference that the desired

bound has order q1+4ε/ log4 q.

Proof of Proposition 1.4.1. Assuming the hypotheses of Proposition 1.4.1, let ξ be

a small positive constant to be chosen later (depending on ε), γ equal 1/2, and let

x := bηqc. Assuming without loss of generality that q is sufficiently large, let w+ be

the upper-bound sieve weight given in Lemma 1.2.1, with these parameters.

We use the parameter ξ to make an initial reduction similar to the one from

the proof of Theorem 1.1.5 part (1). Indeed, by a trivial argument, the number of

solutions to p1p2 ≡ p3p4(mod q), in which all the primes pi are at most ηq and at

least one of them is O((ηq)ξ), is O((ηq)ξ+2). This is O(q( 1
2

+ε)(ξ+2)), which for ξ small

enough is of a lower order than the bound claimed in Proposition 1.4.1. Therefore,

we may assume that all the primes pi are in the range (ηq)ξ < pi 6 (ηq). We let

E∗(Pη) denote this restricted solution count.

Using part (i) of Lemma 1.2.1, we have

E∗(Pη) 6
∑

n1,··· ,n46ηq
n1n2≡n3n4(mod q)

w+(n1)w+(n2)w+(n3)w+(n4)

=
1

q − 1

∑
χ

|ŵ+(χ)|4.

Using part (ii) of Lemma 1.2.1, we see that the contribution from the principal char-
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acter is at most

(1 + o(1))
1

ξ4

η4q3

(log ηq)4
, (1.16)

which is �ε
η4q3

log4 q
(recalling that ξ will be taken suitably small in terms of ε). The

remaining terms are

1

q − 1

∑
χ 6=χ0

∣∣∣ ∑
n6ηq

(∑
d|n

λ+
d

)
χ(n)

∣∣∣4
�1

q

∑
d1,··· ,d4<(ηq)2ξ

|λ+
d1
· · ·λ+

d4
|
∑
χ 6=χ0

4∏
i=1

∣∣∣ ∑
mi6ηq/di

χ(dmi)
∣∣∣

�qo(1)−1(ηq)8ξ maxd1,··· ,d4<(ηq)2ξ

∑
χ 6=χ0

4∏
i=1

∣∣∣ ∑
mi6ηq/di

χ(mi)
∣∣∣

�qo(1)−1(ηq)8ξ maxd1,··· ,d4<(ηq)2ξ

∏
i64

( ∑
χ 6=χ0

∣∣∣ ∑
mi6ηq/di

χ(mi)
∣∣∣4) 1

4
. (1.17)

Here we have used property (iii) of Lemma 1.2.1, in a manner suggested by Harper,

reminiscent of the approach in Lemma 1.2.5. The final line follows by two applications

of the Cauchy-Schwarz inequality.

Suitable bounds on expressions of this form were first given in [6] (the log factors

later sharpened in [30]).

Theorem 1.4.2. Let q be prime, and let B1, B2, B3, B4 be less than q. Then the

number of solutions to x1x2 ≡ x3x4(mod q) with 1 6 xi 6 Bi for all i is

B1B2B3B4

q
+O(

√
B1B2B3B4 log2 q).

This is Theorem 1 of Ayyad, Cochrane, and Zheng [6]. The method of proof is Fourier

analytic, and very much in the spirit of the methods of this chapter14.

14though rather more intricate: the authors find it necessary to combine both additive and mul-
tiplicative Fourier expansions.
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Now, following on from the final line of (1.17), and using Theorem 1.4.2, one has

∑
χ

∣∣∣ ∑
mi6ηq/di

χ(mi)
∣∣∣4 = q|{x1, x2, x3, x4 : x1x2 ≡ x3x4 (mod q), 1 6 xj 6 ηq/di ∀j.}|

=
(ηq)4

d4
i

+O(q1+o(1)(ηq)2).

Therefore,

∑
χ 6=χ0

∣∣∣ ∑
mi6ηq/di

χ(mi)
∣∣∣4 =

(ηq)4

d4
i

−
⌊
ηq

di

⌋4

+O(q1+o(1)(ηq)2)

6 O((ηq)3) +O(q1+o(1)(ηq)2)

6 O(q1+o(1)(ηq)2),

since ηq = O(q) by the assumption ε 6 1/2.

In total the above shows that (1.17) is� qo(1)(ηq)8ξ+2, which is� qo(1)+( 1
2

+ε)(8ξ+2).

If ξ is small enough, this is of a lower order of magnitude than the term from the

principal character, namely (1.16). We therefore conclude Proposition 1.4.1.

As noted above, part (2) of Theorem 1.1.5 follows immediately from Proposition

1.4.1.

We proceed to the proof of the second of our three main theorems.

Proof of Theorem 1.1.6 part (1). The proof of Theorem 1.1.6 part (1) is an easy con-

sequence of a standard Fourier analysis idea, namely the use of triple convolutions.

Let ε be a positive constant, and let η be defined to be q−
1
16

+ε: all as in the

statement of the theorem. Without loss of generality we may assume ε 6 1
16

. Let γ, δ

and ξ be constants that satisfy the hypotheses of Lemma 1.2.2; we will choose these

constants later, which will only depend on ε. Without loss of generality we assume

that q is sufficiently large in terms of γ, δ and ε. Let x be defined to be bηqc, and let

w− be defined to be the weight from Lemma 1.2.2 using all of these parameters.
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We proceed by showing that (w− ? 1Pη ? 1Pη)(a) > 0 for all a ∈ (Z/qZ)×. Indeed,

by multiplicative Fourier inversion we have the identity

w− ? 1Pη ? 1Pη(a) =
1

q − 1

∑
χ

ŵ−(χ)1̂Pη(χ)2χ(a)

>
(1− o(1))c(δ)η3q2

ξ log3 ηq
− 1

q − 1

∑
χ 6=χ0

|ŵ−(χ)1̂Pη(χ)2χ(a)|. (1.18)

by Property (iii) of Lemma 1.2.2. If the claim w− ? 1Pη ? 1Pη(a) > 0 were false, then

we would have

1

q − 1

∑
χ 6=χ0

|ŵ−(χ)1̂Pη(χ)2| > (1− o(1))
c(δ)η3q2

ξ log3 ηq

and therefore

supχ 6=χ0
|ŵ−(χ)|

∑
χ

|1̂Pη(χ)|2 > (1− o(1))
c(δ)η3q3

ξ log3 ηq
.

But by Parseval’s identity this would imply that

supχ 6=χ0
|ŵ−(χ)| > (1− o(1))c(δ)

η2q

ξ log2 ηq
. (1.19)

From Lemma 1.2.5, we have

supχ 6=χ0
|ŵ−(χ)| � (ηq)2ξ+δq

1
2 log q. (1.20)

A short calculation shows that this contradicts (1.19), provided that

ξ <
1
4

+ logq η

1 + logq η
− δ

2
(1.21)
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For η = q−
1
16

+ε, the condition reads

ξ <
1

5
+

64ε

75 + 80ε
− δ

2
. (1.22)

There are two consequences. Firstly, since ε 6 1
16

, any value of ξ that satisfies (1.22)

automatically satisfies ξ < 1
4
, and so, if δ is sufficiently small and γ = 1

2
, the triple

(ξ, δ, γ) satisfies the hypotheses for the above application of Lemma 1.2.2, namely

0 < ξ < 1
2
− δ

2
− γ

2
. Secondly, if δ is picked small enough in terms of ε, we may

take such a triple in which ξ is greater than 1
5
, in addition to satisfying the inequality

(1.22).

Picking such a triple (ξ, δ, γ), and contradicting (1.19) by design, we conclude that

(w− ? 1Pη ? 1Pη)(a) > 0 for all a in (Z/qZ)×. But trivially we then have max(w−, 0) ?

1Pη ? 1Pη(a) > 0 as well. Recalling the statement of Lemma 1.2.2, we observe that

max(w−, 0) is an arithmetic function supported on the natural numbers less than ηq,

and furthermore only supported on numbers all of whose prime factors are at least

(ηq)ξ. Since ξ > 1
5
, we see that max(w−, 0) is only supported on numbers with at

most 4 prime factors. Part (1) of Theorem 1.1.6 is then immediate.

The following is a slight strengthening of Theorem 1.1.6 part (1), which we will

use later.

Corollary 1.4.3. Under the same hypotheses as Theorem 1.1.6 part (1),

(Z/qZ)× = P 3
η ∪ P 4

η ∪ P 5
η ∪ P 6

η .

Proof. Proceed as in the proof of Theorem 1.1.6 part (1), but instead of using the
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sieve weight w−(n) use the function w(n), where

w(n) :=


w−(n) if n 6= 1

0 if n = 1.

Altering w− at a single point doesn’t affect the bound on Fourier coefficients (1.20),

so the proof proceeds identically. But in the final step of the proof the function

max(w, 0) is only supported on numbers with 1, 2, 3, or 4 prime factors, and so the

function max(w, 0)?1Pη ?1Pη is only supported on P 3
η ∪P 4

η ∪P 5
η ∪P 6

η . Corollary 1.4.3

follows.

To prove part (2) of Theorem 1.1.6, if one were to take η := q−
1
4

+ε, one would need

very little additional argument. Indeed, one could proceed identically until (1.21).

By picking δ small enough in terms of ε one may ensure that the upper bound in

(1.21) is positive, and so there is some natural number k(ε) and some ξ satisfying

(1.21) such that ξ >
3
4

+ε

k(ε)−1
. Then max(w−, 0) is supported on numbers with at most

k(ε)− 2 prime factors, and part (2) would be proved.

However, to prove part (2) in the form stated (with η = q−
3
4

+ε being substantially

smaller than above) we have had to modify this idea to include repeated convolution,

taking inspiration from [45].

Proof of Theorem 1.1.6 part (2). Let ε be positive and suppose η := q−
3
4

+ε, as in the

statement of the theorem. Let x be defined to be bηqc. Let γ be defined to be 1
2
,

and let ξ and δ be small positive parameters depending on ε (to be chosen later). We

may assume that q is sufficiently large in terms of ε. Let w− be the lower-bound sieve

weight from Lemma 1.2.2.
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Now, for a some fixed coprime residue modulo q, we define

W (a) :=
∑

n6q
1
4+ε

p1,··· ,p86q
1
4

np1···p8≡a(mod q)

w−(n).

We will show that W (a) > 0, whereupon Theorem 1.1.6 part (2) immediately follows,

since W (a) is at most the number of ways of expressing a as the product of at most

ξ−1(1
4

+ ε) primes, with each prime less than q
1
4

+ε.

The other sum of interest, other than W , will be

V̂ (χ) :=
∑
p6q

1
4

χ(p).

One observes that ∑
χ

|V̂ (χ)|8 � q2.

Indeed, |V̂ (χ)|8 is equal to ∣∣∣∣∣∑
n6q

anχ(n)

∣∣∣∣∣
2

,

where

|an| �


1 if n is a product of four primes, each at most q

1
4 ;

0 otherwise.

By Parseval,

∑
χ

|V̂ (χ)|8 6 q
∑
n6q

|an|2

� q2.
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Now, by Fourier inversion,

W (a) =
1

q − 1

∑
χ

ŵ−(χ)V̂ 8(χ)χ(a).

The contribution from the principal character is at least c(δ)ξ−1q
5
4

+ε−o(1), where c(δ)

is the parameter in the statement of Lemma 1.2.2. Provided that ξ and δ are small

enough in terms of ε, the contribution from the remaining characters is

� 1

q

∑
χ 6=χ0

|ŵ−(χ)||V̂ (χ)|8

� 1

q
supχ 6=χ0

|ŵ−(χ)|
∑
χ

|V̂ (χ)|8

� q
5
4

+ε−cε2 ,

for some positive constant c, by the Burgess bound as used in (1.5).

If q is large enough in terms of ε (and in particular large enough in terms of ξ and

δ, which depend on ε), the contribution from the principal character dominates the

contribution from the remaining characters, and so W (a) > 0.

As already noted, this proves part (2) of Theorem 1.1.6.

We finish this chapter with a proof of our final main theorem.

Proof of Theorem 1.1.7. We begin by detailing a simple argument that proves a

weaker version of Theorem 1.1.7 part (1), namely that, taking η to be q−
1
16

+ε, if

q is large enough in terms of ε then P 48
η = (Z/qZ).

We will apply Lemma 0.2.7. Let G be an abelian group, written multiplicatively,

and let A be a finite subset of G. Suppose that A is not contained within any

proper coset of G. Let us investigate the second case of Lemma 0.2.7 in more detail.

If A · A−1 = G it follows from the Ruzsa triangle inequality and its corollary (see

Lemma 0.2.8 and Corollary 0.2.9) that |A · A| >
(
|G|
|A|

) 1
2 |A|. Hence |A · A| > 3

2
|A|,
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provided that |A| 6 22

32
|G|. In the case when 22

32
|G| 6 |A| 6 1

2
|G|, we have the estimate

|A · A| >
√

2|A|. In particular we have |A · A| > 1
2
|G|, and hence15 A4 = G. We

summarise these observations thus:

Corollary 1.4.4. Let G be an abelian group, written multiplicatively, and let A be a

finite subset of G. Suppose that A is not contained in any proper coset of G. Then:


|A · A| > 3

2
|A| if |A| 6 4

9
|G|

|A · A| >
√

2|A| if 4
9
|G| 6 |A| 6 1

2
|G|

|A · A| = |G| otherwise.

In particular, if |A| > 1
3
|G| then A4 = G.

We let G be (Z/qZ)×. To prove the weaker version of part (1) of Theorem 1.1.7,

write η = q−
1
16

+ε and apply Corollary 1.4.4 iteratively starting with A = P 6
η . Lemma

1.3.1 ensures that the hypotheses of Corollary 1.4.4 are satisfied. By Corollary 1.4.3,

G = P 3
η ∪ P 4

η ∪ P 5
η ∪ P 6

η . (1.23)

If k and k′ are natural numbers and k > k′, it is clear that |P k
η | > |P k′

η |. Therefore

we may conclude that |P 6
η | > 1

4
|G|. Since 1

4
> 2

3
× 2

3
× 1

2
we may apply Corollary 1.4.4

three times, to conclude that A8 = G. In other words, P 48
η = (Z/qZ)×. (Recall that

the claim of Theorem 1.1.7 part (1) is that P 20
η = (Z/qZ)×.)

The above weak argument is enough to prove part (2) of Theorem 1.1.7 in full.

Indeed, let η equal q−
3
4

+ε. Note from part (2) of Theorem 1.1.6 that there exists some

natural number r at most k(ε) such that |P r
η | > k(ε)−1(q − 1). Iterating Corollary

1.4.4, starting with A = P
k(ε)
η , gives the result (noting that Lemma 1.3.1 implies that

15by the usual pigeonhole argument which shows that B ·B = G if |B| > 1
2 |G|.
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the hypotheses of Corollary 1.4.4 hold at each iteration).

Now let us introduce a sharper argument, which will enable us to prove part (1) of

Theorem 1.1.7 as it is stated. We will replace the use of Lemma 1.3.1 by the use of the

stronger Lemma 1.3.5, and this strength will be focused through Kneser’s Theorem

(Theorem 0.2.10).

Fix δ to be a positive constant, independent of all the other parameters, and

chosen to be sufficiently small.16 We assume that q is sufficiently large in terms of δ

and ε.

We begin with a general consideration. Let H 6 (Z/qZ)× be any proper subgroup

satisfying |H| > q1−δ. Let d := (q− 1)/|H|. By considering a character χ with kernel

equal to H, from Lemma 1.3.5 we conclude17 that Pη contains elements in at least

(1 − oδ(1))(11
30
− O(

√
δ))d cosets of H. If δ is small enough, this implies that Pη

contains elements in at least 21
60
d cosets of H.

We know that Pη ·H is not contained in a proper subgroup of (Z/qZ)×, by Lemma

1.3.1. Hence, by Corollary 1.4.4, we conclude that P 4
η ·H = (Pη ·H)4 = (Z/qZ)×.

Now we come to specifics. Let H be the stabiliser of P 10
η . If |H| > q1−δ, then we

may proceed very crudely, combining the observations above with Kneser’s Theorem

(Theorem 0.2.10) to yield

|P 10
η | > 2|P 5

η ·H| − |H|

> 2(q − 1)− (q − 1)

= q − 1.

So P 10
η = (Z/qZ)×, which certainly implies part (1) of Theorem 1.1.7.

16A detailed analysis shows that δ = 10−6 suffices for use in the argument to follow.
17Remember that here we are taking η = q−

1
16+ε, whereas Lemma 1.3.5 was stated for η = q−

3
4+ε.
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Alternatively, |H| 6 q1−δ. Then, for i > 1, let αi = |P i
η|/(q−1). Kneser’s Theorem

implies that

α10 > max(α4 + α6, 2α5)−O(q−δ). (1.24)

Since q is large enough in terms of ε, from equation (1.23) and the following remarks

we have α4 + α6 > α3 + α5 and α3 + α4 + α5 + α6 > 1. Hence α4 + α6 > 1
2
, and so

α10 > 1
2
−O(q−δ).

But in fact a stronger statement holds, namely that α10 >
1
2
. Indeed, let ρ be a

fixed small positive constant to be chosen later18 (independent of all other parameters)

and assume that q is large enough in terms of ρ. If either α4+α6 >
1
2
+ρ or α5 >

1
4
+ρ,

then (1.24) implies that α10 >
1
2

(provided q is large enough in terms of ρ and δ).

Otherwise, α5 6 1
4

+ ρ and α6 6 α5 + 2ρ. (Indeed, if α6 > α5 + 2ρ then

α4 +α6 > α3 +α5 + 2ρ, so 2(α4 +α6) > 1 + 2ρ, which is the previous case). Therefore

α6 6 1
4
+3ρ. Since the stabilisers of different P i

η are nested, we know that the stabiliser

of P 6
η has size at most q1−δ. Then from Kneser’s Theorem we have α6 > 2α3−O(q−δ),

and hence α3 <
1
8

+ 2ρ (since q is large enough). If ρ is a small enough constant, this

implies that α3+α4+α5+α6 6 7
8
+11ρ < 1. This is a contradiction to equation (1.23).

Therefore α10 >
1
2
, and hence α20 = 1. This proves Part (1) of Theorem 1.1.7 to

the desired strength.

We conclude this chapter by remarking that since Theorem 1.1.6 establishes that

P 6
η is very large, the proof of the weaker form of Theorem 1.1.7 part (1) did not in fact

require the full generality of Lemma 1.3.1. Elliott’s bounds [21] for the least prime

quadratic, cubic, and quartic residues suffice in this case.

18ρ = 10−3 suffices
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Chapter 2

An explicit version of Linnik’s

Theorem

2.1 Introduction

Throughout this chapter, ϕ will denote the Euler ϕ function, and ζ will denote the

Riemann zeta function.

The main difficulties in the previous chapter stemmed from a single source, that

the primes under consideration were less than the modulus q. If this constraint is

slackened, other theorems from sieve theory start to become powerful tools. In this

short chapter we use the Brun-Titchmarsh Theorem, in combination with a variety

of explicit estimates and additive combinatorial techniques, to conclude that, in the

notation of the previous chapter, P 3
η = (Z/qZ)× for all1 q > 2, where η = q

13
3 . The

results that we prove in this chapter are the product of joint work with Prof. Olivier

Ramaré, and are mostly contained in [71].

1q is no longer restricted to be prime.
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The regime of primes less than qL (for some L > 1) is the setting of the classical

Linnik’s Theorem.

Theorem 2.1.1 (Linnik [53], [54]). There exists an effective absolute constant L such

that, for all q > 2 and for all residues a co-prime to q, there exists a prime p at most

qL such that p ≡ a(mod q).

Over the years a string of explicit versions of this theorem have been proved, with the

best bounds currently being due to Xylouris [94]. He states that L = 5 is permissible,

provided that q is sufficiently large. Under the Generalised Riemann Hypothesis the

bound of q5 may be reduced2 slightly to ϕ(q)2(log q)2.

Xylouris’ proof relies on intricate estimates of zero-free regions of Dirichlet L-

functions, and though his bound for ‘sufficiently large’ is effective, no explicit version

has been shown. Our main result indicates that one can, by rather different methods,

access a fully explicit result with respectable constants, provided one replaces ‘primes’

by ‘products of three primes’.

Theorem 2.1.2. If q is a natural number at least 2, then for all residues a co-prime

to q there exists a number b such that b 6 q16, b is congruent to a modulo q, and b is

equal to the product of exactly three primes. Furthermore, each of these primes may

be taken to be at most q
16
3 .

Trivially, this result admits the following reformulation.

Theorem 2.1.3. Let x be a positive real number and suppose q is a natural number

satisfying 2 6 q ≤ x1/16. Then for any invertible residue class a modulo q, there

exists a product of three primes, all of which are below x1/3, that is congruent to a

modulo q.

2This is a remark from the first page of [46].
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The parameter x will be useful throughout, and so it is this formulation that we will

actually prove.

It goes without saying that Theorem 2.1.3 is of a qualitatively weaker form than

the result of Xylouris, but, as already remarked, qualitative control is not our main

concern. Consider the following quantitative result concerning primes in arithmetic

progressions:3

Theorem 2.1.4 (Kadiri, [50], as quoted by Ramaré). If q is a natural number such

that q > 1030 and q is non-exceptional4, and a is a residue co-prime to q, then there

exists a prime p at most 3q5 log q such that p is congruent to a modulo q.

It was certainly not immediately obvious to us, before embarking upon the proof of

Theorem 2.1.2, that passing from one prime to products of exactly three primes could

yield such a strong quantitative improvement over results such as Theorem 2.1.4.

Our treatment is certainly not completely optimal5, but we have instead sought

the simplest possible argument. The main surprise is that we use sieve techniques,

but are not blocked by the parity principle. A lower bound for L(1, χ) is employed,

but certainly we do not rely on Siegel’s Theorem, and in particular our bound is not

strong enough to push a possible Siegel zero away from 1 (see [25] for more on this

issue).

3Theorem 2.1.4 is a result that is oft-quoted by Ramaré, though we have found it rather difficult
to extract this precise result from [50].

4i.e. no character modulo q has an exceptional Siegel zero, for some explicit quantitative notion
of Siegel zero (that we have found rather hard to extract from [50])

5Indeed, Ramaré and Srivastav (personal communication) have adapted the methods, improving
the bound q 6 x1/16 in Theorem 2.1.3 to 900q 6 x1/9.
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2.2 Lemmas

Throughout this section, let q be as in the statement of Theorem 2.1.3. We begin

with some crude bounds. Let us define

f0(q) :=
∏
p|q

(
1− 1
√
p

)−1

. (2.1)

Lemma 2.2.1. We have f0(q) ≤ 3.32
√
q.

Proof. For all primes p we have
(

1− 1√
p

)−1

6 αp
√
p, where

αp =



1√
2−1

p = 2

1√
3−1

p = 3

1 otherwise,

and since α2 6 2.42 and α3 6 1.37, we obtain the inequalities

f0(q) 6 2.42 · 1.37 · √q 6 3.32 · √q.

We will also require a rudimentary estimate on ϕ(q).

Lemma 2.2.2. If q > 31, then ϕ(q) > 8.

Proof. Recall that

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

Therefore if ϕ(q) 6 8, the only prime factors of q are 2, 3, 5, 7. By performing an easy

case analysis on which of these primes divides q, one sees that the only q for which

ϕ(q) 6 8 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 20, 24, and 30.

Now we move on to proving bounds on quantities involving non-principal Dirichlet

characters modulo q. The classic reference for these objects is Davenport [16].

53



In the previous chapter, we used both the Pólya-Vinogradov inequality and the

Burgess bound for sums of Dirichlet characters over an interval. Here, in keeping with

the elementary feel of the enterprise, we will settle for the following trivial bound.

Lemma 2.2.3. Let χ be a non-principal Dirichlet character modulo q. Let I be a

subset of {1, · · · , q}. We have

∣∣∣∣∣∑
n∈I

χ(n)

∣∣∣∣∣ 6 ϕ(q)/2.

The same bound holds true for any finite interval instead of I.

Proof. Trivial from the definitions.

As mentioned in the introduction, we will require an effective lower bound on

L(1, χ) when χ is a non-principal quadratic character. The most direct argument is

to use the Dirichlet class number formula .

Lemma 2.2.4. Let χ be a non-principal quadratic character modulo q, and L(s, χ)

the corresponding Dirichlet L-function. We have

L(1, χ) > 0.3
1
√
q
.

Proof. Let q∗ be the conductor of χ and let χ∗ be the associated primitive character.

By comparing the Euler products, one gets

L(1, χ) = L(1, χ∗)
∏
p|q,
p-q∗

(
1− χ∗(p)

p

)
> L(1, χ∗)

∏
p|q,
p-q∗

(
1− 1

p

)

The Dirichlet class number formula (see for instance equations (15) and (16) of [16,
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Chapter 6]) states that

L(1, χ∗) =


2πh(d)

w|d|
1
2

for d < 0

h(d) log ε

d
1
2

for d > 0,

where d = ±q∗ is the fundamental discriminant for which χ∗(n) = ( d
n
), h(d) is

the number of equivalence classes of binary quadratic forms with discriminant d, w

is the number of automorphs of binary quadratic forms with discriminant d, and

ε = 1
2
(t0 + u0

√
d), where (t0, u0) is the solution of the Pell equation t2 − du2 = 4 in

positive integers for which u0 is least.

We now split into two cases. If d < 0, since the number of automorphs is at most

6 (see equation (3) of [16, Chapter 6]), we have L(1, χ∗) > 1/
√
q∗, and hence

√
qL(1, χ) >

∏
p|q,
p-q∗

(
1− 1

p

) √
q

√
q∗

>
∏
p|q,
p-q∗

(
p

1
2 − p−

1
2

)

> 2
1
2 − 2−

1
2 ,

which, absurdly crudely, is at least 0.3.

If d > 0, i.e. d = q∗, we need some bounds on the fundamental unit. Proceeding

extremely crudely, one has ε2 > q∗/2 and, since q∗ is at least 5, this yields log ε >

0.458.

We repeat the estimation from the previous case, leading to the bound

√
q L(1, χ) > (2

1
2 − 2−

1
2 )0.458,

which is also at least 0.3.
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Using the class number formula and bounds on fundamental units seems rather out

of the main spirit of this chapter. For the final version of our work [71], Ramaré found

a modification of an idea of Gel’fond from [31]6 that provides a lower bound without

resorting to such theorems. The motivation for this argument runs as follows7. The

underlying reason that L(1, χ) is non-zero is that ζ(s)L(s, χ) is the Dedekind zeta

function of a quadratic number field. Both this zeta function and ζ(s) have a simple

pole at s = 1, and hence L(s, χ) is non-zero. This immediately suggests that, if one

is seeking a quantitative argument, one should consider the arithmetic function 1 ? χ

(where ? denotes Dirichlet convolution).8

Lemma 2.2.5 (Ramaré). Let χ be a non-principal quadratic character modulo q, and

L(s, χ) the corresponding Dirichlet L-function. Then

L(1, χ) ≥ π

4ϕ(q)
− π

ϕ(q)2
.

Proof. One considers the sum S(α) =
∑

n>1(1 ? χ)(n)e−nα for real positive α. Since

(1 ? χ)(m2) > 1 for every integer m, and (1 ? χ)(n) > 0 in general, one has

1 + S(α) >
∑
m>0

e−m
2α >

∫ ∞
0

e−αt
2

dt =
Γ(1/2)

2
√
α

=

√
π

2
√
α
.

On the other hand we can expand the definition (1 ? χ)(n) =
∑

d|n χ(d) and get

S(α) =
∑
d>1

χ(d)

eαd − 1
=
L(1, χ)

α
−
∑
d>1

χ(d)g(αd)

by using the non-negative non-increasing function g(x) = 1
x
− 1

ex−1
. We find that, by

6Ramaré (personal communication) feels that [32] is the reference that is easiest to read.
7This was explained to us by Ben Green.
8Adam Harper informs us that the idea of using this manner of convolution argument to prove

non-vanishing of L(1, χ) goes back at least as far as Mertens.
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Lemma 2.2.3,

∑
d>1

χ(d)g(αd) = −
∑
d>1

χ(d)

∫ ∞
αd

g′(t) dt

= −
∫ ∞

0

∑
d≤t/α

χ(d)g′(t) dt

≥ ϕ(q)

2

∫ ∞
0

g′(t) dt

= −ϕ(q)/4

since

limx→0+ g(x) = 1/2.

By comparing both upper and lower estimate for S(α), we reach

L(1, χ) ≥
√
πα

2
− α− αϕ(q)

4
.

We select α = π/ϕ(q)2. The lemma then follows.

It is this bound on L(1, χ) that we shall use in the rest of the chapter. It will be

used in the proof of the following lemma, which is an elementary method for finding

primes p such that χ(p) = 1. We adapt the proof of J. Pintz taken from [67].

Lemma 2.2.6. Let q be a natural number at least 3, χ be a non-principal quadratic

character modulo q. Then there is a prime p at most q4 such that χ(p) = 1.

We remark that much stronger results are known, and indeed the cited paper of

Pintz [67] shows that such a prime may be taken at most q
1
4

+ε. It was this result which

we mentioned in connection with parity breaking in the previous chapter. However,

Pintz’s proof uses the bound on L(1, χ) that comes from Siegel’s theorem. The point

here, as with all of this chapter, is that a respectable bound may be achieved much

more easily.
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Proof. Assume that all primes less than x satisfy χ(p) 6= 1. We use the notation d|q∞

to say that all the prime factors of d divide q. Then on the one hand we have

∑
n6x

(1 ? χ)(n) =
∑
n6x

∏
pα||n

(1 +χ(p) + · · ·+χα(p)) =
∑
d|q∞

∑
m26x/d,
(m,q)=1

1 6
∑
d|q∞

√
x

d
6
√
xf0(q)

where f0 is the function defined in (2.1). On the the other hand, we can approximate

this sum by L(1, χ) as follows:

∑
n6x

(1 ? χ)(n) =
∑
d6x

χ(d)
[x
d

]
= x

∑
d6x

χ(d)

d
−
∑
d6x

χ(d)
{x
d

}
.

The first summation over d is an approximation of L(1, χ) (recall Lemma 2.2.3):

L(1, χ) =
∑
d≤x

χ(d)

d
+

∫ ∞
x

∑
x<d≤t

χ(d)dt/t2

=
∑
d≤x

χ(d)

d
+O

(
ϕ(q)

2x

)
,

where the implied constant in the error term may be taken to be 1.

We treat the second summation in d above by Axer’s method from [5] (see also

[60, Theorem 8.1]):

∣∣∣∣∣∑
d≤x

χ(d)
{x
d

}∣∣∣∣∣ 6∑
d6y

1 +
∑
m6x/y

∣∣∣∣∣∣
∑

d:[x/d]=m

χ(d)
{x
d

}∣∣∣∣∣∣
6 y +

ϕ(q)x

2y

6
√

2ϕ(q)x

by selecting y =
√
ϕ(q)x/2, the second inequality following by Abel summation. All
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of this implies that

√
xL(1, χ) ≤ f0(q) +

√
2ϕ(q) + ϕ(q)/(2

√
x).

However, the previous lemma gives us a lower bound for L(1, χ), and therefore

π

4ϕ(q)
− π

ϕ(q)2
≤ f0(q)√

x
+

√
2ϕ(q)

x
+
ϕ(q)

2x
(2.2)

We substitute x = q4, and use the upper bound for f0(q) provided by Lemma 2.2.1

to try to derive a contradiction. Assume first that q > 31. Then replace the left-hand

side of equation (2.2) by π/(8ϕ(q)): this is permissible by Lemma 2.2.2. Applying

the bound ϕ(q) ≤ q, one infers that

π

8
6

3.32
√
q

+

√
2
√
q

+
1

2q2
.

After a short calculation we derive a contradiction for all q ≥ 146.

For the remaining q it is easy enough to find primes p 6 q4 such that p ≡ 1 modulo

q: these may be found in the table at the end of the chapter.

The final ingredients in the argument are three standard results. The first is a

strong form of the Brun-Titchmarsh inequality, proved by Montgomery and Vaughan

in [59].

Lemma 2.2.7. For a natural number q at most x, we have

∑
y<p6y+x,
p≡a( mod q)

1 6
2x

ϕ(q) log(x/q)
.

for any positive y.

The second is an explicit lower bound in the prime number theorem.
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Lemma 2.2.8. We have π(x) ≥ x/(log x−1) when x ≥ 5 393. Furthermore, if q < x,

the number of primes p at most x such that (p, q) = 1 is at least x/ log x, again when

x ≥ 5 393.

Proof. The first inequality is taken from Corollary 5.3 of [20]. For the second, we

simply note that the number of prime factors of q is at most (log x)/ log 2 and that

x

log x− 1
− log x

log 2
≥ x

log x

when x ≥ 5 000.

The third is Kneser’s Theorem, which we stated as Theorem 0.2.10.

2.3 Proof of Theorem 2.1.3

Let us first treat the case x ≥ 1016.

Let X = x1/3. Since X is at least 105, Lemma 2.2.8 tells us that the number πq(X)

of primes below X that are coprime to q is at least X/ logX. The Brun-Titchmarsh

inequality in the form given by Montgomery and Vaughan, recalled in Lemma 2.2.7,

tells us that the number of prime numbers less than X that are congruent to a mod q,

for a co-prime to q, is at most 32
13
X/(ϕ(q) logX). (Here we have used the inequality

q 6 X3/16). This implies, when compared to the total number of prime numbers

that are coprime to q given by Lemma 2.2.8, that at least 13
32
ϕ(q) such residue classes

contain a prime that is at most X. Let us call this set of classes A.

As in the previous chapter, we will apply Kneser’s Theorem (Lemma 0.2.10) to

the group G := (Z/qZ)×. Let H be the stabilizer of A · A. We divide into cases

according to the index of H.
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If H is equal to G then, since A ·A ·H = A ·A, we have A ·A = G and of course

A · A · A = G.

If H has index 2, then it is the kernel of some quadratic character χ. Because

A generates G multiplicatively, there is a point a in A such that χ(a) = −1. By

Lemma 2.2.6, there is another one, say a′, such that χ(a′) = 1. Hence A · A also has

a point b such that χ(b) = 1 and one, say b′, such that χ(b′) = −1. This implies that

A · A ·H = G, i.e. A · A = G.

When H is of index 3, then A ·H covers at least 2 H-cosets (since 13
32
> 1

3
) and is

thus of cardinality at least 2ϕ(q)/3. Kneser’s Theorem ensures that |A · A| ≥ ϕ(q),

i.e. that again A · A = G.

When H is of index 4, then A ·H covers at least 2 H-cosets (since 13
32
> 1

4
) and is

thus of cardinality at least ϕ(q)/2. By Kneser’s Theorem,

|A · A| ≥ 2|A ·H| − |H| ≥ 3

4
ϕ(q).

When H is of index Y say, with Y at least 5, let us write |A|/ϕ(q) = 1/U . The set

A ·H is made out of at least dY/Ue cosets modulo H. Using the same manipulation

as above, Kneser’s Theorem ensures that |A · A|/ϕ(q) ≥ (2dY/Ue − 1)/Y . A quick

computation shows that the minimum of (2dY/Ue − 1)/Y as Y ranges over the set

{5, 6, 7, 8, 9} is attained at Y = 7 and has value 5/7. When Y is larger than 10, we

directly check that (2dY/Ue − 1)/Y ≥ 2
U
− 1

Y
≥ 13

16
− 1

10
≥ 7

10
.

Combining these final two cases, we have proved in either instance that |A ·A| ≥
7
10
ϕ(q). Since 13

32
is greater than 3

10
, we have that |G| − |A ·A| is less than |A|. Then,

by the usual pigeonhole argument, we have A · A · A = G.

It remains to deal with x < 1016, which is done by explicit calculation. The

inclusion of this addendum was kindly suggested to us by an anonymous referee.

Indeed, when x < 1016 , the modulus q is restricted to be not more than 10, implying
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that only a limited number of congruence classes are to be looked at. We proceed

by hand, verifying the threshold K for which x > K implies A = G (so certainly

A · A · A = G).

When q = 2, we only need x ≥ 33.

When q = 3, we only need x ≥ 73.

When q = 4, we only need x ≥ 53.

When q = 5, we only need x ≥ 193.

When q = 6, we only need x ≥ 113.

When q = 7, we only need x ≥ 293.

When q = 8, we only need x ≥ 233.

When q = 9, we only need x ≥ 233.

When q = 10, we only need x ≥ 193.

This takes care of the situation when x ≥ 293. However, when x is below 293, the

bound x1/16 is less than 2, so the statement of the theorem is degenerate. This ends

the proof.
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Table 2.1: Primes p at most q4 satisfying p ≡ 1 mod q

q p q p q p q p

2 3 21 43 40 41 59 709

3 7 22 23 41 83 60 61

4 5 23 47 42 43 61 367

5 11 24 73 43 173 62 311

6 7 25 101 44 89 63 127

7 29 26 53 45 181 64 193

8 17 27 109 46 47 65 131

9 19 28 29 47 283 66 67

10 11 29 59 48 97 67 269

11 23 30 31 49 197 68 137

12 13 31 311 50 101 69 139

13 53 32 97 51 103 70 71

14 29 33 67 52 53 71 569

15 31 34 103 53 107 72 73

16 17 35 71 54 109 73 293

17 103 36 37 55 331 74 149

18 19 37 149 56 113 75 151

19 191 38 191 57 229 76 229

20 41 39 79 58 59 77 463
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Table 2.2: Primes p at most q4 satisfying p ≡ 1 mod q

q p q p q p q p

78 79 97 389 116 233 135 271

79 317 98 197 117 937 136 137

80 241 99 199 118 709 137 823

81 163 100 101 119 239 138 139

82 83 101 607 120 241 139 557

83 167 102 103 121 727 140 281

84 337 103 619 122 367 141 283

85 1021 104 313 123 739 142 569

86 173 105 211 124 373 143 859

87 349 106 107 125 251 144 433

88 89 107 643 126 127 145 1451

89 179 108 109 127 509 146 293

90 181 109 1091 128 257

91 547 110 331 129 1033

92 277 111 223 130 131

93 373 112 113 131 263

94 283 113 227 132 397

95 191 114 229 133 1597

96 97 115 461 134 269
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Chapter 3

The primes are not metric

poissonian

3.1 Introduction

The next two chapters of this thesis have a different focus. However, the general

philosophy – the fruitful combination of techniques and notions from additive combi-

natorics and from analytic number theory – remains constant.

Let A be an infinite increasing sequence of natural numbers, and let AN denote

the first N elements of A. For α ∈ [0, 1], we consider the sequence αA, taken modulo

1. Recall that the sequence αA is said to be equidistributed in R/Z if for every interval

I ⊂ R/Z one has

lim
N→∞

1

N

∑
x∈AN

1I(αx) = |I|. (3.1)

For many arithmetic sequences A of interest, the sequence αA is equidistributed in

R/Z for all irrational α. This is true for A = N itself, or more generally the set of kth

powers for any natural number k, and, most pertinently for us, the set of primes.

In this chapter we will consider a strictly stronger notion of equidistribution. With
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notation as above, we define the pair correlation function

F (A, α, s,N) :=
1

N

∑
xi,xj∈AN
xi 6=xj

1[−s/N,s/N ](α(xi − xj)), (3.2)

where both the interval [−s/N, s/N ] and the sequence αA are considered modulo 1.

Informally, F (A, α, s,N) counts the number of pairs (αxi, αxj) such that the dis-

tance αxi−αxj mod 1 is approximately s times the average gap length of the sequence

αAN mod 1. Analysing the behaviour of F (A, α, s,N) for a specific α can require del-

icate diophantine information about α (see [47], [74]), but one may instead settle for

results which hold for almost all α.

In the setting of (3.1), any A satisfies the equidistribution property for almost all

α (the sharpest results in this direction are due to Baker [8]). However, in the setting

of pair correlations, the situation is more subtle.

Definition 3.1.1 (Metric poissonian property). Let A be an infinite increasing se-

quence of natural numbers. We say that A is metric poissonian1 if for almost all

α ∈ [0, 1], and for all fixed positive s, we have

F (A, α, s,N) = 2s(1 + oA,α,s(1)) (3.3)

as N →∞.

Notice that if we had picked N i.i.d. random variables (Xn)n∈[N ] uniformly dis-

tributed on R/Z, instead of the sequence αAN mod 1, then as N tends to infinity the

equivalent pair correlation function would tend to 2s with high probability. Therefore

(3.3) may be viewed as some strong indication that αA mod 1 exhibits the behaviour

of a random sequence. The connection to the equidistribution property (3.1) was

1See the introduction to [10] for an explanation of this terminology.
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recently made rigorous: indeed, three simultaneous papers [1, 41, 82] recently showed

that if (3.3) holds, for some fixed α and for all s, then for the same α one has that

αA is equidistributed in R/Z.

One might expect that, for the classical sequences A where αA is equidistributed

for irrational α, one could prove that these sequencesA are metric poissonian. Indeed,

for k at least 2 and A the set of kth powers, this was shown by Rudnick and Sarnak

[73]. However, the sequence A = N is not metric poissonian. This follows from a

consideration of the continued fraction expansion of α, but is in fact a special case of a

more general phenomenon, connected to the large additive energy2 of the truncations

AN .

Why should the additive energy E(AN) be connected with the metric poissonian

property? Consider an additive quadruple (b1, b2, b3, b4) satisfying b1 + b2 = b3 + b4.

Obviously, if ‖α(b1 − b3)‖ 6 s
N

then ‖α(b2 − b4)‖ 6 s
N

. This is extremely different

behaviour to that which would be seen if αb1, αb2, αb3, αb4 were genuinely indepen-

dent uniform random variables on R/Z.

Note the trivial bounds N2 � E(AN) 6 N3. We have the following result of

Bourgain, which shows that all sets of nearly maximal energy fail to have the metric

poissonian property.

Theorem 3.1.2. [3, Appendix] Let A be an infinite increasing sequence of natural

numbers. Suppose

limsupN→∞
E(AN)

N3
> 0.

Then A is not metric poissonian.

It is clear that the sequence A = N satisfies the hypotheses of this theorem, and

2see Definition 0.2.5.

67



therefore this sequence is not metric poissonian.

Remarkably, a near-converse to this theorem has also been proved to be true.

Theorem 3.1.3. Let A be an infinite increasing sequence of natural numbers. Sup-

pose that E(AN)� N3−δ, for some fixed positive δ and for every natural number N .

Then A is metric poissonian.

This theorem first appears as stated3 in the recent work of Aistleitner, Larcher and

Lewko [3]. It immediately implies the theorem of Rudnick-Sarnak on kth powers, and

also earlier work on lacunary sequences [75].

It is natural to wonder whether there is a tight energy threshold4 for this problem,

and we will return to this issue in the next chapter. Although the case of general

sets is still rather mysterious, it is certainly interesting to consider the behaviour

of specific sets A that satisfy N3−ε �ε E(AN) � o(N3) for all positive ε. In this

chapter, we prove the following result (answering a question posed by Nair5).

Theorem 3.1.4. The primes are not metric poissonian.

When A is the set of primes one has E(AN) � N3(logN)−1 (this follows from

Theorem 3.2.2 below, and also from [38, Theorem 1.8]). So certainly the primes are

not included in the range of applicability of either Theorem 3.1.2 or Theorem 3.1.3.

In [3], Bourgain constructs a sequenceA that is not metric poissonian but nonethe-

less has E(AN) = o(N3), thereby showing that the converse to Theorem 3.1.2 is

false. A quantitative analysis of his argument shows that the bound E(AN) �ε

N3(log logN)−
1
4

+ε is achievable, for any positive ε. So, as an immediate corollary to

Theorem 3.1.4, we have an improved bound6 for the smallest energy E(AN) of the

3The same result may be deduced from Theorem 3.2 of Harman’s earlier book [44], combined
with the relevant modification of the variance estimate from page 69 of the same volume.

4A very recent pre-print [2] has shown that there is no tight threshold.
5at the ELAZ 2016 conference in Strobl.
6This bound has since been improved in [52].
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initial segments of a set A which is not metric poissonian.

3.2 Proof of Theorem 3.1.4

The plan of the proof is as follows, following our paper [92]. For each fixed α, we will

try to find infinitely many n such that ‖αn‖ is extremely small. Using such an n we

will be able to construct a scale N and a small constant s such that ‖αmn‖ 6 s/N

for some initial segment of integers m. By a variant of a well known result concerning

the exceptional set for the Goldbach problem, we may show that many such mn are

represented many times as pi − pj for two primes pi, pj that are at most pN (the

N th prime). Combining all these observations, we will conclude, provided s is small

enough, that F (P , α, s,N) > c for some constant c that satisfies c > 2s. Since this

inequality holds for infinitely many N , we cannot have F (P , α, s,N) = 2s(1+oα,s(1))

for all almost all α and for all s > 0. In fact, we will show that, for almost all α, this

asymptotic fails to hold.

We now begin to consider the details of this argument. We will use the following

result of Harman on diophantine approximation ([44, Theorem 4.2], [43]).

Theorem 3.2.1. Let ψ(n) be a non-increasing function with 0 < ψ(n) 6 1
2
. Suppose

that ∑
n

ψ(n) =∞.

Let B be an infinite set of integers, and let S(B, α,N) denote the number of n at most

N , with n ∈ B, such that ‖nα‖ < ψ(n). Then for almost all α we have

S(B, α,N) = 2Ψ(N,B) +Oε(Ψ(N)
1
2 (log Ψ(N))2+ε) (3.4)
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for all ε > 0, with implied constant uniform in α, where

Ψ(N) =
∑
n6N

ψ(n)

and

Ψ(N,B) =
∑
n6N
n∈B

ψ(n).

This theorem may be thought of as a flexible version of Khintchines’s theorem on

Diophantine approximation, in which one can further pass to approximations coming

from a set B, provided the density of B is large enough. The quality of the error

term in this theorem is much better than we need in our application, although it is

important that there is no dependence on N except through Ψ(N). Earlier results of

this type include a logN factor in the error, which would not have been adequate.

The other technical tool will be the standard bound on the size of the exceptional

set in a Goldbach-like problem.

Theorem 3.2.2. Let X be a real number satisfying X > 2. For a natural number n

at most X, define

r(n) :=
∑

pi,pj6X
pi−pj=n

log pi log pj.

Then for any positive B, for all but OB( X
logB X

) exceptional values of n we have the

approximation

r(n) = S(n)J(n) +OB

(
X

logBX

)
, (3.5)

where

S(n) :=


2
∏
p>3

(
1− 1

(p−1)2

) ∏
p|n
p>3

p−1
p−2

n even,

0 n odd
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is the singular series, and

J(n) := (1[0,X] ∗ 1[−X,0])(n).

Proof. This result follows by trivial modifications of the usual argument for the binary

Goldbach problem, originally due (independently) to van der Corput, Estermann, and

C̆udakov. The clearest reference is [87, Chapter 3.2], or, for a more modern approach,

one may consider the proof of Theorem 19.1 in [49, Chapter 19].

We combine these two key ingredients in the following proposition.

Proposition 3.2.3. There exists a small absolute positive constant c, such that for

almost all α ∈ [0, 1], and for all fixed positive s, there exist infinitely many n satisfying:

(1) ‖αn‖ < s
n logn

;

(2) At least c log n of the numbers n, 2n, · · · , b 1
10

log ncn are expressible in at least

c n
logn

ways as the difference p1 − p2 of two primes p1, p2 in the range p1, p2 6

1
2
n log n.

Proof of Proposition 3.2.3. Let c be a positive quantity to be specified later. With

this c, let B be the set of natural numbers n that satisfy (2), and let ψ(n) =

min(1
2
, s
n logn

). It is to this B and this ψ that we will apply Theorem 3.2.1. We

claim that B is quite a dense set. More precisely, we claim that Ψ(B, N) �s Ψ(N)

for N large enough.

To prove this assertion, let K be a natural number and assume that K is suffi-

ciently large. Let n and m be natural numbers restricted to the ranges K 6 n < 2K

and 1 6 m 6 b 1
10

log 2Kc. For notational convenience we let X denote the quantity

1
2
K logK, and we consider Theorem 3.2.2 with this X. Since K is sufficiently large,

we observe that |nm| 6 1
4
X for all n and m in these ranges.
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We say that the pair (n,m) is exceptional if nm lies in the exceptional set from

Theorem 3.2.2 for which the asymptotic formula (3.5) for r(nm) fails to hold. [Note

that certainly nm 6 X, so Theorem 3.2.2 applies in this setting.]

The map (n,m) 7→ nm is at most 1
10

log 2K-to-1, due to the restricted range of m.

Since the exceptional set from Theorem 3.2.2 has size at most O( K
log2K

), we conclude

that there are at most O( K
logK

) exceptional pairs (n,m). So certainly there are at

least (1−O(log−1K))K values of n ∈ [K, 2K) such that the asymptotic formula for

r(nm) holds for all m that satisfy m 6 1
10

log 2K. Let DK denote this set of n.

We have shown, therefore, that DK is a large subset of [K, 2K). We claim fur-

ther that DK ⊂ B, provided we choose c small enough. Indeed, let us analyse the

asymptotic formula for r(nm). When nm is even, the singular series S(nm) is always

Ω(1). Furthermore, (1[0,X] ∗ 1[−X,0])(nm) is always Ω(X), since |nm| 6 1
4
X. So, for

all n ∈ DK and for all m 6 1
10

log n such that nm is even, r(nm) is always Ω(X).

Removing the log weights on the primes, and recalling the definition of X, in

particular we notice that there is some small absolute constant c1 such that the fol-

lowing holds: if n ∈ DK and if nm is even, there are at least c1K/ logK pairs of

primes (pi, pj) with pi, pj 6 1
2
K logK such that pi− pj = nm. By the definition of B,

provided c is chosen smaller than min(c1,
1

100
), we have that DK ⊂ B.

We may now prove that Ψ(B, N)�s Ψ(N) for N large enough. Indeed, for some

integer k0 that satisfies k0 = Os(1),

Ψ(B, N) =
∑
n6N
n∈B

min(
1

2
,

s

n log n
)

� −Os(1) +

blog2Nc−1∑
k=k0

∑
2k6n<2k+1

n∈B

s

2k log(2k)
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� −Os(1) +

blog2Nc−1∑
k=k0

∑
2k6n<2k+1

(1−O(k−1))
s

k2k

� −Os(1) +

blogNc∑
k=1

s

k

�s log logN

�s Ψ(N).

Therefore, applying Theorem 3.2.1 to this set B and this function ψ, the main

term from the conclusion of Theorem 3.2.1 dominates the error term, and we conclude

that for almost all α there are infinitely many n ∈ B satisfying ‖αn‖ < s
n logn

. The

proposition is proved.

With this moderately technical proposition proved, the deduction of Theorem

3.1.4 is extremely short.

Proof of Theorem 3.1.4. Let Ω ⊂ [0, 1] be the full-measure set of α for which Propo-

sition 3.2.3 holds. Let c be the constant from Proposition 3.2.3, and fix some s

satisfying 0 < 2s < c2. Let α ∈ Ω, and fix a large N to be one of the infinitely many

natural numbers that satisfy the conclusions of Proposition 3.2.3.

By construction, we know that

‖αN‖ < s

N logN
.

Therefore, for all d 6 1
10

logN , we have

‖αdN‖ < s

N
.

But by the second conclusion of Proposition 3.2.3, this implies that there are at least
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c2N pairs of distinct primes pi, pj 6 1
2
N logN such that

‖α(pi − pj)‖ <
s

N
.

Since PN ∼ N logN , and N is large, this certainly implies that

F (P , α, s,N) > c2 > 2s.

This holds for infinitely many N , and therefore for all α ∈ Ω we have

F (P , α, 2s,N) 6= 2s(1 + o(1))

as N →∞. Since Ω has measure 1, Theorem 3.1.4 is proved.

74



Chapter 4

On the threshold for the metric

poissonian property

4.1 Introduction

The property of a set of natural numbers being metric poissonian seems intimately

connected with the notion of additive energy. Though we briefly discussed this rela-

tionship in Chapter 3, we spend this chapter1 investigating the phenomenon further.

Choosing to focus on the more tractable setting of ‘randomly generated’ sequences,

we manage to establish the metric poissonian property under weaker assumptions on

the additive energy than those required in [3], albeit in this more restricted setting.

Let us define the class of sequences A that we will consider.

Definition 4.1.1. Let ψ : N −→ (0, 1] be a non-increasing function. Then let Aψ

denote the random set formed by, for each natural number n, placing n in Aψ in-

dependently at random with probability ψ(n). For a natural number N , we let Aψ,N

denote the (random) set consisting of the least N elements of A.

1The material presented here went on to become part of a collaboration [10].
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We prove three main theorems in this chapter. The first two are easy to state:

Theorem 4.1.2. Let ψ = min(1, (log n)−1). Then, with probability 1, Aψ is not

metric poissonian.

Theorem 4.1.3. Let δ be positive, and let ψ = min(1, (log n)−(1+δ)). Then, with

probability 1, Aψ is metric poissonian.

These two theorems nearly isolate the exact threshold for which the metric poissonian

property holds for the random set Aψ. These theorems have been improved in our

collaborative work [10] (the term (log n)−1−δ replaced by (log n)−1(log log n)−2−δ, for

example), but in this thesis we choose to present our original single-author work.

Our third theorem shows that, despite the result of Theorem 4.1.2, when ψ(n) =

min(1, (log n)−1) the metric poissonian property is extremely close to holding for Aψ.

In order to be able to state the theorem, we need to introduce an item of notation.

Recall the definition of F (A, α, s,N) from the previous chapter, namely expression

(3.2). In this random setting, it will be easier for us to truncate to intervals of the

form [1, X] rather than to the first N elements of Aψ. To that end, for a real number

X, define

N := |Aψ ∩ [1, X]| (4.1)

and assume that N > 1. Then define

F1(Aψ, α, s,X) := F (Aψ, α, s,N). (4.2)

Suppose that, with probability 1, N →∞ as X →∞. Then it is clear that, with

probability 1, F (Aψ, α, s,N)→ 2s as N →∞ if and only if F1(Aψ, α, s,X)→ 2s as

X →∞.
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Now we may state our third result:

Theorem 4.1.4. Let η > 0, and let ψ = min(1, (log n)−1). For each natural number

j, define Xj := ej
1+η

. Then, with probability 1, for almost all α and for all s one has

F1(Aψ, α, s,Xj) = 2s(1 + oAψ ,α,s(1)),

as j →∞.

Notation: Whenever X and N appear in the same expression, it is understood

that N is defined by (4.1): the same with Xj and Nj, etcetera.

4.2 Outline of proofs

Theorem 4.1.2 may be proved by the same methods as we used in Chapter 3. With

probability 1, the random set Aψ satisfies all the properties of the primes that we

used there, the only difference being the absence of the singular series in Theorem

3.2.2. As far as this thesis is concerned, we leave the matter there: full details may

be found in [10] and the proof of Theorem 1.6 therein.

For Theorems 4.1.3 and 4.1.4, we will proceed by adapting an argument of Schmidt,

which we learned from Harman’s book [44]. In this section we present an extremely

broad overview of this approach, and of the difficulties encountered when adapting it

to our setting. Our hope is to render the rather intricate estimates occurring towards

the end of the chapter less confusing, though, of course, the reader might find the

omission of details in this section to be confusing in itself.
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In Schmidt’s work, he was interested in estimating the following quantity:

G(g, α,X) =
∑
n6X

1[0,g(n)](‖αn‖),

where g(n) is any non-increasing positive function of n with
∑
g(n) divergent. One

may write F1(Aψ, α, s,X) in a form that is superficially similar to this, by noting that

F1(Aψ, α, s,X) =
∑
n∈Z

(
Rψ,N(n)

N

)
1[0,s/N ](‖αn‖), (4.3)

with Rψ,N(n) (the ‘representation function’) being the number of ways n can be

expressed as xi − xj with xi, xj ∈ Aψ,N and xi 6= xj.

Schmidt wished to show that, for almost all α,

G(g, α,X) ∼ 2
∑
n6X

g(n) (4.4)

as X → ∞. There were two parts to Schmidt’s argument. Initially he showed that,

for all X, there exists a set ΩX ⊆ [0, 1] with the following properties: the measure of

ΩX is o(1), and for all α /∈ ΩX one has |G(g, α,X)− 2
∑
n6X

g(n)| = o(1). This worked

by estimating the ‘variance’

1∫
0

|G(g, α,X)− 2
∑
n6X

g(n)|2 dα, (4.5)

after the clever manoeuvre of having eliminating certain2 α from the integral. This

part of his argument may be adapted to the framework of estimating F1(Aψ, α, s,X)

with very little modification, since the representation function Rψ,N is never too large.

We give the details later in the chapter.

2As a heuristic, one removes the very well-approximable α. This procedure is not considered in
[3], which is ultimately why we are able to prove stronger results in this chapter.
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However, the second aspect of his argument (in which he deduced his desired

asymptotic behaviour (4.4) from the above preliminary results), presents the would-

be adapter with greater problems. Firstly, Schmidt picked an increasing sequence of

scales (Xj)
∞
j=1 that is sparse enough so that

∑
j

meas(ΩXj) <∞.

Then he used the first Borel-Cantelli lemma to conclude that, for almost all α,

|G(g, α,Xj)− 2
∑
n6Xj

g(n)| 6 Ej,

as j →∞, with some explicit and acceptable error term Ej. This idea, at least, may

be exactly transplanted to the setting of F1(Aψ, α, s,X). Yet his next observation,

based on monotonicity of G, seems entirely inaccessible to us, namely the observation

that if Xj 6 X 6 Xj+1 then one has

G(g, α,Xj)− 2
∑

n6Xj+1

g(n) 6 G(g, α,X)− 2
∑
n6X

g(n) 6 G(g, α,Xj+1)− 2
∑
n6Xj

g(n).

(4.6)

With this, provided
∑
n6Xj

g(n) is not too far from
∑

n6Xj+1

g(n) (which turns out to be

an extremely weak condition on the speed of growth of Xj) Schmidt managed to

conclude that

G(g, α,X) ≈ 2
∑
n6X

g(n)

for almost all α and for every large X. Made rigorous, this gives the asymptotic (4.4).

Consider the setting of F1(Aψ, α, s,X). It is certainly not obvious, or even neces-

sarily true, that if X < Y , and N := Aψ ∩ [1, X] and M := Aψ ∩ [1, Y ], we have the

inequality

NF1(Aψ, α, s,X) 6MF1(Aψ, α, s, Y ).
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This is despite the fact that, replacing each side with the asymptotic sizes we predict,

this inequality holds. The sum for F1(Aψ, α, s, Y ) contains more terms, but the ‘Bohr-

set condition’ 1[0,s/M ](‖α(xi − xj)‖) is a stronger one for those pairs with xi, xj 6

X than that which is imposed in the definition of F1(Aψ, α, s,X). These are two

conflicting influences.

The paper [3] suggests a possible fix3. By being careful with the dependence of

the error terms on s, one may show a cancellation in the ‘variance’ expression (the

analogous expression to (4.5) in the case of F1(Aψ, α, s,X)) that is uniform in s,

provided that s � 1. So it is possible to allow s to depend mildly on X. In particular,

we will manage to show that

F1(Aψ, α, s
Nj

Nj+1

, Xj)→ 2s

as j → ∞, provided that the ratio of Nj+1/Nj → 1 as j → ∞. This turns out to

be enough to implement a sandwiching argument in the manner of (4.6). The need

for the ratio of Nj+1 to Nj to tend to 1 is why we require a density of (log n)−1−δ in

Theorem 4.1.3 rather than a density closer to (log n)−1. The details of all this may

be found in the main argument.

We finish the introduction with a long list of definitions of quantities that will be

considered later in the chapter.

As described already, for integers n and natural numbers N we define

Rψ,N(n) :=
∑

xi,xj∈Aψ,N
xi 6=xj

xi−xj=n

1,

3This device is one of the interesting improvements of [3] over [73] (the foundational paper in the
area).
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and note that

F1(Aψ, α, s,X) = 2
∑
n∈N

(
Rψ,N(n)

N

)
1[0,s/N ](‖αn‖). (4.7)

If n is a natural number and s a positive real, we let EXn ∈ [0, 1] be the set

EXn =
⋃
m6n

(m,n)6s2X2/N2+1

(
m− s

N

n
,
m+ s

N

n

)
.

Here, as is the standard notation, (m,n) denotes the greatest common divisor of m

and n and
(
m− s

N

n
,
m+ s

N

n

)
denotes the real open interval with the given endpoints. (We

hope the reader will forgive our dropping s from the notation). Then we define an

auxiliary count

F ∗1 (Aψ, α, s,X) = 2
∑
n6X

(
Rψ,N(n)

N

)
1EXn (α).

Roughly speaking, F ∗1 (Aψ, α, s,X) is equal to F1(Aψ, α, s,X) except on very small

sets of α where F1(Aψ, α, s,X) is particularly large.

The choice to raise X/N to the second power in the cut-off for EXn is not critical

for the application (any power greater than 1 could be substituted). The addition of

‘+1’ in the cut-off is also purely cosmetic, as soon we will restrict to a case in which

the ratio X2/N2 tends to infinity. We make a technical note, pointing out that we

take the cut-off s2X2/N2 + 1 to be independent of n. This is due to the fact that

the size of the approximation intervals [0, s/N ] depend only on N , and not on n as

in Schmidt’s setting. Though this change causes problems towards the end of the

proof, as discussed regarding the sandwiching argument above, here it offers a great

simplification, and we may dispense with several technical lemmas from Harman’s

account.
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If n is a natural number, and k some positive real independent of n, we define

ϕ(k, n) =
∑
m6n

(m,n)6k

1.

A particular instance of ϕ(k, n) will be distinguished. If X is a positive real, let N

be defined by (4.1). Then denote

ΦX(n) =
∑
m6n

(m,n)6s2X2/N2+1

1.

We also define

AX(n,m) =
∑
u6n
v6m

um−vn=0
(u,n)6s2X2/N2+1
(v,m)6s2X2/N2+1

1,

and

τX(n) =
∑
d|n

d6s2X2/N2+1

1.

As a clarifying note, we observe that the condition v 6 m in the definition AX(m,n)

implies the condition u 6 n, since vn
m

is at most n automatically; despite this, we feel

it is more enlightening to present the conditions in a symmetric form.

Remark 4.2.1. As discussed above, it will be necessary for us to have some control

over estimates when s has a weak dependence uponN . For our purposes, it will always

be the case that s = s(N) will satisfy s � 1, for some absolute implied constants.
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4.3 Preparatory lemmas

We begin with some easy bounds on Rψ,N(n), coming from large deviation bounds.

We had an early draft of this lemma in our personal notes, but the details of the

S0,S1 splitting were worked out in collaboration with Bloom, Chow, and Gafni in

[10].

Lemma 4.3.1. Let ψ : N −→ (0, 1] be a non-increasing function, and assume that∑
x>1 ψ(x)2 diverges. Let X be a positive real number, and let N = |Aψ ∩ [1, X]| as

always. Let ε be positive. Then there is a positive constant cε, depending only on ε,

such that:

(1) With probability greater than 1−O(exp(−cε
∑
x6X

ψ(x))), we have

(1− ε)
∑
x6X

ψ(x) 6 N 6 (1 + ε)
∑
x6X

ψ(x).

(2) Let

KX :=
∑

X− 1
4

∑
y6X

ψ(y)2<x6X

ψ(x)2.

Then with probability greater than 1−O(X exp(−cεKX)) we have, for all n 6 X,

Rψ,N(n) 6 (1 + ε)
∑
x6X

ψ(x)2.

Proof. For each x ∈ N, let ξx denote the Bernoulli random variable where

P(ξx = 1) = ψ(x). Then N =
∑
x6X

ξx, which is a random variable with expectation∑
x6X

ψ(x). Since the ξx are independent by assumption, one may apply the large

deviation bound Lemma 0.5.3 to conclude part (1).

For part (2), by adjusting the implied constants we may assume that X is greater

than some absolute fixed constant. We first consider each n separately. For each x
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in the range 1 6 x 6 X − n, let ωx,n denote the random variable ξxξn+x. We have

Rψ,N(n) =
∑

x6X−n

ωx,n,

which is a random variable with expectation
∑

x6X−n
ψ(x)ψ(n+ x). Suppose first that

n > X − (1 + ε)
∑
x6X

ψ(x)2. Then by the trivial triangle inequality bound we have

Rψ,N(n) 6 (1 + ε)
∑
x6X

ψ(x)2 as required.

It remains to consider the case n 6 X− (1 + ε)
∑
x6X

ψ(x)2. We wish to apply large

deviation bounds for sums of independent random variables, and, indeed, the family

of random variables {ωx,n : x 6 X − n} is very close to being independent. Methods

of splitting this family into groups of genuinely independent random variables are

alluded to in the discussion in the appendix of [3]. Here we describe an extremely

coarse decomposition which nonetheless is strong enough for our purposes.

Split {x ∈ N : x 6 X − n} into two sets, S0 and S1, constructed as follows. If

n 6 X/3, let x ∈ Sj if bx/nc ≡ jmod 2. If n > X/3, instead let

S0 =
{
x ∈ N : x 6

X − n
2

}
, S1 =

{
x ∈ N :

X − n
2

< x 6 X − n
}
.

For each j ∈ {0, 1} the family {ωx,n : x ∈ Sj} is independent, as no two indices differ

by n. Applying the union bound and the large deviation bound Lemma 0.5.3 once

more, we have

P
(
Rψ,N(n) > (1 + ε)

∑
x6X−n

ψ(x)ψ(n+ x)
)

6 P
(∑
x∈S0

ωx,n > (1 + ε)
∑
x∈S0

ψ(x)ψ(n+ x)
)

+ P
(∑
x∈S1

ωx,n > (1 + ε)
∑
x∈S1

ψ(x)ψ(n+ x)
)
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� exp
(
−cε

∑
x∈S0

ψ(x)ψ(n+ x)
)

+ exp
(
−cε

∑
x∈S1

ψ(x)ψ(n+ x)
)
.

It remains to estimate these final quantities. Note that by construction we have

min(|S0|, |S1|) > (X − n)/4, since X is assumed to be large. So, since ψ(x) is non-

increasing, we deduce that

P
(
Rψ,N(n) > (1 + ε)

∑
x6X−n

ψ(x)ψ(n+ x)
)
� exp

(
−cε

∑
X−X−n

4
<x6X

ψ(x)2
)

� exp(−cεKX).

By a similar monotonic principle, P
(
Rψ,N(n) > (1 + ε)

∑
x6X−n

ψ(x)ψ(n+ x)
)

is at

least P(Rψ,N(n) > (1 + ε)
∑
x6X

ψ(x)2). This finishes the proof of part (2).

In the specific case when ψ(n) = min(1, (log n)−(1+δ)), for some fixed non-negative

δ, these expressions are easy to compute. Indeed,

∑
x6X

ψ(x)2 ∼ X

log2+2δX

KX �
X

log4+4δX∑
x6X

ψ(x) ∼ X

log1+δX
.

The sums

∑
X>1

exp(−cε
∑
x6X

ψ(x))

∑
X>1

X exp(−cεKX)

are both convergent in these cases, and so one may conclude the following corollary.

Corollary 4.3.2. Let δ be non-negative, and let ψ(n) = min(1, (log n)−1−δ). Then
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with probability 1, for all positive ε there exists some Xε such that, for all X satisfying

X > Xε, one has

(1− ε) X

log1+δX
6 N 6 (1 + ε)

X

log1+δX
,

and, for all n 6 X,

Rψ,N(n) 6 (1 + ε)
X

log2+2δX
.

Proof. Fix some positive ε. Then, with probability 1, a suitable Xε exists: this

follows immediately from the Lemma 4.3.1, the subsequent asymptotics, and the first

Borel-Cantelli lemma (Lemma 0.5.1).

The corollary as stated then follows by intersecting these probability 1 events over

all rational ε.

Now we move on to some simple number-theoretic lemmas. The first such lemma,

which is Lemma 4.1 from [44], is a simple estimation of the function ϕ(k, n).

Lemma 4.3.3. Let X and Y be real numbers, and suppose that 1 6 Y < X. Let k

be a real number that is at least 1. Then

∑
Y 6n6X

ϕ(k, n)

n
= X − Y + 1 +O

(
X − Y
k

+ log(X + 1)

)
.

Proof. Without loss of generality we may assume that X and Y are natural numbers.

Then, since ϕ(k, n) 6 n, we need only prove a one-sided lower-bound estimate for
X∑
n=Y

ϕ(k,n)
n
− (X − Y + 1). Observe the obvious inequality

ϕ(k, n) > n−
∑
d|n
d>k

∑
m6n
d|m

1 (4.8)

> n−
∑
d|n
d>k

n

d
.

(Indeed, every m counted in the sum defining ϕ(k, n) survives the cull on the right-

86



hand side of (4.8)). Thus

X∑
n=Y

ϕ(k, n)

n
>

X∑
n=Y

1− 1

n

∑
d|n
d>k

n

d


= X − Y + 1−

∑
d>k
d6X

1

d

X∑
n=Y
d|n

1

= X − Y + 1−
∑
d>k
d6X

X − Y
d2

+O

∑
d>k
d6X

1

d


= X − Y + 1 +O

(
X − Y
k

+ log(X + 1)

)

as claimed.

The main use of this argument will be a particular corollary.

Corollary 4.3.4. Let X be a real number satisfying X > 2, and suppose that N in

(4.1) is non-zero. Then

∑
n6X

ΦX(n)

n
= X +O

(
X

s2X2/N2 + 1
+ logX

)
.

Now for a very standard style of lemma.

Lemma 4.3.5. Let X be a real number satisfying X > 2, and suppose that N in

(4.1) is non-zero. Then

∑
n6X

τX(n)� X log(s2X2/N2 + 2).
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Proof. We have

∑
n6X

τX(n) =
∑
n6X

∑
d|n

d6s2X2/N2+1

1

=
∑

d6s2X2/N2+1

∑
n6X
d|n

1

6 X
∑

d6s2X2/N2+1

1

d

� X log(s2X2/N2 + 2)

as claimed.

Now for the real meat of the matter, which is a strong overlap estimate on

meas(EXn ∩EXm ). Almost all this approach is once again due to Harman and Schmidt.

Lemma 4.3.6. Let X be a real number satisfying X > 2, and suppose that N in

(4.1) is non-zero. Then, then for all natural numbers n and m satisfying n > m > 1

we have

meas(EXn ∩ EXm ) 6 4s2 1

N2
+ 2

s

N

AX(n,m)

n
. (4.9)

The presence of the constant 4 on the right-hand side of (4.9) is crucial, as in the

main argument we will need the first term above to cancel exactly with other large

terms.

The term 4s2 1
N2 represents roughly what the expected size of meas(EXn ∩ EXm )

would be, were the events of being in EXn and being in EXm truly independent subsets.

The presence of AX(n,m) on the right-hand side of (4.9), a quantity which becomes

smaller as the greatest common divisor bound imposed in its definition becomes

stricter, suggests why imposing this greatest common divisor bound was a useful

manoeuvre. This leverage is not present in [3].
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Proof. Now, meas(EXn ∩ EXm ) = B1 + B2, where B2 is the contribution from those

intervals (
u− s

N

n
,
u+ s

N

n

)
∩
(
v − s

N

m
,
v + s

N

m

)
(4.10)

in which the centres of the intervals coincide, i.e.

u

n
=

v

m
.

B1 is the contribution from such intersections in which the centres do not coincide.

B2 is very straightforward to estimate. Indeed, since n > m, we have

B2 =
2s

Nn

∑
u6n,v6m
u
n

= v
m

(u,n)6s2X2/N2+1
(v,m)6s2X2/N2+1

1

= 2
s

N

AX(n,m)

n

by definition. So it remains to show that the contribution B1 is at most 4s2/N2.

Suppose v
m
> u

n
but that the intersection (4.10) is non-empty, i.e.

v − s
N

m
<
u+ s

N

n
.

Then

0 < vn− um < (n+m)
s

N
,

and so we conclude two things. Firstly there is some non-zero integer h satisfying

|h| < (n+m) s
N

such that vn− um = h. Secondly, the size of the intersection (4.10)

is at most

u+ s
N

n
−
v − s

N

m
,
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which equals

s

N

(
1

n
+

1

m

)
− |h|
mn

.

But clearly the intersection (4.10) is also at most 2s/Nn. Considering analogously

the case v
m
< u

n
, all these comments may be packaged into the inequality

B1 6
∑

h∈Z\{0}
|h|6(n+m) s

N

S(h) min

(
2s

Nn
,
s

N

(
1

n
+

1

m

)
− |h|
mn

)
, (4.11)

where S(h) be the number of solutions to vn− um = h with u 6 n and v 6 m.

We now consider S(h) more carefully, and note that in fact

0 6 S(h) 6


(m,n) if (m,n)|h

0 otherwise.

(4.12)

Indeed, for notational simplicity let us write d := (m,n). Clearly S(h) = 0 unless

d|h. In the case where d does divide h, we divide both sides of the equation by d to

reduce matters to counting the number of solutions {u, v} to the equation

vn′ − um′ = h′, (4.13)

with u 6 n and v 6 m, where n′ = n/d, m′ = m/d, and h′ = h/d.

Suppose that {u1, v1} and {u2, v2} were two different solutions to (4.13). Then

(v1 − v2)n′ − (u1 − u2)m′ = 0.

Since (n′,m′) = 1, unique prime factorisation implies that n′|(u1−u2). Since n/n′ = d,

this means that there are at most d possible values of u such that u 6 n and there

exists a v with {u, v} being a solution to (4.13).
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But u determines v in (4.13), so this means that there are at most d solutions

{u, v} to (4.13), thus proving the bound (4.12).

Substituting the bound (4.12) into (4.11), and letting y denote (n + m) s
N

, we

obtain

B1 6
∑

h∈Z\{0}
0<|h|6y
(m,n)|h

(m,n) min

(
2s

Nn
,
s

N

(
1

n
+

1

m

)
− |h|
mn

)

6
∑

h∈Z\{0}
0<|h|6 y

(m,n)

(m,n) min

(
2s

Nn
,
s

N

(
1

n
+

1

m

)
− |h|(m,n)

mn

)
.

Now the function in the summand is non-increasing in |h|, so we may upper bound

it by the integral

2

y
(m,n)∫
0

(m,n) min

(
2s

Nn
,
s

N

(
1

n
+

1

m

)
− h(m,n)

mn

)
dh

=2

y∫
0

min

(
2s

Nn
,
s

N

(
1

n
+

1

m

)
− h

mn

)
dh

62

(n−m) s
N∫

0

2s

Nn
dh+ 2

(n+m) s
N∫

(n−m) s
N

s

N

(
1

n
+

1

m

)
− h

mn
dh

=4s2 1

N2

n−m
n

+ 4s2 1

N2
m

(
1

n
+

1

m

)
− 1

mn

s2

N2
((n+m)2 − (n−m)2)

=4s2 1

N2

(
1− m

n
+
m

n
+ 1− 1

)
=4s2 1

N2

as claimed.
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We complete the list of lemmas by upper bounding sums of the quantity AX(n,m).

Lemma 4.3.7.
n∑

m=1

AX(n,m) 6 nτX(n).

Proof. We upper bound
n∑

m=1

AX(n,m) by neglecting the constraint (v,m) 6 s2X2/N2+

1, i.e.
n∑

m=1

AX(n,m) 6
∑

16m,u,v6n
u
n

= v
m

(u,n)6s2X2/N2+1

1.

We make some trivial observations. For fixed u, there are unique coprime postive

integers a and b such that u
n

= a
b
. The denominator b is a divisor of n. Further, if

a and b are fixed coprime positive integers where a 6 b and b is a divisor of n, the

number of solutions to

a

b
=

v

m
, with 1 6 v,m 6 n

is exactly n
b
. Therefore

n∑
m=1

AX(n,m) 6
∑
b|n

∑
u6n

∃a: u
n

=a
b
, (a,b)=1

(u,n)6s2X2/N2+1

n

b
.

If a pair u and b are counted in the double sum, then b = n
(u,n)

. Therefore we get

the expression

n∑
m=1

AX(n,m) 6
∑
b|n

∑
u6n

(u,n)=n
b

(u,n)6s2X2/N2+1

n

b

6
∑
b|n

n
b
6s2X2/N2+1

b
n

b
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=
∑
c|n

c6s2X2/N2+1

n

= nτX(n)

as claimed.

4.4 The main argument

Firstly we make rigorous the idea that, for almost all α, F ∗1 (Aψ, α, s,X) is a good

approximation to F1(Aψ, α, s,X).

Lemma 4.4.1. Let δ be non-negative, and let ψ(n) = min(1, (log n)−1−δ) as usual.

Let c, C be two absolute positive constants with c < C. Then with probability 1

there exists a positive real X1/2 (that may depend on c, C, δ) such that the following

holds: if X > X1/2, and if s is a positive real that satisfies c < s < C, then N (as

defined in (4.1)) is non-zero, and there exists a set EX,s ⊆ [0, 1] that has measure

O((logX)−
3
2
−2δ) and such that, if α ∈ [0, 1] \ EX,s,

F1(Aψ, α, s,X)− F ∗1 (Aψ, α, s,X)�c,C (logX)−
1
2 .

The implied constant is independent of α and δ.

Proof. Let ε = 1/2, and consider Corollary 4.3.2 with this value of ε. This shows

that, with probability 1, there exists a positive real number X1/2 such that, for all

X > X1/2,

N �
∑
x6X

ψ(x) � X

log1+δX
(4.14)

and for all n 6 X

Rψ,N(n)�
∑
x6X

ψ(x)2 � X

log2+2δX
. (4.15)
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We henceforth assume that we are operating in the probability 1 event in which such

an X1/2 exists. Making X1/2 larger as necessary (in terms of C and δ), we may also

assume that if X > X1/2 then s/N < 1/2.

So, let X be a real number with X > X1/2. Note first that

1∫
0

F1(Aψ, α, s,X)− F ∗1 (Aψ, α, s,X) dα

= 4
s

N

∑
n6X

(
Rψ,N(n)

N

)
− 2

∑
n6X

(
Rψ,N(n)

N

)
meas(EXn ). (4.16)

The intervals that are used to define EXn are disjoint (since s/N < 1/2), and so

meas(EXn ) = 2
s

Nn

∑
m6n

(m,n)6s2X2/N2+1

1

= 2
s

N

ΦX(n)

n
.

Substituting into (4.16) we get that

1∫
0

F (Aψ, α, s,N)− F ∗(Aψ, α, s,N) dα = 4
s

N

∑
n6X

(
Rψ,N(n)

N

)(
1− ΦX(n)

n

)
.

This is

� s

∑
x6X

ψ(x)2

(
∑
x6X

ψ(x))2

∑
n6X

(
1− ΦX(n)

n

)

� s

(
X

s2X2/N2 + 1
+ logX

) ∑
x6X

ψ(x)2

(
∑
x6X

ψ(x))2
,

by an application of Corollary 4.3.4, along with bounds (4.14) and (4.15).
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Replacing the expressions involving ψ with their asymptotic form, we conclude

that

1∫
0

F1(Aψ, α, s,X)− F ∗1 (Aψ, α, s,X) dα� s

(
1

s2(logX)2+2δ + 1
+

logX

X

)

�c,C
1

(logX)2+2δ
.

The integrand is always positive, so the lemma follows by Markov’s inequality.

Now we approach the important variance estimate.

Lemma 4.4.2. Let δ be non-negative, and let ψ(n) = min(1, (log n)−1−δ) as usual.

Let c, C be two absolute positive constants with c < C. Then with probability 1 there

exists a positive real X1/2 (that may depend on c, C, δ) such that the following holds:

if X > X1/2, and if s is a positive real that satisfies c < s < C, then N (as defined in

(4.1)) is non-zero, and

1∫
0

(F ∗1 (Aψ, α, s,X)− 2s)2 dα�c,C (2 + 2δ)(log logX)(logX)−1−δ.

In other words, viewing α as a uniform random variable taking values in [0, 1],

the variance of F ∗1 (Aψ, α, s,X) enjoys the bound (2 + 2δ)(log logX)(logX)−1−δ. For

any positive δ, this bound tends to zero faster than logX, and that will be our key

leverage.

Proof. We proceed as in the proof of Lemma 4.4.1, picking the same X1/2 (and as-

suming that we are operating in the probability 1 event in which such an X1/2 exists).
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Let X be a real number with X > X1/2. Then we have that

1∫
0

(F ∗1 (Aψ, α, s,X)− 2s)2 dα (4.17)

is equal to

4
∑

n,m6X

Rψ,N (n)Rψ,N (m)

N2
meas(EXn ∩ EXm )− 8s

∑
n6X

Rψ,N (n)

N
meas(EXn ) + 4s2

616
s2

N2

∑
n,m6X

Rψ,N (n)Rψ,N (m)

N2
+ 16

s

N

∑
n6X
m6n

Rψ,N (n)Rψ,N (m)

N2

(
AX(n,m)

n

)

− 8s
∑
n6X

Rψ,N (n)

N
meas(EXn ) + 4s2

616
s2

N4

∑
n,m6X

Rψ,N (n)Rψ,N (m) + 16
s

N3

∑
n6X
m6n

Rψ,N (n)Rψ,N (m)

(
AX(n,m)

n

)

− 16
s2

N2

∑
n6X

Rψ,N (n)
ΦX(n)

n
+ 4s2. (4.18)

We may now recombine the terms, without needing to assume any regularity in

the sizes of the Rψ,N(n), simply the fact that
∑
m6X

Rψ,N(m) = 1
2
N(N −1). It is at this

stage we see how vital it was that, in the statement of Lemma 4.9, the constant in

the first term on the right-hand side was exactly 4. Indeed, since

16
s2

N4

∑
n,m6X

Rψ,N(n)Rψ,N(m) + 4s2 = 16
s2

N2

∑
n6X

Rψ,N(n) +O(
s2

N
),

we have that (4.18) is

= 16
s2

N2

∑
n6X

Rψ,N(n)

(
1− ΦX(n)

n

)
+ 16

s

N3

∑
n6X
m6n

Rψ,N(n)Rψ,N(m)

(
AX(n,m)

n

)

+O(
s2

N
). (4.19)
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Consider the first term of (4.19). Since Rψ,N(n) �
∑
x6X

ψ(x)2 for every n (by

(4.15)) and N �
∑
x6X

ψ(x) (by (4.14), we may use Corollary 4.3.4 and the fact that

s < C to deduce that

16
s2

N2

∑
n6x

Rψ,N(n)

(
1− ΦX(n)

n

)
�C

∑
x6X

ψ(x)2

(
∑
x∈X

ψ(x))2

(
X

s2X2/N2 + 1
+ logX

)
.

The second term of (4.19) may be bounded above by

�
(
∑
x6X

ψ(x)2)2

(
∑
x6X

ψ(x))3

∑
n6X
m6n

AX(m,n)

n

�
(
∑
x6X

ψ(x)2)2

(
∑
x6X

ψ(x))3

∑
n6X

τX(n)

�
(
∑
x6X

ψ(x)2)2

(
∑
x6X

ψ(x))3
X log(s2X2/N2 + 2)

Replacing the expressions involving ψ with their asymptotic form, we conclude

that the variance (4.17) is

�c,C
X/(logX)2+2δ

(X/(logX)1+δ)2

(
X

(logX)2+2δ
+ logX

)
+

(X/(logX)2+2δ)2

(X/(logX)1+δ)3
X log((logX)2+2δ),

which is Oc,C((2 + 2δ)(log logX)(logX)−1−δ). The lemma is proved.

The fact that one can get a bound for the variance of F ∗1 (Aψ, α, s,X) that decays

faster than (logX)−1, even when δ is very small, is at the heart of our method.

We remark that, had we applied the methods of [3] to estimate the variance of

F1(Aψ, α, s,X) directly, one would have obtained a bound of approximately (logX)−δ.

This would have sufficed for δ > 1, but not for smaller δ.
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4.5 Proof of Theorem 4.1.3

Assume that ψ(n) = min(1, (log n)−1−δ) for some fixed positive δ. To show that Aψ

is metric poissonian, it will be enough to prove the following claim.

Claim 4.5.1. For all positive ε, s, with probability 1 there exists a set Ωε,s ⊆ [0, 1]

with measure 1 and with the follow property: for all α ∈ Ωε,s, there exists a real

number X(α, ε, s) such that for all X > X(α, ε, s) one has

|F1(Aψ, α, s,X)− 2s| 6 ε.

Proof that Claim 4.5.1 implies Theorem 4.1.3. Consider all rational values of ε and

s, and the probability 1 events and sets Ωε,s given by Claim 4.5.1. By intersecting the

sets Ωε,s over all rational values of ε and s, and intersecting all the probability 1 events,

we conclude that with probability 1 there exists a set Ω ⊆ [0, 1] of measure 1 such that

for all α ∈ Ω and for all positive rational numbers s we have F1(Aψ, α, s,X)→ 2s as

X →∞.

We claim that the same conclusion is true for irrational s. Indeed, let ε be positive

and let s1, s2 be rational numbers such that 0 < s1 < s < s2 and |s−s1|, |s−s2| 6 ε/4.

Let X be large enough so that

|F1(Aψ, α, s1, X)− 2s1| 6
ε

2

|F1(Aψ, α, s2, X)− 2s2| 6
ε

2
.

Then

2s− ε 6 2s1 −
ε

2
6 F1(Aψ, α, s1, X) 6 F1(Aψ, α, s,X)
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6 F1(Aψ, α, s2, X) 6 2s2 +
ε

2
6 2s+ ε.

The quantity ε was arbitrary, so

F1(Aψ, α, s,X) −→ 2s

as X →∞, and so Aψ is metric poissonian. Theorem 4.1.3 is proved.

It remains to prove Claim 4.5.1. To this end, assume that we are in the probability

1 scenario described in Corollary 4.3.2, i.e. that for all positive ε there exists some

Xε such that, that for all X satisfying X > Xε, one has

(1− ε) X

log1+δX
6 N 6 (1 + ε)

X

log1+δX
, (4.20)

and, for all n 6 X,

Rψ,N(n) 6 (1 + ε)
X

log2+2δX
. (4.21)

Fix the values of ε, s > 0 in the statement of Claim 4.5.1 and let η be a positive

constant, picked small enough in terms of δ. Let

Xj = ej
1−η
.

We may assume that X is sufficiently large in terms of ε and s, and write Xj 6 X <

Xj+1 for some j.

One has the inequality

NjF1(Aψ, α, s
Nj

Nj+1

, Xj) 6 NF1(Aψ, α, s,X) 6 Nj+1F1(Aψ, α, s
Nj+1

Nj

, Xj+1).

Observe the critical fact that Xj+1/Xj → 1 as j → ∞. Therefore, by expression

(4.20), Nj+1/Nj → 1 as j →∞. In particular there exist positive absolute constants
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c and C such that, if j is large enough, c < s, s
Nj
Nj+1

, s
Nj+1

Nj
< C.

We make two deductions from the lemmas in section 4.4. Firstly, apply Lemma

4.4.1 to the expression F1(Aψ, α, s Nj
Nj+1

, Xj). Therefore, with probability 1, if X is

large enough in terms of C, c, δ then there exists a set E
Xj ,s

Nj
Nj+1

with all the properties

from Lemma 4.4.1.

Certainly we have

meas(E
Xj ,s

Nj
Nj+1

)�c,C
1

log
3
2

+2δXj

� j−
3
2 ,

if η is small enough. Hence

∞∑
j=1

meas(E
Xj ,s

Nj
Nj+1

) <∞.

So by the first Borel-Cantelli lemma (Lemma 0.5.1),

meas
⋃
J>1

⋂
j>J

(
[0, 1] \ E

Xj ,s
Nj
Nj+1

)
= 1.

This means that, provided η is small enough, for almost all α ∈ [0, 1] there exists a

value j(α) such that for all j > j(α)

|F1(Aψ, α, s
Nj

Nj+1

, Xj)− F ∗1 (Aψ, α, s
Nj

Nj+1

, Xj)| �c,C j
− 1

2
+ η

2 �c,C j
− 1

4 . (4.22)

Arguing analogously for s
Nj+1

Nj
, for all j > j(α) one has

|F1(Aψ, α, s
Nj+1

Nj

, Xj+1)− F ∗1 (Aψ, α, s
Nj+1

Nj

, Xj+1)| �c,C j
− 1

4 . (4.23)

Secondly, by applying Chebyshev’s inequality (Lemma 0.5.2) to the variance esti-
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mate in Lemma 4.4.2, we conclude that

meas{α : (|F ∗1 (Aψ, α, s
Nj

Nj+1

, Xj)− 2s
Nj

Nj+1

| > 0.1ε} �δ,c,C ε
−2(logXj)

−1−δ/2

�δ,c,C ε
−2j−1−δ/4

if η is small enough.

Therefore, applying the first Borel-Cantelli lemma again, for almost all α ∈ [0, 1]

there exists a positive real j(α, ε) such that

|F ∗1 (Aψ, α, s
Nj

Nj+1

, Xj)− 2s
Nj

Nj+1

| < 0.1ε (4.24)

for all j > j(α, ε). By an analogous argument we may also assume that

|F ∗1 (Aψ, α, s
Nj+1

Nj

, Xj+1)− 2s
Nj+1

Nj

| < 0.1ε (4.25)

for all j > j(α, ε). Without loss of generality, we may assume that j(α, ε) > j(α).

We now conclude the proof. Indeed, let Kc,C be a sufficiently large constant,

depending on c and C, and let Kc,C,ε be a sufficiently large constant, depending on c,

C and ε. Assume that X is large enough so that, if X is in the range Xj 6 X < Xj+1,

then |Nj+1/Nj − 1| 6 K−1
c,C,ε and j is large enough such that both j > j(α, ε) and

j−
1
2 6 εK−1

c,C . Then, by combining (4.22) and (4.24), if Kc,C is large enough one has

F1(Aψ, α, s
Nj

Nj+1

, Xj) > 2s
Nj

Nj+1

− 0.2ε.

But

F1(Aψ, α, s
Nj

Nj+1

, Xj) 6
N

Nj

F1(Aψ, α, s,X),
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so we conclude, provided that Kc,C,ε is large enough, that

F1(Aψ, α, s,X) > 2s
N2
j

NNj+1

− 0.5ε.

Arguing similarly for the upper bound, we get

F1(Aψ, α, s,X) 6 2s
N2
j+1

NNj

+ 0.5ε.

Since |Nj+1/Nj − 1| 6 K−1
c,C,ε, we conclude that

|F1(Aψ, α, s,X)− 2s| 6 ε.

This proves Claim 4.5.1.

As noted above, this concludes the proof of Theorem 4.1.3.

4.6 Proof of Theorem 4.1.4

This proof is very similar to the previous one, and in fact a little simpler: we give a

sketch.

Let η be a small positive parameter, and define

Xj := ej
1+η

(a subtle though important difference in definition from the previous proof). The

manoeuvre in Claim 4.5.1, of considering for intersection over all rational s and ε,

goes through unaltered, and therefore it suffices to prove, for all fixed positive s and

ε, that, with probability 1, for almost all α there exists a real number j(α, ε, s) such
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that

|F1(Aψ, α, s,Xj)− 2s| 6 ε

for all j > j(α, ε, s).

We stress at this point that we will just consider fixed s, rather than utilising the

expression sNj+1/Nj in a sandwiching argument as in the previous proof4.

Letting EXj ,s be the exceptional set coming from Lemma 4.4.1, one has the bound

∞∑
j=1

meas(EXj ,s) <∞,

and so, applying the first Borel-Cantelli lemma (Lemma 0.5.1) as previously, we

conclude that for almost all α there exists a value j(α) such that for all j > j(α) one

has

|F1(Aψ, α, s,Xj)− F ∗1 (Aψ, α, s,Xj)| �s j
− 1

2

Now, by applying Chebyshev’s inequality (Lemma 0.5.2) to the variance estimate for

F ∗1 given in Lemma 4.4.2, we conclude that

meas(α : |F ∗1 (Aψ, α, s,Xj)− 2s| > 0.1ε)�s,ε (log logXj)(logXj)
−1 �s,ε j

−1−η/2.

Since η is positive, the sum of these measures converges, and so we conclude (from

the first Borel-Cantelli lemma again) that for almost all α there exists a j(α, ε) such

that

|F ∗1 (Aψ, α, s,Xj)− 2s| < 0.1ε

for all j > j(α, ε).

Combining these two statements, we conclude that for almost all α there exists a

4This is because the sandwiching argument no longer works, as the ratio Nj+1/Nj does not tend
to 1. Even worse, this ratio isn’t bounded.
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j(α, ε, s) such that

|F1(Aψ, α, s,Xj)− 2s| 6 ε

for all j > j(α, ε, s). The theorem is proved.
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Chapter 5

Gowers norms control diophantine

inequalities

5.1 Introduction

Diophantine inequalities are a vast and varied topic in analytic number theory (see

[9], say). We will focus on a particular class of problems, which are of the following

general form. Let A be a set of integers, let ε be a positive parameter, and let L be

an m-by-d real matrix, with d > m + 1. One may ask whether there are infinitely

many solutions to

‖La‖∞ 6 ε (5.1)

with all the coordinates of a lying in A. Further, letting N be a natural number, one

might seek an asymptotic formula (as N tends to infinity) for the number of such so-

lutions that satisfy ‖a‖∞ 6 N . Much is known about this problem for certain special

sets A (see [7, 18, 55, 61, 65, 66]), in particular for the image sets of polynomials.

This is discussed in section 5.2. However, as far we are aware, the situation has not

before been considered in such generality.
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In section 0.3 we recorded the basic properties of Gowers norms. These norms were

introduced around twenty years ago, as part of Gowers’ proof of Szemerédi’s Theorem

[33], and since then they have become a fundamental tool in additive combinatorics

and in analytic number theory. One particular application is to the study of linear

equations with rational coefficients. Indeed, the study of such systems was greatly

enhanced by the introduction, by Green and Tao in [36, 38], of a powerful and wide-

ranging technique, known as a ‘Generalised von Neumann Theorem’, which can be

used to show that Gowers norms are, in some sense, ‘universal’ over all such linear

systems: this is Theorem 7.1 of [38], and we recall a similar version in Theorem 5.1.1.

It was using this technique, in combination with a deep study of the inverse theory

of Gowers norms, that those authors and Ziegler managed to prove that, generically,

m+ 2 prime variables are adequate to obtain an asymptotic formula for the number

of prime solutions to m linear equations with rational coefficients, rather than the

2m+ 1 variables required by the circle method.

Our motivation for embarking upon this entire project was to try to use these

ideas of Green and Tao to understand (5.1) when A is the set of primes. We have a

theorem in this direction, but the proof is still the subject of ongoing work, and we

choose not to present it in this thesis. Many additional technical difficulties occur

for the primes, stemming from the well-studied irksome fact that the von Mangoldt

function is unbounded. The purpose of this chapter is rather to develop a theory for

diophantine inequalities weighted by bounded functions.

Consider the following theorem of Green and Tao, which applies Gowers norms to

bound the number of solutions to equations with integer coefficients. A more general

version of this theorem is a critical tool in those authors’ work on linear equations in

primes ([38]).

Theorem 5.1.1 (Generalised von Neumann Theorem for rational forms (non-quan-
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titative)). Let N,m, d be natural numbers, satisfying d > m+ 2. Let L be an m-by-d

real matrix with integer coefficients, with rank m. Suppose that there does not exist

any non-zero row-vector in the row-space of L that has two or fewer non-zero coordi-

nates. Then there is some natural number s at most d− 2 that satisfies the following.

Let f1, · · · , fd : [N ] −→ [−1, 1] be arbitrary functions, and suppose that

min
j
‖fj‖Us+1[N ] 6 ρ

for some parameter ρ in the range 0 < ρ 6 1. Then

1

Nd−m

∑
n∈[N ]d

Ln=0

d∏
j=1

fj(nj)�L ρ
Ω(1) + oρ(1).

Theorem 5.1.1 is implicit in [38], but it is not explicitly stated in that paper (the

authors’ focus being on results over primes). We will later require a quantitative

version (Theorem 5.5.2), at which point we will describe fully how to extract these

statements from [38].

At first sight the non-degeneracy condition in the statement of Theorem 5.1.1,

concerning the row-space of L, may seem a little unnatural. However, it is actually

a necessary condition for Gowers norms to be used in this way (as we show later in

Theorem 5.2.12).

The main result of this chapter (Theorem 5.2.10) will generalise Theorem 5.1.1

to the setting of diophantine inequalities. Because we take care to record the quan-

titative dependencies of the error terms, Theorem 5.2.10 is rather technical to state.

Fortunately, it admits a corollary that is much more transparent. This corollary is

strong enough to give our main application (an application to cancellation of the
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Möbius function, see Corollary 5.12).

Corollary 5.1.2 (Generalised von Neumann Theorem for diophantine inequalities

(non-quantitative)). Let N,m, d be natural numbers, satisfying d > m + 2, and let ε

be a positive parameter. Let L : Rd −→ Rm be an m-by-d real matrix, with rank m.

Suppose that there does not exist any non-zero row-vector in the row-space of L that

has two or fewer non-zero coordinates. Then there is some natural number s at most

d−2, independent of ε, such that the following is true. Let f1, . . . , fd : [N ] −→ [−1, 1]

be arbitrary functions, and suppose that

min
j
‖fj‖Us+1[N ] 6 ρ,

for some parameter ρ in the range 0 < ρ 6 1. Then

∣∣∣ 1

Nd−m

∑
n∈[N ]d

‖Ln‖∞6ε

( d∏
j=1

fj(nj)
)∣∣∣�L,ε ρ

Ω(1) + oρ,L(1).

We can provide detailed information about how the implied constant and the oρ,L(1)

term depend on L, but we defer those technicalities to Theorem 5.2.10.

Note how, by picking ε small enough, Corollary 5.1.2 immediately implies Theo-

rem 5.1.1.

Let us illustrate Corollary 5.1.2 with some examples.

Example 5.1.3 (Three-term irrational AP). The first example could have been

proved by Davenport and Heilbronn using the methods of [18], but we include it

here to demonstrate the simplest case where Corollary 5.1.2 applies. Let

L :=
(

1 −
√

2 −1 +
√

2

)
.
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Then m = 1 and d = 3, and obviously there does not exist any non-zero row-vector

in the row-space of L that has two or fewer non-zero coordinates.

Therefore Corollary 5.1.2 applies, and so, if f1, f2, f3 : [N ] −→ [−1, 1] are three

functions satisfying minj ‖fj‖U2[N ] 6 ρ for some ρ in the range 0 < ρ 6 1, we have

∣∣∣ 1

N2

∑
n1,n2,n36N

|n1−
√

2n2+(−1+
√

2)n3|6ε

f1(n1)f2(n2)f3(n3)
∣∣∣�ε ρ

Ω(1) + oρ(1). (5.2)

The statement (5.2) admits a different interpretation, which some readers may

find more natural, that of counting the number of occurrences of a certain irrational

pattern: a ‘three-term irrational arithmetic progression’. Indeed, recall that for θ ∈ R

we let [θ] denote bθ + 1
2
c, i.e. the nearest integer to θ. Then for any three functions

f1, f2, f3 : [N ] −→ [−1, 1], we make the definition

T (f1, f2, f3) :=
1

N2

∑
x,d∈Z

f3(x)f2(x+ d)f1([x+
√

2d]). (5.3)

Informally speaking, T counts the number of near-occurrences of the pattern (x, x+

d, x +
√

2d), weighted by the functions fj. By a simple change of variables n1 =

[x+
√

2d], n2 = x+ d, n3 = x, and noting that x+
√

2d /∈ 1
2
Z, we see

T (f1, f2, f3) =
1

N2

∑
n1,n2,n36N

|n1−
√

2n2+(−1+
√

2)n3|6 1
2

f1(n1)f2(n2)f3(n3). (5.4)

By (5.2), this means

|T (f1, f2, f3)| � ρΩ(1) + oρ(1), (5.5)

provided minj ‖fj‖U2[N ] 6 ρ.

One can use these results to count the number of near-occurrences of the pattern
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(x, x + d, x +
√

2d) in a Fourier-uniform set, which we do in Corollary 5.1.4 below.

Indeed, suppose that A is a subset of [N ] with |A| = αN . Let

fA := 1A − α1[N ] (5.6)

be its so-called ‘balanced function’. By the usual telescoping trick, T (1A, 1A, 1A) is

equal to

T (α1[N ], α1[N ], α1[N ]) + T (fA, α1[N ], α1[N ]) + T (1A, fA, α1[N ]) + T (1A, 1A, fA). (5.7)

Bounding the final three terms using ‖fA‖U2[N ], and using the relation (5.4), one may

establish that

1

N2

∑
x,d∈Z

1A(x)1A(x+ d)1A([x+
√

2d]) = Cα3(1 + o(1)) +O(ρΩ(1)) + oρ(1) (5.8)

for some positive constant C, provided ‖fA‖U2[N ] 6 ρ. If ‖fA‖U2[N ] = o(1) then, by

picking ρ = ρ(N) to be a quantity that tends to zero suitably slowly as N tends

to infinity, (5.8) implies that the number of occurrences of the configuration (x, x +

d, [x+
√

2d]) in A is asymptotically Cα3N2.

For bounded functions, the U2-norm is closely related to the Fourier transform.

We say that A is Fourier-uniform if its balanced function fA satisfies

sup
θ∈[0,1]

1

N

∑
n6N

fA(n)e(nθ) = o(1),

and it is a standard result (see [84, Exercise 1.3.18]) that A is Fourier uniform if and

only if ‖fA‖U2[N ] = o(1). Therefore expression (5.8), and the remarks following it,

imply the following corollary.

Corollary 5.1.4. Let N be a natural number. If A is a Fourier-uniform subset of
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[N ], with |A| = αN , then

∑
x,d∈Z

1A(x)1A(x+ d)1A([x+
√

2d]) = Cα3N2 + o(N2),

for some positive constant C.

Example 5.1.5 (Four-term irrational APs). Let

L :=

1 0 −
√

2 −1 +
√

2

0 1 −
√

3 −1 +
√

3

 . (5.9)

We verify that the non-degeneracy condition from Corollary 5.1.2 is satisfied. Indeed,

when L is an m-by-m+ 2 matrix, elementary linear algebra shows that there exists a

non-zero row-vector in the row-space of L that has two or fewer non-zero coordinates

if and only if there exists some m-by-m submatrix of L that has determinant zero.

With L as in (5.9), we see that none of the 6 determinants of the 2-by-2 submatrices

are zero, and hence Corollary 5.1.2 applies.

Let N be a natural number, and let f1, f2, f3, f4 : [N ] −→ [−1, 1] be arbitrary

functions. Then

1

N2

∑
n∈[N ]4

‖Ln‖∞6 1
2

( 4∏
j=1

fj(nj)
)

=
1

N2

∑
x,d∈Z

f3(x)f4(x+ d)f1([x+
√

2d])f2([x+
√

3d]).

Corollary 5.1.2 controls the left-hand side of this expression, and the pattern on the

right-hand side, namely

(x, x+ d, [x+
√

2d], [x+
√

3d]), (5.10)

we call a four-term irrational progression.
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Let A be a subset of [N ], with |A| = αN . Suppose that‖fA‖U3[N ] 6 ρ (where fA

is as in (5.6)), for some parameter ρ in the range 0 < ρ 6 1. By telescoping as in

(5.7) we may derive

1

N2

∑
x,d∈Z

1A(x)1A(x+d)1A([x+
√

2d])1A([x+
√

3d]) = Cα4(1+o(1))+O(ρΩ(1))+oρ(1)

(5.11)

for some positive constants C.

One may construct similar results for any pattern

(x, x+ d, [x+ θ1d], · · · , [x+ θkd])

where θi /∈ Q for all i.

We comment that the infinitary theory of patterns such as (5.10) was previously

considered in [56], albeit in the different language of ergodic theory. In particu-

lar, an easy deduction from [56, Theorem B] shows that all sets of natural numbers

with positive upper Banach density contain infinitely many copies of the pattern

(x, x+ d, [x+
√

2d], [x+
√

3d]). Yet from [56] one cannot recover any statement that

has the generality of Corollary 5.1.2, nor an asymptotic formula such as (5.11).

Corollary 5.1.2 has immediate consequences for counting solutions to diophantine

inequalities weighted by explicit bounded pseudorandom functions. In particular

there is the following natural analogue of [38, Proposition 9.1].

Corollary 5.1.6 (Möbius orthogonality). Let N,m, d be natural numbers satisfying

d > m + 2, and let ε be a positive parameter. Let L : Rd −→ Rm be an m-by-d real

matrix, with rank m. Suppose that there does not exist any non-zero row-vector in the

row-space of L that has two or fewer non-zero coordinates. Let µ denote the Möbius
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function. Then ∑
n∈[N ]d

‖Ln‖∞6ε

µ(n1)
( d∏
j=2

fj(nj)
)

= oL,ε(N
d−m)

for any bounded functions f2, · · · , fd : [N ] −→ [−1, 1]. The same is true with µ

replaced by the Liouville function λ.

Proof. This follows immediately from Corollary 5.1.2 and the deep facts (stated in

[38], proved in [39] and [40]) that ‖µ‖Uk[N ] = ok(1) and ‖λ‖Uk[N ] = ok(1).

For example, Corollary 5.1.6 implies that

∑
n∈[N ]4

n1−n2=n2−n3

|(n2−n3)−
√

2(n3−n4)|6 1
2

µ(n1)µ(n2)µ(n3)µ(n4) = o(N2). (5.12)

There are of course many such examples; we chose (5.12) to emphasise that one can

choose configurations that combine rational and irrational relations.

5.2 Historical background and the main theorem

The aim of this section is to state Theorem 5.2.10, which is a fully quantitative

version of Corollary 5.1.2. We will also state a partial converse to this theorem; this

is Theorem 5.2.12.

Before doing this, let us take this opportunity to recall some of the main classical

results in the area. As we have already remarked, much is known about the inequality

(5.1) for certain special sets A, particularly when m = 1. If A is the set of squares,

say, it was shown by Davenport and Heilbronn in [18] that there are infinitely many
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solutions to (5.1) for m = 1 and d = 5, i.e. infinitely many solutions to

|λ1n
2
1 + λ2n

2
2 + λ3n

2
3 + λ4n

2
4 + λ5n

2
5| 6 ε,

provided the coefficients λi are non-zero, not all of the same sign, and not all in pair-

wise rational ratio. Their work also proves the same result for kth powers, provided

that the number of variables is at least 2k+1. The method is Fourier-analytic, replac-

ing the interval [−ε, ε] with a smooth cut-off and expressing the solution count via

the inversion formula. See [17, Chapter 20], [87, Chapter 11]. Freeman [23] refined

the minor-arc analysis from [18] to obtain asymptotic formulas for the number of so-

lutions where ni 6 N for every i. The number of variables required was subsequently

reduced by Wooley in [93].

Of course there is much more work on such polynomial questions, only tangentially

related to this chapter, i.e. Margulis’ solution to the Oppenheim Conjecture [55], and

the subsequent quantitative versions given by Bourgain [11]. Regarding questions

with m > 2, Parsell [66] considered the case of A being the kth powers, with Müller

[61] developing a refined result in the case of inequalities for general real quadratics.

Müller’s main result imposes a technical hypothesis on the so-called ‘real pencil’ of

the quadratic forms under consideration: we will return to this issue when considering

the technical details of our main theorem (Theorem 5.2.10).

These questions have also been asked when A is the set of prime numbers, and may

be tackled using similar analytic tools. A result first claimed in [7] by Baker1 states

that for any fixed positive ε there exist infinitely many triples of primes (p1, p2, p3)

satisfying

|λ1p1 + λ2p2 + λ3p3| 6 ε, (5.13)

1In fact Baker proved a slightly different result, writing in [7] that the result we quote here
followed easily from the then-existing methods. A proof does not seem to have been written down
until Parsell [65].
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assuming again that the coefficients λi are non-zero, not all of the same sign, and

not all in pairwise rational ratio. Parsell [65] then used a similar refinement to

that of Freeman to prove a lower bound2 on the number of solutions to (5.13) sat-

isfying p1, p2, p3 6 N . This bound had the expected order of magnitude, namely

εN2(logN)−3.

These analytic approaches ultimately rely on establishing tight mean-value es-

timates for certain exponential sums, and thus require a large enough number of

variables for such estimates to hold. In the case of primes, say, for m inequalities

the method of Parsell will yield an asymptotic for the number of solutions to (5.1) in

prime variables provided d > 2m+ 1 (at least for generic L). In preparation, we have

a paper [89] that reaches the same conclusion under the weaker hypothesis d > m+ 2

(provided L has algebraic coefficients).

Having introduced the background of this work, we can begin to build up the

necessary notation required in order to state the main theorem (Theorem 5.2.10).

First, let us introduce a multilinear form that will count solutions to a general version

of (5.1).

Definition 5.2.1. Let N,m, d be natural numbers. Let ε be positive, and let L :

Rd −→ Rm be a linear map. Let F : Rd −→ [0, 1] and G : Rm −→ [0, 1] be two

functions, with F supported on [−N,N ]d and G supported on [−ε, ε]m. Let f1, · · · , fd :

[N ] −→ [−1, 1] be arbitrary functions. We define

TLF,G(f1, · · · , fd) :=
1

Nd−m

∑
n∈Zd

( d∏
j=1

fj(nj)
)
F (n)G(Ln).

The normalisation factor of Nd−m is appropriate; we will show in Lemma 5.4.1 that

TLF,G(f1, · · · , fd)�ε 1.

2An asymptotic formula for the number of solutions follows very easily from Parsell’s work,
though does not appear to be present in the literature.
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Now let us introduce the appropriate notions of ‘non-degeneracy’. These will be

needed in order to appropriately quantify the Gowers norm relations in the main

theorem (Theorem 5.2.10).

Definition 5.2.2 (Rank varieties). Let m, d be natural numbers satisfying d > m+1.

Let Vrank(m, d) denote the set of all linear maps L : Rd −→ Rm whose rank is less

than m. We call Vrank(m, d) the rank variety.

Let V global
rank (m, d) denote the set of all linear maps L : Rd −→ Rm for which there

exists a standard basis vector of Rd, say ei, for which L|span(ej:j 6=i) has rank less than

m. We call V global
rank (m, d) the global rank variety.

We remark that V global
rank (m, d) contains Vrank(m, d).

The next notion is a rephrasing of the non-degeneracy condition that appeared in

Corollary 5.1.2 and Theorem 5.1.1.

Definition 5.2.3 (Dual degeneracy variety). Let m, d be natural numbers satisfying

d > m+ 2. Let e1, · · · , ed denote the standard basis vectors of Rd, and let e∗1, · · · , e∗d

denote the dual basis of (Rd)∗. Then let V ∗degen(m, d) denote the set of all linear maps

L : Rd −→ Rm for which there exist two indices i, j 6 d, and some real number λ,

such that ei
∗ − λej

∗ is non-zero and (ei
∗ − λej

∗) ∈ L∗((Rm)∗). We call V ∗degen(m, d)

the dual degeneracy variety.

Though defined as sets of linear maps, by fixing bases we can view Vrank(m, d) and

V ∗degen(m, d) as sets of matrices. In that language, one can easily verify that an m-by-d

matrix L is in V ∗degen(m, d) precisely when there exists a non-zero row-vector in the

row-space of L that has two or fewer non-zero coordinates. The formulation in terms

of dual spaces will be particularly convenient for some of the algebraic manipulations
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in section 5.5, however. We remark that V ∗degen(m, d) contains V global
rank (m, d).

If L : Rd −→ Rm is a surjective linear map, it is certainly true that span(L(Zd)) =

Rm. But L(Zd) needn’t be dense in Rm, as it may satisfy some rational relations.

Definition 5.2.4 (Rational dimension, rational map, purely irrational). Let m and

d be natural numbers, with d > m + 1. Let L : Rd −→ Rm be a surjective linear

map. Let u denote the largest integer for which there exists a surjective linear map

Θ : Rm −→ Ru for which ΘL(Zd) ⊆ Zu. We call u the rational dimension of L, and

we call any map Θ with the above property a rational map for L. We say that L is

purely irrational if u = 0.

For example, suppose that L : R4 −→ R2 is the linear map represented by the

matrix

L :=

1 0 −
√

2 −
√

3 + 1

0 1 5
√

2 5
√

3

 .

If Θ : R2 −→ R is given by the matrix

Θ :=
(

5 1

)
,

then ΘL(Z4) ⊆ Z, and in fact ΘL(Z4) = Z. So the rational dimension of L is at

least 1. But the rational dimension of L cannot be 2, as if there were a surjec-

tive map Θ : R2 −→ R2 such that ΘL(Z4) ⊆ Z2, then L(Z4) would be the subset

of a 2-dimensional lattice, which it is not. So the rational dimension of L is equal to 1.

Earlier in this section we remarked that Müller, in the work [61], imposed a techni-

cal hypothesis on the so-called ‘real pencil’ of the quadratic forms under consideration.

In our language, Müller was trying find conditions for when TLF,G(f1, · · · , fd) > 0 in

the case where the functions fj are supported on the image of quadratic monomials.
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The hypothesis he imposed on L was exactly that L should be purely irrational.3 We

work in a more general framework, considering all L, including those that are not

purely irrational. As will become apparent, this is significantly more complex.

In our definition of rational dimension, there is some flexibility over the exact

choice of map Θ. The next lemma identifies an invariant.

Lemma 5.2.5. Let m and d be natural numbers, with d > m+ 1. Let L : Rd −→ Rm

be a surjective linear map, and let u be the rational dimension of L. Then if Θ1,Θ2 :

Rm −→ Ru are two rational maps for L, ker Θ1 = ker Θ2.

Proof. Suppose that Θ1,Θ2 : Rm −→ Ru are two rational maps for L for which

ker Θ1 6= ker Θ2. Then consider the map (Θ1,Θ2) : Rm −→ R2u. The kernel of this

map has dimension at most m−u−1, as it is the intersection of two different subspaces

of dimension m− u. Therefore the image has dimension at least u+ 1.

Also, ((Θ1,Θ2) ◦L)(Zd) ⊆ Z2u. Let Φ be any surjective map from im((Θ1,Θ2)) to

Ru+1 for which Φ(Z2u ∩ im((Θ1,Θ2))) ⊆ Zu+1. Then Φ ◦ (Θ1,Θ2) : Rm −→ Ru+1 is

surjective and (Φ ◦ (Θ1,Θ2) ◦ L)(Zd) ⊆ Zu+1. This contradicts the definition of u as

the rational dimension.

The quantitative aspects of such relations will be required in order to properly

state the main theorem (Theorem 5.2.10). Recall that for all linear maps between

vector spaces of the form Ra, we identify them with their matrix representation with

respect to the standard bases. Also recall that for a linear map Θ : Rm −→ Ru, we

use ‖Θ‖∞ to denote the maximum absolute value of the coefficients of its matrix.

Definition 5.2.6 (Rational complexity). Let m and d be natural numbers, with d >

m + 1. Let L : Rd −→ Rm be a surjective linear map, and let u denote the rational

3He also has conditions on the rank of the quadratic form obtained by combining the monomials
on which the fj are supported with the matrix L.
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dimension of L. We say that L has rational complexity at most C if there exists a

map Θ that is a rational map for L and for which ‖Θ‖∞ 6 C.

If L is purely irrational, then L has rational complexity 0.

A linear map with maximal rational dimension is equivalent to a linear map with

integer coefficients, in the following sense:

Lemma 5.2.7. Let m and d be natural numbers, with d > m+ 1. Let L : Rd −→ Rm

be a surjective linear map, and suppose that L has rational dimension m and rational

complexity at most C. Then there exists an invertible m-by-m matrix Θ and an m-

by-d matrix S with integer coefficients such that, as matrices, ΘL = S. Furthermore,

‖Θ‖∞ 6 C.

Proof. Let Θ : Rm −→ Rm be a rational map for L for which ‖Θ‖∞ 6 C.

We will use this lemma in section 5.5, to reduce the study of maps L with maximal

rational dimension to the study of maps L with integer coefficients, which were con-

sidered in [38] (see Theorems 5.1.1 and 5.5.2).

We must quantify the rational relations in a second way. Indeed, L might have

rational dimension u but be extremely close to having rational dimension at least u+1,

in the sense that there might exist some surjective linear map Θ : Rm −→ Ru+1 such

that the matrix of ΘL is very close to having integer coefficients. This phenomenon,

essentially a notion of diophantine approximation, will also have a quantitative effect

on our final bounds. We introduce the following definition:

Definition 5.2.8 (Approximation function). Let m and d be natural numbers, with

d > m + 1. Let L : Rd −→ Rm be a surjective linear map, and let u denote the

rational dimension of L. Let Θ : Rm −→ Ru be any rational map for L. Suppose
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that u 6 m − 1. We then define the approximation function of L, denoted AL :

(0, 1]× (0, 1] −→ (0,∞) by

AL(τ1, τ2) := inf
ϕ∈(Rm)∗

dist(ϕ,Θ∗((Ru)∗))>τ1
‖ϕ‖∞6τ−1

2

dist(L∗ϕ, (Zd)T ),

where (Zd)T denotes the set of those ϕ ∈ (Rd)∗ that have integer coordinates with

respect to the standard dual basis.

If u = m, we define AL(τ1, τ2) to be identically equal to τ1.

Let us unpack this definition, before giving some examples. Firstly, note that the

definition is independent of the choice of Θ. Indeed, Θ∗((Ru)∗) = (ker Θ)◦ which, by

Lemma 5.2.5, is independent of Θ. Regarding the notion ‘dist’, we remind the reader

that we consider a-by-b matrices M as elements of Rab, simply by identifying the

coefficients of M with coordinates in Rab. The `∞ norm and the dist operator may

then be defined on matrices, i.e. if V is a set of a-by-b matrices, and L is an a-by-b

matrix, then

dist(L, V ) := infL′∈V ‖L− L′‖∞.

In this instance we are working with 1-by-d matrices, i.e. elements of (Rd)∗.

Let us consider a simple example. Suppose that, as a matrix,

L :=

(
1 −

√
2 −1 +

√
2

)
, (5.14)

as in Example 5.1.3. Then AL(τ1, τ2) is equal to

inf
k∈R:τ16|k|6τ−1

2

max(‖k‖R/Z, ‖ − k
√

2‖R/Z, ‖ − k + k
√

2‖R/Z).
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We claim that

AL(τ1, τ2)� min(τ1, τ2).

Indeed, we know that, for all q ∈ N, ‖q
√

2‖R/Z > 1/(10q). This is the statement

that
√

2 is a badly approximable irrational. The proof is straightforward: if there

were some natural number p for which |q
√

2− p| < 1/(10q), then

1 6 |2q2 − p2| <
√

2

10
+

p

10q
<

√
2

5
+

1

10
,

which is a contradiction.

Suppose first that ‖k‖R/Z 6 τ2/100 and 1/2 6 |k| 6 τ−1
2 . Then, replacing k by [k]

(the nearest integer to k), we can conclude that

max(‖ − k
√

2‖R/Z, ‖ − k + k
√

2‖R/Z) > ‖[k]
√

2‖R/Z −
τ2

50

>
1

10[k]
− τ2

50

>
1

10τ−1
2 + 10

− τ2

50

� τ2.

Otherwise, one has

‖k‖R/Z � min(τ1, τ2).

Therefore,

AL(τ1, τ2)� min(τ1, τ2)

as claimed.

Such a function is clearly rather tame. In fact, it is not difficult4 to show that if

4If L is not purely irrational then one needs to employ the dimension reduction argument from
Lemma 5.5.10 in addition to an easy diophantine approximation argument. This lemma is a lengthy
piece of elementary linear algebra.
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L is an m-by-d matrix with rank m and with algebraic coefficients, then

AL(τ1, τ2)�L min(τ1, τ
OL(1)
2 ), (5.15)

where the OL(1) term in the exponent depends on the algebraic degree of the coef-

ficients5 of L. We shall sketch a proof of this statement in section 5.12. In general,

however, AL(τ1, τ2) could tend to zero arbitrarily quickly as τ2 tends to zero, for

example in the case when L =

(
1 −λ −1 + λ

)
and λ is a Liouville number (an

irrational number that may be very well approximated by rationals).

Yet, however fast AL(τ1, τ2) decays, we have the following critical claim:

Claim 5.2.9. For all permissible choices of L, τ1 and τ2 in Definition 5.2.8, AL(τ1, τ2)

is positive.

Proof. Let u be the rational dimension of L. Without loss of generality we may assume

that u 6 m−1. Then, for all ϕ ∈ (Rm)∗\Θ∗((Ru)∗) we have that dist(L∗ϕ, (Zd)T ) > 0.

(If this were not the case then the map (Θ, ϕ) : Rm −→ Ru+1 would contradict the

definition of u.) Therefore, as the definition of AL(τ1, τ2) involves taking the infimum

of a positive continuous function over a compact set, AL(τ1, τ2) is positive.

One might ask why we chose to formulate Definition 5.2.8 in terms of a general

ϕ ∈ (Rm)∗, instead of one with integer coordinates, when in practice the calculation

of AL(τ1, τ2) quickly reduces to considering those ϕ with integer coordinates. This

will certainly be true in the one lemma of this chapter where AL plays a significant

role, namely Lemma 5.4.3. Our first reason is that we find the definition as stated

more natural, in that it does not presuppose that any of the coordinates of L are inte-

gers; our second reason is that, when one comes to apply these ideas to the setting of

5One could perhaps remove this dependence by using the Schmidt subspace theorem, though
as there are power losses throughout the rest of the argument there does not seem to be a great
advantage in doing so.

122



the primes, one is drawn to estimate certain sieve expressions using the Davenport-

Heilbronn method. This method involves estimating an integral over ϕ ∈ (Rm)∗,

where one wishes to control the minor arc contribution by AL(τ1, τ2), and so it is

natural that the variable ϕ should be allowed to vary continuously. More details will

appear in [89].

Having laid the necessary groundwork, we may now state the main theorem of

this chapter.

Theorem 5.2.10 (Main Theorem). Let N,m, d be natural numbers, satisfying d >

m+ 2, and let ε, c, C, C ′ be positive reals. Let L = L(N) : Rd −→ Rm be a surjective

linear map that satisfies ‖L‖∞ 6 C. Let AL : (0, 1]× (0, 1] −→ (0,∞) be the approx-

imation function of L. Suppose further that

dist(L, V ∗degen(m, d)) > c, and that L has rational complexity at most C ′. Then there

exists a natural number s at most d−2 such that the following is true. Let F : Rd −→

[0, 1] be the indicator function of [1, N ]d, and let G : Rm −→ [0, 1] be the indicator

function of a convex domain contained in [−ε, ε]m. Let f1, · · · , fd : [N ] −→ [−1, 1] be

arbitrary functions, and suppose that

min
j
‖fj‖Us+1[N ] 6 ρ,

for some parameter ρ in the range 0 < ρ 6 1. Then

TLF,G(f1, · · · , fd)�c,C,C′,ε ρ
Ω(1) + oρ,AL,c,C,C′(1) (5.16)

as N tends to infinity. The oρ,AL,c,C,C′(1) term may be bounded above by

N−Ω(1)ρ−O(1)AL(Ωc,C,C′(1), ρ)−1.
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We remind the reader that the implied constants may depend on the dimensions m

and d. Also note that in the above statement one may replace C and C ′ by a single

constant C, without weakening the conclusion. We proceed with this assumption.

Observe also that the non-degeneracy condition dist(L, V ∗degen(m, d)) > c is a quanti-

tative refinement of the non-degeneracy condition on the row-space of L in Theorem

5.1.1 and Corollary 5.1.2.

Since AL(Ωc,C(1), ρ)−1 is finite (by Claim 5.2.9), Theorem 5.2.10 immediately

implies Corollary 5.1.2 from the start of this chapter. From (5.15), or rather our full

quantitative version Lemma 5.12.1, we also have the following corollary:

Corollary 5.2.11. Assume the same hypotheses as Theorem 5.2.10, and assume

further that L has algebraic coefficients with algebraic degree at most k. Let H denote

the maximum absolute value of all of the coefficients of all of the minimal polynomials

of the coefficients of L. Then

TLF,G(f1, · · · , fd)�c,C,ε,H ρΩ(1) +N−Ω(1)ρ−Ok(1)

as N tends to infinity.

At this juncture, it might not be clear why so many quantitative non-degeneracy

conditions were required in the statement of Theorem 5.2.10. To try to illuminate

this issue, we will also prove the following partial converse to Theorem 5.2.10, demon-

strating that the non-degeneracy condition involving V ∗degen(m, d) is necessary in order

to use Gowers norms in this way.

Theorem 5.2.12. Let m, d be natural numbers, satisfying d > m+ 2, and let ε, c, C

be positive constants. For each natural number N , let L = L(N) : Rd −→ Rm be a

linear map satisfying ‖L‖∞ 6 C. Let F : Rd −→ [0, 1] denote the indicator function
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of [1, N ]d and G : Rm −→ [0, 1] denote the indicator function of [−ε, ε]m. Assume

further that dist(L, Vrank(m, d)) > c and that TLF,G(1, · · · , 1)�c,C,ε 1 for large enough

N .

Suppose that

lim inf
N→∞

dist(L, V ∗degen(m, d)) = 0.

Let s be a natural number, and let H : R>0 → R>0 be any function satisfying H(ρ) =

κ(ρ), and let Eρ(N) denote some error term depending on a parameter ρ, such that

Eρ(N) = oρ(1). Then one can find infinitely many natural numbers N such that there

exist functions f1, · · · , fd : [N ]→ [−1, 1] and some ρ at most 1 such that both

min
j
‖fj‖Us+1[N ] 6 ρ

and

|TLF,G(f1, · · · , fd)| > H(ρ) + Eρ(N). (5.17)

In other words, the conclusion of Theorem 5.2.10 cannot possibly hold if

dist(L, V ∗degen(m, d)) is arbitrarily close to 0, even if one replaces the ρΩ(1) dependence

on ρ with a function H(ρ) that could potentially decay to zero arbitrarily slowly as

ρ tends to zero.

Example 5.2.13. Suppose

L =

1 +N−1
√

3 +N−
1
2 π −π +

√
2

2 2
√

3 +N−
1
2 −

√
5 e

 .

Then L has rank 2 and L /∈ V ∗degen(2, 4). If one considers Theorem 5.1.1, one might

therefore hope to apply the theory of Gowers norms to bound the number of solu-

tions to inequalities given by L. However, by considering perturbations of the first

two columns, we see that dist(L, V ∗degen(2, 4)) = o(1). (Indeed, one may perturb L
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by O(N−1/2) such that there is a vector (0, 0, x3, x4) in the row space). Therefore

Theorem 5.2.10 does not apply in this case, despite the fact that L /∈ V ∗degen(2, 4).

Furthermore, Theorem 5.2.12 shows that, in fact, we cannot possibly use Gowers

norms to control inequalities given by such an L. This example is informative, as

it shows us that whatever methods we use to prove Theorem 5.2.10, these methods

must break down when applied to such an L, despite the fact that L /∈ V ∗degen.

The proof of Theorem 5.2.10 will be rather involved. It is tempting to think that

the result would follow more easily from taking rational approximations of the co-

efficients of L, and then using the existing Generalised von Neumann Theorem (a

quantitative version of Theorem 5.1.1) as a black box. Though of course we cannot

completely rule out an alternative approach to that of this chapter, it seems that

such an argument will only quickly succeed if the coefficients of L are all extremely

well-approximable, else the height of the rational approximations becomes too great

to apply [38, Theorem 7.1]. One must find an alternative method for other maps L.

To finish this introduction, and to assist the reader, we now describe the overall

structure of the chapter, and also indicate our proof strategy.

If in the statement of Theorem 5.2.10 one replaces the convex cut-offs F and

G with Lipschitz cut-offs, then the expression TLF,G(f1, · · · , fd) may be bounded by

Gowers norms by a relatively straightforward argument, which we present in sec-

tions 5.6 through 5.8. In section 5.6 we introduce a new approximation argument,

in which we replace the solution count TLF,G(f1, · · · , fd) by a related solution count

T̃LF,G(f̃1, · · · , f̃d), which, rather than being a discrete summation over Zd, is an integral

over Rd. The expression T̃LF,G(f̃1, · · · , f̃d) may be analysed using the Cauchy-Schwarz

inequality in a way that is almost identical to the proof of the usual Generalised von
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Neumann Theorem [38, Theorem 7.1], and we perform this manipulation in section

5.8. This argument makes no mention of the approximation function AL.

So it remains to reduce Theorem 5.2.10 to the version with Lipschitz cut-offs (we

explicitly state this version in Theorem 5.5.6). Unfortunately, if L is not purely irra-

tional then there are substantial technical difficulties in replacing G with a Lipschitz

cut-off. To circumvent these difficulties, in section 5.5 we give an intricate (though

ultimately elementary) linear algebraic argument that reduces Theorem 5.2.10 to the

case where L is purely irrational, at which point one may replace the functions F and

G with Lipschitz cut-offs with relative ease. This argument thus resolves the main

theorem (Theorem 5.2.10), and all the associated corollaries.

The other sections contain supporting material, discussions, and lemmas. In sec-

tion 5.3, we introduce two particular pieces of quantitative linear algebra that will

be required in the main argument. Though some of these notions are a little delicate

(such as our quantitative notion of Cauchy-Schwarz complexity), the proofs reduce

to standard arguments, and we defer them to section 5.10. The attack on Theorem

5.2.10 proper begins in earnest in section 5.4, in which we give three upper bounds

for TLF,G(1, · · · , 1), each valid under different regimes. The properties of L relating to

diophantine approximation, in particular to the approximation function AL, become

apparent in Lemma 5.4.3.

Section 5.9 deals solely with the proof of the partial converse, namely Theorem

5.2.12, and may be read largely independently of the other sections. Using a semi-

random method, we explicitly construct functions f1, · · · , fd that satisfy (5.17).

The final three sections may be viewed as an appendix. The first contains the

proofs of the statements from section 5.3; the second contains an assortment of other

short linear algebraic lemmas; and the third illustrates how one may control the ap-

proximation function AL in the case when L has algebraic coefficients.
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Remark 5.2.14. Many of the implied constants throughout the chapter will depend

on the parameter ε from the statement of Theorem 5.2.10. Ultimately, the implied

constant in (5.16) tends to infinity as ε tends to zero, as our approximation argument

in section 5.6 will not be efficient in powers of ε. Yet, to save our notation from

becoming unreadable, we choose not to keep track of the precise behaviour of implied

constants involving ε.

5.3 Rank matrix and normal form

Here we introduce some technical notions, of a linear algebraic nature, that will help

us to quantify the manipulations to come. We will state the main propositions re-

quired later, but, as the proofs reduce to a close analysis of known algorithms and

would no doubt be obvious to the expert, we defer them to section 5.10.

Firstly, to prove Theorem 5.2.10 it will be useful to introduce a concept that we

will refer to as the rank matrix of L. Consider the following basic fact: if m and d

are natural numbers with d > m + 1, and if an m-by-d matrix L is assumed to have

row rank m, L also has column rank m, and thus we may find m linearly independent

columns in L which determine an m-by-m submatrix M with non-zero determinant.

When L depends on the quantity N , we use the term rank matrix to refer to a

quantitative refinement of this idea.

Proposition 5.3.1 (Rank matrix). Let m, d be natural numbers, with d > m + 1.

Let c, C be positive constants. For a natural number N , let L = L(N) : Rd −→ Rm

be a surjective linear map, and assume that ‖L‖∞ 6 C and dist(L, Vrank(m, d)) > c.

Let the coefficients of L be denoted (λij)i6m,j6d. Then there exists a matrix M , an

m-by-m submatrix of L, with the following properties:
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(1) | detM | = Ωc,C(1);

(2) ‖M−1‖∞ = Oc,C(1);

(3) Let v ∈ Rd be a vector such that vT is in the row-space of L. Suppose that

‖v‖∞ 6 C1. Then for all i in the range 1 6 i 6 m there exist coefficients ai

satisfying |ai| = Oc,C,C1(1) such that
m∑
i=1

aiλij = vj for all j in the range 1 6 j 6 d.

We call such a matrix M a rank matrix of L.

If L satisfies the stronger hypothesis dist(L, V global
rank (m, d)) > c, then, for each j,

there exists a rank matrix of L that doesn’t include the jth column of L.

We defer the proof to section 5.10.

The second technical condition that we will describe in this section involves

reparametrising certain linear forms. This reparametrisation will become important

in Proposition 5.8.3, when we come to apply the Cauchy-Schwarz inequality.

Let Ψ : Rn −→ Rm be a linear map. Putting the standard coordinates on Rn and

Rm, we may write (ψ1, · · · , ψm) := Ψ : Rn −→ Rm as a system of homogeneous linear

forms. The crux of the theory from [38] is that, provided Ψ is of ‘finite Cauchy-Schwarz

complexity’, Ψ admits an extension which is in so-called ‘normal form’. Below we

will give a brief overview of this terminology, before introducing our own quantitative

versions; a much fuller discussion may be found in [38, Section 1] and [34].

In words, a reparametrisation into normal form is one in which each linear form is

the only one that mentions all of its particular collection of variables. For example,

the forms

ψ1(t, u, v) = u+ v
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ψ2(t, u, v) = v + t

ψ3(t, u, v) = u+ t

ψ4(t, u, v) = u+ v + t (5.18)

are in normal form with respect to ψ4, since ψ4 is the only form to utilise all three

of the variables. However, this system is not in normal form with respect to ψ3, say.

However, the system

ψ1(t, u, v, w) = u+ v + 2w

ψ2(t, u, v, w) = v + t− w

ψ3(t, u, v, w) = u+ t− w

ψ4(t, u, v, w) = u+ v + t, (5.19)

that parametrises the same subspace of R4, is in normal form for all i.

We repeat the precise definition from [38].

Definition 5.3.2. Let m,n be natural numbers, and let (ψ1, · · · , ψm) = Ψ : Rn −→

Rm be a system of homogeneous linear forms. Let i ∈ [m]. We say that Ψ is in

normal form with respect to ψi if there exists a non-negative integer s and a collection

Ji ⊆ {e1, · · · , en} of the standard basis vectors, satisfying |Ji| = s+ 1, such that

∏
e∈Ji

ψi′(e)

is non-zero when i′ = i and vanishes otherwise. We say that Ψ is in normal form if

it is in normal form with respect to ψi for every i.

Let us also recall what it means for a certain system of forms Ψ′ to extend the system

of forms Ψ.
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Definition 5.3.3. For a system of linear forms Ψ : Rn −→ Rm, an extension Ψ′ is a

system of linear forms on Rn′, for some n′ with n′ > n, such that

(1) Ψ′(Rn′) = Ψ(Rn);

(2) if we identify Rn with the subset Rn × {0}n′−n in the obvious manner, then Ψ is

the restriction of Ψ′ to this subset.

The paper [38] includes a result (Lemma 4.4) on the existence of extensions in

normal form, but we will need a quantitative refinement of this analysis.

The reader will note from examples (5.18) and (5.19) that the property of ‘being

in normal form’ is a property of the parametrisation, and not of the underlying space

that is being parametrised. It is natural to wonder whether there is some property of

a space that can enable one to find a parametrisation in normal form, even if one’s

original parametrisation is not. Fortunately there is such a notion, and it is the finite

(Cauchy-Schwarz) complexity introduced in [38]. We introduce this notion in the

following definitions, which we have phrased in such a way as to help us formulate a

quantitative version.

Definition 5.3.4 (Suitable partitions). Let m,n be natural numbers, with m > 2,

and let (ψ1, · · · , ψm) = Ψ : Rn −→ Rm be a system of homogeneous linear forms. Fix

i ∈ [m]. Let Pi be a partition of [m] \ {i}, i.e.

[m] \ {i} =
s+1⋃
k=1

Ck

for some s satisfying 0 6 s 6 m − 2 and some disjoint sets Ck. We say that Pi is

suitable for Ψ if

ψi /∈ spanR(ψj : j ∈ Ck)

for any k.
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Definition 5.3.5 (Degeneracy varieties). Let m,n be natural numbers, with m > 2.

Let Pi be a partition of [m] \ {i}. We define the Pi-degeneracy variety VPi to be the

set of all the systems of homogeneous linear forms Ψ : Rn → Rm for which Pi is not

suitable for Ψ. Finally, the degeneracy variety Vdegen is given by

Vdegen(n,m) :=
m⋃
i=1

⋂
Pi

VPi ,

where the inner intersection is over all possible partitions Pi.

It is easy to observe that Ψ ∈ Vdegen if and only if, for some i 6= j, ψi is a real multiple

of ψj.

In [38, Definition 1.5], the authors refer to those Ψ ∈ Vdegen(n,m) as having infinite

(Cauchy-Schwarz) complexity, and develop their theory for Ψ /∈ Vdegen(n,m). As we

did for describing degeneracy properties of L, we need to quantify such a notion.

Definition 5.3.6 (c1-Cauchy-Schwarz complexity). Let m,n be natural numbers, with

m > 3, and let c1 be a positive constant. Let (ψ1, · · · , ψm) = Ψ : Rn −→ Rm be a

system of homogeneous linear forms. For i ∈ [m], we define a quantity si either by

defining si + 1 to be the minimal number of parts in a partition Pi of [m] \ {i} such

that dist(Ψ, VPi) > c1, or by si = ∞ if no such partition exists. Then we define

s := max(1,maxi si). We say that s is the c1-Cauchy-Schwarz complexity of Ψ.

We remark, for readers familiar with [38], that we preclude the ‘complexity 0’ case.

This is for a mundane technical reason, that occurs when absorbing the exponential

phases in section 5.8, when it will be convenient that s+ 1 > 2. This is why we need

the condition m > 3 in the above definition. We also take this opportunity to note

that if s satisfies the above definition, and s 6=∞, then 2 6 s+ 1 6 m− 1.

We note an easy consequence of these definitions.
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Lemma 5.3.7. Let m,n be natural numbers, with m > 3, and let c1 be a positive

constant. Let Ψ : Rn −→ Rm be a system of homogeneous linear forms. Suppose that

dist(Ψ, Vdegen(n,m)) > c1. Then Ψ has finite c1-Cauchy-Schwarz complexity.

Proof. It is easy to observe that Ψ ∈ Vdegen(n,m) if and only if, for some i 6= j, ψi is a

real multiple of ψj. From now until the end of the proof, fix Pi to be the partition of

[m]\{i} in which every form ψk is in its own part. Our initial observation then implies

that Ψ ∈ Vdegen(n,m) if and only if Ψ ∈ VPi for some i. So dist(Ψ, Vdegen(n,m)) > c1

implies that dist(Ψ, VPi) > c1 for all i. Therefore, by using these partitions Pi in

Definition 5.3.6, we conclude that Ψ has finite c1-Cauchy-Schwarz complexity.

After having built up these definitions, we state the key proposition on the exis-

tence of normal form extensions to systems of real linear forms. We remind the reader

that all implied constants may depend on the dimensions of the underlying spaces.

Proposition 5.3.8 (Normal form algorithm). Let m,n be natural numbers, with

m > 3, and let c1, C1 be positive constants. Let (ψ1, · · · , ψm) = Ψ : Rn −→ Rm

be a system of homogeneous linear forms, and suppose that the coefficients of Ψ are

bounded above in absolute value by C1. Furthermore, suppose that Ψ has c1-Cauchy-

Schwarz complexity s, for some finite s. Then, for each i ∈ [m], there is an extension

Ψ′ : Rn′ −→ Rm such that:

(1) n′ = n+ s+ 1 6 n+m− 1;

(2) Ψ′ is of the form

Ψ′(u, w1, · · · , ws+1) := Ψ(u + w1f1 + · · ·+ ws+1fs+1)

for some vectors fk ∈ Rn, such that ‖fk‖∞ = Oc1,C1(1) for every k;

(3) Ψ′ is in normal form with respect to ψ′i;
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(4) ψ′i(0,w) = w1 + · · ·+ ws+1.

The proof is deferred to section 5.10.

We conclude this discussion of normal form by noting an example of a system of

homogeneous linear forms which may be reparametrised in normal form, but without

quantitative control over the resulting extension.

Indeed, take ι(N) to be some function such that ι(N)→∞ as N →∞. Consider

the forms

ψ1(u1, u2, u3) = (1 + ι(N)−1)u1 + u2

ψ2(u1, u2, u3) = u1 + u2

ψ3(u1, u2, u3) = u3.

Notice that dist(Ψ, Vdegen(3, 3))→ 0 as N →∞, so Ψ does not have finite c1-Cauchy-

Schwarz complexity for any positive absolute constant c1. One may nonetheless con-

struct a normal form reparametrisation

ψ′1(u1, u2, u3, w1, w2) = (1 + ι(N)−1)u1 + u2 + w1

ψ′2(u1, u2, u3, w1, w2) = u1 + u2 + w2

ψ′3(u1, u2, u3, w1, w2) = u3.

The system Ψ does have all its non-zero coefficients bounded away from 0 and ∞,

but

Ψ′(u1, u2, u3, w1, w2) = Ψ(u1 + ι(N)w1 − ι(N)w2, u2 − ι(N)w1 + (ι(N) + 1)w2, u3),

so Ψ′ is not obtained by bounded shifts of the ui variables. Such an extension would
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not be suitable for our requirements in section 5.8.

One final remark: in [38], the simple algorithm that constructs normal form ex-

tensions with respect to a fixed i may easily be iterated, and so the authors work

with systems that are in normal form with respect to every index i. A careful analy-

sis of the proof in Appendix C of [38] demonstrates that it is sufficient for Ψ merely

to admit, for each i separately, an extension that is in normal form with respect to

ψi, but this is of little consequence in [38]. Yet certain quantitative aspects of the

iteration of the normal form algorithm, critical to our application of these ideas, are

not immediately clear to us. We have stated Proposition 5.3.8 for normal forms only

with respect to a single i, in order to avoid this technical annoyance.

5.4 Upper bounds

This section is devoted to proving three upper bounds on the expressions TLF,G(1, · · · , 1).

(For the definition of this quantity, the reader may refer to Definition 5.2.1). The

first is exceptionally crude, but will nonetheless be useful in section 5.6.

Lemma 5.4.1. Let N,m, d be natural numbers, satisfying d > m+ 1, and let c, C, ε

be positive constants. Let L : Rd −→ Rm be a surjective linear map, and suppose that

‖L‖∞ 6 C and dist(L, Vrank(m, d)) > c. Let F : Rd −→ [0, 1] and G : Rm −→ [0, 1]

be two functions, with F supported on [−N,N ]d and G supported on [−ε, ε]m. Then

TLF,G(1, · · · , 1)�c,C,ε ‖G‖∞.

Proof. Let M be a rank matrix of L (Proposition 5.3.1), and suppose without loss

of generality that M consists of the first m columns of L. For j in the range m +

1 6 j 6 d, let the vector vj ∈ Rm be the jth column of the matrix M−1L. Then
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Nd−mTLF,G(1, · · · , 1) 6 ‖G‖∞ · Z, where Z is the number of solutions to


n1

...

nm

+
d∑

j=m+1

vjnj ∈M−1([−ε, ε]m)

in which n1, · · · , nd are integers satisfying |n1|, · · · , |nd| 6 N . Fixing a choice of the

variables nm+1, · · · , nd forces the vector (n1, · · · , nm)T to lie in a convex region of

diameter Oc,C,ε(1). There are at most Oc,C,ε(1) such points, so Z �c,C,ε N
d−m. The

claimed bound follows.

Our second estimate is a slight strengthening of the above, albeit under stronger

hypotheses.

Lemma 5.4.2. Let N,m, d be natural numbers, with d > m + 1, and let c, C, ε

be positive constants. Let L : Rd −→ Rm be a surjective linear map, and suppose

that ‖L‖∞ 6 C and dist(L, V global
rank (m, d)) > c. Let σ be a real number in the range

0 < σ < 1/2. Let F : Rd −→ [0, 1] and G : Rm −→ [0, 1] be two functions, with F

supported on

{x ∈ Rd : dist(x, ∂([1, N ]d)) 6 σN}

and G supported on [−ε, ε]m. Then

TLF,G(1, · · · , 1)�c,C,ε σ‖G‖∞.

Proof. Without loss of generality, we may assume that F is supported on

{x ∈ Rd : ‖x‖∞ 6 2N, |xd| 6 σN}

or

{x ∈ Rd : ‖x‖∞ 6 2N, |xd − (N − 1)| 6 σN}
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Consider the first case. By Proposition 5.3.1 there exists a rank matrix M that

does not contain the column d. By reordering columns, we can assume without loss

of generality that M consists of the first m columns of L. Continuing as in the proof

of Lemma 5.4.1, for j in the range m + 1 6 j 6 d, let the vector vj ∈ Rm be the

jth column of the matrix M−1L. Then the expression Nd−mTLF,G(1, · · · , 1) may be

bounded above by ‖G‖∞ times the number of solutions to


n1

...

nm

+
d∑

j=m+1

vjnj ∈M−1([−ε, ε]m)

satisfying |n1|, · · · , |nd−1| 6 2N and |nd| 6 σN . We conclude as in the previous proof.

In the second case, the relevant equation is


n1

...

nm

+
d∑

j=m+1

vjnj + (N − 1)vd ∈M−1([−ε, ε]m),

in which we count solutions satisfying |n1|, · · · , |nd−1| 6 2N and |nd| 6 σN . We

conclude as in the previous proof.

Our third estimate is more refined, and will be needed in section 5.5 when we

deduce the main result (Theorem 5.2.10) from Theorem 5.5.6. It will help us to

replace the sharp cut-off 1[−ε,ε]m with a Lipschitz cut-off. For the definition of the

approximation function AL, we refer the reader to Definition 5.2.8.

Lemma 5.4.3. Let N,m, d be natural numbers, with d > m + 1. Let c, C, ε be

positive constants, and let σG be a parameter in the range 0 < σG < 1/2. Suppose

that L : Rd −→ Rm is a purely irrational surjective linear map, satisfying ‖L‖∞ 6 C

and dist(L, Vrank(m, d)) > c. Let AL denote the approximation function of L. Let
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F : Rd −→ [0, 1] be supported on [−N,N ]d, and let G : Rm −→ [0, 1] be a Lipschitz

function, with Lipschitz constant O(1/σG), supported on [−ε, ε]m. Assume further

that
∫
x
G(x) dx = Oε(σG). Then for all τ2 in the range 0 < τ2 6 1,

TLF,G(1, · · · , 1)�c,C,ε σG +
τ

1−o(1)
2

σG
+
τ
−O(1)
2 AL(Ωc,C(1), τ2)−1

N
. (5.20)

Proof. Following the proof of Lemma 5.4.1 verbatim, we arrive at the bound

TLF,G(1, · · · , 1)�c,C,ε
1

Nd−m

∑
nm+1,··· ,nd∈Z
|nm+1|,··· ,|nd|6N

G̃(
d∑

j=m+1

vjnj), (5.21)

where vj denotes the jth column of the matrix M−1L, and G̃ : Rm −→ [0, 1] denotes

the function

G̃(x) =
∑
a∈Zm

(G ◦M)(a + x).

It remains to estimate the right-hand side of (5.21).

We may consider G̃ as a function on Rm/Zm. With respect to the metric ‖x‖Rm/Zm ,

G̃ is Lipschitz with Lipschitz constant Oc,C,ε(1/σG). Also,

∫
x∈[0,1)m

G̃(x) dx =

∫
x∈Rm

(G ◦M)(x) dx = Oc,C,ε(σG).

By [37, Lemma A.9], for any X at least 2 we may write

G̃(x) =
∑
k∈Zm
‖k‖∞6X

bX(k)e(k · x) +Oc,C,ε

( logX

σGX

)
, (5.22)

where bX(k) ∈ C and satisfies |bX(k)| = O(1). Moreover6 bX(0) =
∫
x∈[0,1)m

G̃(x) dx.

6This final fact is not given explicitly in the statement of [37, Lemma A.9], although it is given
in the proof. In any case, it may be immediately deduced from (5.22), by letting X tend to infinity
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Returning to (5.21), we see that for any X at least 2 we may write

TLF,G(1, · · · , 1)�c,C,ε σG +
logX

σGX
+XO(1) max

k∈Zm
0<‖k‖∞6X

( d∏
j=m+1

min(1, N−1‖k · vj‖−1
R/Z)

)
,

(5.23)

where the final error term comes from summing over the arithmetic progressions

[−N,N ] ∩ Z.

It remains to relate the final error term of (5.23) to the approximation function

AL. Since L is purely irrational,

AL(τ1, τ2) = inf
ϕ∈(Rm)∗

τ16‖ϕ‖∞6τ−1
2

dist(L∗ϕ, (Zd)T ).

Let τ2 be in the range 0 < τ2 6 1. Then there is a suitable choice of parameter X,

which satisfies X �c,C τ−1
2 , such that

AL(Ωc,C(1), τ2) 6 inf
k∈Rm

1�c,C‖k‖∞�c,Cτ
−1
2

dist(kTM−1L, (Zd)T )

6 min
k∈Zm

1�c,C‖k‖∞�c,Cτ
−1
2

max({‖k · vj‖R/Z : m+ 1 6 j 6 d})

6 min
k∈Zm

0<‖k‖∞6X

max({‖k · vj‖R/Z : m+ 1 6 j 6 d}). (5.24)

Substituting this bound into (5.23), one derives

TLF,G(1, · · · , 1)�c,C,ε σG +
τ

1−o(1)
2

σG
+
τ
−O(1)
2 AL(Ωc,C(1), τ2)−1

N

as required.

In Lemma 5.4.3, it was vitally important that L was assumed to be purely ir-

rational. This was manifested in the relations (5.24), when one could upper-bound

and integrating (5.22) over all x ∈ Rm/Zm.
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AL(Ωc,C(1), τ2) by a minimum taken over all k ∈ Zm of a certain size. Although

one can attempt such an estimate when L is not purely irrational, the integral∫
x∈Rm G(x) dx is no longer the relevant object. Rather, one must take some ra-

tional map for L, denoted Θ, and consider
∫
x∈ker Θ+y

G(x) dx for some shift y (where

ker Θ + y receives the natural Lebesgue measure). It could be that
∫
x∈Rm G(x) dx is

controlled but
∫
x∈ker Θ+y

G(x) dx is not (consider the case where G is the indicator of

thin domain that has a flat side parallel to ker Θ, say). We opt to avoid these tech-

nicalities, creating instead a dimension reduction argument, that reduces all cases to

the purely irrational case.

5.5 Reductions

In this section we reduce the main result (Theorem 5.2.10) to a different result, namely

Theorem 5.5.6. This theorem will be simpler in one key respect: the replacement of

sharp cut-offs by Lipschitz cut-offs.

We begin by dismissing the case of maximal rational dimension.

Proposition 5.5.1. Theorem 5.2.10 holds under the additional assumption that L

has rational dimension m.

Proof. We appeal to a quantitative version of Theorem 5.1.1.

Theorem 5.5.2 (Generalised von Neumann Theorem for rational forms (quantitative

version)). Let N,m, d be natural numbers, satisfying d > m + 2, and let C1, C2 be

positive constants. Let S = S(N) be an m-by-d matrix with integer coefficients,

‖S‖∞ 6 C1, and let r ∈ Zm be some vector with ‖r‖∞ 6 C2N . Suppose S has rank

m, and S /∈ V ∗degen(m, d). Let K ⊆ [−N,N ]d be convex. Then there exists some

natural number s at most d− 2 that satisfies the following. Let f1, · · · , fd : [N ] −→ C
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be arbitrary functions with ‖fj‖∞ 6 1 for all j, and assume that

min
j
‖fj‖Us+1[N ] 6 ρ

for some ρ in the range 0 < ρ 6 1. Then

1

Nd−m

∑
n∈Zd∩K
Sn=r

d∏
j=1

fj(nj)�C1,C2 ρ
Ω(1) + oρ(1).

Furthermore, the oρ(1) term may be bounded above by ρ−O(1)N−1.

In the proof, a certain familiarity with the methods and terminology of [38] will

be assumed.

Proof Sketch. This theorem may be proved by following the proof of Theorem 1.8 of

[38]. (In our language, the non-degeneracy condition in the statement of Theorem 1.8

of [38] is exactly S /∈ V ∗degen(m, d)). One follows the same linear algebraic reductions

as those used in section 4 of [38] to reduce Theorem 1.8 to Theorem 7.1 of the same

paper (the Generalised von Neumann Theorem).

Theorem 7.1 may then be considered solely in the case of bounded functions fj,

as in [84, Exercise 1.3.23], rather than in the more general case of functions bounded

by a pseudorandom measure. It is clear from the proof that, in this more restricted

setting, the κ(ρ) term that appears in the statement may be replaced by a polynomial

dependence, and the oρ(1) term may be bounded above by ρ−O(1)N−1.

This settles Theorem 5.5.2, where s is the Cauchy-Schwarz complexity of some

system of forms (ψ1, · · · , ψd) that parametrises kerS. But s is at most d − 2, as

any system of d forms with finite Cauchy-Schwarz complexity has Cauchy-Schwarz

complexity at most d− 2. Therefore Theorem 5.5.2 is proved.

Now let us use Theorem 5.5.2 to resolve Proposition 5.5.1. Indeed, let L be as in
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Theorem 5.2.10, and assume that L has rational dimension m and rational complexity

at most C. Let Θ : Rm −→ Rm be some linear isomorphism satisfying ΘL(Zd) ⊆ Zm

and ‖Θ‖∞ 6 C. Let M be a rank matrix of L (Proposition 5.3.1). Then the matrix

M−1L satisfies ‖M−1L‖∞ �c,C 1 and has rational dimension m, since

((ΘM) ◦ (M−1L))(Zd) = ΘL(Zd) ⊆ Zm. The matrix M−1L also has rational com-

plexity Oc,C(1). Therefore, replacing L with M−1L, we may assume that the first m

columns of L form the identity matrix.

As in Lemma 5.2.7, we write ΘL = S, where S has integer coefficients and

‖Θ‖∞ �c,C 1. Hence ‖S‖∞ �c,C 1. But Θ must also have integer coefficients,

as the first m columns of L form the identity matrix, and hence ‖Θ−1‖∞ �c,C 1 as

well. Note finally that S /∈ V ∗degen(m, d), since L /∈ V ∗degen(m, d).

Now, suppose that G : Rm −→ [0, 1] is the indicator function of some convex

domain D, with D ⊆ [−ε, ε]m. Then there are at most Oc,C,ε(1) possible vectors

r ∈ Zm such that r ∈ S(Zd) ∩Θ(D). Let R be the set of all such vectors. Therefore,

with F being the indicator function of the set [1, N ]d, we have

TLF,G(f1, · · · , fd) =
∑
r∈R

∑
n∈[N ]d

Sn=r

d∏
j=1

fj(nj)�c,C,ε ρ
Ω(1) + oρ(1), (5.25)

by Theorem 5.5.2. The oρ(1) term may be bounded above by ρ−O(1)N−Ω(1). This is

the desired conclusion of Theorem 5.2.10 in the case when L has rational dimension

m.

Having dismissed this case, we prepare to state Theorem 5.5.6 (the theorem that

will imply the remaining cases). We begin with a definition that generalises Definition

5.2.1.

Definition 5.5.3. Let N,m, d, h be natural numbers, with d > h > m + 2. Let ε be

positive. Let Ξ : Rh −→ Rd and L : Rh −→ Rm be linear maps. Let F : Rh → [0, 1]
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and G : Rm → [0, 1] be two functions, with F supported on [−N,N ]h and G supported

on [−ε, ε]m. Let r̃ ∈ Zd be some vector, and let f1, · · · , fd : R −→ [−1, 1] be arbitrary

functions. We then define

TL,Ξ,r̃F,G (f1, · · · , fd) :=
1

Nh−m

∑
n∈Zh

( d∏
j=1

fj(ξj(n) + r̃j)
)
F (n)G(Ln). (5.26)

In the chapter so far we have introduced many non-degeneracy relations (Defini-

tions 5.2.2, 5.2.3, 5.3.5). In order to state Theorem 5.5.6, we must introduce another.

Definition 5.5.4 (Dual pair degeneracy variety). Let m, d, h be natural numbers

satisfying d > h > m+ 2. Let e1, · · · , ed denote the standard basis vectors of Rd, and

let e1
∗, · · · , ed

∗ denote the dual basis of (Rd)∗. Then let V ∗degen,2(m, d, h) denote the

set of all pairs of linear maps Ξ : Rh −→ Rd and L : Rh −→ Rm for which there exist

two indices i, j 6 d, and some real number λ, such that Ξ∗(ei
∗ − λej

∗) ∈ L∗((Rm)∗).

We call V ∗degen,2(m, d, h) the dual pair degeneracy variety.

Definition 5.5.5 (Distance metric for pairs of matrices). Let m, d, h be natural num-

bers, with d > h > m + 2, and let V ∗degen,2(m, d, h) be the dual pair degeneracy

variety. Let Ξ : Rh −→ Rd and L : Rh −→ Rm be linear maps. We say that

dist((Ξ, L), V ∗degen,2(m, d, h)) > c if (Ξ +Q,L) /∈ V ∗degen,2(m, d, h) for all Q : Rh −→ Rd

with ‖Q‖∞ < c.

Although this is no great subtlety, we should emphasise that in the above definition

we only consider perturbations to Ξ, and not perturbations to L as well.

We are now ready to state Theorem 5.5.6, the theorem to which we will reduce

the main result (Theorem 5.2.10).

Theorem 5.5.6 (Lipschitz case). Let N,m, d, h be natural numbers, with d > h >

m + 2, and let c, C, ε be positive constants. Let Ξ = Ξ(N) : Rh −→ Rd be an
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injective linear map with integer coefficients, and assume that Ξ(Zh) = Zd ∩ im Ξ.

Let L = L(N) : Rh −→ Rm be a surjective linear map. Assume that ‖Ξ‖∞ 6 C,

‖L‖∞ 6 C, dist(L, Vrank(m, d)) > c and dist((Ξ, L), V ∗degen,2(m, d, h)) > c. Then there

exists a natural number s at most d − 2 such that the following holds. Let σF , σG

be any two parameters in the range 0 < σF , σG < 1/2. Let F : Rh −→ [0, 1] be

a Lipschitz function supported on [−N,N ]h with Lipschitz constant O(1/σFN), and

let G : Rm −→ [0, 1] be a Lipschitz function supported on [−ε, ε]m with Lipschitz

constant O(1/σG). Let r̃ be a fixed vector in Zd, satisfying ‖r̃‖∞ = Oc,C,ε(1). Suppose

that f1, · · · , fd : [N ] −→ [−1, 1] are arbitrary bounded functions satisfying

min
j
‖fj‖Us+1[N ] 6 ρ,

for some ρ in the range 0 < ρ 6 1. Then

TL,Ξ,r̃F,G (f1, · · · , fd)�c,C,ε ρ
Ω(1)(σ

−O(1)
F + σ

−O(1)
G ) + σ

−O(1)
F N−Ω(1). (5.27)

Although the above theorem contains more technical conditions than even Theo-

rem 5.2.10 did, it does represent a significant reduction in complexity from the original

problem. Note in particular that the approximation function AL does not feature in

the estimate (5.27).

The remainder of this section will be devoted to proving the main theorem (The-

orem 5.2.10), assuming the result of Theorem 5.5.6.

We begin with two lemmas: one concerning lattices, and the other concerning a

quantitative decomposition of the dual space (Rd)∗. Their proofs are entirely stan-

dard, but we state them prominently, as we will need to refer to them often in the

dimension reduction argument of Lemma 5.5.10.
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Lemma 5.5.7 (Parametrising the image lattice). Let u, d be integers with d > u+ 1.

Let S : Rd −→ Ru be a surjective linear map with S(Zd) ⊆ Zu, and suppose that

‖S‖∞ 6 C. Then there exists a set {a1, · · · , au} ⊂ Zu that is a basis for the lattice

S(Zd) and for which ‖ai‖∞ = OC(1) for every i. Furthermore there exist x1, · · · ,xu ∈

Zd such that, for every i, S(xi) = ai and ‖xi‖∞ = OC(1).

Proof. The lattice S(Zd) is u dimensional, as S is surjective. If {ej : j 6 d} denotes

the standard basis of Rd then integer combinations of elements from the set {S(ej) :

j 6 d} span S(Zd). Since ‖S‖∞ 6 C, these vectors also satisfy ‖S(ej)‖∞ = OC(1).

Therefore the u successive minima of the lattice S(Zd) are all OC(1), and so, by

Mahler’s theorem ([85, Theorem 3.34]) the lattice S(Zd) has a basis {a1, · · · , au} of

the required form.

Note that S has integer coefficients. The construction of suitable x1, · · · ,xu may

be achieved by applying any of the standard algorithms. For example, using Gaussian

elimination one may find a basis for kerS that, by inspection of the algorithm, consists

of vectors with rational coordinates of naive height OC(1). By clearing denominators,

one gets vectors v1, · · · ,vd−u that span a full-dimensional sublattice of the d − u

dimensional lattice Zd ∩ kerS, and that satisfy ‖vi‖∞ = OC(1) for all i. Given some

ai, by its construction there must be some xi ∈ Zd that satisfies S(xi) = ai. Write

xi = xi|kerS + xi|(kerS)⊥ as the sum of the obvious projections. By adding a suitable

combination of the vectors v1, · · · ,vd−u to xi one may ensure that ‖xi|kerS‖∞ =

OC(1). Furthermore, dist(S, Vrank(m, d)) = ΩC(1), since S has integer coordinates,

and so (by Lemma 5.11.1) ‖xi|(kerS)⊥‖∞ = OC(1). Hence ‖xi‖∞ = OC(1).

Having established that such a basis {a1, · · · , au} exists, we can now use it to

quantitatively decompose (Rd)∗.

Lemma 5.5.8 (Dual space decomposition). Let u, d, be integers with d > u+ 1, and

let C, η be constants. Let S : Rd −→ Ru be a surjective linear map with S(Zd) ⊆ Zu,
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and suppose that ‖S‖∞ 6 C. Let {a1, · · · , au} be a basis for the lattice S(Zd) that

satisfies ‖ai‖∞ = OC(1) for every i. Let x1, · · · ,xu ∈ Zd be vectors such that, for

every i, S(xi) = ai and ‖xi‖∞ = OC(1). Suppose that Ξ : Rd−u −→ Rd is an injective

linear map such that im Ξ = kerS and such that Ξ(Zd−u) = Zd ∩ im Ξ. Suppose

further that ‖Ξ‖∞ 6 C.

Let w1, · · · ,wd−u denote the standard basis vectors in Rd−u. Then

(1) the set B := {xi : i 6 u} ∪ {Ξ(wj) : j 6 d − u} is a basis for Rd, and a lattice

basis for Zd;

(2) writing B∗ := {x∗i : i 6 u} ∪ {Ξ(wj)
∗ : j 6 d − u} for the dual basis, the change

of basis matrix between the standard dual basis and B∗, and the inverse of this

matrix, both have integer coordinates. The coefficients of both of these matrices

are bounded in absolute value by OC(1).

Write V := span(x∗i : i 6 u) and W := span(Ξ(wj)
∗ : j 6 d− u). Then

(3) V = S∗((Ru)∗);

(4) Suppose that ϕ ∈ (Rd)∗ satisfies ‖Ξ∗(ϕ)‖∞ 6 η. Then, writing ϕ = ϕV +ϕW with

ϕV ∈ V and ϕW ∈ W , we have ‖ϕW‖∞ = OC(η).

Proof. For part (1), the fact that B is a basis for Rd is just a manifestation of the

familiar principle Rd ∼= kerS ⊕ imS. To show that B is a lattice basis for Zd, let

n ∈ Zd and write

n =
u∑
i=1

λixi +
d−u∑
j=1

µjΞ(wj)

for some λi, µj ∈ R. Applying S, we see S(n) =
∑u

i λiai, and hence λi ∈ Z for all

i, as {a1, · · · , au} is a basis for the lattice S(Zd) . But this implies
∑d−u

j=1 µjΞ(wj) ∈

Zd ∩ im(Ξ). Therefore, as Ξ(Zd−u) = Zd ∩ kerS, µj ∈ Z for all j.

Part (2) follows immediately from part (1). Part (3) is immediate from the defi-

nitions.
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For part (4), let j be at most d − u. Then the assumption ‖Ξ∗(ϕ)‖∞ 6 η means

that |Ξ∗(ϕ)(wj)| 6 η. Hence |ϕ(Ξ(wj))| 6 η. But, writing ϕW =
∑d−u

j=1 µjΞ(wj)
∗,

this implies that |µj| 6 η. Since the coefficients of the change of basis matrix between

B∗ and the standard dual basis are bounded in absolute value by OC(1), this implies

that ‖ϕW‖∞ 6 OC(η).

We now begin the attack on Theorem 5.2.10 in earnest. Assume the hypotheses

of Theorem 5.2.10. As a reminder, we have natural numbers m, d satisfying d >

m + 2, and positive reals ε, c, C. For a natural number N , we have L = L(N) :

Rd −→ Rm being a surjective linear map with approximation function AL, with

dist(L, V ∗degen(m, d)) > c, and with rational complexity at most C. We have F :

Rd −→ [0, 1] being the indicator function of [1, N ]d and G : Rm −→ [0, 1] being the

indicator function of a convex domain contained in [−ε, ε]m, and functions f1, · · · , fd :

[N ] −→ [−1, 1] that satisfy minj ‖fj‖Us+1[N ] 6 ρ for some ρ in the range 0 < ρ 6 1.

The proof has four parts:

• replacing the indicator function of [1, N ]d with a Lipschitz cut-off;

• replacing L by a purely irrational map;

• replacing the function G by a Lipschitz cut-off, using Lemma 5.4.3;

• applying Theorem 5.5.6.

The second of these steps is by far the most technically intricate: this is Lemma

5.5.10.

Lemma 5.5.9 (Replacing variable cut-off). Assume the hypotheses of Theorem 5.2.10

(in particular let F be the indicator function 1[1,N ]d), and let σF be any parameter in

the range 0 < σF < 1/2. Then there exists a Lipschitz function F1,σF : Rd −→ [0, 1],
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supported on [−2N, 2N ]d and with Lipschitz constant O(1/σFN), such that

|TLF,G(f1, · · · , fd)| � |TLF1,σF
,G(f1, · · · , fd)|+Oc,C(σF ).

Proof. By Lemma 0.4.2, for any parameter σF in the range 0 < σF < 1/2 we may

write

1[1,N ]d = F1,σF +O(F2,σF ),

where F1,σF , F2,σF are Lipschitz functions supported on [−2N, 2N ]d, with Lipschitz

constants O(1/σFN), and with
∫
x
F2,σF (x) dx = O(σFN

d). Moreover, F2,σF is sup-

ported on

{x ∈ Rd : dist(x, ∂([1, N ]d)) = O(σFN)}.

Therefore

TLF,G(f1, · · · , fd)� |TLF1,σF
,G(f1, · · · , fd)|+ |TLF2,σF

,G(1, · · · , 1)|.

Recall, from the remark after Definition 5.2.3, that V ∗degen(m, d) contains V global
rank (m, d).

Therefore, since we assume that dist(L, V ∗degen(m, d)) > c, we have

dist(L, V global
rank (m, d)) > c. Hence, by Lemma 5.4.2,

|TLF2,σF
,G(f1, · · · , fd)| = Oc,C(σF ).

This gives the lemma.

Next comes the critical lemma, in which we successfully replace the map L by a

purely irrational map L′. For the definition of the approximation function AL, one

may consult Definition 5.2.8.

Lemma 5.5.10 (Generating a purely irrational map). Let σF be a parameter in the

range 0 < σF < 1/2. Assume the hypotheses of Theorem 5.2.10, with the exception
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that F : Rd −→ [0, 1] is now a Lipschitz function supported on [−2N, 2N ]d and with

Lipschitz constant O(1/σFN). Let u be the rational dimension of L, and assume that

u 6 m−1. Then there exists a surjective linear map L′ : Rd−u −→ Rm−u, an injective

linear map Ξ : Rd−u −→ Rd, a finite subset R̃ ⊂ Zd, and, for each r̃ ∈ R̃, functions

Fr̃ : Rd−u −→ [0, 1] and Gr̃ : Rm−u −→ [0, 1], that together satisfy the following

properties:

(1) Ξ has integer coefficients, ‖Ξ‖∞ = Oc,C(1), and Ξ(Zd−u) = Zd ∩ im Ξ;

(2) |R̃| = Oc,C(1), and ‖r̃‖∞ = Oc,C(1) for all r̃ ∈ R̃;

(3) Fr̃ is supported on [−Oc,C(N), Oc,C(N)]d−u, with Lipschitz constant Oc,C(1/σFN),

and Gr̃ is the indicator function of a convex domain contained in

[−Oc,C,ε(1), Oc,C,ε(1)]m−u;

(4) TLF,G(f1, · · · , fd) =
∑̃
r∈R̃

TL
′,Ξ,r̃

Fr̃,Gr̃
(f1, · · · , fd);

(5) L′ is purely irrational;

(6) ‖L′‖∞ = Oc,C(1) and dist(L′, Vrank(m− u, d− u)) = Ωc,C(1);

(7) dist((Ξ, L′), V ∗degen,2(m− u, d, d− u)) = Ωc,C(1);

(8) for all τ1, τ2 ∈ (0, 1], AL′(τ1, τ2)�c,C AL(Ωc,C(τ1),Ωc,C(τ2));

(9) for all τ1, τ2 ∈ (0, 1], AL′(τ1, τ2)�c,C AL(Ωc,C(τ1),Ωc,C(τ2)).

The fundamental aspect of this lemma is part (4), of course, as this directly concerns

how we control the number of solutions to the diophantine inequality itself when

passing from L to L′. However, we do need to establish parts (1) - (8), in order to be

able to ensure that the hypotheses of Lemma 5.4.3 and Theorem 5.5.6 are satisfied.

Part (9) is included for completeness, and to assist the calculations in section 5.12.
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Before giving the full details of the proof, we sketch the idea. Let Θ : Rm −→ Ru

be a rational map for L. The space ker(ΘL) has dimension d − u, and so we may

parametrise it by some injective map Ξ : Rd−u −→ ker(ΘL). Without too much

difficultly, Ξ can be chosen to satisfy Ξ(Zd−u) = Zd ∩ im Ξ. Then

LΞ : Rd−u −→ ker Θ,

is a map from a d− u dimensional space to an m− u dimensional space, and it turns

out that LΞ is purely irrational, and L′ = LΞ may be used in Lemma 5.5.10.

Of course this isn’t quite possible, as we only defined the notion of purely irra-

tional maps between vector spaces of the form Ra. But it is true after choosing a

judicious isomorphism from ker Θ to Rm−u (though this does complicate the notation).

Let us complete the details.

Proof. First we note that the lemma is obvious when u = 0, since one may take

Ξ : Rd −→ Rd to be the identity map, r̃ to be 0, and L′ to be L. So assume that

u > 1.

We proceed with a general reduction, familiar from our proof of Proposition 5.5.1,

in which we may assume that the first m columns of L form the identity matrix.

Indeed, let Θ : Rm −→ Ru be a rational map for L with ‖Θ‖∞ 6 C. Now let

L̃ := M−1L, where M is a rank matrix of L (Proposition 5.3.1), which, without loss

of generality, consists of the first m columns of L. Let Θ̃ := ΘM and let G̃ := G ◦M .

Then

TLF,G(f1, · · · , fd) = T L̃
F,G̃

(f1, · · · , fd),

and, considering Θ̃, L̃ has rational complexity Oc,C(1). Furthermore, G̃ is the in-

dicator function of a convex domain contained in [−Oc,C(ε), Oc,C(ε)]m. We also
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have dist(L̃, V ∗degen(m, d)) = Ωc,C(1). Finally, for all τ1, τ2 ∈ (0, 1], AL̃(τ1, τ2) �c,C

AL(Ωc,C(τ1),Ωc,C(τ2)).

Therefore, by replacing L with L̃ and G with G̃, we may assume throughout the

proof of Lemma 5.5.10 that the first m columns of L form the identity matrix. This

is at the cost of replacing ε by Oc,C(ε), C by Oc,C(1), and c by Ωc,C(1).

Now let Θ : Rm −→ Ru be a rational map for L with ‖Θ‖∞ = Oc,C(1). Since the

first m columns of L form the identity matrix, Θ must have integer coefficients.

Part (1): By rank-nullity ker(ΘL) is a d − u dimensional subspace of Rd. The

matrix of ΘL has integer coefficients and ‖ΘL‖∞ = Oc,C(1). Combining these two

facts, we see that ker(ΘL) ∩ Zd is a d − u dimensional lattice, and by the standard

algorithms one can find a lattice basis v(1), · · · ,v(d−u) ∈ Zd that satisfies ‖v(i)‖∞ =

Oc,C(1) for every i. Define Ξ : Rd−u −→ Rd by

Ξ(w) :=
d−u∑
i=1

wiv
(i).

Then Ξ satisfies property (1) of the lemma. Note that image of the map LΞ : Rd−u −→

Rm is exactly ker Θ.

Part (2): Since ‖Θ‖∞ = Oc,C(1), if y ∈ Rm and Θ(y) = r then ‖y‖∞ �c,C ‖r‖∞.

Recall that the support of G is contained within [−Oc,C,ε(1), Oc,C,ε(1)]m, and that

ΘL(Zd) ⊆ Zu. It follows that there are at most Oc,C,ε(1) possible vectors r ∈ Zu for

which there exists a vector n ∈ Zd for which both G(Ln) 6= 0 and ΘLn = r. Let R

denote the set of all such vectors r.

For each r ∈ R, there exists a vector r̃ ∈ Zd such that ΘLr̃ = r and ‖r̃‖∞ =

Oc,C,ε(1). Let R̃ denote the set of these r̃. Then R̃ satisfies part (2).
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Before proceeding to prove part (3) of the lemma, we pause to emphasise a

particular consequence of Lemmas 5.5.7 and 5.5.8. Applying these lemmas to the

map S := ΘL, there exists a set {a1, · · · , au} ⊂ Zu that is a basis for the lattice

ΘL(Zd) and for which ‖ai‖∞ = Oc,C(1) for each i. Also, there exists a set of vectors

{x1, · · · ,xu} ⊂ Zd such that ΘL(xi) = ai for each i, and ‖xi‖∞ = Oc,C(1). By

Lemma 5.5.8,

B := {xi : i 6 u} ∪ {Ξ(wj) : j 6 d− u} (5.28)

is a basis for Rd and a lattice basis for Zd, where w1, · · · ,wd−u denotes the standard

basis of Rd−u.

Part (3): By the definition of R̃, and the fact that Ξ(Zd−u) = Zd ∩ ker(ΘL), we

have

TLF,G(f1, · · · , fd) =
∑
r̃∈R̃

1

Nd−m

∑
n∈Zd−u

( d∏
j=1

fj(ξj(n) + r̃j)
)
F (Ξ(n) + r̃)G(LΞ(n) + Lr̃),

(5.29)

where r̃j denotes the jth coordinates of r̃. Now by an easy linear algebraic argument

(recorded in Lemma 5.11.4),

Rm = span(Lxi : i 6 u)⊕ ker Θ (5.30)

as an algebraic direct sum, and there exists an invertible linear map P : Rm −→ Rm

such that

P ((span(Lxi : i 6 u))) = Ru × {0}m−u, (5.31)

P (ker Θ) = {0}u × Rm−u, (5.32)
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and both ‖P‖∞ = Oc,C(1) and ‖P−1‖∞ = Oc,C(1).

We have

G(LΞ(n) + Lr̃) = (G ◦ P−1)(PLΞ(n) + PLr̃),

and we note that PLΞ(n) ∈ {0}u × Rm−u for every n ∈ Zd−u. Define Gr̃ : Rm−u −→

[0, 1] by

Gr̃(x) := (G ◦ P−1)(x0 + PLr̃),

where x0 is the extension of x by 0 in the first u coordinates. Then the function Gr̃

is the indicator function of a convex set contained in [−Oc,C,ε(1), Oc,C,ε(1)]m−u.

Define

Fr̃(n) := F (Ξ(n) + r̃).

Then Fr̃ has Lipschitz constant Oc,C(1/σFN) and Fr̃ is supported on

[−Oc,C,ε(N), Oc,C,ε(N)]d−u. (For a full proof of this fact, apply Lemma 5.11.3 to the

map Ξ). So Fr̃ and Gr̃ satisfy part (3).

Part (4): Writing πm−u : Rm −→ Rm−u for the projection onto the final m − u

coordinates, expression (5.29) is equal to

∑
r̃∈R̃

1

Nd−m

∑
n∈Zd−u

( d∏
j=1

fj(ξj(n) + r̃j)
)
Fr̃(n)Gr̃(πm−uPLΞ(n)). (5.33)

Let

L′ := πm−uPLΞ. (5.34)

Then L′ : Rd−u −→ Rm−u is surjective, and

TLF,G(f1, · · · , fd) =
∑
r̃∈R̃

TL
′,Ξ,r̃

Fr̃,Gr̃
(f1, · · · , fd).

This resolves part (4).
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Part (5): We wish to show that L′ is purely irrational. Suppose for contradiction

that there exists some surjective linear map ϕ : Rm−u −→ R with ϕL′(Zd−u) ⊆ Z, i.e.

with ϕπm−uPLΞ(Zd−u) ⊆ Z. Then define the map Θ′ : Rm −→ Ru+1 by

Θ′(x) := (Θ(x), ϕπm−uP (x)).

Then Θ′ is surjective, and Θ′L(Zd) ⊆ Zu+1. (This second fact is immediately seen

by writing Zd with respect to the lattice basis B from (5.28)). This contradicts the

assumption that L has rational dimension u. So L′ is purely irrational.

Part (6): The bound ‖L′‖∞ = Oc,C(1) follows immediately from the bounds on

the coefficients of Ξ, L, P , and πm−u separately.

We wish to prove that dist(L′, Vrank(m− u, d− u))�c,C 1, i.e. that

dist(πm−uPLΞ, Vrank(m − u, d − u)) �c,C 1. Suppose for contradiction that, for a

small parameter η, there exists a linear map Q : Rd−u −→ Rm−u such that ‖Q‖∞ < η

and πm−uPLΞ+Q has rank less than m−u. Recall that PLΞ(Rd−u) = {0}u×Rm−u.

So, extending Q by zeros to a map Q : Rd−u −→ {0}u × Rm−u, and applying P−1,

there is a map Q′ : Rd−u −→ Rm such that ‖Q′‖∞ = Oc,C(η) and LΞ + Q′ has rank

less than m− u.

We may factorise Q′ = HΞ for some m-by-d matrix H. Indeed let

B := {xi : i 6 u} ∪ {Ξ(wj) : j 6 d− u}

be the basis of Rd from (5.28), i.e. the basis formed by applying Lemma 5.5.8 to

the map S := ΘL. Define the linear map H by H(Ξ(wj)) := Q′(wj) for each j

and H(xi) := 0 for each i. Since the change of basis matrix between B and the

standard basis of Rd has integer coefficients with absolute values at most Oc,C(1), it
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follows that the matrix representing H with respect to the standard bases satisfies

‖H‖∞ = Oc,C(η).

So we know that (L+H)Ξ has rank less than m−u. But Ξ : Rd−u −→ Rd is injec-

tive, so this implies that the rank of L+H is less than m. Hence dist(L, Vrank(m, d)) =

Oc,C(η), which contradicts the assumptions of the lemma (if η is small enough). So

dist(L′, Vrank(m− u, d− u))�c,C 1 as required.

Part (7): We wish to show that dist((Ξ, L′), V ∗degen,2(m− u, d, d− u)) = Ωc,C(1).

Suppose for contradiction that, for a small parameter η, there exists a linear map

Q : Rd−u −→ Rd such that ‖Q‖∞ 6 η and dist((Ξ+Q,L′), V ∗degen,2(m−u, d, d−u)) 6 η.

In other words, we suppose there exist two indices i, j 6 d, and a real number λ, such

that

(Ξ +Q)∗(ei
∗ − λej

∗) ∈ (L′)∗((Rm−u)∗),

where {e1, · · · , ed} denotes the standard basis of Rd and {e1
∗, · · · , ed

∗} denotes the

dual basis. Expanding out the definition of L′, this means that there exists some

ϕ ∈ (Rm−u)∗ such that

Ξ∗(ei
∗ − λej

∗ − L∗(P ∗π∗m−u(ϕ))) = −Q∗(ei
∗ − λej

∗).

Because ‖Q‖∞ 6 η, this means that

‖Ξ∗(ei
∗ − λej

∗ − L∗(P ∗π∗m−u(ϕ)))‖∞ = O(η). (5.35)

Let

B∗ := {x∗i : i 6 u} ∪ {Ξ(wj)
∗ : j 6 d− u} (5.36)

denote the basis of (Rd)∗ that is dual to the basis B from (5.28). It follows from part
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(4) of Lemma 5.5.8 and (5.35) that

ei
∗ − λej

∗ − L∗(P ∗π∗m−u(ϕ)) = ωV + ωW ,

where ωV ∈ L∗Θ∗((Ru)∗), ωW ∈ span(Ξ(wj)
∗ : j 6 d− u), and ‖ωW‖∞ = Oc,C(η). So

therefore

ei
∗ − λej

∗ = L∗(α) + ωW ,

for some α ∈ (Rm)∗.

This is enough to derive a contradiction. Indeed, without loss of generality one

may assume that ‖ei
∗− λej

∗‖∞ > 1 (this is obvious if i 6= j, and if i = j we may just

pick λ = 0 at the outset). Therefore ‖ei
∗ − λej

∗ − ωW‖ > 1/2, provided η is small

enough. Since ‖L∗‖∞ = Oc,C(1), we conclude that ‖α‖∞ = Ωc,C(1).

This means that there exists a linear map E : Rd −→ Rm with ‖E‖∞ = Oc,C(η)

for which E∗(α) = ωW . Then

ei
∗ − λej

∗ ∈ (L+ E)∗((Rm)∗),

and hence dist(L, V ∗degen(m, d)) = Oc,C(η). This is a contradiction to the hypotheses

of Theorem 5.2.10, provided η is small enough, and hence dist((Ξ, L′), V ∗degen,2(m −

u, d, d− u)) = Ωc,C(1).

Part (8): Let τ1, τ2 ∈ (0, 1]. We desire to prove the relationship

AL′(τ1, τ2)�c,C AL(Ωc,C(τ1),Ωc,C(τ2)), (5.37)

where L′ is as in (5.34).

We have already proved that L′ is purely irrational (that was part (5) of the

lemma). So, if AL′(τ1, τ2) < η, for some η, there exists some ϕ ∈ (Rm−u)∗ for which
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τ1 6 ‖ϕ‖∞ 6 τ−1
2 and for which

dist((πm−uPLΞ)∗(ϕ), (Zd−u)T ) < η,

where, one recalls, we use (Zd−u)T to denote the set of those functions in (Rd−u)∗ that

have integer coordinates with respect to the standard dual basis.

We claim that

dist(L∗(P ∗π∗m−u(ϕ)), (Zd)T )�c,C η; (5.38)

‖P ∗π∗m−u(ϕ)‖∞ �c,C τ
−1
2 ; (5.39)

dist(P ∗π∗m−u(ϕ),Θ∗((Ru)∗))�c,C τ1, (5.40)

from which (5.37) immediately follows.

Let us prove (5.38). Indeed, we already know that

dist(Ξ∗L∗P ∗π∗m−u(ϕ), (Zd−u)T ) < η, i.e. that

‖Ξ∗L∗P ∗π∗m−u(ϕ)− α‖∞ < η, (5.41)

for some α ∈ (Zd−u)T . Let us write α =
∑d−u

j=1 λjwj
∗ for some λj ∈ Z, where

w1, · · · ,wd−u denotes the standard basis for Rd−u and w1
∗, · · · ,wd−u

∗ denotes the

dual basis. Let B∗ be as in (5.36). Then wj
∗ = Ξ∗((Ξ(wj)

∗), and so

α = Ξ∗(
d−u∑
j=1

λjΞ(wj)
∗).

So from (5.41) and the final part of Lemma 5.5.8,

L∗P ∗π∗m−u(ϕ)−
d−u∑
j=1

λjΞ(wj)
∗ = ωV + ωW , (5.42)
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where ωV ∈ span(x∗i : i 6 u), ωW ∈ span(Ξ(wj)
∗ : j 6 d− u), and ‖ωW‖∞ = Oc,C(η).

But L∗P ∗π∗m−u(ϕ) ∈ span(Ξ(wj)
∗ : j 6 d − u) too. Indeed, for every i at most

d− u,

L∗P ∗π∗m−u(ϕ)(xi) = ϕ(πm−uPLxi) = ϕ(0) = 0,

by the properties of P (see (5.31)). Therefore ωV = 0, and so

‖L∗P ∗π∗m−u(ϕ)−
d−u∑
j=1

λjΞ(wj)
∗‖∞ = Oc,C(η).

Since
∑d−u

j=1 λjΞ(wj)
∗ ∈ (Zd)T , this implies (5.38) as claimed.

The bound (5.39) is immediate from the bounds on the coefficients of P ∗ and

π∗m−u, so it remains to prove (5.40). Suppose for contradiction that, for some small

parameter δ,

P ∗π∗m−u(ϕ) = α1 + α2,

where α1 ∈ Θ∗((Ru)∗) and ‖α2‖∞ 6 δτ1. We know that ‖ϕ‖∞ > τ1, which means

that there is some standard basis vector fk ∈ Rm−u for which |ϕ(fk)| > τ1. Let bk+u

be the standard basis vector of Rm for which πm−u(bk+u) = fk. Recall the properties

of P (given in (5.31) and (5.32)), in particular recall that P : ker Θ −→ {0}u×Rm−u

is an isomorphism. Then

|P ∗π∗m−u(ϕ)(P−1(bk+u))| = |π∗m−u(ϕ)(bk+u)| = |ϕ(fk)| > τ1.

Note that Θ∗((Ru)∗) = (ker Θ)◦, and so

|P ∗π∗m−u(ϕ)(P−1(bk+u))| = |(α1 + α2)(P−1(bk+u))| = |α2(P−1(bk+u))| �c,C δτ1,

as P−1(bk+u) ∈ ker Θ and satisfies ‖P−1(bk+u)‖∞ = Oc,C(1). This is a contradiction
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if δ is small enough, and so (5.40) holds. This resolves part (8).

Part (9): Let τ1, τ2 ∈ (0, 1]. We desire to prove the relationship

AL′(τ1, τ2)�c,C AL(Ωc,C(τ1),Ωc,C(τ2)), (5.43)

where L′ is as in (5.34).This inequality is the reverse inequality of part (8), and in

fact it will not be required in the proof of any of our main theorems. However, it will

be required in order to analyse AL(τ1, τ2) when L has algebraic coefficients (in section

5.12), so we choose to state and prove it here, close to our argument for part (8).

Suppose that AL(τ1, τ2) < η, for some parameter η. Then there exists some

ϕ ∈ (Rm)∗ such that dist(ϕ,Θ∗((Ru)∗)) > τ1, ‖ϕ‖∞ 6 τ−1
2 , and dist(L∗ϕ, (Zd)T ) < η.

In particular there exists some ω ∈ (Zd)T for which

‖L∗ϕ− ω‖∞ < η.

We expand both L∗ϕ and ω with respect to the dual basis B∗ from (5.36). So,

L∗ϕ =
u∑
i=1

λix
∗
i +

d−u∑
j=1

µjΞ(wj)
∗

ω =
u∑
i=1

λ′ix
∗
i +

d−u∑
j=1

µ′jΞ(wj)
∗.

Since B∗ is a lattice basis for (Zd)T , we have λ′i ∈ Z and µ′j ∈ Z for each i and j.

Since the change of basis matrix between B∗ and the standard dual basis has integer

coefficients that are bounded in absolute value by Oc,C(1) (part (2) of Lemma 5.5.8),

one has |λi − λ′i| = Oc,C(η) and |µj − µ′j| = Oc,C(η) for each i and j.
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Let w∗1, · · · ,w∗d−u denote the standard dual basis of (Rd−u)∗, and define

ω′ :=
d−u∑
j=1

µ′jw
∗
j .

Certainly ω′ ∈ (Zd−u)T . We claim that there exists a map ϕ′ ∈ (Rm−u)∗ such that

τ1 �c,C ‖ϕ′‖∞ �c,C τ
−1
2 and ‖(L′)∗ϕ′ − ω′‖∞ �c,C η, which will immediately resolve

(5.43) and part (9).

Indeed, recall the decomposition Rm = (span(Lxi : i 6 u))⊕ker Θ as an algebraic

direct sum from (5.30). Let ϕ = ϕ1 + ϕ2, where ϕ1 ∈ (span(Lxi : i 6 u))◦ and

ϕ2 ∈ (ker Θ)◦. Since dist(ϕ, (ker Θ)◦) > τ1, we have ‖ϕ1‖∞ > τ1. By the properties of

the matrix P ((5.31) and (5.32)) there exists some ϕ′ ∈ (Rm−u)∗ such that

ϕ1 = P ∗π∗m−uϕ
′.

Furthermore, by evaluating ϕ′ at the standard basis vectors, one sees that

τ1 �c,C ‖ϕ′‖∞ �c,C τ
−1
2 .

(We laid out the full details of such an argument when proving (5.40) during the

proof of part (8) of the present lemma). We shall use this ϕ′.

By evaluating L∗ϕ1 at the elements of B one immediately sees that

L∗ϕ1 =
d−u∑
j=1

µjΞ(wj)
∗.

Hence

Ξ∗L∗P ∗π∗m−uϕ
′ =

d−u∑
j=1

µjw
∗
j ,
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in other words (L′)∗ϕ′ =
∑d−u

j=1 µjw
∗
j . But since |µj − µ′j| = Oc,C(η) for each j, one

has ‖(L′)∗ϕ′ − ω′‖∞ = Oc,C(η) as required. This settles part (9).

The entire lemma is settled.

The final lemma we need in order to deduce Theorem 5.2.10 involves removing

the sharp cut-off G.

Lemma 5.5.11 (Removing image cut-off). Let m, d, h be natural numbers, satisfying

d > h > m+ 1. Let c, C, ε be positive, and let σG be any parameter in the range 0 <

σG < 1/2. Let L′ : Rh −→ Rm be a purely irrational surjective map, and let Ξ : Rh −→

Rd be an injective map. Suppose that ‖L′‖∞ 6 C and that dist(L′, Vrank(m,h)) > c.

Let Fr̃ : Rh −→ [0, 1] be any function supported on [−N,N ]h, and let Gr̃ : Rm −→

[0, 1] be the indicator function of a convex set contained within [−ε, ε]m. Then, for

any parameter σG in the range 0 < σG < 1/2, there exists a Lipschitz function

Gr̃,σG,1 supported on [−Oc,C,ε(1), Oc,C,ε(1)]m, and with Lipschitz constant Oc,C,ε(1/σG),

such that, for any parameter τ2 in the range 0 < τ2 6 1 and for any functions

f1, · · · , fd : [N ] −→ [−1, 1],

|TL
′,Ξ,r̃

Fr̃,Gr̃
(f1, · · · , fd)|

�c,C,ε |TL
′,Ξ,r̃

Fr̃,Gr̃,σG,1
(f1, · · · , fd)|+ σG +

τ
1−o(1)
2

σG
+
τ
−O(1)
2 AL(Ωc,C(1), τ2)−1

N
.

Proof. Applying Lemma 0.4.2 to the function Gr̃, we have

Gr̃ = Gr̃,σG,1 +O(Gr̃,σG,2),

where Gr̃,σG,1, Gr̃,σG,2 : Rm −→ [0, 1] are Lipschitz functions with Lipschitz constant

Oc,C,ε(1/σG), both supported on [−Oc,C,ε(1), Oc,C,ε(1)]m, and with
∫
x
Gr̃,σG,2(x) dx =

Oc,C,ε(σG).
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By the triangle inequality,

|TL
′,Ξ,r̃

Fr̃,Gr̃,σG,2
(1, · · · , 1)| 6 TL

′

Fr̃,Gr̃,σG,2
(1, · · · , 1).

We now apply Lemma 5.4.3, with linear map L′ and Lipschitz function Gr̃,σG,2. In-

serting the bound from Lemma 5.4.3, the present lemma follows.

We conclude this section by combining the three previous lemmas, along with

Theorem 5.5.6, to deduce our main result.

Proof of Theorem 5.2.10 assuming Theorem 5.5.6. Assume the hypotheses

of Theorem 5.2.10. Let σF and σG be any parameters satisfying 0 < σF , σG < 1/2,

and let τ2 be any parameter satisfying 0 < τ2 6 1.

By Lemma 5.5.9,

|TLF,G(f1, · · · , fd)| 6 |TLF1,σF
,G(f1, · · · , fd)|+Oc,C(σF ),

for some function F1,σF : Rd −→ [0, 1] supported on [−2N, 2N ]d and with Lipschitz

constant O(1/σFN). By part (4) of Lemma 5.5.10, writing F1,σF for F , we have

|TLF1,σF
,G(f1, · · · , fd)| 6

∑
r̃∈R̃

|TL
′,Ξ,r̃

Fr̃,Gr̃
(f1, · · · , fd)|,

where the objects Fr̃, Gr̃, L
′, Ξ and R̃ satisfy all the conclusions of that lemma.

Parts (1), (5) and (6) of Lemma 5.5.10 show that Ξ and L′ satisfy the hypotheses

of Lemma 5.5.11, where in the notation of Lemma 5.5.11 we take h := d − u and

rewrite m for m− u. So, applying Lemma 5.5.11, there are some Lipschitz functions

Gr̃,σG,1 : Rm−u −→ [0, 1] supported on [−Oc,C,ε(1), Oc,C,ε(1)]m−u and with Lipschitz
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constant Oc,C,ε(1/σG) such that

|TLF,G(f1, · · · , fd)|

�c,C,ε

∑
r̃∈R̃

|TL
′,Ξ,r̃

Fr̃,Gr̃,σG,1
(f1, · · · , fd)|+ σG +

τ
1−o(1)
2

σG
+
τ
−O(1)
2 AL′(Ωc,C(1), τ2)−1

N
+ σF .

(5.44)

(Recall that |R̃| = Oc,C,ε(1), by part (2) of Lemma 5.5.10).

By conclusion (8) of Lemma 5.5.10, we may replace the term AL′(Ωc,C(1), τ2)−1

with the term AL(Ωc,C(1),Ωc,C(τ2))−1.

Since Fr̃, L
′, Ξ, and R̃ together satisfy conclusions (1), (2), (3), (6), and (7) of

Lemma 5.5.10, the hypotheses are satisfied so that we may apply Theorem 5.5.6 to

the expression TL
′,Ξ,r̃

Fr̃,Gr̃,σG,1
(f1, · · · , fd). (We take h = d − u and rewrite m for m − u,

as above). Therefore there exists an s at most d − 2, independent of Fr̃, Gr̃ and r̃,

such that, if

min
j
‖fj‖Us+1[N ] 6 ρ,

for some ρ in the range 0 < ρ 6 1 then |TLF,G(f1, · · · , fd)| is

�c,C,ε ρ
Ω(1)(σ

−O(1)
F + σ

−O(1)
G ) + σ

−O(1)
F N−Ω(1)

+ σG +
τ

1−o(1)
2

σG
+
τ
−O(1)
2 AL(Ωc,C(1),Ωc,C(τ2))−1

N
+ σF . (5.45)

It remains to pick appropriate parameters. Let C1 be a constant that is suitably

large in terms of c, C, and all O(1) constants, and let c1 be a constant that is suitably

small in terms of all O(1) constants. Pick σF := σG := ρc1 and τ2 := C1ρ. Then

|TLF,G(f1, · · · , fd)| �c,C,ε ρ
Ω(1) + oρ,AL,c,C(1),
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where, after the combining the various error terms from (5.45), the oρ,AL,c,C(1) term

may be bounded above by

N−Ω(1)ρ−O(1)AL(Ωc,C(1), ρ)−1,

as AL(τ1, τ2) is monotonically decreasing as τ2 decreases. This is the desired conclusion

of Theorem 5.2.10.

In order to resolve our main result, then, it suffices to prove7 Theorem 5.5.6.

5.6 Transfer from Z to R

As remarked above, our present task is to prove Theorem 5.5.6. Any reader only

wishing to consider the case of diophantine inequalities with Lipschitz cut-offs may

begin here, and eschew section 5.5.

We devote this section to the formulation and proof of a certain ‘transfer’ argu-

ment, whereby we replace the discrete summation in the definition of TL,Ξ,r̃F,G (f1, · · · , fd)

with an integral.

Let us introduce some notation for the integral in question.

Definition 5.6.1. Let N,m, d, h be natural numbers, with d > h > m + 2. Let ε be

positive. Let Ξ : Rh −→ Rd and L : Rh −→ Rm be linear maps. Let F : Rh → [0, 1]

and G : Rm → [0, 1] be two functions, with F supported on [−N,N ]h and G supported

7The reader may have noticed from the proof above that, in fact, it suffices to prove Theorem
5.5.6 in the case that L is purely irrational, but the general version is no harder to prove.
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on [−ε, ε]m. Let g1, · · · , gd : R −→ [−1, 1] be arbitrary functions. We define

T̃L,Ξ,r̃F,G (g1, · · · , gd) :=
1

Nh−m

∫
x∈Rh

( d∏
j=1

gj(ξj(x) + r̃j)
)
F (x)G(Lx) dx. (5.46)

Next, we determine a particular class of measurable functions that will be useful

to us.

Definition 5.6.2. Let χ : R −→ [0, 1] be a measurable function, and let η be a positive

parameter. We say that χ is η-supported if χ is supported on [−η, η] and χ(x) ≡ 1

for all x ∈ [−η/2, η/2].

If f : Z −→ R has finite support, and χ : R −→ [0, 1] is a measurable function,

we may define the (rather singular) convolution (f ∗ χ)(x) : R −→ R by

(f ∗ χ)(x) :=
∑
n∈Z

f(n)χ(x− n).

If χ is η-supported, for small enough η, then there is only one possible integer n that

makes a non-zero contribution to the sum.

We now state the key lemma.

Lemma 5.6.3. Let N,m, d, h be natural numbers, with d > h > m + 2, and let

c, C, ε, η be positive constants. Let Ξ : Rh −→ Rd be an injective linear map with

integer coefficients, and assume that Ξ(Zh) = Zd∩ im Ξ. Let L : Rh −→ Rm be a sur-

jective linear map. Assume that ‖Ξ‖∞ 6 C, ‖L‖∞ 6 C, and dist(L, Vrank(m,h)) > c.

Let F : Rh −→ [0, 1] be a Lipschitz function supported on [−N,N ]h with Lipschitz

constant O(1/σFN), and let G : Rm −→ [0, 1] be a Lipschitz function supported on

[−ε, ε]m with Lipschitz constant O(1/σG). Let r̃ be a fixed vector in Zd, satisfying

‖r̃‖∞ = Oc,C,ε(1). Let χ : R −→ [0, 1] be an η-supported measurable function. Then,

if η is small enough (in terms of the dimensions m, d, h, C, and ε) there exists some
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positive real number CΞ,χ such that, if f1, · · · , fd : [N ] −→ [−1, 1] are arbitrary func-

tions,

TΞ,L,r̃
F,G (f1, · · · , fd) =

1

CΞ,χηh
T̃Ξ,L,r̃
F,G (f1 ∗ χ, · · · , fd ∗ χ) +OC,c,ε(η/σG) +OC,c,ε(η/σFN).

(5.47)

Moreover, CΞ,χ �C 1 for some absolute implied constants.

Proof. Let χ : Rd −→ [0, 1] denote the function x 7→
d∏
i=1

χ(xi). We choose

CΞ,χ :=
1

ηh

∫
x∈Rh

χ(Ξ(x)) dx.

Since χ is η-supported, CΞ,χ �C 1 .

Then, expanding the definition of the convolution,

1

CΞ,χηh
T̃L,Ξ,r̃F,G (f1 ∗ χ, · · · , fd ∗ χ)

equals

1

Nh−m

∑
n∈Zd

( d∏
j=1

fj(nj)
) 1

CΞ,χηh

∫
y∈Rh

F (y)G(Ly)χ(Ξ(y) + r̃− n) dy. (5.48)

Note that any vector n ∈ Zd that gives a non-zero contribution to expression (5.48)

satisfies ‖n − Ξ(y) − r̃‖∞ � η, for some y ∈ Rh. Therefore, n must be of the

form Ξ(n′) + r̃ for some unique n′ ∈ Zh. ( This is proved in full in Lemma 5.11.2).

Therefore, writing Ξ = (ξ1, · · · , ξd), we may reformulate (5.48) as

1

Nh−m

∑
n∈Zh

( d∏
j=1

fj(ξj(n) + r̃j)
) 1

CΞ,χηh

∫
y∈Rh

F (y)G(Ly)χ(Ξ(y − n)) dy,
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which is equal to

1

Nh−m

∑
n∈Zh

( d∏
j=1

fj(ξj(n)+r̃j)
) 1

CΞ,χηh

∫
y∈Rh

(F (n)+OC(η/σFN))G(Ly)χ(Ξ(y−n)) dy.

(5.49)

Indeed, the inner integral is only non-zero when ‖Ξ(y) − Ξ(n)‖∞ � η, and this im-

plies that ‖y−n‖∞ � C−O(1)η. (This is proved in full in Lemma 5.11.3). Then recall

that F has Lipschitz constant O(1/σFN).

Continuing, expression (5.49) is equal to

1

Nh−m

∑
n∈Zh

( d∏
j=1

fj(ξj(n) + r̃j)
)
F (n)H(Ln) + E (5.50)

where

H(x) =
1

CΞ,χηh

∫
y∈Rh

χ(Ξ(y))G(x + Ly) dy

and E is a certain error, that may be bounded above by

�C
η

σFN

1

Nh−m

∑
n∈[−N,N ]h

H(Ln). (5.51)

Let us deal with the first term of (5.50), in which we wish to replace H with G.

We therefore consider

∣∣∣ 1

Nh−m

∑
n∈Zh

( d∏
j=1

fj(ξj(n) + r̃j)
)
F (n)(G(Ln)−H(Ln))

∣∣∣,
which is

6
1

Nh−m

∑
n∈Zh

F (n)|G−H|(Ln). (5.52)

Using Lemma 5.11.3 again, the function H is supported on [−ε−OC(η), ε+OC(η)]m.
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Thus, if η is small enough in terms of ε, the function |G−H| : Rm −→ R is supported

on [−OC(ε), OC(ε)]m. Furthermore, ‖G−H‖∞ = OC(η/σG). Indeed,

G(x)− 1

CΞ,χηh

∫
y∈Rh

G(x + Ly)χ(Ξ(y)) dy

= G(x)− 1

CΞ,χηh

∫
y∈Rh

(G(x) +OC(η/σG))χ(Ξ(y)) dy

= OC(η/σG),

by the definition of CΞ,χ. So, by the crude bound given in Lemma 5.4.1, (5.52) is

Oc,C,ε(η/σG).

Turning to the error E from (5.50), we’ve already remarked that it may be

bounded above by expression (5.51). Applying Lemma 5.4.1 again, expression (5.51)

is Oc,C,ε(η/σFN).

Lemma 5.6.3 follows immediately upon substituting the estimates on (5.51) and

(5.52) into (5.50).

We finish this section by noting a simple relationship between the Gowers norms

‖f ∗ χ‖Us+1(R) and the Gowers norms ‖f‖Us+1[N ].

Lemma 5.6.4 (Relating different Gowers norms). Let s be a natural number, and

assume that η is a positive parameter that is small enough in terms of s. Let χ :

R −→ [0, 1] be an η-supported measurable function. Let N be a natural number, and

let f : [N ] −→ [−1, 1] be an arbtirary function. View f ∗ χ as a function supported

on [−2N, 2N ]. Then we have

‖f ∗ χ‖Us+1(R) � η
s+2

2s+1 ‖f‖Us+1[N ]. (5.53)
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The definition of the real Gowers norm ‖f ∗ χ‖Us+1(R) is recorded in Definition 0.3.3.

Proof. From expression (5), we have

‖f ∗ χ‖2s+1

Us+1(R) �
1

N s+2

∫
(x,h)∈Rs+2

∏
ω∈{0,1}s+1

(f ∗ χ)(x+ h · ω) dx dh.

Substituting in the definition of f ∗ χ, this is equal to

1

N s+2

∑
(nω)ω∈{0,1}s+1∈Z{0,1}s+1

( ∏
ω∈{0,1}s+1

f(nω)
) ∫

(x,h)∈Rs+2

χ(Ψ(x,h)− n) dx dh, (5.54)

where Ψ : Rs+2 −→ R2s+1
has coordinate functions ψω, indexed by ω ∈ {0, 1}s+1,

where ψω(x,h) := x + h · ω. In similar notation to that used in the previous proof,

for x ∈ R2s+1
, we let χ(x) :=

∏2s+1

i=1 χ(xi). Note that Ψ is injective, Ψ(Zs+2) =

Z2s+1 ∩ im Ψ, and ‖Ψ‖∞ = Os(1).

The contribution to the inner integral of (5.54) from a particular n is zero unless

‖n−Ψ(x,h)‖∞ � η, for some (x,h) ∈ Rs+2. Therefore, if η is small enough we can

conclude that n must be of the form Ψ(p,k), for some unique (p,k) ∈ Zs+2. (To spell

it out, apply Lemma 5.11.2 with the map Ψ in place of the map Ξ). So (5.54) is equal

to

1

N s+2

∑
(p,k)∈Zs+2

( ∏
ω∈{0,1}s+1

f(p+ k · ω)
) ∫

(x,h)∈Rs+2

χ(Ψ(x− p,h− k)) dx dh, (5.55)

which, after a change of variables , is equal to

C

N s+2

∑
(p,k)∈Zs+2

∏
ω∈{0,1}s+1

f(p+ k · ω), (5.56)
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where

C :=

∫
(x,h)∈Rs+2

χ(Ψ(x,h)) dx dh.

Since χ has support contained within [−η, η]2
s+1

, a vector (x,h) only makes a non-zero

contribution to the above integral if ‖Ψ(x,h)‖∞ � η. This implies that ‖(x,h)‖∞ �

η. (To prove this is full, apply Lemma 5.11.3 to the linear map Ψ). Since ‖χ‖∞ =

O(1), this means C = O(ηs+2). The lemma then follows from (5.56).

5.7 Degeneracy relations

Our aim for this short section is to establish a quantitative relationship between

the dual pair degeneracy variety V ∗degen,2(m, d, h) and the dual degeneracy variety

Vdegen(h−m, d) (see Definitions 5.5.4 and 5.2.3 respectively), which will be needed in

the next section. To introduce the ideas, we first prove a non-quantitative proposition.

Lemma 5.7.1. Let m, d, h be natural numbers, with d > h > m+2. Let Ξ : Rh −→ Rd

be an injective linear map, and let L : Rh −→ Rm be a surjective linear map, and

suppose that (Ξ, L) /∈ V ∗degen,2(m, d, h). Let Φ : Rh−m −→ kerL be any surjective linear

map. Then the linear map ΞΦ : Rh−m −→ Rd, viewed as a system of homogenous

linear forms, is not in Vdegen(h−m, d).

Proof. Let e1, · · · , ed denote the standard basis vectors in Rd, and let e∗1, · · · , e∗d

denote the dual basis of (Rd)∗. Suppose for contradiction that ΞΦ ∈ Vdegen(h−m, d).

Then by definition there exist two indices i, j 6 d, and a real number λ, such that

ΞΦ(Rh−m) ⊂ ker(e∗i − λe∗j ).

But then Φ(Rh−m) ⊂ ker(Ξ∗(e∗i−λe∗j )), i.e. Ξ∗(e∗i−λe∗j ) ∈ (kerL)◦. But (kerL)◦ =

L∗((Rm)∗), and so Ξ∗(e∗i − λe∗j ) ∈ L∗((Rm)∗).

Then, by the definition of V ∗degen,2(m, d, h), we have (Ξ, L) ∈ V ∗degen,2(m, d, h), which

is a contradiction.
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The ideas having been introduced, we state the quantitative version we require.

Lemma 5.7.2. Let m, d, h be natural numbers, with d > h > m + 2, and let c, C be

positive constants. Let Ξ : Rh −→ Rd be a linear map, and let L : Rh −→ Rm be a

surjective linear map. Suppose that ‖Ξ‖∞ 6 C, and dist((Ξ, L), V ∗degen,2(m, d, h)) > c.

Let K denote kerL, choose any orthonormal basis {v(1), · · · ,v(h−m)} for K, and let

Φ : Rh−m −→ K denote the associated parametrisation, i.e. Φ(x) :=
∑h−m

i=1 xiv
(i).

Then ‖ΞΦ‖∞ = O(C) and dist(ΞΦ, Vdegen(h−m, d)) = Ω(c).

For the definition of dist((Ξ, L), V ∗degen,2(m, d, h)), consult Definition 5.5.5.

Proof. Certainly ‖Φ‖∞ = O(1), as the chosen basis {v(1), · · · ,v(h−m)} is orthonormal.

Therefore ‖ΞΦ‖∞ = OC(1).

Let e1, · · · , ed denote the standard basis vectors in Rd, and let e∗1, · · · , e∗d denote

the dual basis of (Rd)∗. Suppose for contradiction that dist(ΞΦ, Vdegen(h−m, d)) 6 η

for some small parameter η. In other words, assume that there exists a linear map

P : Rh−m −→ Rd with ‖P‖∞ 6 η such that ΞΦ +P ∈ Vdegen(h−m, d). By definition,

this means that

(ΞΦ + P )(Rh−m) ⊂ ker(e∗i − λe∗j ),

for some two indices i, j 6 d, and some real number λ.

We can factorise P = QΦ, for some linear map Q : Rh −→ Rd with ‖Q‖∞ � η.

Indeed, let f1, · · · , fh−m denote the standard basis vectors in Rh−m, and for all k at

most h−m define

Q(v(k)) := P (fk).

(If the notation for the indices seems odd here, it is designed to match the notation

in Proposition 5.8.2, in which having superscript on the vectors v(k) is natural).

Complete {v(1), · · · ,v(h−m)} to an orthonormal basis {v(1), · · · ,v(h)} for Rh and, for

k in the range h − m + 1 6 k 6 h − m, define Q(v(k)) := 0. Then P = QΦ, and

‖Q‖∞ = O(η), since {v(1), · · · ,v(h)} is an orthonormal basis.
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Thus,

(ΞΦ +QΦ)(Rh−m) ⊂ ker(e∗i − λe∗j ).

So

Φ(Rh−m) ⊂ ker((Ξ +Q)∗(e∗i − λe∗j )).

Like the previous proof, we conclude that

(Ξ +Q)∗(e∗i − λe∗j ) ∈ L∗((Rm)∗).

Hence ((Ξ +Q), L) ∈ V ∗degen,2(m, d, h), which, if η is small enough, contradicts the

assumption that dist((Ξ, L), V ∗degen,2(m, d, h)) > c.

We remark that a non-effective version of Lemma 5.7.2, would have followed from

Lemma 5.7.1 by soft analysis.

5.8 A Generalised von Neumann Theorem

In this section we complete the proof of Theorem 5.5.6, and therefore complete the

proof of our main result (Theorem 5.2.10). It will be enough to prove the following

statement.

Theorem 5.8.1. Let N,m, d, h be natural numbers, with d > h > m + 2, and let

c, C, ε be positive reals. Let Ξ = Ξ(N) : Rh −→ Rd be an injective linear map

with integer coefficients, and let L = L(N) : Rd −→ Rm be a surjective linear

map. Suppose further that ‖L‖∞ 6 C, ‖Ξ‖∞ 6 C, dist(L, Vrank(m, d)) > c and

dist((Ξ, L), V ∗degen,2(m, d, h)) > c. Then there is some natural number s at most d− 2

such that the following holds. Let r̃ ∈ Zd be some vector with ‖r̃‖∞ = Oc,C,ε(1),

and let σF be a parameter in the range O < σF < 1/2. Let F : Rh −→ [0, 1]
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be a Lipschitz function supported on [−N,N ]h, with Lipschitz constant O(1/σFN),

and let G : Rm −→ [0, 1] be any function supported on [−ε, ε]m. Let g1, · · · , gd :

[−2N, 2N ]d −→ [−1, 1] be arbitrary measurable functions. Suppose

min
j6d
‖gj‖Us+1(R) 6 ρ

for some ρ at most 1. Then

|T̃L,Ξ,r̃F,G (g1, · · · , gd)| �c,C,ε ρ
Ω(1)σ−1

F (5.57)

Proof that 5.8.1 implies Theorem 5.5.6. Assume the hypotheses of Theorem 5.5.6.

This gives natural numbers N,m, d, h, linear maps L : Rh −→ Rm and Ξ : Rh −→ Rd,

and functions F : Rh −→ [0, 1] and G : Rm −→ [0, 1]. Let f1, · · · , fd : [N ] −→ [−1, 1]

be arbitrary functions, and for ease of notation let

δ := TL,Ξ,r̃F,G (f1, · · · , fd).

From Lemma 5.4.1 and the triangle inequality, we have the crude bound δ = Oc,C,ε(1).

Let η := c1δσG, where c1 is small enough depending on m, d, h, c, C, ε, and let χ :

R −→ [0, 1] be an η-supported measurable function (see Definition 5.6.2). For all j

at most d, let gj := fj ∗ χ. Finally, suppose minj ‖fj‖Us+1[N ] 6 ρ, for some parameter

ρ in the range 0 < ρ 6 1.

We proceed by bounding T̃L,Ξ,r̃F,G (g1, · · · , gd). Indeed, by Lemma 5.6.4, if c1 is small

enough

min
j
‖gj‖Us+1(R) � η

s+2

2s+1 min
j
‖fj‖Us+1[N ] �c,C,ε ρ.

Applying Theorem 5.8.1 to these function g1, · · · , gd, this implies

T̃L,Ξ,r̃F,G (g1, · · · , gd)�c,C,ε ρ
Ω(1)σ−1

F . (5.58)
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Now we use this to bound δ by Gowers norms. Indeed, by Lemma 5.6.3, we have

δ �c,C,ε
1

(c1δσG)h
T̃L,Ξ,r̃F,G (g1, · · · , gd) + c1δ + c1δσGσ

−1
F N−1.

Picking c1 small enough, we may move the c1δ term to the left-hand side to get

an Ω(δ) term. The bound (5.58) then yields

δh+1 �c,C,ε ρ
Ω(1)σ−1

F σ−hG + σ−1
F N−1,

and so

δ �c,C,ε ρ
Ω(1)(σ

−O(1)
F + σ

−O(1)
G ) + σ

−O(1)
F N−Ω(1).

This yields the desired conclusion of Theorem 5.5.6.

So it remains to prove Theorem 5.8.1. The bulk of the work will be done in the

following two propositions.

Proposition 5.8.2 (Separating out the kernel). Let N,m, d, h be natural numbers,

with d > h > m + 2, and let c, C, ε be positive constants. Let σF be a parameter in

the range 0 < σF < 1/2. Let Ξ : Rh → Rd be an injective linear map with integer

coefficients, and let L : Rh −→ Rm be a surjective linear map. Assume further that

‖L‖∞ 6 C, ‖Ξ‖∞ 6 C, dist(L, Vrank(m,h)) > c and dist((Ξ, L), V ∗degen,2(m, d, h)) > c.

Let F : Rh −→ [0, 1] be a Lipschitz function supported on [−CN,CN ]h, with Lipschitz

constant OC(1/σFN), and let G : Rm −→ [0, 1] be a Lipschitz function supported on

[−ε, ε]m. Let r̃ be a fixed vector in Zd, satisfying ‖r̃‖∞ = OC(1). Then there exists

a system of linear forms (ψ1, · · · , ψd) = Ψ : Rh−m −→ Rd, and a Lipschitz function

F1 : Rh−m −→ [0, 1] supported on [−Oc,C,ε(N), Oc,C,ε(N)]h−m with Lipschitz constant
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O(1/σFN), such that, if g1, · · · , gd : [−2N, 2N ] −→ [−1, 1] are arbitrary functions,

|T̃L,Ξ,r̃F,G (g1, · · · , gd)| �c,C,ε

∣∣∣ 1

Nh−m

∫
x

d∏
j=1

gj(ψj(x) + aj)F1(x) dx
∣∣∣, (5.59)

where, for each j, aj is some real number that satisfies aj = OC(1).

Furthermore, there exists a natural number s at most d − 2 such that the system

Ψ has Ωc,C(1)-Cauchy-Schwarz complexity at most s, in the sense of Definition 5.3.6.

Proof of Proposition 5.8.2. For ease of notation, let

β := |T̃L,Ξ,r̃F,G (g1, · · · , gd)|.

Noting that kerL is a vector space of dimension h−m, define {v(1), · · · ,v(h−m)} ⊂ Rh

to be an orthonormal basis for kerL. Then the map Φ : Rh−m −→ Rh, defined by

Φ(x) :=
h−m∑
i=1

xiv
(i), (5.60)

is an injective map that parametrises kerL. (This is reminiscent of Lemma 5.7.2).

Now, extend the orthonormal basis {v(1), · · · ,v(h−m)} for kerL to an orthonormal

basis {v(1), · · · ,v(h)} for Rh. By implementing a change of basis, we may rewrite

β =
1

Nh−m

∫
x∈Rh

F (
h∑
i=1

xiv
(i))G(L(

h∑
i=1

xiv
(i)))(

d∏
j=1

gj(ξj(Φ(x)+
h∑

i=h−m+1

xiv
(i))+r̃j)) dx.

(5.61)

We wish to remove the presence of the variables xh−m+1, · · · , xh. To set this up,

note that, by the choice of the vectors v(i),

G(L(
h∑
i=1

xiv
(i))) = G(L(

h∑
i=h−m+1

xiv
(i))).

The vector
∑h

i=h−m+1 xiv
(i) is in (kerL)⊥. Hence, due to the limited support of G,
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there is a domain D, contained in [−Oε,c,C(1), Oε,c,C(1)]m, such that

G(L(
∑h

i=h−m+1 xiv
(i))) is equal to zero unless (xh−m+1, · · · , xh)T ∈ D. (This is proved

in full in Lemma 5.11.1).

We can use this observation to bound the right-hand side of (5.61). Indeed, using

xh−m
1 to refer to the vector in Rh−m given by the first the first h−m coordinates of

x, we have

β � volD × sup
xh
h−m+1∈D

1

Nh−m

∣∣∣ ∫
xh−m
1 ∈Rh−m

F (
h∑
i=1

xiv
(i))G(L(

h∑
i=h−m+1

xiv
(i)))

(
d∏
j=1

gj(ξj(Φ(xh−m
1 ) +

h∑
i=h−m+1

xiv
(i)) + r̃j)) dx

h−m
1

∣∣∣. (5.62)

So there exists some fixed vector (xh−m+1, · · · , xh)T in D such that

β �c,C,ε
1

Nh−m

∣∣∣ ∫
xh−m
1 ∈Rh−m

F (
h∑
i=1

xiv
(i))G(L(

h∑
i=h−m+1

xiv
(i)))

(
d∏
j=1

gj(ξj(Φ(xh−m
1 ) +

h∑
i=h−m+1

xiv
(i)) + r̃j)) dx

h−m
1

∣∣∣.
(5.63)

Define the function F1 : Rh−m −→ [0, 1] by

F1(xh−m
1 ) := F (Φ(xh−m

1 ) +
h∑

i=h−m+1

xiv
(i))

and for each j at most d, a shift

aj := ξj(
h∑

i=h−m+1

xiv
(i)) + r̃j.
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Then

β �c,C,ε

∣∣∣ 1

Nh−m

∫
x∈Rh−m

F1(x)
d∏
j=1

gj(ξj(Φ(x)) + aj) dx
∣∣∣, (5.64)

and F1 and aj satisfy the conclusions of the proposition.

Finally, since dist((Ξ, L), V ∗degen,2(m, d, h)) > c and ‖Ξ‖∞, ‖L‖∞ 6 C, Lemma 5.7.2

tells us that ΞΦ : Rh−m −→ Rd satisfies dist(ΞΦ, Vdegen(h−m, d))�c,C 1. (One may

consult Definitions 5.3.5 and Definition 5.5.4 for the definitions of Vdegen(h − m, d)

and V ∗degen,2(m, d, h)). Thus, by Lemma 5.3.7, there exists some s at most d − 2 for

which ΞΦ has Ωc,C(1)-Cauchy-Schwarz complexity at most s.

Writing Ψ for ΞΦ, the proposition is proved.

We now proceed to the second proposition, which is a standard Cauchy-Schwarz

argument.

Proposition 5.8.3 (Cauchy-Schwarz argument). Let s, d be natural numbers, with

d > 3, and let C be a positive constant. Let (ψ1, · · · , ψd) = Ψ : Rs+1 −→ Rd

be a linear map, and suppose that ψ1(ek) = 1, for all the standard basis vectors

ek ∈ Rs+1. Suppose that, for all j in the range 2 6 j 6 s + 1, there exists some k

such that ψj(ek) = 0. Let N > 1 be real, and let g1, · · · , gd : [−N,N ] −→ [−1, 1] be

arbitrary measurable functions, and, for each j at most d, let aj be some real number

with |aj| 6 CN . Let F : Rs+1 −→ [0, 1] be any Lipschitz function, supported on

[−CN,CN ]s+1 with Lipschitz constant O(1/σFN). Suppose that ‖g1‖Us+1(R) 6 ρ, for

some parameter ρ in the range 0 < ρ 6 1. Then

∣∣∣ 1

N s+1

∫
w∈Rs+1

d∏
j=1

gj(ψj(w) + aj)F (w) dw
∣∣∣�C ρ

−Ω(1)σ−1
F . (5.65)

We stress again that implied constants may depend on the implicit dimensions (so

the Ω(1) term in (5.65) may depend on s).

Proof. This theorem is very similar to the usual Generalised von Neumann Theorem

177



(see [84, Exercise 1.3.23]), and the proof is very similar too. A few extra technicalities

arise from our dealing with the reals rather than with a finite group, but these are

easily surmountable.

We begin with some simple reductions. First, we assume that C is large enough

in terms of all other O(1) parameters. For notational convenience, we will also allow

C to vary form line to line. Next, since ψ1(w) = w1 + w2 + · · · + ws+1, by shifting

w1 we can assume that h1 = 0 in (5.65). Due to the restricted support of F , we may

restrict the integral over w to [−CN,CN ]s+1. By Lemma 0.4.4, for any Y > 2 there

is a function cY : Rs+1 −→ C satisfying ‖c‖∞ � 1 such that we may replace F (w)

by ∫
θ∈Rs+1

‖θ‖∞6Y

cY (θ)e(
θ ·w
N

) dθ +OC

(
log Y

σFY

)
.

We will determine a particularly suitable Y later (that will depend on ρ).

This means that

∣∣∣ 1

N s+1

∫
w∈Rs+1

d∏
j=1

gj(ψj(w) + aj)F (w) dw
∣∣∣

�
∫

θ∈Rs+1

‖θ‖∞6Y

∣∣∣ 1

N s+1

∗∫
w∈Rs+1

e(
θ

N
·w)

( d∏
j=1

gj(ψj(w) + aj)
)
dw
∣∣∣ dθ +OC

(
log Y

σFY

)
,

(5.66)

where
∫ ∗

indicates the limits w ∈ [−CN,CN ]s+1. Fix θ. The inner integral of (5.66)

will be our primary focus.

Firstly, we wish to ‘absorb’ the exponential phases e( θ
N
· w). To do this, we

write e( θ
N
·w) as a product of functions

∏s+1
k=1 bk(w), where, for each k, the function

bk : Rs+1 −→ C is bounded and does not depend on the variable wk. Since s+ 1 > 2,
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this is clearly possible. Therefore we may rewrite the inner integral of (5.66) as

1

N s+1

∗∫
w∈Rs+1

g1(ψ1(w))
s+1∏
k=1

bk(w) dw, (5.67)

where the functions bk : Rs+1 −→ C are (possibly different) functions, satisfying

‖bk‖∞ 6 1 for all k, and such that bk does not depend on the variable wk.

A brief aside: readers familiar with the arguments of [38, Appendix C] (which

motivate the present proof) may note that a different device is used in that paper to

absorb the exponential phases. Those authors work in the setting of the finite group

Z/NZ, and there the exponential phases can be absorbed simply by twisting the func-

tions gj : Z/NZ −→ [−1, 1] by a suitable linear phase function (witness the discussion

surrounding expression (C.7) from [38]). The key point there is that, if the linear form

w 7→ θ · w fails to be in the set span(ψj : 1 6 j 6 d), then a Fourier expansion of

gj demonstrates that a certain expression, analogous to the inner integral of (5.66),

is equal to zero. This clean argument isn’t quite so easy to apply here, as the lin-

ear phases are not integrable over all of R, which is why we chose a different approach.

Returning to (5.67), recall that ψ1(w) = w1 +w2 + · · ·+ws+1. Therefore, applying

the Cauchy-Schwarz inequality in each of the variables w1 through ws+1 in turn, one

establishes that the absolute value of expression (5.67) is at most

�C

( 1

N2s+2

∗∫
w∈Rs+1

∗∫
z∈Rs+1

∏
α∈{0,1}s+1

g1

( ∑
k6s+1
αk=0

wk +
∑
k6s+1
αk=1

zk

)
dw dz

) 1
2s+1

. (5.68)

This expression may be immediately related to the real Gowers norm as given in

Definition 0.3.3, by the change of variables mk := zk − wk, for all k at most s + 1,
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and u := w1 + · · ·+ ws+1. Performing this change of variables shows that(5.68) is

�
( 1

N2s+2

∫
(u,m,zs+1

2 )∈D

∏
α∈{0,1}s+1

g1(u+α ·m) du dm dzs+1
2

) 1
2s+1

, (5.69)

where D is convex domain contained within [−CN,CN ]2s+2. It remains to replace

D by a Cartesian box.

By Lemma 0.4.2 we may write

1D = Fσ +O(Gσ),

for any σ in the range 0 < σ < 1/2, where Fσ, Gσ : R2s+2 −→ [0, 1] are Lipschitz

functions supported on [−CN,CN ]2s+2, with Lipschitz constant OC(1/σN), such that∫
x
Gσ(x) dx = OC(σN2s+2). Then, since ‖g1‖∞ 6 1, we may bound (5.69) above by

( 1

N2s+2

∗∫
u,m,zs+1

2

Fσ(u,m, zs+1
2 )

∏
α∈{0,1}s+1

g1(u+α ·m)du dm dzs+1
2 +OC(σ)

) 1
2s+1

,

(5.70)

where
∫ ∗

now refers to the domain of integration [−CN,CN ]2s+2.

By applying Lemma 0.4.4 to Fσ, for any X > 2 the absolute value of expression

(5.70) is

�C

(( 1

N2s+2

∫
ξ∈R2s+2

‖ξ‖∞6X

∣∣∣ ∗∫
u,m,zs+1

2

e(
ξ

N
· (u,m, zs+1

2 ))

∏
α∈{0,1}s+1

g1(u+α ·m)du dm dzs+1
2

∣∣∣ dξ)+O(σ) +O
( logX

σX

)) 1
2s+1

. (5.71)

Integrating over the variables z2, · · · , zs+1, and splitting the exponential phase
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amongst the different functions, expression (5.71) is

�C

(( 1

N s+2

∫
ξ∈R2s+2

‖ξ‖∞6X

∣∣∣ ∫
(u,m)∈[−CN,CN ]s+2

∏
α∈{0,1}s+1

gα(u+α ·m) du dm
∣∣∣ dξ)

+OC(σ) +OC

( logX

σX

)) 1
2s+1

, (5.72)

where each function gα is of the form

gα(u) := g1(u)e(kαu)

for some real kα. Note that ‖gα‖Us+1(R) = ‖g1‖Us+1(R).

Recall that g1 is supported on [−2N, 2N ]. Therefore, if
∏
α∈{0,1}s+1 gα(u+α·m) 6=

0 then (u,m) ∈ [−O(N), O(N)]s+2. So, if C is large enough in terms of s, we

may replace the restriction (u,m) ∈ [−CN,CN ]s+2 in (5.72) with the condition

(u,m) ∈ Rs+2, without changing the value of (5.72).

Then, by the Gowers-Cauchy-Schwarz inequality (Proposition 0.3.4) and the tri-

angle inequality, (5.72) is

�C (XO(1)‖g1‖2s+1

Us+1(R) + σ +
logX

σX
)

1
2s+1

�C (XO(1)ρ2s+1

+ σ +
logX

σX
)

1
2s+1 (5.73)

Choosing X = ρ−c1 , with c1 suitably small in terms of s, and σ = ρc1/2, expression

(5.73) is OC(ρΩ(1)).

Putting this estimate into (5.66), we get a bound on (5.66) of

�C Y
O(1)ρΩ(1) +O(

log Y

σFY
). (5.74)
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Picking Y = ρ−c1 , with c1 suitably small in terms of s, we may ensure that (5.74) is

OC(ρΩ(1)σ−1
F ), thus proving the proposition.

With these propositions in hand, Theorem 5.8.1 follows quickly.

Proof of Theorem 5.8.1. Assuming all the hypotheses of Theorem 5.8.1, apply the

result of Proposition 5.8.2 to T̃L,Ξ,r̃F,G (g1, · · · , gd). Thus

|T̃L,Ξ,r̃F,G (g1, · · · , gd)| �c,C,ε

∣∣∣ 1

Nh−m

∫
x∈Rh−m

F1(x)
d∏
j=1

gj(ψj(x) + aj) dx
∣∣∣, (5.75)

where Ψ : Rh−m −→ Rd has Ωc,C(1)-Cauchy-Schwarz complexity at most s, for

some s at most d − 2, F1 : Rh−m −→ [0, 1] is a Lipschitz function supported on

[−Oc,C,ε(N), Oc,C,ε(N)]h−m with Lipschitz constant O(1/σFN), and aj = OC(N).

We apply Proposition 5.3.8 to Ψ. Therefore, for any real numbers w1, · · · , ws+1,

|T̃L,Ξ,r̃F,G (g1, · · · , gd)| �
∣∣∣ 1

Nh−m

∫
x∈Rh−m

F1(x +
s+1∑
k=1

wkfk)
d∏
j=1

gj(ψ
′
j(x,w) + aj) dx

∣∣∣,
(5.76)

where

• for each j at most d, ψ′j : Rh−m × Rs+1 −→ R is a linear form;

• ψ′1(0,w) = w1 + · · ·+ ws+1;

• f1, · · · , fs+1 ∈ Rh−m are some vectors that satisfy ‖fk‖∞ = Oc,C(1) for each k

at most s+ 1;

• the system of forms (ψ′1, · · · , ψ′d) is in normal form with respect to ψ′1.

We remark that the right-hand side of expression (5.76) is independent of w, as it was

obtained by applying the change of variables x 7→ x+
∑s+1

k=1 wkfk to expression (5.75).
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Now, let P : Rs+1 −→ [0, 1] be some Lipschitz function, supported on [−N,N ]s+1,

with Lipschitz constant O(1/N). Also suppose that P (x) ≡ 1 if ‖x‖∞ 6 N/2.

Integrating over w, we have that |T̃L,Ξ,r̃F,G (g1, · · · , gd)| is

�c,C,ε
1

Nh−m+s+1

∫
w∈Rs+1

P (w)
∣∣∣ ∫
x∈Rh−m

F1(x +
s+1∑
k=1

wkfk)
d∏
j=1

gj(ψ
′
j(x,w) + aj) dx

∣∣∣ dw
�c,C,ε

∣∣∣ 1

Nh−m+s+1

∫
x∈Rh−m
w∈Rs+1

H(x,w)
d∏
j=1

gj(ψ
′
j(x,w) + aj) dx dw

∣∣∣, (5.77)

where the function H : Rh−m+s+1 −→ [0, 1] is defined by

H(x,w) := F1(x +
s+1∑
k=1

wkfk)P (w).

Since the vectors fk satisfy ‖fk‖∞ = Oc,C(1), H is a Lipschitz function supported

on [−Oc,C,ε(N), Oc,C,ε(N)]h−m+s+1, with Lipschitz constant Oc,C(1/σFN). Notice in

(5.77) that we were able to move the absolute value signs outside the integral, as P

is positive and the integral over x is independent of w (so in particular has constant

sign).

Fix x. Then the integral over w in (5.77) satisfies the hypotheses of Proposition

5.8.3. Applying Proposition 5.8.3 to this integral, and then integrating over x, one

derives

|T̃L,Ξ,r̃F,G (g1, · · · , gd)| �c,C,ε ρ
Ω(1)σ−1

F .

Theorem 5.8.1 is proved.

By our long series of reductions, this means that both Theorem 5.5.6 and the main

result (Theorem 5.2.10) are proved.
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5.9 Constructions

In this section we prove Theorem 5.2.12, which, we remind the reader, is the partial

converse of main result (Theorem 5.2.10). In other words, we show that L being

bounded away from V ∗degen(m, d) is a necessary hypotheses for Theorem 5.2.10 to be

true.

Proof of Theorem 5.2.12. Recall the hypotheses of Theorem 5.2.12. In particular, we

suppose that

lim inf
N→∞

dist(L, V ∗degen(m, d)) = 0,

i.e. we assume that dist(L, V ∗degen(m, d)) = ω(N)−1, for some function ω(N) such that

lim sup
N→∞

ω(N) =∞.

Let η be a small positive quantity, picked small enough in terms of c and C, and let

N be a natural number that is large enough so that ω(N) > η−1 and ηN > max(1, ε).

All implied constants to follow will be independent of η.

Since F is the indicator function of [1, N ]d and G is the indicator function of

[−ε, ε]m, one has

TLF,G(f1, · · · , fd) =
1

Nd−m

∑
n∈[N ]d

‖Ln‖∞6ε

d∏
j=1

fj(nj).

Our aim is to construct functions f1, . . . , fd : [N ] −→ [−1, 1] such that

min
j
‖fj‖Us+1[N ] 6 ρ
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for some ρ at most 1 and that

TLF,G(f1, · · · , fd) > H(ρ) + Eρ(N). (5.78)

We begin by observing that the condition ‖Ln‖∞ 6 ε implies certain constraints

on two of the variables ni. Indeed, let L′ ∈ V ∗degen(m, d) be such that ‖L − L′‖∞ =

dist(L, V ∗degen(m, d)). Write λ′ij for the coefficients of L′. By reordering columns,

without loss of generality we may assume that there exist real numbers {ai}mi=1 not

all 0 s.t. for all j in the range 3 6 j 6 d we have

m∑
i=1

aiλ
′
ij = 0, (5.79)

and further we may assume that for all i we have λ′i1 = λi1 and λ′i2 = λi2 (else

L′ ∈ V ∗degen(m, d) is not one of the closest matrices to L). By reordering rows and

rescaling, we may assume that a1 has maximal absolute value amongst all the ai, and

that |a1| = 1.

Define

b1 :=
m∑
i=1

aiλi1, b2 :=
m∑
i=1

aiλi2,

and let n ∈ [N ]d be some solution to ‖Ln‖∞ 6 ε. The critical observation is that

(5.79), combined with the assumptions on the ai, implies that

|b1n1 + b2n2| � ηN. (5.80)

Indeed, for j in the range 3 6 j 6 d we have

∣∣∣∣∣
m∑
i=1

aiλij

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

ai(λij − λ′ij)

∣∣∣∣∣
� η.
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Since ‖Ln‖∞ 6 ε, we certainly have that

∣∣∣∣∣b1n1 + b2n2 +
d∑
j=3

nj

m∑
i=1

aiλij

∣∣∣∣∣� ε,

and then (5.80) follows by the triangle inequality and the fact that ηN > ε.

The constraint (5.80) will turn out to be enough for the proof. We consider var-

ious cases, constructing different counterexample functions f1 and f2 based on the

size and sign of b1 and b2. To facilitate this, we let c1 be a suitably small positive

constant, depending on c and C, but independent of η. All constants C1 and C2 to

follow will be assumed to satisfy Oc,C(1).

Case 1: |b1|, |b2| 6 c1.

Under the assumptions of Theorem 5.2.12, this case is actually precluded. Indeed,

consider the matrix L′′, defined by taking

λ′′ij = λ′ij

for all pairs (i.j) ∈ [m]× [d], except for (1, 1) and (1, 2). In these cases we let

λ′′11 = λ′11 −
b1

a1

λ′′12 = λ′12 −
b2

a1

.

Then
m∑
i=1

aiλ
′′
ij = 0

for all j in the range 1 6 j 6 d. In other words we have shown that ‖L−L′′‖∞ 6 η+c1
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for some matrix L′′ with rank less than m. Since η+c1 < c (if c1 is small enough), this

implies that dist(L, Vrank(m, d)) < c, which contradicts the assumptions of Theorem

5.2.12. Therefore this case is indeed precluded.

Case 2: b1, b2 both of the same sign, and b1, b2 > c1.

In this case, (5.80) implies8 that n1 6 C1ηN for some constant C1. Now, define

f1 : [N ] −→ [−1, 1] to be the indicator function of the interval [dC1ηNe, N ] ∩ N. We

then have

‖f1 − 1‖Us+1[N ] �
( 1

N s+2

∑
x,h1,··· ,hs+1�C1ηN

1
) 1

2s+1

6 C2(C1η)
s+2

2s+1

for some constant C2. However, observe that

|TLF,G(f1 − 1, 1, · · · , 1)| = |TLF,G(f1, 1, · · · , 1)− TLF,G(1, 1, · · · , 1)|

= |0− TLF,G(1, 1, · · · , 1)| �c,C,ε 1

by the hypotheses of Theorem 5.2.12. If TLF,G(f1 − 1, 1, · · · , 1) did not satisfy (5.78),

then

1�c,C,ε H(ρ) + Eρ(1),

where ρ := C2(C1η)
s+2

2s+1 . Picking η small enough, then N large enough, this inequality

cannot possibly hold, and we have a contradiction. So TLF,G(f1 − 1, 1, · · · , 1) satisfies

(5.78).

Case 3: b1, b2 of opposite signs, and b1, b2 > c1.

This is the most involved case, although the central idea is very simple. The con-

8The same conclusion is true for n2, but this will not be needed.
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dition (5.80) confines n2 to lie within a certain distance of a fixed multiple of n1. By

constructing functions f1 and f2 using random choices of blocks of this length, but

coupled in such a way that condition (5.80) is very likely to hold, we can guarantee

that TLF,G(f1− p, f2− p, 1, · · · , 1) is bounded away from zero, where p is the probabil-

ity used to choose the random blocks. However, despite the block construction and

the coupling, the functions f1 and f2 still individually exhibit enough randomness to

conclude that ‖f1 − p‖Us+1[N ] = o(1), and the same for f2.

We now fill in the technical details. Relation (5.80) implies that

|b1n1 + b2n2| 6 C1ηN, (5.81)

for some C1 satisfying C1 = O(1), and without loss of generality assume that b1 is

positive, b2 is negative, and |b1| is at least |b2|. Let C2 be some parameter, chosen so

that (C1C2η)−1 is an integer. Such a C2 will of course depend on η, but in magnitude

we may pick C2 � 1. We consider the real interval [0, N ] modulo N , and for x ∈ [0, N ]

and i in the range 0 6 i 6 (C1C2η)−1 − 1 we define the half-open interval modulo N

Ii := [x+ iC1C2ηN, x+ (i+ 1)C1C2ηN).

This choice guarantees that

[0, N ] =

(C1C2η)−1−1⋃
i=0

Ii, (5.82)

and the union is disjoint. Now, for δ a small constant to be chosen later9, we define

Iδi := [x+ (i+
1

2
− δ)C1C2ηN, x+ (i+

1

2
+ δ)C1C2ηN).

9This δ is unrelated to the notation δ = TL
F,G(f1, · · · , fd) used in previous sections.
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We will use the partition (5.82) to construct a function f1, using an averaging

argument to choose an x so that the Iδi intervals capture a positive proportion of the

solution density of the linear inequality system. Indeed, for n1 ∈ [N ] let the weight

u(n1) denote the number of d−1-tuples n2, · · · , nd 6 N that together with n1 satisfy

the inequality ‖Ln‖∞ < ε. The weight u(n1) could be zero, of course. Let

Eδ := ∪iIδi .

Then

1

N

N∫
0

∑
n∈[N ]

u(n)1Eδ(n) dx =
1

N

∑
n∈[N ]

u(n)

N∫
0

1Eδ(n) dx

=
∑
n∈[N ]

u(n)2δ

= 2δNd−mTLF,G(1, · · · , 1)

Therefore, by the assumptions of Theorem 5.2.12, we may fix an x such that

∑
n∈[N ]

u(n)1Eδ(n)�c,C δN
d−mTLF,G(1, · · · , 1). (5.83)

Let us finally define the function f1. Let p be a small positive constant (to be

decided later). Fix a value of x such that (5.83) holds. Then we define a random

subset A ⊆ [N ] by picking all of Ii∩N to be members of A, with probability p, or none

of Ii ∩N to be members of A, with probability 1− p. We then make this same choice

for each i in the range 0 6 i 6 (C1C2η)−1 − 1, independently. Observe immediately

that for each n ∈ [N ] the probability that n ∈ A is always p (though these events are

not always independent). We let f1(n) be the indicator function 1A(n).
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The function f2 is defined in terms of f1. Indeed, let

Ji =
b1

|b2|
Ii ∩ (0, N ],

where the dilation is not considered modulo N but rather just as an operator on

subsets of R. Since b1 > |b2| we have that these Ji also form a disjoint partition

of [0, N ]. [NB: If b1 > |b2| it may be that certain Ji are empty, since the dilate of

the corresponding Ii may land entirely outside [0, N ].] Then let B be the subset of

[N ] defined so that for each i with Ji non-empty we have Ji ∩ N ⊆ B if and only if

Ii ∩ N ⊆ A. Note again that for each individual n ∈ [N ] the probability that n ∈ B

is always p. We let f2(n) be the indicator function 1B(n).

Our first claim is that, if p is small enough in terms of δ,

|ETLF,G(f1, f2, 1 · · · , 1)− TLF,G(p, p, 1 · · · , 1)| �c,C,ε δ
2. (5.84)

Indeed, suppose that Ii is included in the set A, and suppose that n1 ∈ Iδi . If

n2 ∈ [N ] satisfies | b1|b2|n1 − n2| 6 1
b2
C1ηN and if δ is small enough in terms of b1 and

b2, then10 n2 ∈ Ji. Thus, by the observation (5.81), n2 ∈ B, for every integer n2 that

is the second coordinate of a solution vector11 n for which the first coordinate is n1.

Therefore

ETLF,G(f1, f2, 1, · · · , 1) =
1

Nd−m

∑
n∈[N ]d

‖Ln‖∞6ε

P(n1 ∈ A ∧ n2 ∈ B)

>
1

Nd−m

∑
n∈[N ]d

‖Ln‖∞6ε

P(n1 ∈ A ∧ n1 ∈ Iδi for some i ∧ n2 ∈ B)

10This fact is the reason why we introduced the parameter δ.
11i.e a vector n such that ‖Ln‖∞ 6 ε.
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>
1

Nd−m

∑
n∈[N ]d

‖Ln‖∞6ε

P(n1 ∈ A ∧ n1 ∈ Iδi for some i)

=
1

Nd−m

∑
n1∈[N ]

u(n1)p1Eδ(n1)

> 2δpTLF,G(1, · · · , 1),

where the final line follows from (5.83). On the other hand TLF,G(p, p, 1, · · · , 1) =

p2TLF,G(1, · · · , 1), and hence

ETLF,G(f1, f2, 1 · · · , 1)− TLF,G(p, p, 1 · · · , 1) > (2δp− p2)TLF,G(1, · · · , 1). (5.85)

Picking p small enough in terms of δ, and using the assumption that TLF,G(1, · · · , 1) =

Ωc,C,ε(1), this proves the relation (5.84).

Our second claim is that

E‖f1 − p‖Us+1[N ],E‖f2 − p‖Us+1[N ] � η
1

2s+1 . (5.86)

We first consider f1. Then

E‖f1 − p‖2s+1

Us+1[N ] �
1

N s+2

∑
(x,h)∈Zs+2

E
( ∏
ω∈{0,1}s+1

(f1 − p1[N ])(x+ h · ω)
)
.

Observe that for fixed (x,h) the random variables (f1 − p1[N ])(x + h · ω) each have

mean zero and, unless some two of the expressions x+ h ·ω lie in the same block Ii,

these random variables are independent. Hence, apart from those exceptional cases,

we may factor the expectation and conclude that

E
( ∏
ω∈{0,1}s+1

(f1 − p1[N ])(x+ h · ω)
)

=
∏

ω∈{0,1}s+1

E((f1 − p1[N ])(x+ h · ω)) = 0.
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Therefore,

E‖f1 − p‖2s+1

Us+1[N ] �
1

N s+2

∑
(x,h)∈[−N,N ]s+2

1R(h)

� η,

where

R = {h : |h · (ω1 − ω2)| 6 C1C2ηN for some ω1,ω2 ∈ {0, 1}s+1, ω1 6= ω2}.

Thus by Jensen’s inequality we have

E‖f1 − p‖Us+1[N ] � η
1

2s+1 , (5.87)

as claimed in (5.86).

The calculation for f2 is essentially identical, noting that the length of the blocks

Ji is also O(ηN).

It is possible that one could finish the argument here by considering a second

moment, and choosing some explicit f1 and f2. To avoid calculating a second moment,

we argue as follows. Suppose for contradiction that there were no functions f1, · · · , fd

that satisfied (5.78). Then, by (5.84), if we pick p to be small enough in terms of δ

we have

δ2 �c,C,ε |ETLF,G(f1, f2, 1, · · · , 1)− TLF,G(p, p, 1 · · · , 1)|

� |ETLF,G(f1 − p, f2, 1, · · · , 1)|+ |ETLF,G(p, f2 − p, 1, · · · , 1)|

� E(H(ρ1) + Eρ1(N)) + E(H(ρ2) + Eρ2(N)), (5.88)

where ρ1 (resp. ρ2) is any chosen upper-bound on ‖f1 − p‖Us+1[N ] (resp. ‖f2 −
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p‖Us+1[N ]). Note that the values ρi may be random variables themselves.

We claim that the random variables ρ1 and ρ2 may be chosen so that the right-

hand side of (5.88) is κ(η) + oη(1). To prove this, we make two observations. Note

first that by Markov’s inequality

P(‖f1 − p‖Us+1[N ] > η
1

2s+2 )� η
1

2s+2

We choose the (random) upper-bound ρ1 satisfying

ρ1 =


1 if ‖f1 − p‖Us+1[N ] > η

1
2s+2

η
1

2s+2 otherwise .

Secondly, we may upper-bound H by a concave envelope, so without loss of generality

we may assume that H is concave.

Then by Jensen’s inequality,

E(H(ρ1) + Eρ1(N))� H(Eρ1) + E(Eρ1(1))

� κ(η
1

2s+2 ) + oη(1)

� κ(η) + oη(1). (5.89)

We do the same manipulation for f2. Combining (5.89) with (5.88) we conclude that

δ2 �c,C,ε κ(η) + oη(1). (5.90)

The only condition on δ occurred in the proof of (5.84), in which we assumed that

δ was small enough in terms of b1 and b2. Therefore there exists a suitable δ that

satisfies δ = Ωc,C(1). Picking such a δ, and then picking η small enough and N large

enough, (5.90) is a contradiction. So there must be some functions f1, · · · , fd that
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satisfy (5.78).

Case 4: Exactly one of b1, b2 satisfies bi > c1.

Without loss of generality we may assume that b1 > c1. But then, as in Case 2,

(5.80) implies that n1 6 C1ηN for some constant C1. The same construction as in

Case 2 then applies.

We have covered all cases, and thus have concluded the proof of Theorem 5.2.12.

5.10 Rank matrix and normal form: proofs

In this section we prove the two quantitative statements from section 5.3, namely

Propositions 5.3.1 and 5.3.8.

We begin with a simple proposition concerning points bounded away from alge-

braic varieties.

Proposition 5.10.1. Let n be a natural number, and let I E R[X1, · · · , Xn] be an

ideal with generators q1, · · · , ql. Let V (I) ⊂ Rn denote the affine variety generated by

I. Suppose that x ∈ Rn is a point with ‖x‖∞ 6 C and with dist(x, V (I)) > c,

for some absolute positive constants c and C. Then, there is some qj such that

|qj(x)| = Ωc,C,I(1).

Proof. This is nothing more than the Heine-Borel theorem. To spell it out, suppose

for contradiction that, for all positive ε, there exists an x ∈ Rn with ‖x‖∞ 6 C

and dist(x, V (I)) > c, but with |qj(x)| < ε for every j. Taking a sequence of ε

tending to 0, we get a corresponding sequence of xε. Since all xε lie in a compact

set, there exists a convergent subsequence tending to some limit point x. But then
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dist(x, V (I)) > c (by the continuity of the dist function and the fact that V (I) is

closed in the Euclidean topology). Yet qj(x) = 0 for every j, and hence x ∈ V (I),

which is a contradiction.

From Proposition 5.10.1 it is easy to deduce the existence of rank matrices.

Proof of Proposition 5.3.1. Suppose that d > m. Let k be equal to ( d
m ), and

identify Rmd with the space of m-by-d real matrices. Then let q1, · · · , qk be the k

polynomials on Rmd that are given by the k determinants of m-by-m submatrices.

Let I ER[X1, · · · , Xmd] be the ideal generated by the polynomials qi. One then sees

that Vrank is exactly the variety generated by I. This is since row rank equals column

rank, and linear independence of columns in a square matrix can be detected by the

determinant.

Since we assume that ‖L‖∞ 6 C and dist(L, Vrank) > c we can fruitfully apply

Proposition 5.10.1 to deduce that there exist some positive δ, depending only on c

and C, and some natural number j such that |qj(L)| > δ. The matrix M whose

determinant corresponds to the polynomial qj is exactly the claimed rank matrix.

This settles the first part of Proposition 5.3.1. The second part then follows im-

mediate by the construction of M−1 as the adjugate matrix of M divided by detM .

The third part, namely the statement about linear combinations of rows, follows

quickly from the others. Indeed, without loss of generality, assume that the rank

matrix M is realised by columns 1 through m. Then, the fact that the rows of

L are linearly independent means that there are unique real numbers ai such that
m∑
i=1

aiλij = vj for all j in the range 1 6 j 6 d. (Recall that (λij)i6m,j6d denotes the

coefficients of L). Restricting to j in the range 1 6 j 6 m, we observe that the ai are
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forced to satisfy 
a1

...

am

 = (MT )−1


v1

...

vm

 .

Since ‖(M−1)T‖∞ = ‖M−1‖∞ = Oc,C(1), we conclude that ai = Oc,C,C1(1) for all i.

The final part of the proposition is to show that if dist(L, V global
rank (m, d)) > c then,

for each j, there exists a rank matrix of L that doesn’t include the jth column.

But this statement follows immediately from the above, after having deleted the jth

column.

We now consider the quantitative normal form algorithm, and prove Proposition

5.3.8. We remind the reader that, in the proof, the implied constants may depend on

the dimensions of the underlying spaces, namely m and n. For the definition of the

variety VPi , which consists of all systems of linear forms for which the partition Pi is

not ‘suitable’, the reader may consult Definition 5.3.5.

Proof of Proposition 5.3.8. Fix i, and let Pi be a partition of [m] \ {i} such that

dist(Ψ, VPi) > c1 (such a Pi exists by the definition of c1-Cauchy-Schwarz complexity,

i.e. by Definition 5.3.6). The partition Pi has si + 1 parts, for some si at most s,

but it is clear from Definition 5.3.6 (and the definition of the degeneracy varieties

themselves) that we may, without loss of generality, further subdivide the partition

and assume that the partition Pi has exactly s + 1 parts. Call the parts C1 through

Cs+1.

Via Gaussian elimination, for each k ∈ [s+ 1] we may find a vector fk ∈ Rn that

witnesses the fact that dist(Ψ, VPi) > 0, i.e. for which ψi(fk) = 1 but ψj(fk) = 0 for

all j ∈ Ck. (If given a free choice for one of the coordinates of fk, we set it to be 0).

We claim further that Gaussian elimination may be applied in such a way so that the
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form

Ψ′(u, w1, · · · , ws+1) := Ψ(u + w1f1 + · · ·+ ws+1fs+1)

satisfies the conclusions of the proposition.

Indeed, if Ψ′ = (ψ′1, · · · , ψ′m), the form ψ′i(u, w1, · · · , ws+1) is the only one that uses

all of the wk variables. Furthermore, ψ′i(0,w) = w1 + · · ·+ws+1. Also, n′ = n+ s+ 1,

which is at most n+m− 1.

So Proposition 5.3.8 is proved if we can find such fk satisfying ‖fk‖∞ 6 Oc1,C1(1).

This is an issue of some subtlety, as, even having assumed the bound dist(Ψ, Vdegen) >

c1, there could be unbounded fk that satisfy ψi(fk) = 1 and ψj(fk) = 0 for all j ∈ Ck.

Consider a fixed k, and fix some choice of implementation of the Gaussian elim-

ination algorithm from above. The coordinates of the claimed solution vector fk are

the evaluations of certain rational functions taken at the coefficients of Ψ. [We now

identify Ψ with the coordinate vector in Rmn of its coefficients.] It could be that

Ψ is a pole of some of these functions, although we know that there is at least one

implementation of the algorithm in which it is not.

Let Γ be the set of possible implementations of Gaussian elimination. The size

|Γ| is essentially (1 + |Ck|)!, but for us it will be enough that |Γ| = O(1). Now, for

each γ ∈ Γ, let the rational functions

pγ,1(Ψ)

qγ,1(Ψ)
, · · · , pγ,n(Ψ)

qγ,n(Ψ)

be the n rational functions defining the claimed coefficients of fk. One may assume

without loss of generality that, for all j, pγ,j, qγ,j ∈ Z[X1, · · · , Xn] are co-prime poly-

nomials, with coefficients of size O(1). Now let

Qγ :=
∏
j6n

qγ,j.
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We claim that V (I) ⊆ VPi , where I is the ideal generated by the set of polynomials

{Qγ : γ ∈ Γ} and V (I) is the affine variety generated by I. (See Definition 5.3.5 for

the definition of VPi .) This claim may be proved in one line: indeed, if Qγ(Ψ) = 0 for

all γ ∈ Γ then there is no Gaussian elimination implementation that finds a solution

fk, and this in turn implies that Pi is not suitable12 for Ψ. Since V (I) ⊆ VPi , the

assumptions of Proposition 5.3.8 imply that dist(Ψ, V (I)) > c1.

Applying Proposition 5.10.1 to the ideal I, we conclude that there is some γ ∈ Γ

such that |Qγ(Ψ)| = Ωc1,C1(1). In particular, we conclude that the solution vector fk

obtained by the implementation γ has coefficients that are Oc1,C1(1). This concludes

the proof of Proposition 5.3.8.

Let us illustrate the above proof with an instructive example. Consider n = 3,

m = 2, i = 1, and denote

Ψ =

s11 s12 s13

s21 s22 s23

 .

Then the partition Pi consists of the singleton {2}, and implementing Gaussian elim-

ination a certain way we have

f1 =


s22/(s11s22 − s12s21)

−s21/(s11s22 − s12s21)

0


as a solution, in the case where s11s22− s12s21 is non-zero. Of course if s11s23− s13s21

12See Definition 5.3.5 for the term ‘suitable’.
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is non-zero too, we have another solution

f1 =


s23/(s11s23 − s13s21)

0

−s21/(s11s23 − s13s21)

 .

So, if one applied Gaussian elimination idly, one might end up with either of these

two solutions. Unfortunately it could be the case that dist(Ψ, VPi) > c1 whilst one of

these determinants, s11s22 − s12s21 say, was non-zero yet o(1) (as the unseen variable

N , on which Ψ will ultimately depend, tends to infinity). In this instance, applying

the first implementation of the algorithm would not give a desirable solution vector f1.

Therefore we need some subtlety to ensure that we pick the correct implementation.

It is worth including a brief discussion on why these quantitative subtleties do

not arise in the setting of [38]. Indeed, assume that Ψ has rational coefficients of

naive height at most C1. Proceed with all the linear algebra from the previous proof,

over Q, and choose any implementation of Gaussian elimination that is valid for Ψ.

As previously remarked, the coordinates of the solution vector fk are the evaluations

of certain rational functions
pj
qj

with pj, qj ∈ Z[X1, · · · , Xn] co-prime, taken at the

coefficients of Ψ. [We now once more identify Ψ with the coordinate vector in Rmn

of its coefficients.] By the construction of the algorithm,

Ψ 6∈
n⋃
j=1

{Ψ′ : qj(Ψ′) = 0}.

Yet now we observe a key distinction from the situation over the reals, namely that

there are only OC1(1) many possible choices of Ψ (since Ψ has rational coordinates

of bounded height). Therefore, with the above information, we can immediately
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conclude that

dist(Ψ,
n⋃
j=1

{Ψ′ : qj(Ψ′) = 0})�C1 1,

without needing to assume this as an extra hypothesis.

5.11 Additional linear algebra

In this section, we collect together the assortment of standard linear algebra lemmas

that we used at various points throughout the chapter. We also give the linear algebra

argument used to construct the matrix P during the proof of Lemma 5.5.10.

This first lemma demonstrates the intuitive fact, that if L : Rd −→ Rm is a linear

map then L : (kerL)⊥ −→ Rm has bounded inverse.

Lemma 5.11.1. Let m, d be natural numbers, with d > m+1, and let c, C, l be positive

constants. Let L : Rd −→ Rm be a surjective linear map, and suppose ‖L‖∞ 6 C

and dist(L, Vrank(m, d)) > c. Let K denote kerL. Let R be a convex set contained in

[−l, l]m. Then, if v ∈ K⊥, Lv ∈ R only when v ∈ R′, where R′ is some convex region

that satisfies R′ ⊆ [−Oc,C(l), Oc,C(l)]d.

Proof. Writing L as a m-by-d matrix with respect to the standard bases, let λi ∈ Rd

denote the column vector such that λi
T is the ith row of L. Since dist(L, Vrank(m, d)) >

c, the vectors λi are linearly independent. Moreover, we may extend the set {λi :

i 6 m} by orthogonal vectors of unit length to form a basis {λi : i 6 d} for Rd.

We claim that for all k ∈ [d] we have

d∑
i=1

akiλi = ek,

for some coefficients aki satisfying |aki| = Oc,C(1), where ek ∈ Rd is the kth standard

200



basis vector. Indeed, fix k, and note that ek = xk + yk, where xk ∈ span(λi : i 6 m)

and yk ∈ span(λi : m + 1 6 i 6 d). The vectors xk and yk are orthogonal by

construction, so in particular ‖xk‖2
2 + ‖yk‖2

2 = 1, and hence ‖xk‖∞, ‖yk‖∞ � 1. By

the third part of Proposition 5.3.1 applied to xk we get |aki| = Oc,C(1) when i 6 m,

and the orthonormality of {λi : m+ 1 6 i 6 d} implies that |aki| = O(1) when i is in

the range m+ 1 6 i 6 d.

Now notice that span(λi : m + 1 6 i 6 d) is exactly equal to K. Let v ∈ K⊥,

and suppose Lv ∈ R. Letting L′ be the d-by-d matrix whose rows are λi
T , we have

that L′v = w for some vector w satisfying ‖w‖∞ � l. Pre-multiplying by the matrix

A = (aki), we immediately get v = Aw, and hence ‖v‖∞ = Oc,C(l). The region

R′ := (L−1R)∩K⊥ is therefore bounded. R′ is clearly convex, and so the proposition

is proved.

This next lemma concerns vectors, with integer coordinates, that lie near to a

subspace.

Lemma 5.11.2. Let h, d be natural numbers, with h 6 d, and let C, η be positive

reals. Let Ξ : Rh −→ Rd be an injective linear map, with ‖Ξ‖∞ 6 C. Suppose further

that Ξ(Zh) = Zd ∩ Ξ(Rh). Let n, r̃ ∈ Zd. Suppose that

dist(n,Ξ(Rh) + r̃) 6 η. (5.91)

Then, if η is small enough in terms of C, h and d, n = Ξ(m) + r̃, for some unique

m ∈ Zh.

Proof. By replacing n with n − r̃, we can assume without loss of generality that

r̃ = 0. It will also be enough to show that n ∈ Ξ(Rh), as the injectivity of Ξ and the

assumption that Ξ(Zh) = Zd ∩ Ξ(Rh) immediately go on to imply the existence of a

unique m.
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Suppose for contradiction then that n /∈ Ξ(Rh). In matrix form, Ξ is a d-by-

h matrix with linearly independent columns, all of whose coefficients are integers

with absolute value at most C. We can extend this matrix to a d-by-d matrix Ξ̃,

with linearly independent columns, all of whose coefficients are integers with absolute

value at most C. Then (Ξ̃)−1 is a d-by-d matrix with rational coefficients of naive

height at most CO(1), and (Ξ̃)−1(Ξ(Rh)) = Rh × {0}d−h.

Since n /∈ Ξ(Rh), we have (Ξ̃)−1(n) /∈ Rh×{0}d−h. But (Ξ̃)−1(n) ∈ 1
K
Zd, for some

natural number K satisfying K = O(CO(1)). Therefore

dist((Ξ̃)−1(n), (Ξ̃)−1(Ξ(Rh)))� C−O(1).

Applying Ξ̃, we conclude that

dist(n,Ξ(Rh))� C−O(1),

which is a contradiction to (5.91) if η is small enough.

The construction of the matrix Ξ̃ in the above proof also has an even more basic

consequence, namely that Ξ−1 : im Ξ −→ Rh is bounded.

Lemma 5.11.3. Let h, d be natural numbers, with h 6 d, and let C, η be positive reals.

Suppose that Ξ : Rh −→ Rd is an injective linear map, with ‖Ξ‖∞ 6 C. Suppose

further that Ξ(Zh) ⊆ Zd ∩ Ξ(Rh). Then if ‖Ξ(y)‖∞ 6 η, we have ‖y‖∞ � C−O(1)η.

Proof. Construct the matrix Ξ̃ as in the previous proof. Then ‖(Ξ̃)−1(Ξ(y))‖∞ �

CO(1)η, by the bound on the size of the coefficients of Ξ̃. But (Ξ̃)−1(Ξ(y)) ∈ Rd is

nothing more than the vector y ∈ Rh extended by zeros. So ‖y‖∞ � CO(1)η as

claimed.

Finally, we give the linear algebra argument used to construct the matrix P during

the proof of Lemma 5.5.10.
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Lemma 5.11.4. Let m, d be natural numbers, with d > m+ 1. Let L : Rd −→ Rm be

a surjective linear map with rational dimension u, and let Θ : Rm −→ Ru be a rational

map for L. Suppose that ‖L‖∞ 6 C and ‖Θ‖∞ 6 C. Equating L with its matrix,

suppose that the first m columns of L form the identity matrix. Let {a1, · · · , au} be a

basis for the lattice ΘL(Zd) that satisfies ‖ai‖∞ = OC(1) for every i. Let x1, · · · ,xu ∈

Zd be vectors such that, for every i, ΘL(xi) = ai and ‖xi‖∞ = OC(1). Then

Rm = span(Lxi : i 6 u)⊕ ker Θ (5.92)

and there is an invertible linear map P : Rm −→ Rm such that

P ((span(Lxi : i 6 u))) = Ru × {0}m−u,

P (ker Θ) = {0}u × Rm−u,

and both ‖P‖∞ = OC(1) and ‖P−1‖∞ = OC(1).

Note that both {a1, · · · , au} and x1, · · · ,xu ∈ Zd exist by applying Lemma 5.5.7 to

the map S := ΘL.

Proof. The expression (5.92) is immediate from the definitions, so it remains to con-

struct P . We may assume, since the first m columns of L form the identity matrix,

that Θ has integer coefficients.

As ‖Θ‖∞ = OC(1), we may pick a basis {y1, · · · ,ym−u} for ker Θ in which yj ∈ Zm

and ‖yj‖∞ = OC(1) for all j. Let b1, · · · ,bm denote the standard basis of Rm, and

define P by letting

P (Lxi) := bi, 1 6 i 6 u

P (yj) := bj+u, 1 6 j 6 m− u, (5.93)
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and then extending linearly to all of Rm. Clearly P ((span(Lxi : i 6 u))) = Ru ×

{0}m−u and P (ker Θ) = {0}u × Rm−u. It is also immediate that ‖P−1‖∞ = OC(1),

since ‖Lxi‖∞ = OC(1) and ‖yj‖∞ = OC(1) for all i and j. It remains to bound ‖P‖∞.

If Lxi were all vectors with integer coordinates then this bound would be immediate

as well, as then P−1 would have integer coordinates and hence | detP−1| > 1. As it

is, we have to proceed more slowly.

To this end, for a standard basis vector bk write

bk =
u∑
i=1

λiLxi +
d−u∑
j=1

µjyj.

It will be enough to show that |λi|, |µj| = OC(1) for all i and j. First note that, since

the first m columns of L form the identity, bk ∈ L(Zd). Also Θ(bk) =
∑u

i=1 λiai.

So a :=
∑u

i=1 λiai is an element of ΘL(Zd) that satisfies ‖a‖∞ = OC(1). Since

‖ai‖∞ = OC(1) for every i, and {a1, · · · , au} is a basis for the lattice ΘL(Zd), this

implies that |λi| = OC(1) for every i.

So then
∑d−u

j=1 µjyj is a vector in ker Θ satisfying ‖
∑d−u

j=1 µjyj‖∞ = OC(1). Since

{y1, · · · ,ym−u} is a set of linearly independent vectors, each of which has integer

coordinates with absolute value OC(1), this implies that |µj| = OC(1) for every j.

Therefore P satisfies the conclusions of the lemma.

Remark 5.11.5. We note the effects of the above construction in the case when L

has algebraic coefficients. We use a rudimentary version of height: if Q ∈ Z[X] we

define

H(Q) := max(|qi| : qi a coefficient of Q)

to be the height of Q, and we say that the height of an algebraic number is the

height of its minimal polynomial. (So there are Ok,H(1) algebraic numbers of degree

at most k and height at most H). Then, if in the statement of Lemma 5.11.4 all the

coefficients of L are algebraic numbers with degree at most k and height at most H,
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all the coefficients of P are algebraic numbers of degree Ok(1) and height OC,k,H(1).

5.12 The approximation function in the algebraic

case

We use this final section to give the proof of relation (5.15). The following lemma

makes this relation quantitatively precise.

Lemma 5.12.1. Let m, d be natural numbers, with d > m+1, and let c, C be positive

constants. Let L : Rd −→ Rm be a surjective linear map, and suppose that the

matrix of L has algebraic coefficients of algebraic degree at most k and algebraic

height at most H (see Remark 5.11.5 for definitions). Suppose that ‖L‖∞ 6 C, that

dist(L, Vrank(m, d)) > c, and that L has rational complexity at most C. Let τ1, τ2 be

two parameters in the range 0 < τ1, τ2 6 1. Then

AL(τ1, τ2)�k,H,c,C min(τ1, τ
Ok(1)
2 ).

Proof. We begin by reducing to the case when L is purely irrational. Indeed, con-

sider Lemma 5.5.10 and replace L by the map L′ (expression (5.34)). By part (9) of

Lemma 5.5.10, AL′(τ1, τ2)�c,C AL(Ωc,C(τ1),Ωc,C(τ2)). Also, using Remark 5.11.5, it

follows that L′ has algebraic coefficients of algebraic degree at most Ok(1) and alge-

braic height at most Oc,C,k,H(1). So, replacing L with L′, without loss of generality

we may assume that L is purely irrational.

Suppose for contradiction that for all choices of constants c1 and C2, there exist

parameters τ1 and τ2 such that AL(τ1, τ2) < c1 min(τ1, τ
C2
2 ), i.e. there exists a map
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α ∈ (Rm)∗ and a map ϕ ∈ (Zd)T such that τ1 6 ‖α‖∞ 6 τ−1
2 and

‖L∗α− ϕ‖∞ < c1 min(τ1, τ
C2
2 ). (5.94)

Fix α and ϕ so that they satisfy (5.94). We will obtain a contradiction if c1 is small

enough in terms of c, C, k,H, and if and C2 is large enough in terms of k.

In the first part of the proof, we apply various reductions to enable us to replace

α with a map that has integer coordinates with respect to the standard dual basis of

(Rm)∗.

Let M be a rank matrix of L (Proposition 5.3.1), and assume without loss of

generality that M consists of the first m columns of L. Then there exists a map

β ∈ (Rm)∗, namely β := M∗α, such that τ1 �c,C ‖β‖∞ �c,C τ
−1
2 and

‖L∗(M−1)∗β − ϕ‖∞ < c1 min(τ1, τ
C2
2 ). (5.95)

Since the first m columns of M−1L form the identity matrix,(5.95) implies that

dist(β, (Zm)T ) < c1 min(τ1, τ
C2
2 ). (5.96)

We know that ‖β‖∞ = Ωc,C(τ1). Also, considering (5.96), by perturbing β by

a suitable element γ ∈ (Rm)∗ with ‖γ‖∞ < c1 min(τ1, τ
C2
2 ) we may obtain a map

ρ ∈ (Zm)T . Combining these facts, note how

‖ρ‖∞ > ‖β‖∞ − c1 min(τ1, τ
C2
2 )

�c,C τ1

if c1 is small enough, and so certainly ρ 6= 0.
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From (5.95), we therefore conclude that there exists some ρ ∈ (Zm)T \ {0}, satis-

fying ‖ρ‖∞ = Oc,C(τ−1
2 ), such that

‖L∗(M−1)∗ρ− ϕ‖∞ < c1C3τ
C2
2 (5.97)

where C3 is some constant that depends on c and C. Referring back to (5.94), we see

that we have achieved our goal of replacing α with a map that has integer coefficients.

Expression (5.97) leads to a contradiction. Morally this follows from Liouville’s

theorem on the diophantine approximation of algebraic numbers, but we couldn’t find

exactly the statement we needed in the literature, so we include a short argument

here.

Indeed, let ϕ = (ϕ1 · · · ϕd) be the representation of ϕ with respect to the

standard dual basis of (Rd)∗ (with analogous notation for L∗(M−1)∗ρ). Since L is

assumed to be purely irrational, so is M−1L. Therefore, since ρ : Rm −→ R is

surjective (since it is non-zero), we may pick some co-ordinate i at most d for which

(L∗(M−1)∗ρ)i − ϕi 6= 0. So there are algebraic numbers λ1, · · · , λm with algebraic

degree Ok(1) and algebraic height Oc,C,k,H(1) for which

0 < |
m∑
j=1

λjρj − ϕi| < c1C3τ
C2
2 , (5.98)

where (ρ1 · · · ρm) is the representation of ρ with respect to the standard dual basis.

Note that if c1 is small enough, by (5.98) and the fact that ‖ρ‖∞ = Oc,C(τ−1
2 ) one has

|ϕi| = Oc,C(τ−1
2 ).

Our aim will be to find a suitable polynomial Q for which Q(
m∑
j=1

λjαj) = 0, and

then to apply Liouville’s original argument.
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Assume without loss of generality that each λjρj is non-zero. For each j at most

m, let Qj ∈ Z[X] denote the minimal polynomial of λjρj. Note that the degree of

Qj is Ok(1) (since ρj ∈ Z). By the bounds on the degree and height of λj, and since

‖ρ‖∞ = Oc,C(τ−1
2 ), we have H(Qj) = Oc,C,k,H(τ

−Ok(1)
2 ).

By using the standard construction based on resultants (see [14, section 4.2.1]),

this implies that there is a polynomial Q ∈ Z[X] with degree Ok(1) such that

Q(
m∑
j=1

λjρj) = 0 and H(Q) = Oc,C,k,H(τ
−Ok(1)
2 ).

Now, it could be that ϕi is a root of Q. If this is the case, we use the fac-

tor theorem and Gauss’ Lemma to replace Q by the integer-coefficient polynomial

Q · (X − ϕi)
−1. In this case, H(Q · (X − ϕi)

−1) �c,C,k,H (ϕi + 1)Ok(1)τ
−Ok(1)
2 . By

repeating this process as necessary, since |ϕi| = Oc,C(τ−1
2 ) we may assume therefore

that ϕi is not a root of Q and that there exists a constant CL depending on L such

that H(Q) = Oc,C,k,H(τ
−Ok(1)
2 ).

This immediately implies a bound on the derivative of Q, namely that, for any θ,

|Q′(θ)| �c,C,k,H τ
−Ok(1)
2

∑
06a6Ok(1)

θa.

But then the mean value theorem implies that for some θ in the interval

[
∑

j λjαj, ϕi] one has

1 6 |Q(ϕi)| = |Q(
m∑
j=1

λjρj)−Q(ϕi)| 6 |Q′(θ)||
m∑
j=1

λjρj −ϕi| �c,C,k,H c1C3τ
−Ok(1)
2 τC2

2 .

If C2 is large enough in terms of k, this implies that c1 = Ωc,C,k,H(1) , which is a

contradiction if c1 is small enough. Therefore the lemma holds.
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