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Abstract

Despite the great amount of research done on network security in the past decades,

securing the communication from the physical layer perspective is still emerging and

considerably a hot research area in wireless communication. Current researches in-

volve the usage of physical layer characteristics as a secret key to be used between the

communicating nodes. To that extent, as part of a physical layer security project, a

security scheme based on the distance between communicating nodes was proposed.

This thesis aims to propose and investigate some parameters estimation for the eaves-

dropper to achieve the breaching of distance based security scheme. Those parameters

include the number of sources estimation, direction of arrivals estimation, distance

estimation and the usage of such estimations to calculate the distance between the

communicating nodes. By that, the distance in which the security key is based on

can be estimated from an eavesdropper node and ideally the key should be gen-

erated correctly. The algorithms should handle accurate estimations with different

circumstances, including low signal to noise ratio and an unknown number of applied

signals which can be enforced by the two communicating nodes. Besides, it should

be practically implementable so that it can be employed easily on any hardware.

Different algorithms for the number of sources estimation will be proposed to

overcome the problem of unknown sources. Two directions of arrival algorithms will

be investigated and one distance estimation algorithm will be explained to be later

used in hardware implementation. The end results should clarify if the distance

between communicating nodes can be estimated approximately, state the limitations

of doing so, analyze the effect on the system and propose some ways to overcome

such breaching schemes. It should be noted that the end objective is not to breach

the security scheme, but to know its limitations in order to enhance it using further

research.
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Chapter 1

Introduction

Signal processing is a critical technology that is involved in many applications in-

cluding image, sound and video processing, wireless communication, control systems

and source and channel coding. In computer networks, signal processing is highly

involved in the physical layer and the presentation layer of the networking stack. In

the context of the physical layer, signal processing techniques are used in cognitive

radios, military communications and many other applications that are emerging in

today’s research. We are interested in the use of signal processing techniques in order

to extract physical layer characteristics and then use them in security from the phys-

ical layer perspective, which is one of the newly emerging and highly critical fields in

networking.

Traditionally, securing the communication system from the physical layer per-

spective is done using information theoretic approaches which are costly, impractical

and rarely implementable on actual hardware. Cryptographic techniques that are

applied to the upper layers in the networking stack sound promising; however, due to

their key generation complexity and assumptions, it cannot be applied at the phys-

ical layer. On the other hand, physical layer characteristics such as channel state

information, radio frequency and node localization information look helpful in key

generation as they can act as a source of randomness and easy to get using signal

processing techniques applied to the received signal in wireless channels.

Thus, as part of the research project, a physical layer key generation scheme was

proposed based on the distance between the two authorized nodes. This scheme

would use the distance between the nodes, which can be considered as a source of
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randomness in mobile networks, to agree on a secret key that can be used by both

nodes without enabling the eavesdropper, which is someone who is trying to breach

the system, to know about it. In order for an eavesdropper to breach the system,

she/he needs to listen to the communication while the key is exchanged, use multiple

estimations to estimate the distance in which the key was based on and then generate

the key based on those estimated distances.

To estimate the distance, the adversary needs to use multiple signal processing

techniques that include a number of sources estimation, direction of arrival (DoA)

estimations and distance estimation from both nodes. Since we are dealing with

wireless channels, the possibility of receiving more than two sources is high, so the

number of sources estimation is needed to know many sources are received and extract

those of interest, i.e. extract the two communicating nodes. DoA estimation is

needed to estimate the direction of signals coming from both communicating nodes

while distance estimation is needed to estimate the distances from the eavesdropper

to both nodes. Based on the estimated information, the eavesdropper can estimate

the distance between the communicating nodes using triangle laws such as the law of

cosine in which two sides and an angle of the triangle is known and the third side is

required. The assumption over here is that the nodes are communicating back and

forth so that the eavesdropper can receive a signal from both nodes.

The goal of this thesis is to estimate the required parameters and apply the pre-

viously stated procedure to estimate distance from an eavesdroppers point of view.

The system can be viewed as in Fig. 1.1 where the node agrees on a distance-based

security key and a passive eavesdropper that is just listening to their communication.

The objective is to estimate the key and check the effect on the system in such sce-

narios. The importance of doing so is to determine how secure the communication is

if the distance was exactly known by the eavesdropper and if she/he is able to breach

the system or not. In addition, this work will help in gaining insight into distance-
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Figure 1.1: Overview

based security scheme and will act as a starting point for building stronger security

algorithms that can secure the communication even if the distance is known.

Thus, the main objectives or points to achieve in this thesis are:

• Estimating the number of sources: As the eavesdropper is dealing with wire-

less channels, she/he might be receiving multiple signals from multiple sources.

Therefore, the first step is to estimate how many signals she/he is receiving

and then extract the ones of interest. Extracting the signals of interest would

involve network protocols other than physical layer processing and hence such

process is out of the scope of this thesis. However, this thesis estimates the

number of sources and then assumes that the first two signals are the one of

interest.

• Estimating DoA in an accurate way, taking into consideration low Signal-to-

Noise-Ratio(SNR) and a small number of samples.

• Estimating the distances from the eavesdropper to the communicating nodes.

• Estimating the distance between the sender and the receiver, from the eaves-

dropper’s point of view.

• Evaluating the estimated distance by its mean square error and normalized

estimated distance.
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• Generating a key based on the estimated distance and a simple key generation

scheme.

• Evaluating the generated key by its bit error mismatch and compare it to com-

munication nodes keys.

Estimate
the Number
of Sources

Estimate DoA
More than 2

DoAs?
Pick the

First 2 DoAs

Estimate the
Distances
from the

Eavesdropper

Estimate
Communica-
tion Nodes
Distances

Estimate The
Secret Key

Based on the
Estimated
Distance

Try to Breach
the System

yes

no

Figure 1.2: Breaching Scheme Processes

Fig. 1.2 illustrates the process of our breaching scheme. As shown in the figure,

when the estimated DoAs exceed two, we assume that the first two estimated ones

are our signals of interest, considering that these two will have the highest power to

noise values. Extracting other DoAs can be considered as a future work and it is out

of the scope of this thesis. It can also be seen that the last step investigates how

close the estimated distance to the actual one and the possibility of being able to

breach the system by generating an initial key which is compared to communicating

nodes keys. The effect of such breaching is out of the scope of this thesis and can

be considered as a future work in combination with the hardware implementation of

this thesis.
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Chapter 2

Background

In this chapter, a brief background about the Parameters Estimation used to reach

thesis objectives will be presented followed by an introduction about physical layer

security techniques.

2.1 Parameters Estimation

In this section, some fundamental concepts about the estimation techniques required

in order to achieve the breaching goal are briefly discussed. This includes: number

of sources estimation techniques, DoA estimation techniques and distance estimation

techniques.

2.1.1 Number of Sources Estimation

Estimating the number of sources is considered as a critical parameter in DoA esti-

mation besides its importance in other applications such as blind source separation

[1] and channel order separation [2]. As an example, DoA subspace estimation al-

gorithms such as MUltiple SIgnal Classification (MUSIC) involve eigenvalues decom-

position which is done after knowing the number of sources received by the receiver

array [3]. Thus, having the number of sources accurately estimated is critical in or-

der for these algorithms to perform well and result in the correct directions. In this

thesis, the number of sources estimation is critical in order to know how many signals

are actually applied to the array, then exclude the signals of interest in order to do

further processes on them.
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In general, as in [4], estimating the number of sources can be classified into:

• Information theoretic based estimation: Algorithms such as Akaikes in-

formation criterion (AIC) and minimum description length (MDL) [5] use in-

formation theoretic criteria to estimate the number of sources. They search for

a minimum value of the log like-hood function and an added penalty term, as

will be explained later. Those algorithms are basically computationally complex

due to the use of a complex minimization problems, as will be seen later, and

the estimation of eigenvalues decomposition (EVD). Besides, they have some

impractical assumptions such as sparse like noise, uncorrelated with the sig-

nal and the number of samples to be large enough. Hence, they fail in some

practical scenarios such as underwater [6], and indoor offices [7].

• Eigenvector based estimation: The rank of the matrix composed of eigen-

vectors is used instead of the eigenvalues. In [8], the authors examine the rank

of the appended eigenvector matrix. The rank increases with the number of sub-

array until the number of sources is reached where the rank stabilizes at that

point and hence the number of sources can be estimated. The same assump-

tions of information theoretic approaches are applied; however, the advantage

here is the use of non-coherent signals as well as fully coherent signals, which is

a more practical scenario as signals are normally coherent. On the other hand,

such algorithms involve finding the rank of a matrix besides EVD estimation,

which increases the computational complexity, particularly for large matrices

with large a number of elements. In addition, the sparse-like noise assumption

is still used in algorithms, which makes such algorithms also fail in indoor and

underwater environments. It is worth noting that [9] presented an algorithm to

estimate both coherent and non coherent signals using the rank of different ma-

trix formulations which could achieve better results. However, the complexity

6



of such an algorithm increases due to multiple matrix decompositions that are

involved in estimation.

• Threshold based estimation: In these approaches, the number of sources is

detected by setting up a threshold on the noise eigenvalues, i.e. if that thresh-

old is exceeded, then it is a signal eigenvalue and the number of sources can be

detected at that point. This threshold can be made on the upper bound of the

noise eigenvalues [10], the difference between them [11] or any other mathemat-

ical relationship. The drawback in most of the techniques in this category is

that the formula needed to estimate the threshold has an adjustment coefficient

which needs to be set beforehand. This coefficient is not analytically found

as finding such a thing through probability distributions and order statistics

is very complex, as will be shown later. Instead, they estimate the coefficient

through extensive computer simulation for each pair of antenna elements and

the number of collected samples. In other words, if the number of antenna el-

ements, the number of collected samples or both change, the coefficient has to

be estimated accordingly, which adds a considerable burden to the system.

2.1.2 Direction of Arrival (DoA) Estimation

Estimating DoA from the received signal has drawn extensive attention in antenna

array signal processing. The antenna array receives several signals from different

directions and collects them at its elements with the added noise by the channel.

Then, it processes this data to estimate the DoA of the received signals with different

algorithms that were enhanced by the existence of smart antenna [12], [13].

Different types of arrays exist for signal processing, including uniform linear array

(ULA), uniform circular array (UCA), phase array and many others [14]. For this

thesis, UCA is used as it plays a significant role in DoA estimation due to its full 360

azimuth and 90 elevation angle coverage. Hence, some more details about UCA will
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be found through this thesis; however, for more information about the other type of

arrays, the reader can refer to [13].

DoA estimation algorithms can be classified into classical estimation and sub-

space estimation techniques. Below, some of the main estimation techniques that are

involved in most DoA research are briefly discussed:

• Bartlett algorithm: A classical technique that steers the spectrum, finds

the power of the received signal and determines the DoA by the location of

the highest power in the spectrum. This is the simplest estimation algorithm;

however, the main drawback is its low resolution as the angular separation

between DoAs cannot exceed 2π/M in order for the DoAs to be estimated,

where M is the number of array elements [15].

• Minimum Variance Distortion-less Response (MVDR) algorithm: A

classical algorithm which is similar to Bartlett; however, it uses the inverse

matrix of the received signal instead of the received signal itself. The DoA is

estimated by scanning the spectrum and finding the highest power as well. This

could solve the angular separation drawback relatively; however, it came with

the complexity of finding the inverse of covariance matrix of the received signal

[16].

• MUltiple SIgnal Classification (MUSIC) algorithm: A subspace estima-

tion technique which uses eigenvalues decomposition to separate the noise and

signal subspaces, relying on the fact that they are orthogonal. This provides the

highest resolution at the expense of complexity and the need to know the exact

number of sources. The complexity comes from eigenvalues decomposition on

the covariance or the correlation matrix of the received signal which requires

substantial computations. The number of sources is needed in order to separate

the signal from noise subspaces [17].
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• Estimation of Signal Parameter via Rotational Invariance Technique

(ESPRIT) algorithm: A subspace estimation algorithm that exploits the

rotational invariance of signal subspace which is created by eigenvalues decom-

position of the received signal. This algorithm does not involve the exhaustive

search of whole spectrum as in MUSIC and hence it is less complex; however,

it has a lower resolution and less accurate estimation than MUSIC does [18].

2.1.3 Distance Estimation

In this section, some of the fundamental distance estimation algorithms will be stated

along with their advantages and drawbacks. Distance estimation is needed to esti-

mate the distance between the eavesdropper and both communicating nodes, which

is needed with the direction of arrival estimation in order to estimate the distance

between the two communicating nodes. Hence, estimating this distance is a critical

task in hardware implementations of such a breaching scheme.

Estimating the distance at the receiver of two communicating nodes is a fun-

damental issue in many applications that involve wireless sensor network or wireless

communication in general. Such applications include localization and positioning sys-

tem such as Global Positioning Systems (GPS), patient localization systems, health

care systems and intelligent transportation systems [19]. Thus, different techniques

have been proposed to estimate the distance using different environment parameters

and wireless characteristics. In general, as in [20], distance can be estimated using

the following techniques:

• Time of Arrival (ToA): Distance between communicating nodes is directly

proportional to the time that the signal takes to reach the other end. Hence,

if the nodes were perfectly synchronized, the distance can be estimated using

signal transmission time. i.e. if both sending and receiving times are known to

the receiver, the distance can be estimated by d = Pr(timearriving− timesending)
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where Pr is the propagation speed [21]. This concept is applied in [22] to mea-

sure the distance in Zigbee networks and shows quite accurate results. However,

the need for precise synchronization might be impractical in the hardware im-

plementation, especially with different types of hardware.

• Time Difference of Arrival (TDoA): In such techniques, the distance is

estimated based on the time difference that multiple signals will take to reach

the destination. Hence, two types of signals, like RF and ultrasound, are needed

to be sent to the same receiver at the same time and the distance can be

estimated by the difference in their arriving times. i.e. the distance can be

estimated by the formula d = (Pr − Pu) ∗ (time1 − time2) where Pr and Pu is

the propagation speed for the RF and ultrasound signals, time1 is the arriving

time for the RF signal and time2 is the arriving time for the ultrasound signal.

This method is applied to WSN and Ad-Hoc networks in [23]. It is more precise

than ToA; however, it needs extra hardware in order to send and receive two

different types of signals and hence it adds more cost.

• Received Signal Strength Indicator (RSSI): RSSI can be used to esti-

mate the distance of the receiver based on the received signal RSSI. This can

be done using the log distance path loss exponent model, as will be discussed

later in Section 4.4. Theoretically, there exists a direct radio propagation model

to convert estimated RSSI at the receiver to an estimated distance. However,

experimentally this method is inaccurate due to the environmental noise, ob-

stacles, and antenna types. Thus, this method would need a system calibration

in order to adjust some parameters and have a low error rate [24], [25].

However, this method is the most widely used due to its simplicity and avail-

ability of RSSI readings with no added hardware. RSSI estimation circuitry is

already deployed in most recent hardware and hence such estimation would be

relatively easier than others.
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2.2 Physical Layer Security

Physical layer security considers securing the communication system from the phys-

ical layer perspective. In general, security attacks can be classified into active and

passive attacks. An active attack happens when an adversary tries to interfere with

the communication by altering the exchanged messages, while a passive attack does

not interrupt the network operation and the adversary just tries to get confidential

information from the messages [26] [27]. Attacks at the physical layer can be classified

into:

• Denial-of-Service (DoS) attacks: In such active attacks, the adversary at-

tempts to overload the network by exhausting its resources. Jamming is a

common way for DoS at the physical layer where the adversary utilizes the

radio frequency by sending jamming signals and letting the nodes suffer from

busy channels [28].

• Masquerade attacks (or deauthentication attacks): In these active at-

tacks, the adversary pretends to be an authorized node and breaks the authen-

tication system so it can illegally use the network resources. It usually involves

other kinds of active or passive attacks such as authentication capturing in order

to access the network [29].

• Information disclosure and message modification: It refers to active at-

tacks that involve either modifying the message contents by adding or deleting

based on adversaries’ benefits or disclosing confidential information to unautho-

rized users in order to be used later [26], [27].

• Eavesdropping and traffic analysis: Eavesdropping is intercepting the au-

thorized communication in order to gain confidential information without the

authorized nodes knowledge. Traffic analysis is the usage of the communication

between parties to determine the location and identities of the communication
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parties. These kinds of passive attacks can be done even if the message is en-

crypted, and hence, they can help the eavesdropper in gaining information in

order to perform other types of active attacks [26], [27].

In order to keep secured communication, one must either prevent eavesdropping

or secure the communication even when eavesdropping happens, i.e. the eavesdropper

cannot get helpful information by listening and analyzing the traffic. Preventing the

network from eavesdropping in wireless is almost impossible due to the broadcasting

nature and availability of the channels so it would be much easier if the security was

done by preventing adversaries from gaining helpful information when eavesdropping.

Physical layer security algorithms can be classified into information theoretic anal-

ysis and cryptographic techniques. Below is a brief background about both techniques

discussed with their current trends in securing the communication.

2.2.1 Information Theoretic Approaches

Information theoretic capacity is an average secrecy metric that indicates how much

information has been leaked to the eavesdropper. The system here is designed and

tuned to give a certain level of security, but it can never be guaranteed. The trans-

mitter is required to have a partial or a full information about the channel since it will

need such information to determine the security level or secrecy capacity [30], [31],

[32]. Due to the inaccuracy of such information in practice and higher implementation

cost, such systems are not available widely and only a few practical implementations

were deployed to realize such systems.

2.2.2 Cryptographic Approaches

Cryptographic techniques are mostly based on encrypting the transmitted message

by using either a public or a private key that is known to authorized nodes only.

Traditional cryptographic techniques, which include public key infrastructure and
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using one key all over the transmission, assume that the channel is perfect and there

is no eavesdropping when transmitting the key or the random generator, i.e. the

adverser does not have any information about how the key was generated. In addition,

it assumes that the adversary has a limited computational capability such that it

cannot estimate the key [33]. In the physical layer, the first assumption is weak

since the wireless channel is open and eavesdroppers can access the channel between

transmitters and receivers and extract the key. In addition, the dynamic changes in

the wireless channel and mobility issues makee key distribution and key infrastructure

a tedious task in such systems. More importantly, the security schemes at this layer

should not assume anything about the computational capabilities of the adversary.

Also, the premise that it is impossible for them to break the key is weak here and

cannot be proven mathematically [34], [35]. Hence, the traditional cryptographic

techniques do not suite the physical layer security, and new security schemes are

needed in order to achieve the security needs or security capacities.

Since the wireless channel characteristics are random by nature, they can be used

as a source of randomness for the secret key generation between two nodes. Properties

like radio frequency (RF) fingerprinting, channel state information (CSI), the distance

between the nodes and multiple signal processing techniques can be used to generate

a key to be used without message exchanging so that the eavesdropper cannot know

about it. In addition, the employment of directional antennas and artificial noise,

noise enforced in specific directions, can help in key generation and improvement of

secret capacity by avoiding jamming and enhancing data rate. Coding techniques

such as error correction codes or spread spectrum codes can also be used for key

generation as they act as a common source of randomness. All these techniques

can result in unique keys without message exchanging and hence in order for the

eavesdropper to know the key, she/he needs specific signal processing and channel

eavesdropping techniques, beside the need for knowing what characteristics are used

to generate the key at that moment [36].
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Chapter 3

Related Work

In this chapter, some recent applications of Parameters Estimation usage in wireless

networks will be presented first. Then, recent work in number of sources estimation,

physical layer security scheme and security breaching scheme will be discussed in

brief.

3.1 Parameters Estimation in Other Wireless

Context

Since this work tackles parameters estimation such as the number of sources, DoA and

distance estimations, it is possible that such estimations are useful in other wireless

communication applications. As an example, cogitative radio (CR) networks and

military communication require localization and source number estimations in their

processing. Hence, our estimation algorithms can be used in their context to localize

or estimate parameters beside the use in physical layer security. Therefore, this section

presents some recent use of our parameters estimation in the context of CR networks

while the same thing can be applied to military applications.

CR network is a technology in which primary users (PUs) and secondary users

(SUs) share the same spectrum to utilize resources and channels. SUs are only per-

mitted to use the licensed bands and resources when they are not interfering PUs

communication. In such networks, it is important for SUs to know the number of

PUs and localize them, beside localizing other SUs in the communication range. Since

location estimation is not available in practice, PUs will need to use signal process-
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ing estimation techniques to estimate such parameters. As an example, in [37], the

authors utilize DoA measurements along with RSSI reading to localize the PUs trans-

mitters in fixed and uniform CR placements. They derive the Cramer-Rao Bounds

(CRB) for joint RSSI/DoA localization in fixed CR placements, show a close form of

CRB in uniform CR placements, practically implement their algorithm and compare

the results to RSS and DoA-based location estimation. They use MUSIC for DoA

estimation which relates to our number of sources and DoA estimations used in this

thesis.

In [38], authors consider using MDL algorithm to estimate the number of PUs from

SUs nodes without the need for any PU cooperation, assuming that all SUs are passive

at that time and they are occupied with multiple antennas system. Their results show

that PUs can have a close estimate of the number of PUs and provide additional

information in case of estimation error. In that work, MDL can be replaced with our

proposed algorithms which have a better performance and much less complexity, as

will be seen later.

In addition, [39] uses distance estimation algorithm to estimate the distance be-

tween the base station and PUs, and they use this estimation to set maximum allow-

able transmit power in dynamic spectrum sharing environment. In [40], authors use

a hybrid RSSI/DoA based algorithm to estimate the location and transmit power of

an emitter in CR network. All those works and many others showed that our param-

eter estimation algorithms, especially the proposed ones for the number of sources

estimation, can be used in CR networks to secure the communication beside its usage

in localization or spectrum sensing purposes.

3.2 Number of Sources Estimation

One of the main contributions in this work is proposing some new algorithms for

number of sources estimation. As will be seen later, MUSIC is used for DoA estima-
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tion due to its high resolution and acceptable tolerance for low SNR values. However,

one of its problems is the need for pre-knowledge of the number of sources which is

unavailable in practice. Hence, number of sources estimation is needed to estimate

how many signals are received by the antenna array at the receiver, who, in our case,

is the eavesdropper.

In [41], the authors present an idea that assumes that the number of sources to be

as maximum as the number of array elements, i.e., there exists a number of elements

DoAs which include both virtual and actual ones. Then, the algorithm processes

normal DoA estimation using any DoA estimation algorithm, [42], and finds the peak

to noise ratio (PNR) of all DoA which contains both actual and virtual DoA. The PNR

of the actual DoA can be distinguished from the virtual DoA PNR based on hypothesis

testing, and hence the number of sources can be estimated using this testing. The

authors use AIC heuristic to estimate the number by replacing the eigenvalues with

the estimated PNR values. Results show a better detection probability, especially

with low SNR and low number of samples. However, such a method cannot be

applied to high resolution DoA estimation such as MUSIC as the algorithm would

require the actual number of sources when applying eigenvalue decomposition (EVD),

and hence, it would fail for an assumed number of DoA. Besides, such an algorithm

is expected to be more computationally complex, especially with the fact that AIC

was applied to estimate the actual number of sources.

Another work in [43] presents a threshold-based estimation algorithm that is based

on the peak to average ratio (PAR) characteristics. The algorithm calculates the PAR

values of the received data and calculates the differences between adjacent ones which

is compared to a threshold. If the difference exceeds the threshold, then the number

of sources is detected at the index of that difference. The drawback of this algorithm

is in the threshold which is set based on the average gradient of the PAR values,

the minimum PAR value and a coefficient that needs to be adjusted with different
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number of samples, number of array elements and the minimum PAR value, which

indicates that such algorithm would require a preconfigurable threshold.

A third work presented in [44] proposes an algorithm for the number of sources

estimation in non-Gaussian noise channels. This algorithm compares the estimated

eigenvalues of correlation matrix to an estimated noise variance. It first computes the

noise correlation matrix then applies an EVD operation on it. The estimated noise

eigenvalues are then used to calculate the noise variance. Generally, this algorithm

shows a better estimation accuracy than MDL and entropy estimation of eigenvalues

(EEE) in [45]. However, the noise variance estimation requires a large number of sam-

ples for accurate estimation. Moreover, the algorithm involves the estimation of two

correlation matrices with their EVD, which is computationally inefficient especially

with large number of array elements and large number of samples.

In [11], the authors follow a threshold based approach that depend on the in-

crements of the eigenvalue of the covariance matrix. The number of signals in this

approach can be detected when the increment exceeds a certain threshold which

means that the eigenvalues have moved from noise subspace to signal subspace. The

threshold is a single formula that depends on the minimum and maximum values of

eigenvalues, number of array elements and the number of samples or data length of

the received signal. The complexity of this algorithm is low; however, depending on

the data length and the number of array elements, the coefficient that is included in

the threshold formula is changed and that coefficient is found experimentally. Hence,

the approach might be inflexible for different number of samples and elements in the

array.

To address the complexity problem of traditional algorithms and the reconfigura-

bility problem in the threshold-based algorithms, this work proposes some simple yet

efficient solutions to estimate the number of sources. The proposed algorithms can be

categorized into two main categories based on the matrix used in estimating the num-

ber of sources. Namely, the work proposes sample covariance matrix (CovM)-based
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algorithms and auto correlation coefficient (CorrM)-based algorithms. It defines two

decision statistics, namely moving increment (MI) and moving standard deviation

(MS), which are used as the metrics to estimate the number of sources. In other

words, in each category, it proposes two algorithms. First, the selected matrix is

estimated, EVD is applied and then the decision statistics is estimated from the re-

sulting eigenvalues. In the first category, the decision statistics are compared to a

preset threshold, while in the second a simple maximization technique is proposed.

3.3 Physical Layer Secret Key Generation Tech-

niques

Cryptographic techniques that utilize wireless channel characteristics have drawn a

lot of research attention in the past few years. Some wireless characteristics were

used as a source of randomness to share the key between communication parties.

Those characteristics include location, RSSI value, Channel State Information (CSI),

ambient audio, channel response and many others. In this section, some of the latest

and most useful key generation schemes are briefly discussed. However, it is worth

noting that many others are proposed in the literature; however, such details are out

of the scope of this project.

In [46], the researchers exploit the channel response from Orthogonal Frequency

Division Multiplexing (OFDM) sub-carrier to generate the key. They first use CSI

information for the key generation, which should theoretically generate identical keys;

however, practical implementation shows non-reciprocity, or mismatch, components

in CSI measurements. These non-reciprocity components are due to the different elec-

trical characteristic of wireless devices, especially for antenna gain and attenuation

and resulted in a high bit mismatch in the generated keys. Thus, they have pro-

posed a channel gain component (CGC) algorithm to mitigate these non-reciprocity
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components by learning the channel response which can be done by sharing a small

number of probe packets between the communication nodes. Results show that such

a scheme achieves fast secret key generation and is resistant to attacks such as pre-

dictable channel attacks and stalking attacks, explained in the next section.

In [47], the authors analyze the information theoretical limits of key generation

using nodes location. In specific, they have based the key generation scheme on the

distance estimated between the nodes and found the secrecy capacity and achievable

secret key rate. Analysis was done with and without global localization information.

Results show that the secret key rate grows unbounded if the eavesdropper does not

have the angle of arrival observation, hence she/he cannot estimate the distance. Oth-

erwise, secret key generation cannot go beyond certain limits and if the eavesdropper

had the ability to do some planned movements, then she/he could drastically reduce

the secret key bit rate and hence breach the system.

Moreover, [48] and [35] discuss an RSSI-based security scheme for collaborative

networks. Researchers in [49] propose a key generation scheme based on features

from ambient audio. While [50] proposes a key generation scheme based on adaptive

channel probing that is based on the proportional-integral-derivative controller, which

is used to tune the probing rate.

The authors in [51] investigate an algorithm that hops around different physical

layer parameters that are agreed between the communicating nodes to generate the

key that is used through communication. In [52], the authors use Radio-frequency

identification (RFID) and quantum key managements to generate the secret key. Au-

thors in [53] consider establishing the key based on spatial and temporal correlation of

the wireless channel coefficients which relied on CSI information secret key extraction.

Finally, authors in [54] use an adaptive quantization mechanism for the secret key

generation that derives the optimal quantization parameter to achieve a high secret

key extraction rate.
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3.4 Physical Layer Security Breaching

Since physical layer security schemes are newly emerging, breaching algorithms for

such schemes are still limited and newly investigated. A limited research is done to

tackle such breaching schemes, especially for the distance, DoA and CSI based infor-

mation security schemes. In addition, most of the work done in the security algorithm

itself assumes an adversary model for the eavesdropper, which decreases the possi-

bility of breaching those security schemes. For example, in [47], the authors assume

the eavesdropper has information about the relative locations of the communicating

nodes and drove the theoretical bound of localization-based security. Hence, theoreti-

cally, even when the eavesdropper knows the location of legitimate nodes, the security

can be reached with some limits. In [46], the authors consider their attack models

under two types of attacks: predictable channel attacks[55] and stalking attacks [56].

Those attacks, discussed in the next paragraph, are harmful to RSSI and CSI-based

secret key generation; however, it was proven that security can be achieved to some

limits even under those attacks.

In predictable channel attacks, [55], the attacker uses some planned movement in

a stationary environment to ensure that the communicating nodes build a secret key

that can be predicted by him or her. For example, it can move between communicat-

ing nodes line of sight, causing a desired change in the channel and hence making the

nodes agree on a key that can be predicted by him or her. In stalking attacks, [56], an

adversary called stalker eavesdrops the trajectory of one communication node during

the key establishment and hence can eavesdrop all the communication between the

nodes.

In [57], the authors develop an algorithm that contradicts artificial noise security

scheme and successfully eavesdrops the communication to access confidential infor-

mation. The algorithm depends on independent component analysis (ICA) to cancel

the noise added by the transmitter and break the security scheme. It utilizes an
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existing ICA method, called fastICA [58], to cancel the artificial noise and achieve

eavesdropping. FastICA is modified to handle complex value case which enables the

breaching algorithm to decode the noisy received signal and extract the confidential

data from the received signal.

In [59], the author tries to impose impersonation attacks to tackle RF-based secu-

rity scheme. It studies the feasibility of such attacks in both modulation and transient

based techniques for RF fingerprinting. Attacks are performed by either feature or

signal replay from the eavesdropper. In feature replay attacks, which tackle the mod-

ulation based identification, the attacker modifies its own radio signal characteristics

to match one of the targeted node. In signal replay attacks, the signal sent from the

target node is saved by the eavesdropper to be used later without modifying the tran-

sient or modulation parts. This can help the eavesdropper to pass the authentication

and the encryption if it was based on the RF fingerprint of the sender or receiver.

Results, which were applied for authentication-based RF fingerprinting, show that re-

play attacks affected both modulation and transient RF fingerprinting while feature

replay influenced only modulation based fingerprinting.

This work differs from others by proposing a practical, implementable breaching

scheme without considering the security capacity limits and mathematical derivations

which were considered in others work. To the best of our knowledge, this work is the

first to tackle distance based security breaching which was proposed in [47] and [60].

The objective of this work is not to breach the distance based security scheme, but

to check its strength against eavesdropping in order to further enhance it in a later

work.
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Chapter 4

Algorithms Design

In this chapter, we first present our system model that will be used with DoA and

number of sources estimation techniques. We follow that by the number of sources

estimation algorithms, in which we propose our new algorithms and present some

others. Then, MVDR and MUSIC DoA algorithms will be explained to be compared

later in the next chapter. After that, we present distance estimation techniques

followed by our breaching scheme in which we will be discussing how breaching can

happen by the eavesdropper.

4.1 System Model

In our system model, as shown in Fig. 4.1, we assume that the receiver is equipped

with M -elements uniform circular array antenna, where M is 8 in the figure. Consid-

ering K signals are applied to the receiver’s array, the received signal instant time t

can be expressed as:

y(t) =
K∑

k=1

a(φk) sk(t) + w(t), (4.1)

where a(φk) is the steering vector for the signal arriving at azimuth angle φk, sk(t)

is the applied signal from the kth source at time t, and w(t) is the Additive White

Gaussian Noise (AWGN). In matrix notations, (4.1) can be represented by:

Y = AS + W, (4.2)
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Figure 4.1: Circular array with one applied signal

where Y ∈ CM×N , A ∈ CM×K , S ∈ CK×N , W ∈ CM×N , with N being the total

number of collected samples and C is the set of complex numbers. The matrix of

steering vectors is

A = [a(φ1), a(φ2)...a(φk)]. (4.3)

The steering vector a(φk) for a uniform circular array (UCA) can be represented by:

a(φk) = e(2π/ηrsin(θ)(cos(φ−γ))), (4.4)

with waveform number η, radius r and γ is 360/N ∗ (0 : N−1), θ is the Z-Plane angle

which we assume to be orthogonal to the array and hence sin(θ) is 1 for the rest of

the thesis.

4.1.1 Sample Covariance Matrix (CovM)

The covariance matrix of the received data can be expressed as:

RYY = E
[
YYH

]
= ARSSAH + RWW (4.5)
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where, E[.] denotes the expectation operation, H denotes the Hermitian operation,

RSS is the covariance matrix of the applied signal, RWW = σ2I is the auto covariance

matrix of the receivers AWGN with σ2 is the noise variance and I is M ×M unitary

matrix.

In practice, CovM is estimated instead of the covariance matrix. We express RYY

as the CovM of N observation as:

R′YY =
1

N

N∑
i=1

YYH (4.6)

where R′YY converge to RYY for large number of samples.

CovM of the received signal from the M antenna array is typically estimated

when estimating the DoA [16], [61]. For subspace-based techniques such as MUSIC

[3], which is widely used and known for its superb performance particularly at low

SNR levels, the EVD is applied on RYY as a step to estimate the DoA. In other

words, estimating the RYY and its EVD is a conventional step in most of the DoA

estimation algorithms.

Applying EVD on R′YY leads to:

R′YY = UYΛYUH
Y (4.7)

= USΛSUH
Y + UWΛWUH

W,

where US and UW are the signal and noise subspaces unitary matrices respectively,

and ΛS and ΛW are diagonal matrices of the eigenvalues of the signal and noise,

respectively. Eq. (4.7) can be expressed as:

UYΛYUH
Y = diag (λ1, λ2, ...λM) + σ2I. (4.8)
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The eigenvalues (λ1, λ2, ...λM) with their corresponding eigenvectors (e1, e2, ...eM)

define the signal and noise subspace as US = [e1, ..., eK ] and UW = [eK+1, ...., eM ]

respectively.

4.1.2 Auto Correlation Coefficient Matrix (CorrM)

In two of the proposed techniques, we exploit CorrM rather than CovM to estimate

the number of applied sources. To define CorrM, we first redefine the covariance

matrix in Eq. (4.5) as:

VYY = E
[
(Y − µY) (Y − µY)H

]
(4.9)

= ARSSAH + RWW − µYµ
H
Y

where µY = E[Y]. The elements in the diagonal of VYY are the variances of Y.

CorrM is then given by:

CYY = (diag(VYY))−
1
2 VYY (diag(VYY))−

1
2 . (4.10)

Then, we apply the EVD on CYY which leads to

CYY = UCΛCUH
C , (4.11)

UCΛCUH
C =diag

(
λC1 , λ

C
2 , ...λ

C
M

)
+ (diag(VYY))−

1
2
(
σ2I− µYµ

H
Y

)
(diag(VYY))−

1
2 .

(4.12)
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The eigenvalues (λC1 , λ
C
2 , ...λ

C
M) with their corresponding eigenvectors (eC1 , e

C
2 , ...e

C
M)

define the signal and noise subspace as US = [eC1 , ..., e
C
K ] and UW = [eCK+1, ...., e

C
M ]

respectively.

4.2 Number of Sources Estimation

In this section, we propose our simple yet efficient algorithms for the number of sources

estimation. We start by explaining the traditional way of estimation, fallowed by the

motivation behind our work, the decision statistics that we will be using, the principle

of our proposed algorithms and finally our proposed algorithms.

4.2.1 Existing techniques

In this subsection, some of the traditional and most commonly used techniques will

be discussed briefly. In specific, information theoretic approaches will be discussed to

highlight their complexity and motivate the simplicity behind our work.

Akaikes information criterion (AIC) and minimum description length (MDL) are

the most widely-used number of sources estimation techniques. They are ordered

determination information theoretic models that use the eigenvalues of CovM to de-

termine how many smallest eigenvalues are approximately equal. Those eigenvalues

would lie in the noise subspace while others would lie in the signal subspace. Both

algorithms consist of minimizing a criterion of log like-hood over the number of sig-

nals that are detectable. In this thesis, the derivation of these criteria is not stated,

however the details of both of them can be found in [62]. When ordering CovM

eigenvalues in a descending order, i.e., λ1 ≥ λ2 ≥ ...λM , AIC can be expressed as:

KAIC = argmink

(
− 2 log

 ΠM
i=k+1λ

1
M−k
i

1
M−k

∑M
i=k+1 λi

(M−k)N

+

2k(2M − k)

) (4.13)
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While MDL can be expressed as:

KMDL =argmink

(
− log

 ΠM
i=k+1λ

1
M−k
i

1
M−k

∑M
i=k+1 λi

(M−k)N

+
1

2
k(2M − k) log(N)

) (4.14)

where k is the index of the eigenvalues. In simulation results of this part, those two

algorithms will be used as references for comparison with our proposed algorithms.

4.2.2 Motivation

The information theoretic approaches, AIC and MDL, are more computationally ex-

pensive than threshold-based approaches given that they need to solve the minimiza-

tion problem given in Eq. (4.13) and Eq. (4.14) each time an estimation of the

number of sources is needed. On the other hand, threshold-based approaches require

extensive iterations in order to adjust coefficient parameters that change with several

parameters such as N , M and SNR making its adjustment a tedious process.

This motivates us to propose new algorithms that strike a balance between com-

plexity and extensive threshold adjustment. As will be shown later, the new algo-

rithms are less complex than AIC and MDL, while they do not require threshold

adjustment as in traditional threshold-based algorithms. They are a bit more com-

plex than threshold based approach; however, that was done to overcome threshold

adjusting problem which sound impractical in real life scenarios and hardware imple-

mentation.

The main contributions in this part as compared to existing include:

• Proposing four novel algorithms that use two different matrices to estimate the

number of sources.

• Exploiting two different decision statistics to distinguish between noise and

signal eigenvalues, i.e., Moving Increment (MI) and Moving STD (MS) .
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• For the two CovM based algorithms, we define two non-reconfigurable formulas

to estimate the threshold for each decision statistic. First, we find the distri-

bution of the probability of false alarm of the MI case. We show it is a math-

ematically tedious process to estimate the threshold through this conventional

process. We then derive the thresholds using regression analysis.

• For CorrM based algorithms, we redefine the problem as a simple maximization

problem.

• We compare the performance of our proposed algorithms to the conventional

high complexity AIC and MDL algorithms and show that our proposed algo-

rithms have comparable performance at medium and high levels of SNR and

better performance at low SNR values.

To the best of the our knowledge, estimating the number of sources through a maxi-

mization approach applied on the estimated eigenvalues of the CorrM, or by a single

threshold formula without an adjusting coefficient applied on the eigenvalues of the

CovM, have not been presented in the literature.

4.2.3 Simple yet Efficient Decision Statistics

In the proposed algorithms, two decision statistics will be used, namely MI and MS.

First, we arrange the eigenvalues in an ascending order, rather than a descending

order as in the case of AIC and MDL. Hence, the eigenvalues are arranged from the

beginning as (λ1, λ2, ...λM) where λ1 ≤ λ2 ≤ ...λM and (λ1, λ2, ...λM−K−1) lay in the

noise subspace while (λM−K ...λM) are in the signal subspace.
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MI decision statistic

The first decision statistic is the moving increment, δ, which is simply the difference

between two consecutive eigenvalues. It can be expressed as:

δi = λi − λi−1 for i = 2, 3..,M. (4.15)

MS decision statistic

The second proposed decision statistic used as a metric to decide on the number of

sources is the moving standard deviation of the estimated eigenvalues, α. The sample

standard deviation, in general, is a measure of variance or difference of the sample

from the mean, it can be calculated by:

sM =

√√√√ 1

M − 1

M∑
i=1

(xi − u)2, (4.16)

where u is the mean and M is the size of the sample or, in our case, the size of the

eigenvalues involved in standard deviation calculation.

The biased standard deviation of two consecutive eigenvalues, can be calculated

as:

STD(i) =
√

(λi − u)2 + (λi−1 − u)2, (4.17)

where u is the mean of the two eigenvalues involved which is given by:

u =
λi + λi−1

2
. (4.18)

Then, the second decision statistics, which is the MS (α), is defined as the difference

between two consecutive STDs as follows

αi = STD(i)− STD(i− 1), for i = 3, 4, ...,M. (4.19)
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Proposition 1 αi can be rewritten as:

αi =
1√
2

(λi − 2λi−1 + λi−2) . (4.20)

Proof. The proof for Proposition 1 is provided in Appendix A

4.2.4 Principle of the Proposed Algorithms
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Figure 4.2: Change in Eigenvalues of MI with different SNR for (A) CorrM (B) CovM
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Figure 4.3: Change in Eigenvalues of MS with different SNR for (A) CorrM (B) CovM
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Figure 4.4: Change in Eigenvalues of MI with different number of samples for (A) CorrM (B) CovM
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Figure 4.5: Change in Eigenvalues of MS with different number of samples for (A) CorrM (B) CovM

It can be inferred from Eq. (4.8) and Eq. (4.12) that since the eigenvalues of the

signal subspace contain both signal and noise powers, the values of sources’ signal

eigenvalues are expected to be higher than noise eigenvalues at moderate and high

SNR values. At the same time, the noise eigenvalues are expected to be comparable

to one another.

The main advantage of using EVD of CorrM in Eq. (4.12) rather than the EVD

of CovM in Eq. (4.8) is that the difference between signal eigenvalues and the noise

eigenvalues is more accentuated, which leads to an easier and more efficient estimation
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of the number of sources, particularly at low SNR values. Moreover, the mathematical

operation applied to estimate a decision statistic, which is then used to decide on the

number of sources, can be as simple as our proposed MI or MS rather than the

complicated decision statistic for the AIC and MDL given in Eq. (4.13) and Eq.

(4.14).

To illustrate the concepts applied in the previous paragraph, we plot the MI and

MS of the estimated eigenvalues of CorrM and CovM for different SNR values in Fig.

4.2 and Fig. 4.3, respectively, and different number of collected samples in Fig. 4.4

and Fig. 4.5, respectively. The simulation parameters for the first two figures are 8

element antenna array, 2 applied signals, 1024 samples and different SNR values. The

simulation parameters for the next two figures are the same except that the SNR is

kept fixed at -7 dB and the number of samples changed from 128 to 2048.

From those figures, one can see that for our first category, CorrM based eigenval-

ues, the jump in the decision statistic when moving from the noise subspace to the

signal subspace is always the highest. The decision statistics then starts to decrease.

In other words, the highest increment in the decision statistic always happens when

moving from noise subspace to signal subspace. On the contrary, when using the same

two decision statistics with the eigenvalues of CovM, a threshold needs to be set at the

first jump between the noise and signal subspaces as this jump is not necessarily the

highest. This implies that when using the decision statistics of CorrM, the problem

is transformed into a simple maximization problem, where the index at which the

highest jump occurs is searched for, while for the case of using the decision statistic

of CovM, the decision statistics should be compared to a threshold to decide on the

number of sources. This threshold is either found by extensive simulations, which

was used traditionally, or by an equation that handles all parameters that affect the

threshold.
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It should be noted here that Appendix B presents some simple examples that will

explain the proposed algorithm principle in two working examples and how different

algorithms detect the number of sources.

4.2.5 Proposed Algorithms

In this section, we present our four proposed algorithms based on two categories:

CovM and CorrM-based approaches. In each category, we propose to use MI and MS

decision statistic which will end up with four proposed different algorithms divided

into two subsections: one for each category. In other words, each category will be

represented in a subsection and each one will propose two algorithms. The pseudo

code for the algorithms is summarized in Algorithm 1. At the beginning, we generate

two, or more, signals from different sources, the signal will be transmitter using

the wireless channel and received by the antenna array elements at the receiver.

In simulation, such process is done by generating any signal, multiplying it by the

steering vector, expressed in Eq. (4.4), and adding the noise and channel effect

resulting from transmitting the signal. At the received, the signals are collected from

the antenna array and processed to estimate the number of sources and DoA. First,

the correlation or covariance matrix is calculated and EVD is applied to estimate the

eigenvalues and eigenvector for number of sources and DoA estimation, respectively.

After that, the eigenvalues are arranged in ascending order, the decision statistic is

estimated and each algorithm starts its process separately, as will be seen in the

following subsections.

CorrM Based Algorithms

In the first category, CorrM eigenvalues are used to estimate the number of sources

by the two decision statistics, MI and MS. As shown in section 4.2.4, a simple maxi-

mization problem can be found to estimate the number of sources using both of our
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Algorithm 1 Number of Sources Estimation Algorithm

Assuming
M: number of elements % array elements of the circular array
N: number of samples % samples to be collected at each antenna
step 0:Collect The Received Signal

1: Generate a QPSK signal %QPSK signal to be sent by the sources
%To apply the effect of receiving those sources at antenna elements

2: Multiply by the circular array steering vector
3: Add a noise %Channel and Noise Effect

The received signal is now

Y = AS + W,

where Y ∈ CM×N , A ∈ CM×K ,S ∈ CK×N , W ∈ CM×N , with N being the total
number of collected samples and C is the set of complex numbers.

step 1:Get The Eigenvalues

1: Calculate CovM or CorrM matrices by (4.7) or (4.10) %Matrices Calculation
%Eigenvalue Decomposition Operation

2: Apply EVD to the matrices (4.8) and (4.12)
3: Extract The Eigenvalues:

Eigenvalues (λ1, λ2, ...λM) Eigenvalues (λC1 , λ
C
2 , ...λ

C
M)

4: Arrange Eigenvalues in ascending order:

λ1 ≤ λ2 ≤ ...λM λC1 ≤ λC2 ≤ ...λCM

step 2: Estimate the Number of Sources

1: Apply one of decision statistics Eq. (4.20) Eq. (4.15) %Applying MS
and MI decision statistics

2: Find the location of the first signal eigenvalue %Find either the highest
increment in decision statistics or the first increment that exceed a threshold

1: for i = 2 i < M do
Calculate δi or αi

2: if (δi − δi−1 > ξn) then
j=i
Break ;

3: end if
4: end for

1: for i = 2 i < M do
Calculate δi or αi

2: end for

j = arg max
i

δi.

3: Find The estimated number of sources: %number of left eigenvalues
K=M-i+1
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metrics, MS and MI. Hence, the highest increment would then imply the shift between

the noise eigenvalues to the signal eigenvalues.

For MI, expressed in Eq. (4.15), the index at which this shift happens can be

estimated as:

j = arg max
i

δi.

In this case, the number of sources can be given by K = M − j + 1.

Similarly for MS, expressed in Eq. (4.20), the highest index at which the shift

between the noise eigenvalues and the signal eigenvalues can be estimated as:

j = arg max
i

αi

Consequently, the number of sources can be given by K = M − j + 1.

CovM Based Algorithms

In the second category, CovM eigenvalues are used and a threshold is found to dis-

tinguish between noise and signal eigenvalues.

First, we use the MI of the eigenvalues, δi, and compare it to a threshold. Hence,

the number of sources is estimated when:

δi ≥ ξn. (4.21)

where δi is expressed in (4.15) and ξn is a threshold that depends on the noise power,

SNR value, number of samples, number of elements and received power. The number

of sources can be determined when δi accedes ξn and at that point K = M − i+ 1.

To estimate the threshold ξn, the probability distribution of δi has to be derived

first. Thus, for a given probability of false alarm (Pf ), ξn can be estimated as:
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Pf = Pr (δi ≥ ξn|i ≤M −K) . (4.22)

In case of noise only, i.e., K = 0, the received samples follow N (0, σ2), and there-

fore RYY follows a Wishart distribution with N degrees of freedom and variance

Σ, i.e., RYY follows W(N,Σ) [63]. The empirical distribution function of the noise

eigenvalues can be expressed by [63], [64]

FR(λ) =
number of eigenvalues of RYY ≤ λ

M
(4.23)

according to [64], FR converges to fW with a high probability when the number of

samples N →∞. fW follows a Marcenko-Pastur density function [65], which can be

expressed as:

fW (λ) = dFW (λ) = max(0, (1−G))δ(λ) +

√
(λ− a−)

√
(a+ − λ)

2πσλ(1/G)
Π[a−,a+](λ) (4.24)

where G is the samples to elements ratio (N/M), a± = σ(1± 1/
√
G)2, δ(λ) is the

delta function, and the function Π[a,b](λ) equals 1 for a ≤ λ ≤ b and 0 otherwise. We

derive the probability distribution of the noise eigenvalues of δi in Proposition 2.

Proposition 2 The probability distribution of δi can be given by (4.25).

Proof. The proof for Proposition 2 is provided in Appendix C.

Consequently, (4.22) can be rewritten as:

Pf =Pr (δi ≥ ξn|i ≤M −K)

=1− Fδi(ξn). (4.26)
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Fδi (ξn) =

(
G

2πσ

)i ∫ ξn

−∞

(M −K)!

(i− 2)!(M −K − i)!

∫ a+

a−

√
(λ− a−)

√
(a+ − λ)

λ{
1

4
√
a−
√
a+

[
2 arcsin

(−2λ+ a− + a+

a− − a+
)
a
3/2
−
√
a+ + 2 arcsin

(−2λ+ a− + a+

a− − a+
)
a
3/2
+

√
a− + 4a+a−

arctan
(1

2

2a−a+ − a+λ− a−λ
√
a−
√
a+
√

(a+ − λ)
√

(λ− a−)

)
+ πa

3/2
−
√
a+ + π

√
a−a

3/2
+ − 2a−a+π

+ 4
√
a−
√
a+
√
λ− a−

√
a+ − λ

]}i−2(√(λ+ δ)− a−
√
a+ − (λ+ δ)

λ+ δ

)
(

1−
G

2πσ

{
1

4
√
a−
√
a+

[
2 arcsin

(−2(λ+ δ) + a− + a+

a− − a+
)
a
3/2
−
√
a+

+ 2 arcsin
(−2(λ+ δ) + a− + a+

a− − a+
)
a
3/2
+

√
a− + 4a+a− arctan

(1

2

2a−a+ − a+(λ+ δ)− a−(λ+ δ)
√
a−
√
a+
√

(a+ − (λ+ δ))
√

((λ+ δ)− a−)

)
+ πa

3/2
−
√
a+ + π

√
a−a

3/2
+ − 2a−a+π + 4

√
a−
√
a+
√

(λ+ δ)− a−
√
a+ − (λ+ δ)

]})M−K−i
dλdδ (4.25)

Conventionally, in order to estimate the threshold ξn, Eq. (4.26) has to be solved

for a desired Pf . This requires calculating the integral in (4.25). Which is highly

prohibitive due to the following:

1. For a given Pf , it requires the total number of noise eigenvalues (M − K) to

be known a prior in order to solve for ξn. This is not feasible since the total

number of sources (K) is our unknown to be estimated.

2. Another approach is to try to minimize Pf by differentiating it twice, once

with respect to K and another with respect to ξn. Then equating the output

to zero to solve for the two unknown. This, as can be seen from (4.25), is a

mathematically tedious process and will have a high computational complexity.

Alternatively, we estimate the threshold in Eq. (4.22) through multiple linear

regression and least square fitting approaches. A regression model is a statistical pro-

cess that is used to estimate the relationship between multiple explanatory variables

and one dependent variable that depends on them. That is, giving some data sets,

or samples, that relate multiple variables to one dependent variable, a linear function

can be found to estimate the dependent variable from those multiple variables. This

function tries to fit all data points in one equation using linear least squares fittings

or any other fitting approach [66], [67], [68]. In our case, the dependent variable is
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the threshold that we need to estimate having multiple other variables, such as SNR

value, number of samples, number of elements and the received power, i.e., we find a

function for the threshold depending on all those variables.

Using the previous concept in Section 4.2.4, depicted in Fig. 4.2.(B) and Fig.

4.4.(B), the threshold can be defined in multiple regions as follows:

ξn = Ps ×



ρ, for SNR > 2 dB

ρ/8, for N > 10000

ρ/2, for SNR > −2 dB N < 100

ρ/6, for SNR < −6 dB N > 1000

ρ/4, for elsewhere

(4.27)

Taking some samples from those regions and applying the concept of least square

fitting [66] to estimate the threshold function, the threshold can be defined by:

ξn = Ps (−7.75. 10−3 SNR− 3.77. 10−5 N + 1.05) (4.28)

This threshold takes into consideration specific regions of interest that include:

SNR values SNR ∈ [−20dB : 40dB], received power Ps ∈ [0dBm : −100dBm],

number of samples N ∈ [26 : 214], and number of antenna array element of less than

30. Outside these regions the threshold might fail to estimate the number of sources

correctly and hence requires further analysis. However, it is a very rare case that the

threshold goes beyond these regions, especially in practical implementations.

Another technique is to use MS instead of MI and set a threshold to distinguish

between noise and signal eigenvalues. Hence, the decision is taken on the number of

sources

αi ≥ γn. (4.29)
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where αi is expressed in (4.20) and γn is a threshold that depends on the number of

samples, the number of elements and the received power. The number of sources can

be detected when αi accedes γn and, at that point, K = M − i+ 1.

The probability of false alarm for MS can be given by:

Pf = Pr (αi ≥ γn|i ≤M −K) . (4.30)

As in the MI case, in order to estimate the threshold γn, the probability distribution

function Fαi(γn) has to be expressed first, then solve (4.30) for a given Pf . As a

matter of fact, Fαi(γn) is expected to be more complicated to solve than Fδi(ξn).

Again, we find the threshold in (4.30) through a least squares fitting approach [66].

Using the previous concept in Sec 4.2.4, depicted in Fig. =4.3.(B) and Fig. 4.5.(B),

the threshold can be defined with multiple regions using:

γn =


0.45Ps, for 500 < N < 1000 M ≤ 8

Ps, for 100 < N < 500 M > 8

0.75Ps, elsewhere

(4.31)

Taking some samples from those regions and using a linear least squares regression

to estimate the threshold function, the threshold can be defined by:

γn =Ps (2.5. 10−5. N − 0.12. 10−4. M + 0.66) (4.32)

4.3 Direction of Arrival (DoA) Estimation

One of the main targets of this work is estimating DoA which will be used later in the

breaching scheme. Hence, two methods are considered for DoA estimation, namely

MVDR and MUSIC. MVDR was chosen for its simplicity and better resolution that

Capon which lies in the simple traditional algorithms [16]. MUSIC was selected for its
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high resolution and popularity among subspace algorithms. Algorithm 2 highlights

both MVDR and MUSIC algorithm using CovM and the following sections explain

both algorithms in details. The same steps are applied to CorrM by replacing CovM

calculations with CorrM.

As with number of sources estimation, Section 4.2.5, the first step is to collect

data from the antenna elements either by simulation or from actual hardware. Then,

data is organized in a matrix and the covariance matrix or the correlation matrix is

calculated. After that, EVD is applied as MUSIC algorithms will rely on it and the

noise and subspace are separated; on the assumption that the number of sources is

known or estimated. MUSIC will use the orthogonality between the noise subspace

and the signal to search for DoA, while MVDR will use the orthogonality fact between

the inverse covariance matrix and the signal to search for DoA. The details of such

estimation procedure will be explained in the following sections for each algorithm.

4.3.1 MUSIC

Since 1986, when it was first proposed in [17], MUSIC has been the most well known

and widely used algorithm for DoA estimation. The reason why such a method is

popular goes back to its high resolution in estimating DoA (the angles can be as close

as 5◦ in good SNR conditions) and its high tolerance to low SNR values, which is

better than other DoA estimation algorithms. However, this comes with the cost of

high computational complexity that resulted from EVD which is a complex operation

and requires high computation resources. Hence, its complexity is compromised by its

high performance. Since a lot of attempts have been found in the literature to reduce

this complexity [69], [70], MUSIC complexity will not be considered when choosing

between algorithms.

As shown in Algorithm 2, MUSIC depends on EVD operation which is done after

knowing the number of sources and results in eigenvalues and eigenvectors. After
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Algorithm 2 MUSIC & MVDR Estimation Algorithms

Assuming
M: number of elements % array elements of the circular array
N: number of samples % samples to be collected at each antenna
K: number of applied signal with φi angle % either known or estimated
step 0:Collect The Received Signal

1: Generate a QPSK signal %QPSK signal to be sent by the sources
%To apply the effect of receiving those sources at antenna elements

2: Multiply by the circular array steering vector
3: Add a noise %Channel and Noise Effect

The received signal is now

Y = AS + W,

where Y ∈ CM×N , A ∈ CM×K ,S ∈ CK×N , W ∈ CM×N , with N being the total
number of collected samples and C is the set of complex numbers.

step 1:Get The Eigenvectors

1: Calculate CovM or CorrM matrices by (4.7) or (4.10) %Matrices Calculation
%Eigenvalue Decomposition Operation

2: Apply EVD to the matrices (4.8) and (4.12)
3: Extract The Eigenvector:

US = [e1, ..., eK ] is the signal subspace and UW = [eK+1, ...., eM ] is the noise
subspace

step 2: Estimate DoA

1: φ ∈ [0 : 360]
2: for i = 1→ length(φ) do

Find the steering vector as in Eq. (4.4) % To search the full circular spectrum
Apply MUSIC or MVDR spectrum where a(φ) is the steering vector at the current
φi %Based on the orthogonality fact

PMUSICi(φi) =
1

a(φi)TUWUT
Wa(φi)

PMVRDi(φi) =
1

a(φi)TR
−1
Y Y a(φi)

3: end for
4: The location of first K peaks of the resulting PMUSIC or PMVDR are the estimated

DoA
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knowing the number of sources either in prior or by estimation, the algorithm applies

EVD on CorrM or CovM to decompose into signal and noise subspace. The signal

subspace is US = [eK , ..., eM ], while the noise subspace is UW = [e1, ...., eN−K ], where

K is the number of sources estimated in the previous algorithm, explained earlier in

Section 4.2.

The algorithm depends on the fact that the noise and signal subspace are orthog-

onal to each other. Hence, using the Euclidean distance equation, ||a(φ)UW ||2 should

be 0 at the angles of arrivals. So, MUSIC attempts to find the steering vectors which

are as orthogonal to noise subspace as possible. It searches the spectrum to find all

steering vectors and apply

PMUSIC(φ) =
1

||a(φ)UW ||2

=
1

a(φ)TUWUT
Wa(φ)

(4.33)

for all φ in the spectrum which is [1 : 360] in UCA where a(φ) is defined in Eq. (4.4).

Then, the algorithm searches for the location of maximum K peaks in the spectrum

where K is the number of sources as estimated before. The variance in this estimation

approaches the Cramer-Rao lower bound when SNR approach infinity [71].

4.3.2 MVDR

MVDR is a traditional estimation algorithm that does not depend on subspace de-

composition as MUSIC does and, assumingly, it is less complex than MUSIC. It was

presented for the first time in [16] in 1969 on a modification of Capon algorithm.

It has a better resolution than Capon (reach about 20◦ in good SNR conditions),

however its SNR tolerance is less than other subspace algorithms.

As shown in Algorithm 2, the idea behind MVDR is to use the inverse of CovM

or CorrM matrices of the received signal. Multiplying that inverse by the steering

vector should result in close to 0 value at the directions of arrivals. Therefore, MVDR
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attempts to multiply the steering vector of the spectrum by the inverse CovM and

find the maximum peaks which will represent DoAs. It searches the spectrum to find

all steering vectors and apply

PMVRD(φ) =
1

a(φ)TR−1
Y Y a(φ)

(4.34)

For all φ in the spectrum which is [1 : 360] in UCA where a(φ) is defined in Eq. 4.4.

Then, the algorithm searches for the location of maximum K peaks in the spectrum

where K is the number of sources as estimated before. This can approach MUSIC

performance when SNR tends to infinity.

4.4 Distance Estimation

Due to its easy implementation and high availability, RSSI reading is the most com-

mon technique for distance estimation in wireless channels. RSSI is a measure of

the power of the received signal which can be estimated easily in most of the recent

transceivers. These transceivers are already equipped with circuits to estimate RSSI

value; and hence, this can be the simplest approach to estimate the distance from the

received signal.

In order to estimate the distance, models like free space propagation and the

two-ray ground reflection were presented in the literature, however the log distance

path loss model is the most commonly used model for such estimation. Unlike other

models, the log distance path loss model can be used for both indoor and outdoor

environments. The model maps RSSI readings to distances using:

Pr = Pr(d0)− 10 np log10
d

d0

+ Xσ (4.35)

Where Pr is the average received power, measured in dBW, and that is usually RSSI

value. Pr(d0) is the RSSI value at a reference point d0, np is the path loss exponent,
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Table 4.1: Derived Path Loss Model for Different Environments

Environment Average Power Equation
Line of Sight Indoor Pr = −16.21log10(d)− 40.412

Non Line of Sight Indoor Pr = −23.41log10(d)− 48.67
Outdoor Pr = −13.196log10(d)− 32.6600

d is the required distance and Xσ is a normally distributed variable with 0 means

and σ standard deviation. Using a reference distance of 1 meter, Eq. (4.35) can be

expressed as:

Pr = −10 np log10(d) + C (4.36)

Where C is Pr(1) +Xσ. Hence, the distance can be estimated by:

d = 10
−RSSI−C

10np (4.37)

In general, np and C change in different environments and circumstances. To have

an accurate estimation of this distance, those variables need adjusting from time

to time in order to accommodate environmental changes. In [72], the researchers

characterized the path-loss exponent and the constant C in 3 categories: line of sight

indoor environment, non-line of sight indoor environment and outdoor environment.

Table. 4.1 summarizes derived path loss exponent model for the three environments

where they used up to 10 m distance.

However, for accurate estimation of the distance, this equation still needs adjusting

of the included parameters as those parameters change with different environmental

factors. This can be done prior to the breaching scheme and that will be the only pa-

rameters in this thesis that need prior adjusting. To adjust those parameters, different

distances needed to be considered and multiple readings of the corresponding RSSI

values are measured. Then, the average RSSI value is calculated for each distance

and the equation is found using least square fitting linear regression model.
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Thus, for accurate estimations, Eq. (4.35) will need adjusting when implement-

ing the breaching scheme in hardware at a later stage of this thesis. Simulations of

these algorithms can be done only in a specific environment where the coefficients

are known, RSSI can be estimated from the received signal and the distance can be

calculated directly from the path-loss model equation. In the context of this thesis,

we will not be estimating the distance in the presented way for two reasons: first,

as we are working with simulation, the coefficients for the environment cannot be

found except if we implement a specific one, i.e. we will need to assume some existing

environments and use their coefficients, and then, we want to generalize our breach-

ing scheme for every environment. Hence, the simulation will not include distance

estimated by RSSI; however, that is assumed to be easily implemented with the pre-

viously stated procedure when applying the scheme to our hardware environments.

Instead, in this thesis we surveyed distance estimation algorithms’ accuracy, assumed

some exact distances and then added random errors based on algorithms’ accuracy.

In particular, we surveyed the most well-known algorithms for distance estimation

which are the RSSI-based and ToA based algorithms. RSSI-based algorithms error

can reach 20% of the actual distance, even with good coefficients estimation, [73]

[74], while ToA based algorithms can reach 10% error with good clock synchroniza-

tion between the communication nodes [75]. We assume some actual distances and

add random error that does not exceed 20% in case of RSSI and 10% in case of ToA.

Then, we used the resulting distance for breaching scheme and key generation as will

be seen later in simulation results.

4.5 Key Generation Scheme

After estimating the distance, the secret key should be generated based on a specific

scheme, which is agreed between Alice and Bob and we assume Eve to know the

scheme in prior. In this work, we follow a simple key generation scheme presented
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in [60] in the same project that this thesis is part of. We excluded information

reconciliation and privacy amplification to be tackled at a later stage of the project;

however, we will stop at the generated bits and evaluate them by the bit mismatch

ratio as will be seen later. Algorithm 3 shows the modified scheme for our case where

we excluded the last three steps and the channel measurement estimation.

Algorithm 3 Key Generation Scheme

step 0: Initialization

Bob, Alice, and Eve collect RSSI values from multiple beacons
They average their collected values
Estimate the distance Based on the averaged value.
They repeat that for a large number of iteration (100)

step 1: Uniform Quantization

Alice, Bob and Eve Quantize their bits based on uniform quantization

Y = Q(X) forX ∈ (di, di+1)

step 2: Encoding

They encode each quantized value separately and generate their keys accordingly

In this scheme, RSSI values are collected and the distance is estimated for averaged

RSSI values. Then, we have three common sources of randomness, i.e. the estimated

distances for each node, and the first step is to quantize them into bit streams to

be used as a secret key for Alice and Bob and estimated key for Eve. Uniform

quantization, [76], was used in which:

Y = Q(X) forX ∈ (di, di+1) (4.38)

where d is an interval and X is the input which is the estimated distance in our case.

In this quantization, the spaces along the x-axis (time) and the y-axis (distance) is

uniformly distributed. Then, we encode the bits as in [77] where each quantized

value is encoded with multiple values so that we do not end in a high bit error

mismatch (BMR). In our case, we choose 7 quantization bits and 2 encoded bits. After
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estimating the distance, we divide it by the maximum estimated one and multiply by

a 2Quantization Bits − 1. Then this quantized bit is transferred to a bit stream and the

encoding bits are attached to the end of each quantized bits.

In an actual key generation, removing the last two stages will result in a high

BMR that might be unacceptable in practice; however, we are concerned with the

parameters estimation and how close the generated keys are to each other. The last

two stages will be considered in future extensions; however, our objective currently is

just to compare between the generated keys based on the distance only.

4.6 Breaching Scheme

In this section, we discuss how the breaching of distance based security schemes can

happen. To start, we first define our communication nodes as Alice and Bob and our

eavesdropper as Eve. To estimate the direction of arrival, we used a circular array

with 8 antenna elements. Hence, Eve will need to be equipped with a circular array

with 8 elements, as was shown in Fig. 4.1. However, both Alice and Bob can be

equipped with only one antenna element to estimate the distance between them. Fig.

4.6.(A) demonstrates a simple overview of our system without showing the equipped

antennas. In this figure, node 1 and 2 are Alice and Bob respectively while node e is

Eve.

Figure 4.6: Breaching Scheme Overview
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As can be seen in the figure, node 1 and 2 communicate using their secret key

that is based on the distance between them, i.e. based on d12. Hence, the distance

between them is first estimated, as in Section 4.4 or any other distance estimation

algorithm, before they start their secret communication. Node e is listening to the

communication and trying to breach the system by estimating the key. Since it is

equipped with the circular array, it can estimate the direction of arrival of both Alice

and Bob. We denote the direction of arrival as φ1e and φ2e. Then Eve can estimate

its distances from both Alice and Bob which are donated by d1e and d2e, respectively,

using the estimation algorithm in section 4.4.

As a result, Eve can form a triangle as in Fig. 4.6.(B) where φe is the difference

between φ2e and φ1e and d1e and d2e are estimated. Using that triangle, Eve can use

the cosine law to estimate d12, by having an angle and 2 sides and calculating the

third side. In other words, at an instant of time, t, Eve can estimate the distance by:

d12 = d2
1e + d2

2e − 2× d1e × d2ecos (φe) (4.39)

Now ideally, Alice, Bob and Eve need to estimate d12 exactly the same. In this way,

the generated key between Alice and Bob and the breaching key by Eve are identical

and, they do not need further processing. However, practically as the distances are

estimated, they can never be exact and always have some errors. As a result, Alice

and Bob will have some bit mismatch between their generated keys and they need

further processing to agree on a final key. Further processes include information

reconciliation and privacy amplification which are out of the scope of this thesis.

In the breaching scheme, for the number of sources estimation, two of the proposed

algorithms, MMSCORR and MMICOV , will be used as they showed the best perfor-

mance. MUSIC will be used for DoA estimation as it showed a superior performance

compared to MVDR. For distance estimation, two scenarios will be used:

• Scenario 1: Distance estimation Based on RSSI
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In this scenario, the distance is assumed to have a fixed value and a random

error of less 20% is added, as RSSI-based distance algorithms can reach 20%

error even with good configuration. Results are expected not to be good when

DoA and the number of sources are not estimated correctly as the distance will

be far from the actual distance. However, when the number of sources and DoA

are estimated correctly, the estimated distances will be so close to the actual

one and results are highly comparable to Alice and Bob distance estimation.

• Scenario 2: Distance estimation Based on ToA

In this scenario, the distance is assumed to have a fixed value and a random

error of less 10% is added, as ToA based distance algorithm can reach 10% error

even with perfect clock synchronization. Results are expected to be better

than the first scenario as the error is less in this case. Even though it was

stated earlier that ToA will not be used in the context of this project, it was

simulated to check on its performance, compared RSSI-based algorithm. ToA

distance estimation might be used between the communicating nodes, as they

can synchronize their clocks based on their communication, and in the case of

powerful adversary where the eavesdropper can synchronize his close even with

passive eavesdropping.

After that, Alice Bob distance is estimated and the key can be generated based on

section 4.5 where we assume the distance as an input to the key generation scheme.

As will be seen later in simulation results, the estimated distances will be evaluated

by comparing it to the actual one, as this will help in analyzing the scheme and test

its limitations. Then the generated key will be compared to a reference one in terms

of the bit mismatch in order to compare Eve’s keys to Alice and Bob ones. After this

stage, if Alice and Bob are using the public channel to communicate for information

reconciliation and privacy amplification, Eve can listen to their communication and

fix its key accordingly; however, as stated earlier this is out of the scope of this work.

49



It is worth noting here that all the breaching scenarios in this thesis take only

two sources into consideration. Having more than two sources can end up estimating

more than one distance and the eavesdropper needs to consider them all. This case

will be discussed in the future direction section.
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Chapter 5

Implementation and Results

In this chapter, we start by explaining how the implementation for our algorithms was

done, going through the simulation results for the number of sources and DoA algo-

rithms and finally we end by simulation results for the breaching and key generation

schemes.

5.1 Implementation

The implementation and simulation of the number of sources and DoA algorithm

were done using MATLAB. The reason why MATLAB is chosen is for its easy im-

plementation when dealing with matrix operation and signal processing, which is

involved almost everywhere in our algorithms. Besides, MATLAB is considerably the

best when dealing with lower layer communication algorithms due to its embedded

functions such as Communication toolbox. Finally, MATLAB is supported by WARP

hardware, which will be used later for hardware implementation of the project. Thus,

dealing with MATLAB in the simulation would ease the process of applying with al-

gorithms to hardware and fast the hardware and software implementation.

For number of sources estimation, as in Algorithm 1, the implementation starts

by generating a set of random binary numbers and modulating them by Quadrature

Phase Shift Keying (QPSK) modulation using the Communication toolbox in MAT-

LAB. Then, the white Gaussian noise is added by the SNR value of interest and the

new matrix is in the form of the received signal as in Eq. (4.1) which will be processed

to estimate the number of sources estimation.
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Based on the previous estimate and the eigenvector that is gotten from the co-

variance matrix, the new signal and noise subspaces are created. The noise subspace

is the first M − K columns of the eigenvector where K is the estimated number of

sources and the signal subspace are the last K columns of the eigenvector. Then, DoA

is estimated for both MVDR and MUSIC as was presented in Algorithm 2 where K

peaks of the circular array spectrum are searched for.

The distance estimation algorithm depends on the environment and the measured

RSSI by the hardware. Hence, this algorithm will not be simulated; however, it will

be assumed in order to simulate the breaching algorithm. For the distance estima-

tion, the traditional method that is based on RSSI was used in indoor and outdoor

environments and this method has been implemented previously in the same lab so

simulating it in software will not add a value. Besides, the coefficient in the algorithm

is environment dependent and needs to be found in the lab with the hardware which

is another reason for not simulating the distance based algorithm.

Hardware implementation is an extension of this thesis that was already started.

Section 6.2 will handle some initial setup of the hardware used and some initial results

of DoA estimation with their problems and proposed solutions.

5.2 Simulation Results

Simulation results are done to test DoA and the number of sources estimation al-

gorithms performance in different scenarios. Our objective is to compare algorithms

and choose the best to be used in the breaching scheme. For DoA estimation, MU-

SIC and MVDR are simulated and the end results show that even though MUSIC

is more complex, it had a better performance in terms of resolution and low SNR

tolerance. Hence, MUSIC will be used in the breaching algorithm simulation results.

For the number of sources estimation, MDL, AIC, and the four proposed algorithms

are included in the simulation to choose the best to be used in the actual breaching
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algorithm. Two of the proposed algorithms, MSCORR and MICOV, show the best

performance among others, even better than AIC and MDL at some cases, while

they are much less complex. Hence, they will be used in simulations of the breaching

scheme.

Performance metric to be used for comparison is the percentage error rate which

can be expressed by the number of successful estimations divided by the total number

of estimations. It is expressed as:

error rate =

(
1− number of successes

number of runs

)
× 100 (5.1)

Another performance metric that will be shown in some simulations is the confidence

interval. This will help evaluating the population parameter, or the estimated values

for each algorithm, the range of estimates and how close they are to the actual values.

In this metric, upper and lower bounds are found and the confidence interval is the

range between them. Hence, it can be expressed as:

CI ∈ [X̄ − nσ
L
, X̄ + n

σ

L
] (5.2)

where X̄ is the mean of the estimated values, σ is the standard deviation, L is the

number of sample, and n is a population parameter which is set to 1.96 in case of

95% confidence interval.

The simulation was running for 10000 and the average error was gotten and used

in all fallowing figures unless otherwise stated.

5.2.1 Number of Sources Estimation

The simulation results for number of sources estimation are done to test the algo-

rithms in different scenarios that include different number of samples, SNR values,

the number of applied signals and the number of elements that construct the array.
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Table 5.1: Figures Legend Abbreviations for Number of Sources Estimation

Abbreviation Algorithm
AIC AIC Algorithm
MDL MDL Algorithm

MSCORR Proposed MS for CorrM Algorithm
MICORR Proposed MI for CorrM Algorithm
MSCOV Proposed MS for CovM Algorithm
MICOV Proposed MI for CovM Algorithm

Except with different number of elements, the array configuration used is a uniform

circular array with 8 elements. The original signal is a QPSK signal and the noise

added is a white Gaussian noise with the different SNR values.

For simplicity and arrangement of figures, Table 5.1 represents the notation of the

legends that will be used later in all of our simulation figures.

Error rate vs. SNR

The first simulation is done to test AIC, MDL and the proposed algorithms perfor-

mance with different SNR values. SNR values range from -20 to 15 dB, the number

of samples is fixed to 1024 and the actual number of sources is 2.
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Figure 5.1: Effect Of Different SNR at N=1024 sample

As shown in Fig. 5.1, the proposed algorithms behave better than MDL at low

SNR values and better than AIC at high SNR values. For less than -10 dB, the

proposed algorithms have a comparable performance to AIC and better than MDL
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with MICorr having the least error in less than -15 dB. Between -15 and -12 dB,

all algorithms have a very comparable performance; however, the estimation error

rate for all algorithms is high for less than -12 dB SNR values. This error is due to

the inconsistent change in eigenvalues that results from high noise. At SNR values

higher than -10 dB, the performance of MDL and the proposed algorithms come

to be the same with a minimum error rate that is almost 0% while AIC keeps its

error rate of about 10%. The reason why AIC is not giving lower error rate is the

overestimation of the number of sources which happens with relatively high SNR

values. This overestimation is probably due to AIC added penalty term as was proven

by [78].

Another test is done to check the performance with low number of samples where

it is set to 100 samples and the same other configurations are applied. As shown in

Fig. 5.2, CorrM based algorithms outperform others with low SNR levels that are

less than -10 dB. This goes back to the better contrast between the signal and noise

eigenvalues that is introduced by exploiting CorrM and hence better number of sources

estimation. After -5 dB, the performance of MDL and the proposed algorithms come

to be the same with minimum error rate that is almost 0% while AIC kept its error

rate of 10% which happened due to overestimation of the number of sources.
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Figure 5.2: Effect Of Different SNR at N=100 sample
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Error rate vs. number of samples

One of the important parameters to consider in any algorithm design is the number

of samples needed by the algorithm to estimate correctly. This is important for

algorithm practical implementation as the number of samples needs to be minimized

in such scenarios. Simulation parameters in this test are: SNR value of -5 dB, 2

applied signals and different number of samples.
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Figure 5.3: Effect Of Different Number of samples at SNR=-5

As can be seen in Fig. 5.3, the proposed algorithms have a better performance than

MDL and similar performance to AIC for low number of samples. MDL algorithm

underestimates the number of sources with low number of samples as eigenvalues are

not well distrusted in a way that can be detected by the algorithm. MDL and the

proposed algorithms have the same performance for more than 28 samples which is

almost 0% error rate. AIC, on the other hand, overestimates the number of samples

and hence has its 10% error rate, which is found in almost all test cases that are

conducted in this thesis.

Error rate vs. different number of applied sources

Different algorithms might have different sensitivities in terms of the number of

sources they can estimate. Hence, in this simulation, algorithms are tested against a
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different number of applied sources at SNR value of -5 dB and the number of samples

equal to 1024 samples.
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Figure 5.4: Effect Of Different Number of applied Signals at SNR=-5, N =1024 with 8 elements
UCA array

As can be seen in Fig. 5.4, AIC outperforms all other algorithms in the maximum

number of sources it can estimate. MDL, MS for both matrices and MICorr can

estimate up to 5 elements with less than 20% error and can not estimate more, while

AIC can estimate 6 and 7 signals, but with a very high error rate. By looking at some

other results with different angular separation between the applied signal, it is noted

that the separation between DoA angles have a great impact on the total number of

sources the algorithms can estimate. The higher the separation is, the easier it is for

the algorithm to detect more sources.

Algorithm performance with different array elements

We then examine the effect of increasing the number of elements that construct the

array at SNR value of -5 dB; 100 samples and 2 sources are applied to the array. The

number of samples is chosen to be low so that some algorithm would fail at this stage

while others do not. If we choose the number of samples to be high, all algorithms

will estimate correctly at this SNR even with 6 antenna elements.
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Figure 5.5: Effect Of increasing the number of elements that construct the array at N =100

As shown in Fig. 5.5, MSCorr and MICov have the best performance among

others for the number of elements higher than or equal to 8. As the number of

elements increases, the error decreases till it comes to almost 0% error rate for MDL

and proposed algorithms, which happens after 12 elements.

Confidence interval with different SNR values

In this simulation, the confidence interval of each algorithm is tested against differ-

ent SNR values, as SNR is one of the most important metric that we test against.

Simulation parameters in this subsection are: number of samples of 210, two signals

located at 100◦ and 140◦ and different SNR values that range from -20 to 15 dB. The

y-axis represents the upper and lower bounds of the confidence interval, while the

confidence is the range between them. As shown in Fig. 5.6, all algorithms had a

very small confidence intervals which indicates that the estimated values are almost

the same. The proposed algorithms based on CorrM had a slight variation at very

low SNR values; however, they are the closest to the actual value, two sources. Even

though it is not so obvious in the figure, AIC algorithm has its estimates between 2

and 3 for high SNR values and that is why it has an error rate. However, it is not

shown as the average is closer to 2 and only 10% of the estimates are 3.

58



−20 −15 −10 −5 0 5 10 15
1

2

3

4

5

6

Number of sources estimation

SNR

E
st

im
at

ed
 V

al
ue

s
 

 
AIC
MDL
MS

CORR

MI
CORR

MS
COV

MI
COV

Figure 5.6: Confidence interval with different SNR values

Complexity comparison

As the proposed algorithms are claimed to be simple, their complexity should be

much less than AIC and MDL. To prove that, we use the simulation run-time as a

metric to compare the complexity of the 6 presented algorithms. In Fig. 5.7, we plot

the simulation run-time for all presented algorithms versus the number of collected

samples: (a) actual simulation, run-time in seconds and (b) the simulation run-time

normalized to the AIC run-time. In Fig. 5.8, we plot the simulation run-time for all

proposed algorithms versus the number of antenna elements: (a) actual simulation

run-time in seconds and (b) the simulation run-time normalized to the AIC run-time.

As can be seen in Fig. 5.7, our proposed algorithms have a much less simulation

run-time, which is the translation of a much less complexity. AIC and MDL have

a comparable complexity with MDL achieving a slightly less run-time. At a lower

number of samples, MDL is taking 90% of the time AIC takes while it is taking 80%

at a higher number of samples. As expected, as the number of samples increases,

the simulation run-time for all algorithms increases. Our CorrM algorithms achieve

simulation run-time that is less than 2% of that achieved using AIC while our CovM

algorithms are achieving simulation run-time that is less than 25% of that achieved

using AIC.
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Figure 5.7: Simulation run-time versus number of samples: (a) Actual run-time in seconds (b)
Run-time normalized to AIC run-time

Similarly, from Fig. 5.8, our proposed algorithms have drastically improved the

simulation run-time while AIC and MDL are having a comparable run-time. Our

CorrM algorithms achieve simulation run-time that is less than 5% of that achieved

using AIC at low number of antenna elements and less than 2% at higher number of

antenna elements, while our CovM algorithms are achieving simulation run-time that

is less than 25% of that achieved using AIC at low number of antenna elements and

less than 10% at higher number of antenna elements.

6 8 10 12 14 16 18 20

1

2

3

4

x 10
−4 (a)

Number of Antenna Elements

S
im

ul
at

io
n 

ru
n−

tim
e 

(s
ec

)

 

 
AIC
MDL
MS

CORR

MI
CORR

MS
COV

MI
COV

6 8 10 12 14 16 18 20

20

40

60

80

100
(b)

Number of Antenna ElementsN
or

m
al

iz
ed

 S
im

ul
at

io
n 

ru
n−

tim
e 

(%
)

 

 
AIC
MDL
MS

CORR

MI
CORR

MS
COV

MI
COV

Figure 5.8: Simulation run-time versus number of antenna elements: (a) Actual run-time in seconds
(b) Run-time normalized to AIC run-time
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5.2.2 Direction of Arrival (DoA) Estimation

Simulation results for DoA estimation were conducted to check the performance of

MVDR and MUSIC in different scenarios. This includes testing with different SNR

values, different angle separation (resolution), different number of samples, different

number of elements that construct the array and different number of applied signals.

Unless otherwise stated, an 8 element UCA was used to simulate the results since

only 8 elements array will be used for later hardware implementation.

Error rate versus SNR

To test algorithms tolerance to SNR values, SNR values range from -20 to 15 dB,

the number of samples is fixed to 1024 and two signals are applied with an angular

separation of 40◦. Results, as shown in Fig. 5.9, prove that MUSIC outperforms

MVDR in terms of error rates and SNR tolerance. MUSIC can estimate correct

DoAs at SNR values of -5 dB while MVDR can estimate correct DoAs only after 0

dB. The reason why the error rate increases as SNR decreases is due to high noise

effect which is involved in both algorithms calculations and leads to less accurate

estimation and hence higher error rate.
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Figure 5.9: Error rate of MVDR and MUSIC with Different SNR values
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Error rate versus angular resolution

Another simulation is done to test the error rates of both algorithms with different

angular resolution at SNR of 0 dB, number of samples of 1024 and 8 elements UCA

with 2 applied signals. Results, as can be seen in Fig. 5.10, show that MUSIC is

able to estimate the angles correctly if they are separated by 20◦ with about 20%

error rate. Even though it can detect that there were 2 signals for less than this

separation, but it could not estimate the angles correctly and hence the error rate

was high. MVDR can detect the two signals at 30◦ separation; however, it is not

accurate estimation until 40◦ separation. The reason why MUSIC could have better

estimation with small separations goes back to EVD effect which separates the noise

from signal subspaces and search for the noise orthogonality instead of the full CovM

orthogonality in case of MVDR.
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Figure 5.10: Error rate of MVDR and MUSIC with Different angular resolution

Error rate versus different applied signals

A third simulation is done to test algorithms error rates with different number of

applied signals that are received by the array. SNR is fixed to -5 dB, the number

of samples is 1024 and the angular separations vary, but they are sufficient enough

for both algorithms not to fail. As can be seen in Fig. 5.11, MUSIC performs much
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better than MVDR when the number of sources increases. Even though the number

of elements was 8, MUSIC can estimate 5 signals with an error rate of less than 20%.

MVDR, on the other hand, is able to estimate only 2 signals with an error rate of less

than 20%. After 2 signals, the error rate starts increasing and the algorithm fails in

estimating DoA which can be a main drawback in our case. This simulation shows

the most noticeable advantage of MUSIC over MVDR, beside the high resolution, and

it is one of the most important reasons to pick MUSIC over MVDR for the breaching

scheme.
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Figure 5.11: Error rate of MVDR and MUSIC with Different number of applied signals

Error rate at various number of samples

Another simulation is done to test the error rates with different number of samples

that are used to estimate DoA. As stated before, this is particularly important in any

hardware implementation as the number of samples is limited to hardware capabilities

which is needed to be minimized as much as possible. Hence, both MUSIC and

MVDR are tested against different number of samples while fixing SNR value to -5

and 2 applied signals are generated with 100◦ separation.

Even though the algorithms can detect the signals at low number of samples, as

shown in Fig. 5.12, the accuracy of both algorithms is not good and the estimated

DoAs are out of tolerance range, i.e. there was more than 1◦ error compared to actual
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(b) L=1024

Figure 5.12: Comparison between MVDR and MUSIC with different number of samples

values. Hence, in terms of the error rates, as can be seen in Fig. 5.13, both algorithms

have a very high error rate with 27 samples or less. After that, both error rates are

much enhanced until they reach almost 0 at 210 samples or more. This can prove

that even if the algorithms can detect DoAs, they will not able to estimate them

accurately and hence they fail at low number of samples due to incorrect estimation

of the CovM. However, in our case, that will not be a problem as we assume enough

number of samples already, taking about 214 samples in hardware implementation.
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Figure 5.13: Error rate of MVDR and MUSIC with Different number of snapshots
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Error rate versus different array elements

A final simulation is done to test algorithms error rate with different number of

elements that construct the array. Theoretically, as the number of elements increases,

the estimation is enhanced, but with a penalty of complexity increase. Of course, as

we are concerned with hardware implementation, a compromise between accuracy

and complexity should be done in order to benefit from both factors. To reach this

compromise, this simulation is done to test how the performance gets affected when

increasing the number of array elements. SNR value was fixed to -5, two signals are

applied with 100◦ separation and the number of samples is 1024.
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Figure 5.14: Error rate of MVDR and MUSIC with Different number of array elements

As shown in Fig. 5.14, MVDR cannot estimate with 6 elements, but it has a

correct estimation at 8 elements while MUSIC can estimate even with 6 elements.

It’s worth noting here that increasing the array elements affected the estimation in

both algorithms. The resolutions are much enhanced for both algorithms as the

number of elements increases; however, from 8 to 16 elements the change is not that

worthy, especially when considering the cost added. Hence, using 8 elements would

be sufficient enough for good estimation in our application and will be used later in

breaching simulation and hardware implementation.
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MVDR & MUSIC PNR values

This simulation is done to check the peak to noise ratio (PNR) of both algorithms

at different SNR values and different number of elements that construct UCA, where

only one signal is applied to the array. Fig. 5.15 shows PNR values of both algorithms

with different SNR values and different number of elements. As can be seen, MUSIC

outperforms MVDR by achieving a very high PNR, y-axis, even with low SNR values,

achieving about 10 dB for SNR of -15 dB while it is only 1 dB in case of MVDR.

Besides, as SNR values and number of elements increases, PNR value will be getting

higher due to less noise effect. Higher PNR values would mean better estimation as

signal peaks will be more distinguishable from noise peaks, even with relatively high

noise peaks.

Confidence interval with different SNR values

In this simulation, the confidence interval of MVDR and MUSIC algorithms are tested

with different SNR values. Simulation parameters in this subsection are: number of

samples of 210, two signals located at 100◦ and 140◦ and different SNR values that

range from -20 to 15 dB. The confidence interval of one angle, 100◦ is calculated for

both algorithms, and the y-axis represents the upper and lower bounds, while the

interval is the range between them. As shown in Fig. 5.16, MUSIC has a much better

performance than MVDR. The estimation is wrong for both algorithm when SNR

values are less than -10 dB. However, after that MUSIC estimation gets to the actual

value with minimum confidence interval, while MVDR doesn’t get to the actual value

until 0 dB. These SNR boundaries are slightly different than the one in the error rate

simulation which is due to the search of one angle instead of two in the case of error

rate.
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(a) SNR=-15, N=8
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(b) SNR=-15, N=16
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(c) SNR=-5, N=8
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(d) SNR=-5, N=16

Figure 5.15: Comparison between MVDR and MUSIC PNR values at different SNR and different
number of elements
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Figure 5.16: DoA confidence interval with different SNR values
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5.3 Breaching Scheme Simulation Results

In this section, we test the performance of the estimated Alice-Bob distance in terms of

Normalized Mean Square Error (NMSE), normalized distance and bit-mismatch ratio

(BMR). NMSE and the normalized distance would show how the estimated distances

differ from the actual one while BMR would show the bit mismatch between the

generated keys and Alice’s key which we consider as a reference key. The normalized

distance estimation is given by:

Normalized Distance =
Average Estimated Distance

Actual Distance
× 100 (5.3)

while NMSE can be given by:

NMSE =
1
T

∑
(ρ′ − ρ)2

ρ′2
(5.4)

where T is the number of trials, ρ′ is the actual distance, ρ is the estimated distance.

BMR is the number of mismatched bits divided by the total number of bits in the

generated keys, it can be represented by:

BMR =
Number of Different Bits

Total Number of Bits
(5.5)

Distances will be assumed with some error of less than 20% and 10% for RSSI

and ToA distance estimation algorithms, respectively, as stated earlier in Section 4.6.

Each of Alice, Bob and Eve will be estimating distances and generating their own

keys with Eve using the two number of sources estimation algorithms, MMSCORR

and MMICOV . As a result, 8 distances will be estimated and 8 keys will be generated.

Distances are compared to the actual one in terms of NMSE and normalized distance

estimation while the keys are compared to Alice key, as a reference key, in terms of

BMR. Simulation results consider different numbers of samples, different SNR values,
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Table 5.2: Figures Legend Abbreviations for Breaching Scheme Algorithms

Abbreviation Algorithm
Alice Bob Estimated distance by Alice

Alice Bob MMSCorr Estimated Distance by Eve Using MMSCorr Algorithm
Alice Bob MMICOV Estimated Distance by Eve MMICOV Algorithm

Bob Alice Estimated distance by Bob

and different angular separation as parameters to change and see their effect on the

presented algorithms.

All the presented scenarios in this section will follow Fig. 5.17 for the actual as-

sumed distances between Eve Bob and Eve Alice where the key is based on Alice Bob

distance, d12, which depends on the value of φe. φe is the difference between two actual

DoAs and changes depending on the simulation.

Figure 5.17: Simulation Setup for the Breaching Algorithm

5.3.1 Distance Estimation versus Different Parameters

For simplicity and arrangement of figures in this subsection, table 5.2 represents the

notation of the legends that will be used for figures and within discussions.

Number of samples

In this simulation, SNR value is fixed to -5 dB and the angles are set to 100◦ and

200◦, i.e. the angular separation is 100◦. The number of samples ranges from 25 to 214

69



to test the distance estimation with different samples. As can be seen in Fig. 5.18,

Eve cannot estimate the correct distance for less than 28 samples. The estimated

distances are far away from the actual one and this is due to incorrect estimation of

DoA and the number of sources. The reason why the average estimated distances are

always less than the actual one goes back to some incorrect estimation of the number

of sources which put the estimated distance to its default value, 0 meter. As a result,

when averaging the distances, those 0 estimated distances will lead to an average

distance of less than the actual one. Bob and Alice can have approximate distances,

even with a low number of samples as they do not need DoA estimation and they

just estimate the distance which is close to the actual one. It can be seen as well that

ToA and RSSI-based estimation has a close performance in terms of the estimated

distance tolerance as the tolerance was based on DoA not on distance estimation. Fig.

5.19 shows NMSE for the 4 algorithms which indicates that the error gets close to 0

after 28 samples. It should be noted here that Eve estimated distances are sometimes

overlapping with each others while Alice and Bob distances are overlapped always,

which is resulting in two curves instead of four at some points of the figures.
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Figure 5.18: Normalized distance estimation with different number of samples at SNR=-7, Angular
separation=100

To show NMSE when DoA and the number of sources are estimated correctly,

the same simulation is regenerated for number of samples greater than 29. Fig 5.20
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Figure 5.19: NMSE with different number of samples at SNR=-7, Angular separation=100

shows the NMSE for this simulation in order to compare between Alice, Bob and

Eve estimated distance in good number of samples conditions. As can be seen, Eve

NMSE are relatively close to Alice and Bob NMSE when the number of samples is

more than 210, due to correct estimation of DoA and number of sources algorithms.

It can be seen as well that when DoA and the number of sources were estimated

correctly, ToA based algorithm has a less NMSE than RSSI-based algorithm, which

is due to less estimation error in ToA based algorithms, i.e. 10% instead of 20% in

case of RSSI-based algorithms. Also, Eve curves might overlap while Alice and bob

curves are overlapping.
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Figure 5.20: NMSE with different good condition number of samples at SNR=-7, Angular separation
= 100
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SNR

In this simulation, the number of samples is fixed to 214 and the angular separation

is fixed to 100◦. SNR values range from -20 to 20 dB and the distances are estimated

by Alice, Bob and Eve. As shown in Fig. 5.21, Eve can not estimate the distance for

less than -15 dB, but it can estimate approximate distances after that. The reason

why the estimation fails for less -15 dB is due to failure in DoA estimation which

is expected at such low SNR values. After that, all algorithms come to almost the

actual distance estimation and have almost 0 NMSE as shown in Fig. 5.22.
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Figure 5.21: Normalized distance with SNR values at N=214, Angular separation=100
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Figure 5.22: NMSE with SNR values at N=214, Angular separation = 100
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To check the performance when DoA and the number of samples are estimated

correctly, the same simulation is regenerated with SNR values of -10 to 20 dB. As

shown in Fig. 5.23, Alice, Bob, and Eve have a comparable performance in terms

of NMSE with Eve having a slightly less value than Bob and Alice do. This is due

to the fact that Eve has its error in Alice−Eve and Bob−Eve distances rather than

Alice−Bob distance which cause a less error in Alice−Bob distance as some errors

cancel each other. It is obvious as well that ToA based algorithms have less NMSE

than RSSI-based due to less estimation error in ToA based algorithms. Moreover,

Eve curves might overlap while Alice and bob curves are overlapping.

−10 −5 0 5 10 15 20
0.01

0.012

0.014

0.016
NMSE For ALice_Bob Distance Estimation (RSSI Based Algorithms)

SNR (dB)

N
M

S
E

 

 

−10 −5 0 5 10 15 20
2.5

3

3.5

4
x 10

−3NMSE For ALice_Bob Distance Estimation (ToA Based Algorithms)

SNR (dB)

N
M

S
E

 

 

ALice_Bob
Alice_Bob_MMS

Corr

Alice_Bob_MMI
COV

Bob_Alice

ALice_Bob
Alice_Bob_MMS

Corr

Alice_Bob_MMI
COV

Bob_Alice

Figure 5.23: NMSE with good condition SNR values at N=214, Angular separation = 100

Angular separation

In this simulation, SNR value is fixed at 0 dB, the number of samples is fixed to

214, and the angular separations change from 10 to 140◦. As shown in Fig. 5.24,

MMICOV algorithm estimates correctly when the separation is 15◦ while MMSCORR

algorithm estimates correctly when the separation is 30◦. The reason behind that is

the resolution of CorrM based algorithm which is less than CovM algorithms and

causes the failure of number of sources estimation for less than 30◦ separation.
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Table 5.3: Figures Legend Abbreviations for Breaching Scheme Algorithms

Abbreviation Algorithm
Alice Bob Key Key generated by Bob

Alice Bob MMSCORR Key generated by Eve Using MMSCORR Algorithm
Alice Bob MMICOV Key generated by Eve Using MMICOV Algorithm
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Figure 5.24: NMSE with different angles separation at N=214, SNR =0 dB

5.3.2 Keys BMR versus Different Parameters

In this subsection, secret keys are generated using the estimated distances by Alice,

Bob and Eve with Eve using 2 algorithms. Then, Alice’s key is chosen as a reference

key and other keys are compared to it in terms of bit mismatch. Simulations are

done with different SNR and different number of samples conditions; however, it is

not tested with different angular separations as such results are already expected, the

key will not work for less than 30◦, but it has a comparable result for more than that.

For simplicity and arrangement of figures in this subsection, Table 5.3 represents

the notation of the legends that will be used for figures in this section.

Number of Samples

In the first simulation, SNR value is fixed to -5 dB, the angular separation is 100◦

and the number of samples ranges from 25 to 214. Results, as shown in Fig. 5.25,

prove that Eve will have a higher BMR than Bob at low number of samples. Hence,
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even if Eve listens to information reconciliation and privacy amplification, she will

not be able to estimate the key at that stage. The reason for such high BMR at that

stage is the incorrect estimations of the number of sources or DoA which happen at

relatively low number of samples and result in wrong or far distance estimation.
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Figure 5.25: Key BMR with different number of samples at SNR=-5, Angular separation = 100

After that, Eve estimates DoA approximately and could have a lower BMR; how-

ever, it is still higher than Bob BMR, especially for RSSI-based distance estimation

scenario. As shown in Fig. 5.26, Bob BMR is less 20% which indicates that there is

a small mismatch between Alice and Bob generated keys. Eve, on the other hand,

has about 25% mismatch in case of ToA based scenario and 30% mismatch in case

of RSSI-based scenario. With further information reconciliation and privacy ampli-

fication stages Bob will be able to fix his mismatch as they are less than 20-25%. If

Eve listens to those stages then she might be able to fix the mismatch in case of ToA

based algorithm; however, it is still difficult to fix the mismatch in case of RSSI-based

algorithm.

SNR

In the second simulation, the number of samples is fixed to 214 and SNR values

range from -10 to 20 dB while the angular separation is 100. As shown in Fig. 5.27,

Eve BMR is higher than Bob one’s even when DoA and the number of samples are
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Figure 5.26: Key BMR with different number of samples at SNR=-7, Angular separation = 100

estimated correctly. The reason behind that is the error added by ToA or RSSI-based

algorithm which is random and uncorrelated from Bob and Alice errors. This resulted

in different quantization bits which will be resulting in high BMR, especially in the

case of RSSI-based algorithm. As with different number of samples, Eve might be

able to breach the system with ToA based algorithms; however, it is still difficult to

breach in case of RSSI-based algorithm.
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Figure 5.27: Key BMR with SNR values at N=214, Angular separation = 100
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Chapter 6

Discussion

In this chapter, we start by discussing some of the breaching scheme weaknesses

in order for further enhancement in the future. Then we discuss an extension of

the project which already started, namely hardware implementation. Later on, we

discuss some challenges that were faced through the hardware implementation and

the number of sources estimation. Finally, we discuss some future directions that can

be done for the project in short and long terms.

6.1 Breaching Scheme Weaknesses

In this section, weaknesses of the breaching scheme will be discussed in brief. This

aims to introduce some ways to enhance the security and the breaching schemes

which will be considered as a future direction of this thesis. The main weak points

that will be discussed here are the assumption of two sources in the breaching scheme,

complexity of the algorithm and the usage of empirical thresholds with the number

of sources CovM based algorithms.

Complexity problem with the breaching scheme comes from its eigenvalues de-

composition which is needed for both the number of sources and DoA estimation.

This process is traditionally complex and requires M3 iterations, hence, its complex-

ity is approximated by O(M3). Besides, the complexity of covariance matrix finding

is about O(M2N) and the complexity of the spectral search in DoA estimation is

O(M2A) when N is the number of samples, M is the number of array elements and

A is the angles in which DoAs are search for, i.e. 360circ in case of circular array [79]
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[80]. The number of sources estimation techniques are relatively simple, as shown in

simulation results, and their complexity with distance estimation complexity can be

negligible in comparison to DoA complexity. Hence, the big problem is with DoA

estimation complexity as this is the most complex process in our work. There exist

many attempts in the literature to solve MUSIC complexity; an example can be found

in [81] [82]; however, we consider solving the complexity problem as a future direction

and we just use the traditional MUSIC algorithm in our context.

The second weakness lies in the threshold definition of CovM-based number of

sources estimation algorithms. This threshold is found empirically for both MS and

MI decision statistics, even though we show a closure form the distribution of thresh-

old. However, there is a possibility that when implementing those algorithms in

hardware, this threshold will need to be redefined from the experimental data rather

than empirical simulation data. At that stage, linear regression can be used as well

to define the threshold equation for both decision statistics.

A final weak point to be considered is the way we handle more than two sources

applied to the array. As stated earlier, receiving more than two sources is a valid

case especially in wireless channels. We handle this case by choosing the two highest

peaks to noise ratio DoAs and consider them as our target nodes, or communicating

nodes. Of course, that might not a practical assumption; however, this can be a valid

assumption with a simple simulation and hardware implementation as we have the

control of the signal powers. A further discussion on this point will be considered

later in the future direction section.

6.2 Hardware Implementation as an Extension

Implementing the breaching scheme on actual hardware is an important part of the

project that this thesis was part of. This can prove the feasibility of both the security

scheme and the breaching scheme, and it suggests an initial model for hardware im-
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Figure 6.1: WARP Hardware

plementation of physical layer security schemes. Traditionally, physical layer security

was mostly considered with software implementation and information theoretic ap-

proaches which are not feasible in actual implementations; however, the current trend

in this field is for hardware implementation of newly raised security schemes. Channel

information, RSSI or the distance is available in hardware modules now and hence

estimating such values and building the security based on them can be considered as

an easy task compared to traditional cryptographic techniques.

To that extent, some work already started in employing our scheme to hardware

using Wireless open Access Research Platform (WARP) hardware. In this subsection,

we introduce the hardware first, then the configuration that will be used in implemen-

tation, some initial results, the problem introduced and finally the planned solutions

and work to be done in that part.

Wireless Open Access Research Platform (WARP) hardware

WARP is a scalable, extendable and programmable wireless platform built by Rice

University to be used by academics and industrial projects in MAC and PHY layer

protocol implementation. As in Fig. 6.1, the hardware consists of 4 RF daughter

boards, where only A and B are placed while C and D can be placed in 1 and 4
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slot respectively, Xilinx Virtex-II Pro FPGA, sampling and RF clocks and Ethernet

port to be connected to a switch. RF boards operate at 2.4 or 5 GHz to provide the

waveform access to the transceivers without fallowing any wireless standards, i.e. any

standard can be used, and requiring the waveform to be handled at the FPGA level

[83].

WARPLAB framework allows many physical layer algorithms to be constructed

and tested on MATLAB offline bases. It combines MATLAB and FPGA implemen-

tation to allow the customization and flexibility of the implemented algorithms. The

FPGA is programmed externally to allow programming of RF board connections and

clock synchronization while the reference design uses MATLAB to control the RF

board and perform signal processing which is the core of this work.

Hardware configuration

In order to implement DoA algorithm, we use a circular array with 8 elements and

0.06 meter radius. Hence, a circular array of 8 elements was designed externally

and we connected it to our 8 WARP RF boards coming from 2 WARP kits to the

array elements. As shown in Fig 6.2, the array elements are connected to the WARP

hardware through RF cables. Synchronization between WARP nodes was done by

connecting clocks through MMCX-Cables and connecting the triggers of both nodes

to one reference node. Fig. 6.3 shows the connection between the WARP nodes clocks

and triggers where node 1 is the reference node and node 2 is the synchronized node.

After that, the FPGA is programmed to its default state where 4 RF boards

will be working and one node will be receiving its clock from the other, for clock

synchronization. The 4 RF boards are set to receive mode and a signal is sent from

a signal generator with -20 dB power. The signal is received by the 8 antennas,

calibrated to match their phase shifts and attenuation and finally saved as a matrix

of 8 × 214 where 214 is the number of samples. Then an offline process starts by

applying our estimation algorithms and estimates the communicating nodes distance
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Figure 6.2: UCA connection to RF boards

Figure 6.3: RF board connections for synchronization

by: estimating the number of sources, DoA, distances from the eavesdropper. Finally,

we estimate the key based on the estimated distance and compare it to Alice and Bob

keys.
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Table 6.1: Mean , Variance and STD of the Hardware Estimated DoA

Expected DoA Range Estimated One
Mean Variance STD

65-75 70 0 0
115-125 118.4300 0.2678 0.5175
190-200 190.7143 0.2420 0.4919
250-260 256.8400 0.1358 0.3685
340-350 346.7500 0.1894 0.4352

Initial results

DoA algorithm was the first stage in hardware implementation as it is the hardest

and it is the core of the breaching scheme. A matrix of 8× 214 is received and needed

to be processed in order to estimate the direction from which the signal is coming.

One signal with -20 dB power is applied and the process follows Algorithm 2 where

the received signal is already saved in the matrix so that we need step 1 and 2 of the

algorithm only. The circular array is fixed while the source is moving for 5 different

runs at locations. The actual values of the directions are not known exactly, but they

are approximated to 70, 120, 190, 250 and 330 which is close to the estimated ones.

At each location, DoA is estimated and saved where the variation in the estimated

angles is small and can reach a maximum of 2◦ only. Table 6.1 shows the range of the

actual DoA, mean, variance and standard deviation of the hardware estimated ones.

It should be noted however those results were done for 100 runs only; and hence, the

results might not be that accurate.

Problem raised and proposed solutions

As shown in initial results, hardware implementation of MUSIC gave correct esti-

mated DoA up to some limits; however, many problems were introduced at that

stage and it took a lot of time to be tracked and solved. Some of these problems will

be mentioned later in the next section; however, even after all the calibration and

setup phases, there are two major problems which could not be solved till now. These
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problems are basically the peak to noise ratio (PNR) values and the change in phase

offsets among nodes, which is changing the reference antenna for each run.

The first problem in which the PNR values are wrong is a more serious one in

our context and would fail the breaching scheme as the algorithm would not estimate

two sources. This problem can be visualized in Fig. 6.4 where the PNR value of

the hardware is compared to the simulation one, at low SNR condition. As can be

seen, PNR in the case of hardware is much less than the one for simulation, even

though the SNR value was -10 dB in simulation case. Obviously, this PNR is wrong

for MUSIC algorithm as this algorithm should have much higher values even with

low SNR conditions, which could conclude that the problem is not with low SNR.

Employing two sources based on these results does not work as the signals will be

lost with all this added noise, i.e. the signal will not be detected.
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Figure 6.4: DoA spectrum power of 1 signal at 190◦

It is possible that the problem is caused by the environment in our labs, which

might introduce noise into the environment in a way that failed DoA implementation

especially for MUSIC algorithm. This high noise could be non orthogonal to the signal

subspace which is resulted from wireless interferences and reflections and would fail

MUSIC algorithm as it is based on the orthogonality fact. The second problem is

the change in phase offsets among RF nodes, which is a feature in the hardware and
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it is resulting in the reference node being changed each time the code is run. As a

result, DoA estimation is changing each time that the code is run. This is due to the

RF reference, which is the location of 0◦, changes each time. This problem has not

been tackled as the actual value of the DoA wouldn’t effect our scheme as soon as

the difference between DoAs are the same, which conceptually should happen.

6.3 Challenges

In this section, some of the challenges that were faced during the project are discussed

as well as the ways that were used to overcome these challenges.

6.3.1 Number of Sources Estimation

In number of sources estimation, the big challenge was to set a threshold for CovM

based algorithms. Initially, it was clear that a threshold can be set to differentiate

between noise and signal eigenvalues; however, that threshold changes with different

parameters and hence a mathematical way was needed to find the threshold distribu-

tion using eigenvalues distribution. To achieve that, we started with the distribution

of the eigenvalues given in Eq. (4.24) and from that we found the distribution of or-

dered eigenvalues. Then, we found the distribution of the moving increments, which

is the difference between consecutive eigenvalues, given in Eq. (C.7). This turned out

to be too complex to solve so we just stated the distribution of the threshold in Eq.

(4.25) without solving for its integration and showed the detailed proof in appendix

C to prove its mathematical tediousness. Then, we moved to the linear regression

analysis in order to find the threshold which would count as the easiest way to deal

with such cases empirically and experimentally if the mathematical derivations were

not available. When applying this work to hardware, there might be a need to reset

the threshold equation based on the environment; however, we expect the change to
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be minimal and handle different SNR values and the number of samples conditions,

not as what was achieved in previous work.

6.3.2 Hardware Implementation

When proposing this thesis, we thought of hardware implementation as a stage in

it; however, this was not achieved due to a group of problems that were faced while

implementing the project of hardware. First, the available WARP kits at Qatar

University were not enough for our implementation purposes and hence it was needed

to be ordered from outside Qatar and that needed a lot of time and cost to be finished.

Later on, another purchase was needed for some extra hardwares to connect between

nodes, and those hardwares were not taken into account at the beginning.

After that, the hardware needed to be configured carefully to set the RF boards

and test their connectivity which took a significant amount of time due to the lack of

experience in hardware work and the introduction of new problems that were taken

into consideration. In general, dealing with WARP hardware was a challenging task

due to its sensitivity, unavailability of resources and lack of use at Qatar university.

The sensitivity comes from the fact that there are too many sensors on the board

and can be easily damaged; however, extensive force is needed in order to remove

or install any RF board or any wire. Unavailability of resources come from the fact

that the hardware does not come with manuals or help and they depend totally on

online resources and forums. Finally, the lack of use comes from the fact that only a

few people have used the hardware before and the problems that were faced in this

project were not faced by others.

A third problem that was faced in hardware was the calibration phase, which was

needed to calibrate the antenna’s phase shift and attenuation and normalize them

to one reference point. This problem was raised with hardware implementation as

the received signals can come at different times and attenuated with different factors
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due to distances and channel effects. Hence, the calibration process was important in

order to synchronize the received signals with the same phase shift and attenuation.

Using the network analyzer can be a way to do the calibration; however, it was just

arriving at the university and needs a calibration phase of the device itself and hence

this process took a long time to be completed especially with the cables that were

used in the project. By the end, the calibration phase could not be guaranteed 100%

due to continuous changes in wires and environmental factors which could affect the

phase and attenuation.

6.4 Future Directions

In this section, some of the future directions of this thesis will be discussed in brief.

As this thesis is part of a bigger project, some of those directions have already started

while some others will be considered in the near future. Of course, much more di-

rections can be considered if we consider physical layer security techniques; however,

this section will pick up the most important ones.

6.4.1 Key Generation Scheme

One of the key future directions of this thesis is to continue on the complete key

regeneration scheme that involves information reconciliation and privacy amplification

and the effect on Eve’s estimated key on the system. In information reconciliation,

Alice permutes its bits and divides them into blocks to be sent to Bob. When Bob

receives these blocks, he checks his permutations with the received ones and corrects

his generated bits accordingly. In privacy amplification, Alice and Bob agree on the

number of hash functions, probably one of them sends it to the other, and they apply

those hash functions on the bits which will, theoretically, result in identical bits.

From Eve’s point of view, she needs to know the arrangement of blocks sent, i.e. how

many bits per block and if there are consequence bits. Also, she needs to know the
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hash functions that were used in order to apply them to its generated bits. In other

words, Eve needs to be as capable as Bob in order to end up with identical bits.

This might be done in practice if Eve is powerful enough and listens to Bob−Alice

communication when they exchange such information. For time limitations, this was

not considered in the context of this thesis; however, it can be considered as a near

future direction in the context of the project that the thesis is part of.

6.4.2 Hardware Implementation

As stated earlier, hardware implementation of the scheme is an essential part of the

project, which already started at a later stage of the thesis. A near future direction

is to solve the existing problems that were discussed before and continue with the

implementation of the rest of algorithms to finalize a hardware testbed for the security

scheme, its breaching scheme and the enhanced security scheme.

6.4.3 Enhancing Security Scheme

As stated earlier, the aim of this thesis is to check the feasibility of breaching the

security system by an eavesdropper and hence help in enhancing the security scheme.

As the current results showed that Eve will have about 25% error in case of ToA based

algorithm and about 30% error in case of RSSI based, Eve might be able to breach

the system in some cases if she is capable enough. Hence, privacy amplification and

information reconciliation have to be either hidden from Eve or done in a way that

Eve cant understand.

Distance estimation results showed that the distances can be estimated approx-

imately at relatively low SNR, and hence the system can be breached if the eaves-

dropper can listen to further communication on the key agreement. Then, security

scheme should be enhanced and done by:
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• Forcing low SNR condition for eavesdroppers: The communicating node

can force low SNR values for eavesdroppers by employing a null signal to the

directions other than the intended receiver direction. This can be done using

directed antennas and special signal processing techniques. By doing that, the

eavesdropper will not be able to estimate the number of sources or DoA and

hence the breaching scheme would fail to estimate the correct distance.

• Using Another Source of Randomness: Security can be enhanced by

adding another source of randomness that is used to generate the key. In [60],

the authors exploit the use of both channel measurements and distance to gener-

ate the key which would fail this breaching scheme with minimal changes in the

key generation scheme. There exists some ways for the eavesdropper to breach

such a system by combining the channel measurements estimates and distance

estimates; however, it will need more computations and hence the eavesdropper

needs to be more powerful.

6.4.4 Considering More Than Two Sources

As wireless channels are open and can be accessed by anyone, the possibility of re-

ceiving more than two sources at the same time is high and should be considered

when implementing such schemes. As shown in the results, the number of sources

and DoA can work fine with more than two sources, however the problem comes when

distinguishing communicating nodes from other external nodes, i.e. when estimating

the communicating nodes distance which is the last stage. In order to solve this, one

needs a cross-layer design to access the MAC address in the MAC layer frame or any

address that can distinguish between nodes of interest and other nodes. This direc-

tion will not, mostly, be considered in the near future as it involves some work on the

MAC layer which is not easy with WARP hardware; however, it can be considered in

simulations of some of those future directions.
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6.4.5 Breaching Scheme for Channel Based Security Scheme

Channel measurement security schemes are widely used in physical layer security

rather than distance based. These schemes are based on channel gain and amplitude

which are available and can be considered as a source of randomness as well. A further

work can be done to breach the channel-based security scheme as it is more common

and by that we can breach distance-based, channel-based and their combination. In

order to breach the channel based scheme, the eavesdropper needs to be in the line

of sights between the communicating nodes, and she/he utilizes the signal it receives

to estimate the channel measurements, which will have close values to Bob’s and

Alice’ channel measurements. Of course, being in the line of sight and forcing the

communicating nodes to communicate on this path is the most difficult part, but there

exists some ways to do so. It should be noted that in order to breach the security

scheme that is based on both distance and channel, as in [60], the eavesdropper will

need to employ both distance and channel estimation techniques and hence one can

imagine the added complexity by adding only one other source of randomness.
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Chapter 7

Conclusion

This work presents a breaching scheme that tackles distance based physical layer secu-

rity scheme. In such a security scheme, the communicating nodes use their distances

as a source of randomness in mobile networks and they base their key on it. The

breaching scheme tries to estimate that distance by multiple algorithms that include

number of sources estimation, DoA estimation, distance estimation and the use of

the cosine law of a triangle to find the required distance.

We propose four different algorithms for the number of sources estimation that

utilize both CovM and CorrM to get the eigenvalues and find the number of sources

based on simple decision statistics. CovM- based algorithms use a threshold, which

is derived using least squares linear regression fitting, while CorrM-based algorithms

depended on a simple search for the maximum value of the decision statistics. We

compared our proposed algorithms to traditional information theoretic ones in terms

of efficiency and complexity, and the results show that our algorithms are more robust

and much simpler than others. In addition, we presented a comparison of two DoA

estimation techniques, namely MUSIC and MVDR, and results show that MUSIC

outperformed MVDR in many ways. We showed how to estimate the distance in a

hardware environment; however, in our simulation, we just assume some values for

the exact distance and add a random error to them.

We evaluate our breaching scheme in terms of estimated normalized distance,

NMSE for the estimated distance and a simple BMR calculation for the estimated

key which needs to be extended for information reconciliation and privacy amplifica-

tions stages. Our results show that Eve might be able to breach the system as soon as
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she has a good number of sources and DoA estimations. She will have a well estimated

distance at relatively low SNR of about -10 dB if we consider 214 samples and good

angular separation. Eve’s BMR accedes Bob’s one especially with RSSI-based dis-

tance estimation algorithms. Hence, Eve might be able to breach the system in case

of ToA-based algorithm; however, it is still difficult to breach RSSI-based algorithms

due to high BMR results.

Future directions of this thesis include further key comparison results, hardware

implementation, improving the security scheme and key generation scheme and finally

considering breaching schemes for channel measurement security schemes.
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Appendix A

Proof of Proposition 1

By substituting (4.18) into (4.17):

STD(i) =

√(
λi −

λi + λi−1

2

)2

+

(
λi−1 −

λi + λi−1

2

)2

. (A.1)

STD(i) with some manipulation can be written as:

STD(i) =

√(
λi − λi−1

2

)2

+

(
λi−1 − λi

2

)2

. (A.2)

Because of the (.)2 operation,
(
λi−1−λi

2

)2
can be written as

(
λi−λi−1

2

)2
. This leads to:

STD(i) =

√
2

(
λi − λi−1

2

)2

, (A.3)

which can be further reduced to:

STD(i) =
λi − λi−1√

2
. (A.4)

Applying the same for STD(i− 1) leads to:

STD(i− 1) =
λi−1 − λi−2√

2
. (A.5)

Then substituting (A.4) and (A.5) into (4.19), αi can be written as:

αi =
(λi − λi−1)− (λi−1 − λi−2)√

2
, (A.6)

which results directly to (4.20).
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Appendix B

Sample Examples for Number of

Sources Estimation

In this appendix, we show two simple examples of number of sources estimation to

illustrate the process highlighted in 4.2.4. In the first example, the number of sources

estimation works fine for all algorithms while it fails for the second one. In each

example, we show the eigenvalues, MI values and MS values and plot them with

respect to eigenvalues index.

The first toy problem parameters are: SNR value of -5 dB, number of samples of 210

and 2 sources separated by 100◦. With such parameters, all the proposed algorithms

had a correct estimation of 2 number of sources. As shown in Table B.1 and Fig. B.1,

CorrM MS and MI have a maximum value when the eigenvalues move from the noise to

signal subspace and hence the number of sources is estimated at that index. For CovM

based MS and MI, there is a clear jump from noise to signal subspace’ however, it was

not the maximum jump and hence a threshold is needed. The estimated thresholds

are 0.0014 and 0.00065 for MI and MS respectively. Algorithms works perfectly in this

case and the difference between the noise eigenvalues does not exceed the threshold.
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CovM Based CorrM Based
Eigenvalue MI MS Eigenvalue MI MS

0.0029 0 0 0.6881 0 0
0.0030 0.0001 0.0000 0.7147 0.0267 0.0267
0.0031 0.0002 0.0000 0.7501 0.0354 0.0354
0.0032 0.0000 -0.0001 0.7608 0.0107 0.0107
0.0033 0.0002 0.0001 0.7959 0.0351 0.0351
0.0034 0.0001 -0.0000 0.8180 0.0220 0.0220
0.0066 0.0032 0.0016 1.5884 0.7704 0.7704
0.0170 0.0103 0.0036 1.8840 0.2957 0.2957

Table B.1: First Examples Eigenvalues, MI and MS values
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Figure B.1: Eigenvalues, Moving increment and Moving STD for CorrM Based Algorithm (1st

example)
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Figure B.2: Eigenvalues, Moving increment and Moving STD for CovM Based Algorithm (1st ex-
ample)

In the second example, low SNR and number of samples conditions are applied

in order to fail the proposed algorithms. SNR value is set to -10 dB and the number

of samples is 100 sample only and 2 sources are applied separated by 100◦. CorrM

based algorithms and MMSCov underestimate the number of sources as one, mostly

while MMSCov differs in its estimation as the difference in noise eigenvalues exceed

the calculated threshold. Table B.2 and Figs. B.3 and B.4 show the results of this

simulation and where it fails. As can be seen in Fig. B.3, the maximization point is

located at the last index, hence the number of sources is underestimated to 1 instead

of 2. In Fig. B.4, MS algorithm exceed the threshold at the last index while the MI

algorithm exceed the threshold at eigenvalues index 4. Hence, MS underestimates the

number of sources to 1 while MI overestimates to 5 where the thresholds are 0.00065

& 0.0018 for MS and MI respectively.
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CovM Based CorrM Based
Eigenvalue MI MS Eigenvalue MI MS

0.0064 0 0 0.6010 0 0
0.0072 0.0007 0.0004 0.6754 0.0744 0.0372
0.0086 0.0014 0.0003 0.7796 0.1042 0.0149
0.0107 0.0021 0.0003 0.9256 0.1460 0.0209
0.0115 0.0009 -0.0006 0.9996 0.0740 0.0360
0.0131 0.0015 0.0003 1.1315 0.1319 0.0290
0.0145 0.0015 0 1.2888 0.1573 0.0127
0.0263 0.0118 0.0052 1.5984 0.3096 0.0762

Table B.2: Second Examples Eigenvalues, MI and MS values
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Figure B.3: Eigenvalues, Moving increment and Moving STD for CorrM Based Algorithm (2nd

example)
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Figure B.4: Eigenvalues, Moving increment and Moving STD for CovM Based Algorithm (2nd

example)
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Appendix C

Proof for Proposition 2

The joint probability density function of the difference between two ordered independent random variables, Xr and

XS with 1 ≤ r < s < n, Wrs = Xs −Xr is [84]:

fWrs (wrs) = Drs

∫ ∞
−∞

F (x)r−1f(x)

(
F (x+ wrs)− F (x)

)s−r−1

f(x+ wrs)

(
1− F (x+ wrs)

)n−s
dx. (C.1)

In our case, we need to find the joint the probability density function of δi = λi − λi−1, hence, we let r = i− 1, s = i

and δi = Wrs and let D = Drs. In this way, (C.1) for δi = δ and λi = λ can be redefined as :

fδi (δ) =D

∫ ∞
−∞

F (λ)i−2f(λ)

(
F (λ+ δ)− F (λ)

)i−i+1−1

f(λ+ δ)

(
1− F (λ+ δ)

)M−K−i
dλ. (C.2)

Since i− i+ 1− 1 = 0, the term

(
F (λ+ δ)− F (x)

)i−i+1−1

will be 1 and (C.2) can be rewritten as :

fδi (δ) =D

∫ ∞
−∞

F (λ)i−2f(λ)f(λ+ δ)

(
1− F (λ+ δ)

)M−K−i
dλ,

where D is a constant defined as:

D =
(M −K)!

(r − 1)!(s− r − 1)!(M −K − s)!
=

(M −K)!

(i− 2)!(i− i+ 1− 1)!(M −K − i)!
(C.3)

=
(M −K)!

(i− 2)!(M −K − i)!

f(λ) is defined in (4.24). On the assumption that G is greater than 1, i.e. N > M , the first term in (4.24) will be

canceled and (4.24) will be represented by its second term. F (λ) can be defined as:

F (λ) =

∫ λ

−∞
f(λ)dλ =

∫ λ

−∞

√
(λ− a−)(a+ − λ)

2πσλ(1/G)
Π[a−,a+](λ)dλ =

∫ λ

−∞

G

2πσ

√
(λ− a−)(a+ − λ)

λ
Π[a−,a+](λ)dλ

=
G

2πσ

∫ λ

a−

√
(λ− a−)

√
(a+ − λ)

λ
dλ (C.4)
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Assuming that 0 ≤ a− ≤ λ ≤ a+:

F (λ) =
G

2πσ

1

4

1
√
a−
√
a+

(
2 arcsin

(−2λ+ a− + a+

a− − a+
)
a
3/2
−
√
a+ + 2 arcsin

(−2λ+ a− + a+

a− − a+
)
a
3/2
+

√
a− + 4a+a−

arctan(
1

2

2a−a+ − a+λ− a−λ
√
a−
√
a+
√

(a+ − λ)(λ− a−)
) + πa

3/2
−
√
a+ + π

√
a−a

3/2
+ − 2a−a+π + 4

√
a−
√
a+
√
λ− a−

√
a+ − λ

)
=

G

4 ∗ 2πσ

{
1

√
a−
√
a+

(
2 arcsin

(−2λ+ a− + a+

a− − a+
)
a
3/2
−
√
a+ + 2 arcsin

(−2λ+ a− + a+

a− − a+
)
a
3/2
+

√
a− + 4a+a−

arctan(
1

2

2a−a+ − a+λ− a−λ
√
a−
√
a+
√

(a+ − λ)(λ− a−)
) + πa

3/2
−
√
a+ + π

√
a−a

3/2
+ − 2a−a+π + 4

√
a−
√
a+
√
λ− a−

√
a+ − λ

)}
(C.5)

By that, (C.2) can be rewritten as:

fδi (δ) =
(M −K)!

(i− 2)!(M −K − i)!

∫ ∞
−∞

(
G

2πσ

∫ λ

a−

√
(λ− a−)

√
(a+ − λ)

λ
dλ

)i−2( G

2πσ

√
(λ− a−)(a+ − λ)

λ
Π[a−,a+](λ)

)
(

G

2πσ

√
(λ+ δ − a−)(a+ − λ− δ)

λ
Π[a−,a+](λ+ δ)

)(
1−

G

2πσ

∫ λ+δ

a−

√
(λ+ δ − a−)

√
(a+ − λ− δ)

λ+ δ
dλ

)M−K−i
dλ

=
(M −K)!

(i− 2)!(M −K − i)!

(
G

2πσ

)1+i−2+1 ∫ a+

a−

√
(λ− a−)(a+ − λ)

λ

(∫ λ

a−

√
(λ− a−)

√
(a+ − λ)

λ
dλ

)i−2

(√
(λ+ δ − a−)(a+ − λ− δ)

λ

)(
1−

G

2πσ

∫ λ+δ

a−

√
(λ+ δ − a−)

√
(a+ − λ− δ)

λ+ δ
dλ

)M−K−i
dλ

=
(M −K)!

(i− 2)!(M −K − i)!

(
G

2πσ

)i ∫ a+

a−

√
(λ− a−)(a+ − λ)

λ

(∫ λ

a−

√
(λ− a−)

√
(a+ − λ)

λ
dλ

)i−2

(√
(λ+ δ − a−)(a+ − λ− δ)

λ

)(
1−

G

2πσ

∫ λ+δ

a−

√
(λ+ δ − a−)

√
(a+ − λ− δ)

λ+ δ
dλ

)M−K−i
dλ, (C.6)

Substituting (C.5) in (C.6) will lead to:

fδi (δ) =
(M −K)!

(i− 2)!(M −K − i)!

(
G

2πσ

)i ∫ a+

a−

√
(λ− a−)(a+ − λ)

λ{
1

4
√
a−
√
a+

[
2 arcsin

(−2λ+ a− + a+

a− − a+
)
a
3/2
−
√
a+ + 2 arcsin

(−2λ+ a− + a+

a− − a+
)
a
3/2
+

√
a− + 4a+a−

arctan
(1

2

2a−a+ − a+λ− a−λ
√
a−
√
a+
√

(a+ − λ)(λ− a−)

)
+ πa

3/2
−
√
a+ + π

√
a−a

3/2
+ − 2a−a+π + 4

√
a−
√
a+
√
λ− a−

√
a+ − λ

]}i−2

(√
(λ+ δ − a−)(a+ − λ− δ)

λ

)(
1−

G

2πσ

{
1

4
√
a−
√
a+

[
2 arcsin

(−2(λ+ δ) + a− + a+

a− − a+
)
a
3/2
−
√
a+

+ 2 arcsin
(−2(λ+ δ) + a− + a+

a− − a+
)
a
3/2
+

√
a− + 4a+a− arctan

(1

2

2a−a+ − a+(λ+ δ)− a−(λ+ δ)
√
a−
√
a+
√

(a+ − (λ+ δ))((λ+ δ)− a−)

)
+ πa

3/2
−
√
a+ + π

√
a−a

3/2
+ − 2a−a+π + 4

√
a−
√
a+
√

(λ+ δ)− a−
√
a+ − (λ+ δ)

]})M−K−i
dλ (C.7)

which leads directly to (4.25) for the probability distribution function.
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