
  

Batch: When You Only Care It Runs
Not When or Where or How

Jon Reiter
23 August 2018
DataFinnovation



  

Batch: The Basics

● System for batch processing (!)
● Official tag line: plans, schedules, and executes

your batch computing workloads across the full
range of AWS compute services and features

● What it really does:
– Provisions resources for jobs

– Manages job queueing

– Arranges logging

– Gives a dashboard



  

What About Jobs?

● Batch has it's own
– Job definition scheme

– Compute resource definition scheme

● It's related to ECS
– You can tell it uses ECS inside

– But the specs are non-ECS

● Doesn't do anything about scheduling jobs



  

Job Model

● A job is a container
– When the container exits the job is done

– It doesn't time out!

– Full range of cpu and memory available

● You arrange kicking off your own jobs
– CloudWatch + Lambda is your scheduler

– After you put it in a queue Batch takes over

● Basic dependency controls



  

Scheduling Model

● Latency is high: 5-10 minutes to start is normal
● Shutdown is not immediate

– Makes an attempt to minimize resource wastage

● Can use spot instances
– Even has “optimal” instance type which finds the

smallest/cheapest workable choice

● If you care deeply about these things do not
use batch!
– Also, reconsider your priorities



  

Resource Model

● Two parts
● Compute environments:

– Instance type(s)

– Size limits and some settings, but less than ECS

● Job queues:
– On top of compute environment(s)

– Basic priority control



  

The Workflow

● Job in a container
● Container in ECR
● Compute environment in Batch
● Job queue in Batch
● Job definition in Batch
● CloudWatch trigger to start
● Lambda from trigger to submit to queue
● Check the dashboard every so often for failures



  



  



  



  



  

And Now Kick It Off...

import boto3

def lambda_handler(event, context):

    client = boto3.client('batch', 'ap-southeast-1')

    job_id = client.submit_job(jobName=...,

                                              jobQueue=...,

                                              jobDefinition=...)



  

My (The) Use Case

● Some code needs to get run every so often
● As long as it finishes we want to spend as little

money, time and effort as possible
● Batch

– “optimal” instances running on spot

– Push Docker container to ECR

– Maintain lambda function

– Store everything in S3/RDS/Dynamo/whatever

– Check dashboard every so often


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

