Managing for Healthy Ecosystems

Edited by
David J. Rapport
William L. Lasley
Dennis E. Rolston
N. Ole Nielsen
Calvin O. Qualset
Ardeshir B. Damania

Associate Editors

Daniel W. Anderson
Darwin Anderson
James R. Carey
Santiago Carrizosa
Daniel P.Y. Chang
Gary N. Cherr
Alexander H. Harcourt

Robert T. Lackey
Jean Lebel
Nicholas W. Lerche
Jonna A.K. Mazet
Albert C. Medvitz
Ganapati P. Patil
Ruth A. Reck

Terrell P. Salmon
Marc B. Schenker
David Waltner-Toews
Bruce A. Wilcox
Barry W. Wilson

LEWIS PUBLISHERS

A CRC Press Company
Boca Raton | London | New York | Washington, D.C.
CHAPTER 121

Evaluating and Managing a Multiply Stressed Ecosystem at Clear Lake, California: A Holistic Ecosystem Approach

INTRODUCTION

Clear Lake (Figure 121.1) and its watershed in Northern California constitute a serene and beautiful environment that has been used extensively by inhabitants of the surrounding basin for millennia. It has one of the oldest documented North American “early man” sites, with paleo-indian occupation of the Clear Lake Basin about 10,000 years before present (ybp) at Borax Lake, immediately adjacent to Clear Lake (Heizer, 1963). Native American settlement was relatively dense during European contact in the early 1800s, with about 3000 people scattered among 30 or so villages within the basin (Baumhoff, 1963). These people utilized the lake’s abundant fish, as well as tens of thousands of waterfowl and runs of native fishes in adjacent streams (Simoons, 1952) to supplement their staple acorn diet. Various named Lupiyoma, Hok-has-ha, or Ka-ba-tin by early Native Americans (Mauldin, 1960); Big Waters by some of the early European pioneers in the 1820s; Laguna for a short time by Spanish Californians in the 1830s; and finally, Clear Lake in the 1840s, this lake has had a long and fascinating history. European or American trappers first started visiting the lake seasonally in 1833, but more permanent agricultural settlers did not arrive until the 1850s (Simoons, 1952).

Volcanic activity in the area of the lake provided heat to drive hydrothermal systems that created rich mineral deposits. Almost immediately, settlers began to extract these minerals from the landscape. The first commercial mines were small-scale operations that exploited borax in 1864 and sulfur in 1865. Mercury mining became a significant industry with the development of the Sulphur Bank Mercury Mine in 1872. Beginning in the mid-1870s, abundant mineral springs attracted thousands of health-conscious citizens to the region (Simoons, 1952).

The population of Lake County has grown from approximately 3000 in 1860 to more than 55,000 in 1999 (Table 121.1). Associated with that population growth have come dramatic land-use changes, altering the watershed and limnological and ecological dynamics of Clear Lake. Today, the Clear Lake watershed basin includes a high proportion of forested land, oak woodlands, orchards and vineyards, other croplands, and little remaining original wetlands (Figure 121.2). Clear Lake is used for storage of agricultural irrigation water for downstream Yolo County. The Yolo County
Figure 121.1 Map of Clear Lake and surrounding watershed, with locations of dams.

Table 121.1 Lake County Population since European Settlement

<table>
<thead>
<tr>
<th>Year</th>
<th>Lake County Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1850</td>
<td>2210<sup>a</sup></td>
</tr>
<tr>
<td>1870</td>
<td>2900<sup>a</sup></td>
</tr>
<tr>
<td>1890</td>
<td>7100<sup>a</sup></td>
</tr>
<tr>
<td>1900</td>
<td>6017</td>
</tr>
<tr>
<td>1910</td>
<td>5526</td>
</tr>
<tr>
<td>1920</td>
<td>5402</td>
</tr>
<tr>
<td>1930</td>
<td>7166</td>
</tr>
<tr>
<td>1940</td>
<td>8069</td>
</tr>
<tr>
<td>1950</td>
<td>11,481</td>
</tr>
<tr>
<td>1960</td>
<td>13,786</td>
</tr>
<tr>
<td>1970</td>
<td>19,548</td>
</tr>
<tr>
<td>1980</td>
<td>36,366</td>
</tr>
<tr>
<td>1990</td>
<td>50,631</td>
</tr>
<tr>
<td>2000</td>
<td>55,000</td>
</tr>
</tbody>
</table>

^a Note especially the exponential growth beginning in the 1960s.

^b Simoons, 1952.
Figure 121.2 Land use within the Clear Lake watershed as of 1998.

Flood and Water Conservation District owns the rights to use the water in the lake and regulates the flow of releases from the single outlet dam to Cache Creek. The lake's rimlands and surrounding watershed also support extensive agricultural production, including pears, walnuts, grapes, and wild rice. The area supports breeding populations of several important bird species associated with the lake itself, including the western grebe (Aechmophorus occidentalis), Clark's grebe (A. clarkii), double-crested cormorant (Phalacrocorax auritus), great blue heron (Ardea herodias), osprey (Pandion haliaetus), and bald eagle (Haliaeetus leucocephalus). In addition, this aquatic setting supports many other species of birds associated with surrounding wetlands and uplands. It supports the only commercial fishery on a lake in California and extensive sport fisheries, especially for bass and catfish. Clear Lake is used heavily for water sports (swimming, boating, water skiing, jet skiing); thus, it attracts significant recreational tourism, especially during summer months.

This aquatic ecosystem has also been subject to multiple stresses, both natural and anthropogenic. It has experienced periodic flooding and fires and has lost over 85% of its original natural wetlands habitat. However, dam construction in Lake County has added approximately 6500 acres of impoundment water. The lake experienced increased nutrient loading and decreased water clarity between 1925 and 1938, likely due to the introduction of more-efficient heavy earth-moving equipment in the basin and the loss of original wetlands on the major tributaries (Richerson et al., 2000). By 1938, the lake had become too turbid for rooted aquatic vegetation to flourish and noxious cyanobacterial scums became a perennial problem (Lindquist and Deonier, 1943; Murphy, 1951). The lake also has elevated concentrations of mercury, among other contaminants; a U.S. EPA Superfund site is located on the eastern shore of Clear Lake at the former Sulphur Bank Mercury Mine. Clear Lake was also the first site at which the deleterious effects of large concentrations of organochlorine pesticides on bird populations were documented (original research reported by Hunt
and Bischoff [1960] and Rudd [1964], and popularized in Rachel Carson's *Silent Spring* [1962]). The lake contains a fish fauna comprised of over 75% introduced species. Clear Lake has been designated by the State of California as an “impaired water body” under Section 303d of the Clean Water Act, which mandates the state to identify water bodies or stream segments that currently are not meeting, or are not expected to meet, designated beneficial uses.

Managing multiple, frequently conflicting, uses of the lake and watershed is challenging; it involves ecological, economic, and political balances. Before rational management can be successful, however, managers must understand, to a useful approximation, the complex processes that drive the ecosystem's behavior. Our goal is to document the historical and modern-day multiple uses and multiple stresses associated with the Clear Lake aquatic ecosystem, including the lake proper and the surrounding watershed, in an attempt to demonstrate what rational management of this and similar valuable, multiply stressed ecosystems demands of applied science programs.

This chapter provides a prehistoric and historic background from which to evaluate the importance and impacts of a multitude of natural and anthropogenic stresses imposed upon Clear Lake and its watershed. Specifically, we identify major geological, climatological, ecological, political, and economic factors that influence the outcome of management and policy-level decisions on the health and well-being of the entire ecosystem, especially the lake proper. Natural stressors include geologic and tectonic events, regional and global climate change, fires, droughts, and floods. Anthropogenic stressors include:

1. Modifications to the landscape, including fires, logging and deforestation, dam construction, and other creek modifications
2. Contaminants, including pesticides, mining, sewage and septic overflows
3. Land-use changes, including original wetland losses (and some wet habitat increases, see previous) dredging, filling, and creek bed alterations, water table and shoreline modifications, road building, agriculture, soil exposure and transport, and livestock grazing
4. Intentional and accidental species introductions

Finally, we illustrate how scientific research has contributed significantly to addressing multiple management objectives in this extremely complex ecosystem.

NATURAL SETTING

Clear Lake (Figure 121.1) is located at 39°00' N, 122°45' W within Lake County in the Coast Range of California at an elevation of 402 m with surrounding ridges rising up to 1500 m. Through evidence from a series of cores to ~177 m maximum sediment depth, collected by the U.S. Geological Survey in the 1970s and 1980s, Clear Lake is believed to be the oldest lake in North America with continuous lake sediments of about 480,000 years (Sims, 1988; Sims et al., 1988). It also is possible that Clear Lake is a remnant of an ancestral lake represented by deposits of the Cache Formation, dating back to the early Pleistocene, making it 1.8 to 3.0 million years old (Casteel and Rymer, 1981; Hearm et al., 1988). The Clear Lake Basin represents a fault-bounded subsiding graben related to movement along the San Andreas Fault. The lake is set within an active volcanic region. Abundant geothermal springs release both fluids and gases (primarily CO₂, H₂S, and methane) from the lake bottom. Clear Lake is polymictic (typically well mixed), alkaline (pH 8), shallow (average depth about 6.5 m), and highly productive (eutrophic). Subsidence (caused by block faulting beneath the lake) has kept up with natural sedimentation. Thus, Clear Lake has been a relatively shallow lake since its initial formation, but at least parts of the current basin have been an open water system since the middle Pleistocene. Although early reports claim that “it derives its name from the clearness of its waters” (Menefee, 1873), and it may have been clearer in the 19th century than it is today, it was almost certainly a eutrophic system during the course of its entire existence (Bradbury, 1988). However, many recent land-use changes (described later) likely
have exacerbated sediment and nutrient loading to the lake, enhancing noxious cyanobacterial (blue-green "algae") blooms (Richerson et al., 1994). In modern times, the lake supports populations of ~100 species of green and yellow-green algae and cyanobacteria, about 115 species of diatoms, 23 species of aquatic macrophytes, 94 species of invertebrates, and 34 species of fishes, plus numerous lake-associated or lake-dependent mammals such as otter, mink, raccoon, and numerous species of birds such as osprey, bald eagle, and grebes (Horne, 1975; Macedo, 1991; Richerson et al., 1994; Meillier et al., 1997; Moyle, 2002; Lake County Vector Control, unpublished).

NATURAL STRESSORS

Geologic and Tectonic Events

Two different hypotheses have been proposed for the origin of Clear Lake’s drainage route. Davis (1933) proposed that Clear Lake was originally two lakes separated by an isthmus at the Narrows: one lake essentially comprising the Upper Arm (which drained westward into the Russian River system via Cold Creek), and another lake comprising the present-day Oaks Arm and Lower Arm (which drained eastward via Cache Creek into California’s Central Valley and the Sacramento River) (Figure 121.1). A lava flow in the eastern drainage was believed responsible for forming a dike high enough to build up the water level in the eastern lake allowing water to overspill and cut through the narrow isthmus, thereby connecting the two lakes. The drainage flowed from the eastern lake to the Upper Arm and out Cold Creek into the Russian River system (Mauldin, 1968). Later, perhaps 10,000 ybp, an earthquake likely initiated a landslide in the Cold Creek drainage which blocked the westward flow, forcing the entire lake (both halves) to drain again into the Central Valley through Cache Creek. Alternatively, Becker (1888) and Brice (1953) argue that Clear Lake occupies the lowest part of a shallow fault depression. Hodges (1966) later concurred with this hypothesis and proposed that Scotts Creek formed a fan delta and clogged the western outlet valley of Cold Creek with fluvial debris; thus Cache Creek remained the only outlet. In either case, fish from the Central Valley colonized the Russian River system and there was some speculation that the reverse might have occurred as well (Hopkirk, 1973, 1988).

Regional and Global Climate Change

California’s climate has been undergoing dramatic and continuous change over the past 100 years. This change is coincident with documented global climate change over the same time period (Mann et al., 1999; Hileman, 1999); yet it is uncertain how changes in regional climate are linked to more global processes. In California, the coefficient of variation in rainfall and the frequency of 1000-year storm events has been increasing dramatically over the past century (Goodridge, 1998; Figure 121.3). In addition, the frequency of El Niño events has become unusually common in recent years (Trenberth and Hoar, 1997) and this likely is linked with much of the fluctuation in regional and global climatological events at Clear Lake. Furthermore, if global warming enhances El Niño events, for which there is growing evidence (Meehl and Washington, 1996), then California’s climate over the next several decades may look like an amplified version of the extreme events that have taken place over the past several decades (Field et al., 1999).

Fires

The Mediterranean climate and vegetation of this region are naturally conducive to fire. The change in regional weather described above also may contribute to an increase in large fires. Lightning is a common cause of fires in this region and although we do not have documentation of fire origins, especially before European contact, we do have moderately accurate records on the
Figure 121.3 Regional California climate changes over the past century showing dramatic increases in the coefficient of variation in rainfall and increase in the frequency of 1000-year storms. (Adapted from Goodridge, J., The impact of climate change on drainage engineering in California, Report to the Alert Users Group Conference in Palm Springs, CA, 26–29 May, 1998.)

Figure 121.4 Location of fires in the Clear Lake Basin from 1932 to 1951. (Adapted from Simcons, F.J., The Settlement of the Clear Lake Upland of California, Master's thesis, University of California, Berkeley, 1952.)
extent of fires in these watersheds since the turn of the century (see Figure 121.4). It has been estimated that in more modern times (1960s to 1980s) lightning accounted for only about one third of all forest fires (West, 1989).

Droughts and Floods

Short- to medium-length droughts have been documented in the historical record of California. A significant 3-year drought (1975 to 1977), and 6- to 7-year droughts during recent (1987 to 1992) and historical (1928 to 1934) periods lowered the lake level substantially (see Figure 121.5). Tree ring data from California back to the 1500s suggest decade-scale droughts (Earle, 1993). More substantial 46- to 140-year-long droughts (before A.D. ~1350) and >200-year-long droughts (before A.D. ~1112) also have been documented in California by dating submerged tree stumps (Stine, 1994). The most comprehensive understanding we have on how such droughts can impact ecological and limnological processes in and around Clear Lake comes from a 24-year Department of Water Resources water quality data set (1969 to 1992) that includes the 1975 to 1977 and 1987 to 1992 droughts. An analysis of those data by Richerson and co-workers (1994) shows that the drought period correlated strongly with some moderate increases in pH and Secchi disk readings (water clarity) during the longer drought in the Oaks Arm and Lower Arm of Clear Lake (but not necessarily the Upper Arm or during the shorter drought) (Figure 121.6A). In addition, dramatic increases in water column phosphorus (especially dissolved phosphorus) and electrical conductivity have been observed in all three arms (Figure 121.6B), especially during the longer 1985 to 1992 drought. Interestingly, during the past 3 years (1998 to 2000) Clear Lake has exhibited exceptional water clarity (high Secchi disk readings) during nondrought conditions. Clear Lake also has experienced one of the most severe seasons of cyanobacteria (blue-green “algae”) blooms in recorded history toward the end of these documented drought periods (Figure 121.7), likely because of increased sediment phosphorus releases.

With increasing frequency of 1000-year storm events resulting from regional climate change (see previous), there also is increased risk from natural flooding to lakeside real estate and public utilities, and additional risk of increased sedimentation, nutrient inputs, and acid mine drainage from the local Sulphur Bank Mercury Mine (discussed later). Figure 121.5 provides documented water levels (high and low water) for Clear Lake relative to a baseline depth of “0 ft Rumsey” (which is equivalent to 1318.256’ 1929 National Geodetic Vertical Datum, NGVD) originally established in 1872. Flooding also has increased recently, and the winter of 1997 to 1998 produced the highest recorded lake levels since the emplacement of the Cache Creek dam in 1914 (Figure 121.5).

Figure 121.5 Clear Lake water levels (annual minimum and maximum) relative to the Rumsey scale.
Figure 121.6 A 24-year data set (1969 to 1992) of limnological conditions within the Lower Arm of Clear Lake showing dramatic changes associated with the drought from 1987 to 1992 (A) Water quality as quantified by Secchi disk values and pH readings (B) Phosphorus and electrical conductivity values. (Adapted from Richerson, P.J., T.H. Suchanek, and S.J. Why, The Causes and Control of Algal Blooms in Clear Lake, Clear Lakes Diagnostic/Feasibility Study for Clear Lake, California, prepared for EPA Region IX, 1994.)

ANTHROPOGENIC STRESSORS

Modifications of the Landscape

Fires

Often it is difficult to discriminate between natural and anthropogenic causality for fires. Humans set fires, but also attempt to control them; yet, both processes impact natural ecosystem dynamics. It is likely that pre-Spanish fires in the Coast Range were relatively frequent (10 years or less) (West, 1989). When Europeans first settled the basin during the mid-1800s, widespread intentional burning was common. Herdsmen intentionally burned brush on such a large scale to graze sheep, goats, and cattle that California state legislation was passed in 1872 making fire-setting in wooded or forested lands illegal; yet, this had little impact on burning (Simoons, 1952). These activities were many more times as destructive as lumbering (discussed later). Early European settlers set fires primarily for three reasons: (1) to encourage grass growth for spring feed, (2) to burn needles in coniferous forests to prevent accumulations that would cause unplanned catastrophic fires, and (3) to improve deer feed. While lightning is often the cause of modern fires, anthropogenically
mediated fires are now more likely caused by accident or by arson rather than as a deliberate attempt to manage the landscape using fire. The two main watersheds that provide over 50% of the inflow to Clear Lake (Scotts Creek and Middle Creek) have experienced numerous natural and anthropogenically influenced fires. An example of fires documented during the periods from 1932 to 1941 and from 1942 to 1951 (adapted from Simoons, 1952), as well as more-recent fires within the Scotts Creek and Middle Creek watershed, are shown in Figure 121.4 and Table 121.2. As elsewhere in California, control practices probably make fires fewer and less frequent, but more devastating when they do occur because of increased fuel accumulation. For example, the “Forks Fire” decimated over 86,000 acres just north of Clear Lake in 1996, including about 12,600 acres in the Middle Creek watershed that drains into Clear Lake.

Logging and Deforestation

Major modifications of the forested landscape by Mexican and American ranchers began as early as the 1840s. In the 1850s some of the landscape was cleared for orchards, vineyards, and especially for timber harvest. The most significant timber harvest was Douglas fir (used for mine timbering), sugar pine, and Ponderosa pine (used mostly for lumber) and oak for fuel (Simoons, 1952). Much of this wood was used as fuel for the borax and mercury mining operations (see below). By 1870, no fewer than five commercial sawmills were operating on the lake; by 1905, there were 11 mills that processed over 1.5 × 10⁶ board feet of lumber annually, and in 1946 more
than 11×10^6 board feet was processed (Simoons, 1952). As a result of forest removal and soil exposure, sediment transport probably increased into Clear Lake, depositing additional entrained nutrients into the system. Nevertheless, this exploitation was not severe enough to be apparent in the pollen record of Clear Lake as deduced from sediment cores (Richerson et al., 2000).

Dam Construction

The Clear Lake dam along Cache Creek was completed in 1914 for the purpose of regulating agricultural irrigation waters to downstream Yolo County, which owns the rights to Clear Lake water (discussed in Richerson et al., 1994). An earlier dam at Clear Lake's outlet (about 2.5 km upstream of the present dam) was first constructed in 1867 to increase water levels to operate a mill at that end of the lake, but was destroyed in 1868 by about 300 angry rimlander property owners who were getting flooded during periods of heavy rain. This is one of the most colorful accounts of Clear Lake history, when a vigilante group took into custody several individuals (including the sheriff, his deputies, the county judge, the superintendent of the mill works, and other prominent citizens) who appeared sympathetic to the dam's owners and operators (Anon.,

Table 121.2 Acres Burned by Fires in the Middle Creek Watershed during the 20th Century

<table>
<thead>
<tr>
<th>Year of Fire</th>
<th>Acres Burned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1911</td>
<td>400</td>
</tr>
<tr>
<td>1912</td>
<td>400</td>
</tr>
<tr>
<td>1913</td>
<td>400</td>
</tr>
<tr>
<td>1914</td>
<td>400</td>
</tr>
<tr>
<td>1915</td>
<td>400</td>
</tr>
<tr>
<td>1916</td>
<td>1364</td>
</tr>
<tr>
<td>1917</td>
<td>4743</td>
</tr>
<tr>
<td>1922</td>
<td>2995</td>
</tr>
<tr>
<td>1923</td>
<td>19,077</td>
</tr>
<tr>
<td>1928</td>
<td>6394</td>
</tr>
<tr>
<td>1929</td>
<td>2339</td>
</tr>
<tr>
<td>1930</td>
<td>105</td>
</tr>
<tr>
<td>1931</td>
<td>1994</td>
</tr>
<tr>
<td>1932</td>
<td>419</td>
</tr>
<tr>
<td>1933</td>
<td>7362</td>
</tr>
<tr>
<td>1934</td>
<td>1021</td>
</tr>
<tr>
<td>1936</td>
<td>184</td>
</tr>
<tr>
<td>1939</td>
<td>3304</td>
</tr>
<tr>
<td>1941</td>
<td>563</td>
</tr>
<tr>
<td>1946</td>
<td>1889</td>
</tr>
<tr>
<td>1947</td>
<td>11,648</td>
</tr>
<tr>
<td>1951</td>
<td>619</td>
</tr>
<tr>
<td>1958</td>
<td>117</td>
</tr>
<tr>
<td>1959</td>
<td>593</td>
</tr>
<tr>
<td>1960</td>
<td>0</td>
</tr>
<tr>
<td>1964</td>
<td>1381</td>
</tr>
<tr>
<td>1971</td>
<td>1500</td>
</tr>
<tr>
<td>1975</td>
<td>0</td>
</tr>
<tr>
<td>1980</td>
<td>3000</td>
</tr>
<tr>
<td>1981</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>224</td>
</tr>
<tr>
<td>1996</td>
<td>12,685</td>
</tr>
</tbody>
</table>

Note: Although the 1996 "Forks Fire" burned more than 86,000 acres, only a portion of this fire affected the Clear Lake Basin.
A pumping station was installed in this same location around 1910 to increase water flow to irrigate rice crops in downstream Capay Valley, but that station also was intentionally destroyed about 1912. Numerous other dams have been erected within the Clear Lake watershed from 1955 to 1980, primarily for irrigation or recreation purposes (see Figure 121.1 for locations). All of these dams have slowed and altered natural flow of waters from the watershed to Clear Lake and may have prevented some species of Clear Lake fishes (such as the Clear Lake splittail, *Pogonichthys ciscoeides*) from migrating upstream to spawn (Moyle, 2002). While there was the potential for increased flooding as the result of the construction of the Clear Lake dam, ironically lake levels have been significantly lower (see Figure 121.5) since the construction of the Cache Creek dam in 1914. Other dams higher up in the watershed have water-holding capacity that lowers flooding risks, and they likely have contributed to the lowered lake levels mentioned previously. They also retain sediments and nutrients that have the potential to become deposited into Clear Lake and thus help to limit eutrophication in the lake.

Other Creek Modifications

Lowering of Cache Creek

The Clear Lake outlet through Cache Creek was deepened in 1938 to accommodate more efficient agricultural irrigation, although further work was halted by a suit filed by a citizen’s group.

Kelsey Creek Downcut

In 1965, the delta of Kelsey Creek was dredged to accommodate the installation of a marina. This caused destabilization of the creek bed, providing increased erosional products to be transported into Clear Lake. This increased deposition appears to be recorded in sediment cores from the region of the lake immediately offshore from Kelsey Creek and is represented as apparent increased sedimentation rate during the period starting ca. 1965 (see Suchanek et al., 1997; Richerson et al., 2000).

Contaminants

Aquatic Pesticides

Pesticide applications in Clear Lake have been used primarily to eradicate insects (the Clear Lake gnat *Chaoborus asiciopus*) and emergent macrophytes (the exotic and prolific aquatic weed *Hydrilla verticillata*).

In the 1940s, the Clear Lake gnat (at larval densities of 640 larvae per square foot of lake bottom) was creating a serious aesthetic nuisance; while the adult gnats are nonbiting, they would aggregate in huge clouds around the lake’s rimlands (Dolphin, 1959). University of California researchers had studied the gnat biology and possible control from 1916 to 1936, and in 1938 Congress appropriated funds to the Department of Agriculture (USDA) for further study of the gnat and its control. The USDA and the California Department of Fish and Game began lab treatment studies in 1945 to 1946 and field trials in 1947. The Lake County Mosquito Abatement District (which became the Lake County Vector Control District in 1995) was created in 1948 to deal with this problem. To reduce populations of the gnat, the California Department of Health Services contributed to funding three large applications of dichloro diphenyl dichloroethylene (DDD), about 4×10^4 gal of 30% DDD per treatment in Clear Lake: in 1949, 1954, and 1957 (Dolphin, 1959; Hunt and Bischoff, 1960; Rudd, 1964; Cooke, 1981). DDD was added in extremely high concentrations (Clear Lake water contained ∼0.02 ppm DDD) and resulted initially in 99% kill of the gnat larvae in sediments, although the effectiveness of this kill rate declined in future years (Hunt and Bischoff, 1960). Additional treatments of DDD also were applied to 20 other small lakes and reservoirs within about 25 km of Clear Lake.
Unfortunately, it also killed many other benthic invertebrates and had a devastating impact on the resident breeding populations of the western grebe (Aechmophorus occidentalis) (Herman et al., 1969). Five years after the initial DDD applications (in 1954), over 100 grebes were found dead in one survey season; in 1957, another 75 dead grebes were documented. No disease was identified, but in 1957 analyses of grebe fat tissues revealed extremely high concentrations of DDD (1600 ppm). In 1958, Clear Lake fishes finally were collected and also found to have excessively high DDD concentrations (40 to 2500 ppm); the largest concentrations were found in brown bullhead (Ameiurus nebulosus), largemouth bass (Micropterus salmoides), and black crappie (Pomoxis nigromaculatus). In addition, there was a substantial crash of the breeding grebe populations. Prior to 1949, over 1000 nesting pairs were estimated at Clear Lake. In the period 1958 to 1959, there were fewer than 25 pairs observed, but none was nesting; and at the end of that season no fledglings were found (Hunt and Bischoff, 1960). Concentrations of DDD in plankton were about 265-fold higher than the water in which they were found, about 500-fold higher in small fishes and ~80,000- to 85,000-fold higher in predatory birds (grebes) (Lindquist and Roth, 1950; Rudd, 1964). This was the first identification of the process of pesticide bioaccumulation in food webs and the phenomenon of delayed expression of toxic symptoms among biological concentrators of pesticides (Carson, 1962; Rudd, 1964). Interestingly, the period when the western grebe populations were declining (1950s) was the same period during which the last major mercury mining was taking place at the Sulphur Bank Mercury Mine. Yet no one has investigated the possibility that mercury also played a significant role (additively or synergistically) in the decline of the western grebe populations. We (DWA and THS) are in the process of evaluating museum specimens of western grebes collected from Clear Lake during this era to determine whether mercury levels also were elevated. The signal of residual DDD within Clear Lake sediments from this period is so prominent that it also has been used as a dating tool (Chamberlin et al., 1990; Suchanek et al., 1993, 1997).

Within a few years, DDD applications were ineffective in reducing gnat populations, likely because the insects became resistant to the pesticide (Apperson et al., 1978). As a result, a series of other insecticide compounds (including EPN, parathion, dicapthon, methyl triathion, methyl parathion, 2,4- dimethyl menzyl ester of chrysanthemumic acid, barthrin, triathion, Co-ral, DDVP, delnav, diazinon, dylox, ethion, guthion, korian, malathion, phosphamidon, phostex, and sevin) were used in laboratory tests for their efficacy in killing the Chaoborus gnat, but most were never used in Clear Lake proper (Dolphin and Peterson, 1960). Because of the strong resurgence of the gnat populations, two stopgap measures were implemented in 1959 (Dolphin and Peterson, 1960). The first involved spraying a petroleum product (Richfield Larvicide™) on gnat eggs located on 5500 acres of rafts of drifting debris material along the shorelines of Clear Lake. The other stop-gap measure involved the spraying of malathion to tree and shrub resting areas of adult gnats. In 1962, three applications of methyl parathion were made to Clear Lake (at a concentration of 3.3 ppb), which effectively controlled C. astictopus. Methyl parathion was subsequently applied each summer from 1962 to 1975, at which point the treatments failed to control the gnat which had, once again, developed a resistance.

Hydrilla verticillata (see more documentation under introduced species) has become an aggressively growing nuisance macrophyte since about 1994. Beginning in the summer of 1996, annual efforts to control and eliminate this weed have been undertaken primarily using two aquatic herbicides, Komeen™ (copper sulfate), which acts on the emergent vegetation, and SONAR™ (fluridone), which acts on the tubers and is intended to stop production of propagules. Because copper is applied in relatively high concentrations locally, and because mercury is an ongoing contaminant in Clear Lake, it is valuable to understand the interaction of copper and mercury on aquatic biota. Only one formal study has undertaken the task of evaluating the impacts of the multiple contaminants mercury and copper on Clear Lake zooplankton (Gilmartin, 1998; Gilmartin et al., 1998). These preliminary results indicate that copper and mercury act independently (i.e., additively) with respect to their effects on zooplankton behavior and reproduction.

Finally, there are many private (i.e., homeowner) uses of pesticides that are not subject to pesticide use reporting. Several over-the-counter pesticide products are available without a permit (defined as
an operator identification number in pesticide use law) and are not regulated by California Pesticide Use Reporting requirements. These pesticides have the potential to enter Clear Lake waters, but no studies have quantified their importance, either from a loading or impacts perspective.

Terrestrial Pesticides

While the human population in the Clear Lake Basin has increased over the past century, so too has the conversion of the landscape to agricultural production (discussed later). The widespread use of highly toxic organophosphate and organochlorine pesticides (OPs), mostly in the lake (e.g., DDD, see previous) has been reduced dramatically over the past 50 years. However, intimately associated with high agricultural production, and particularly with some of the high value crops, has been an increase in the use of pesticides to increase crop yield and ensure crop quality. Since many of the orchards and vineyards surround the lake or eventually drain into the lake, it is important to evaluate whether the use of such xenobiotics may affect the ecology of the watershed. Figure 121.8 illustrates trends of the ten highest use categories of pesticide application, and Figure 121.9 provides trends on the application of the top 10 of the approximately 165 most-heavily used pesticides in Lake County between 1990 and 1998 (California Department of Pesticide Regulation, 1990 to 1999).

Nearly 1 million pounds annually of various petroleum and mineral oils are used primarily on pears (to delay or discourage egg laying by psylla or to smother mite eggs and in some cases codling moth eggs). On rare occasions, oils are used on grapes. During the application of dormant and emergent sprays, these oils often are used simultaneously with some organophosphate pesticides (usually during summer). Currently, alternative approaches to control codling moth involve the use of pheromone mating disrupters, especially when the density of moths is relatively low (Elkins and Shorey, 1998; Bentley et al., 1999). The second most heavily used product, which is not acutely toxic to humans or wildlife at low doses, is sulfur and lime-sulfur. The primary use of these compounds has been as

![Figure 121.8 Annual cumulative pesticide applications for the top ten crops and uses in Lake County from 1990 to 1998 (by weight). (A) Total pesticide applications for the top five crops (by weight). (B) Total pesticide applications for the second five crops with the heaviest pesticide applications (by weight).]
fungicides on vineyards for protection against powdery mildew. While not highly toxic, the high application rates have the potential to increase sulfur loading into the lake, which also may interact with sulfate-reducing bacteria in the conversion of inorganic mercury to methyl mercury. However, no studies have been conducted to determine the origin of sulfur compounds in Clear Lake.

Although the four most widely used pesticides have a low environmental risk (both acute and chronic), the use of more-toxic compounds is still widespread. Examples of this have been the two most heavily applied broad-spectrum OPs, methyl parathion and azinphos-methyl (Guthion) (see Figure 121.9). Methyl parathion increased dramatically from approximately 30 lbs in 1993 to nearly 12,000 lbs in 1998, mostly for use against codling moth. Guthion, on the other hand, has seen nearly constant usage from 1990 to 1998, when usage dropped significantly, mostly because codling moth began to show signs of resistance. Due to the U.S. EPA’s recent restrictions on methyl parathion residues, and a ban against its use after 1999, we expect to see a rise in Guthion rates in response, although recent restrictions on Guthion will likely keep its use low as well. Although the use of these insecticides is high, their potential ecological impact is somewhat offset by the fact that they have relatively short environmental persistence. Both compounds have terrestrial half-lives from 3 to 16 days, and aquatic half-lives of 1 to 6 days. This significantly reduces their risk to wildlife, unless large amounts are used near the lake as fish and aquatic invertebrates are particularly sensitive to these compounds. Nevertheless, additional research is needed to determine whether terrestrial pesticides are being transported into Clear Lake and, if so, what their potential impacts to the aquatic community might be.

MTBE

Methyl tertiary butyl ether (MTBE), a synthetic chemical oxygenate added to gasoline to improve air quality as required by the Clean Water Act, had been used in gasoline in limited
quantities since the 1970s. It is considered a possible human carcinogen. It is highly soluble in water and does not readily degrade in the environment; most public water systems are not equipped to remove it completely from drinking water. It has a turpentine-like taste and smell, and initial studies show that some people can detect it in drinking water at concentrations as low as 2.5 ppb. In 1992, oil companies began using it extensively, and in recent years it has been detected in Clear Lake water. A 1998 University of California study indicated that there are significant risks and costs associated with water contamination due to the use of MTBE. In addition, it found that the use of gasoline containing MTBE in motor boats and crafts, in particular those with older two-stroke engines, results in the contamination of surface water reservoirs. In January 1999, the California Department of Health Services established a secondary (taste and odor-based) maximum contaminant level (MCL) allowable standard of 5 ppb, and a primary human health-based MCL of 13 ppb in May 2000. In March 1999, Governor Gray Davis issued an Executive Order for California to phase out the use of MTBE by 2003, and legislation to ratify the order (Senate Bill 989) was passed during the 1999 session. In March 2000, the federal government announced it would ban the use of MTBE under the Toxic Substances Control Act.

Some water samples collected from various locations within Clear Lake have detectable levels of MTBE, but those levels were always lower than the MCL for taste and odor. Nine of 53 Lake County water samples collected from January 1984 to December 1999 showed detectable MTBE concentrations. Of those 53 samples, 23 were collected within Clear Lake proper and 8 of those 23 showed a range of MTBE concentrations of 1.1 to 4.5 ppb. These values are below the taste and odor MCL standard of 5 ppb and significantly below the human health-based standard of 13 ppb, now in effect.

Mining

Clear Lake has contributed significantly to mining operations within the U.S. In 1864, this region was the first location to be mined for borax within the U.S. (Bailey, 1902), and a year later California's first sulfur was extracted from a surface deposit of elemental sulfur called the Sulphur Bank Mine (California Division of Mines, 1950). The deeper deposits of sulfur from this site were contaminated with cinnabar (mercury sulfide), and in 1872 the site was converted to mercury mining as the Sulphur Bank Mercury Mine. At that time California accounted for 89% of the nation's mercury production and the Sulphur Bank Mercury Mine produced about 10% of California's total mercury output (Simoons, 1952). Because of elevated concentrations of mercury in fishes first documented during the 1970s (Curtis, 1977), the Sulphur Bank Mercury Mine was placed on the U.S. EPA's National Priority List as a Superfund site in 1990 (Suchanek et al., 1993).

Mining at the Sulphur Bank Mercury Mine is believed to have contaminated the lake with both mercury and arsenic (Sims and White, 1981; Chamberlin et al., 1990; Suchanek et al., 1993, 1997). Inorganic mercury concentrations in lake bed sediments are significantly elevated (over 400 ppm) close to the mine and decline exponentially with distance from the mine (Suchanek et al., 1997, 1998a, 2000b). Arsenic is only slightly elevated close to the mine, but also exhibits a recognizable background signal throughout the lake, likely as a result of outflow from numerous lakebed springs (Suchanek et al., 1993). Since 1992 detailed studies have been conducted on mercury contamination from the Sulphur Bank Mercury Mine (Suchanek et al., 1993, 1995, 1997, 1998a,b, 2000a,b; Anderson et al., 1997; Mack et al., 1997; Slotton et al., 1997; Webber and Suchanek, 1998; Wolfe and Norman, 1998). Research at this site has identified acid mine drainage, which is low in pH and high in sulfate, as the most likely point source for methyl mercury contamination in Clear Lake (Suchanek et al., 1993, 1997, 2000b; Nelson et al., unpublished). Remediation of the mine is expected to begin around 2003.

Other mining operations have been widespread throughout the Clear Lake Basin. Figure 121.10 provides a location map for the diverse array of mining operations that have existed within this watershed over the past 150 years. With the advent of home and especially road
construction in the early 1970s, Lake County needed an easily accessible source of gravel as road base. Creek beds provided this resource; thus large volumes of gravel were extracted from Scotts Creek, Middle Creek, Kelsey Creek, Adobe Creek, Forbes Creek, Cole Creek, and Burns Valley Creek (see Figure 121.10). Gravel mining, which was common until 1987 (Zalusky, 1992), changed the level of stream beds as much as 15 ft and caused destabilization and increased erosion during the next flooding season, carrying higher loads of sediments and associated nutrients into the lake. Additionally, roads now block upstream areas that once were used for spawning (e.g., hitch). Volcanic cinder cones also have been mined as a source of aggregate and decorative rock, but the environmental impacts have been relatively small compared with mining in active stream beds. Mining operations that are still active include primarily sand and gravel, cinders, and decorative stone and rock.

Sewage and Septic Overflows

Although there have been many sewage overflows, especially during major flooding periods, this probably does not represent a significant nutrient loading to Clear Lake (see Richerson et al., 1994, for discussion).
Land-Use Changes

Wetland Losses and Gains

Original natural wetland acreage around the rimland of Clear Lake declined by nearly 85% from about 9000 acres in 1840 to about 1500 acres in 1977 (Table 121.3). One of the most dramatic land-use changes experienced within the Clear Lake watershed has been the process of wetland conversion to agriculture. Beginning in the 1890s, a large area of natural wetlands from the Robinson Lake and Tule Lake region in the northwest side of Clear Lake was reclaimed primarily for agricultural production of string beans and lima beans (Simoons, 1952). This was followed by another reclamation project in 1927 in the Middle Creek watershed for agricultural production, and the 1959 Rodman wetland reclamation by the Army Corps of Engineers. These projects collectively increased agricultural production, but also altered the transport of sediments and associated nutrients into Clear Lake, with the likely result that noxious cyanobacteria (blue-green "algae") blooms significantly increased beyond previous levels (Richerson et al., 1994). Wetland reclamation is not unique to Clear Lake; it is a process that was similarly initiated in the late 1800s throughout the country, and especially in the San Francisco Bay-Delta system where 79% of the marshlands have been lost in the last 200 years, and over 538,000 acres were converted to agricultural land (Monroe et al., 1999).

There are several categories of newly created water bodies or wetland habitats, including sewage treatment ponds, agricultural ponds, irrigated crops (such as rice), or pastures and reservoirs, which can have both positive or negative feedbacks to the Clear Lake ecosystem. For example, several tracts of original wetland habitat, such as Tule Lake, are now in rice production. These habitats are managed by flooded irrigation practices, so for much of the year they are functional wetlands and enhance populations of some invertebrates, which in turn provide food resources for some wildlife. These practices can both enhance wildlife and produce potential problems for disease vector agents such as mosquitoes. Some of the more recently created reservoirs can also be beneficial in trapping sediments with associated nutrients before they enter Clear Lake, which would also help to limit nutrient loading. However, we are not aware of any studies that have compared the functionality of original vs. newly created wetlands for any of these categories.

The intrinsic ecological values, in terms of biodiversity and natural filtering capacity of wetlands, have now become more recognized, and a trend to restore and rehabilitate previously reclaimed wetlands has been popular in recent years. At present, reclaimed former wetlands in both the San Francisco Bay-Delta system and the Clear Lake system are being considered for wetland restoration and rehabilitation. In the case of Clear Lake, the Army Corps of Engineers has completed a Reconnaissance Phase and is currently in the Feasibility Phase of a plan to restore up to 1200 acres of wetlands in the Robinson Lake/Middle Creek region of Clear Lake (Jones and Stokes, 1997; Smythe, 1997; Van Nieuwenhuyse, 1997).

<table>
<thead>
<tr>
<th>Year</th>
<th>Acres</th>
<th>% of 1840 Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1840</td>
<td>9000</td>
<td>100</td>
</tr>
<tr>
<td>1920</td>
<td>5400</td>
<td>60</td>
</tr>
<tr>
<td>1952</td>
<td>5300</td>
<td>59</td>
</tr>
<tr>
<td>1958</td>
<td>5200</td>
<td>58</td>
</tr>
<tr>
<td>1966</td>
<td>3400</td>
<td>38</td>
</tr>
<tr>
<td>1968</td>
<td>1900</td>
<td>21</td>
</tr>
<tr>
<td>1977</td>
<td>1500</td>
<td>17</td>
</tr>
</tbody>
</table>
Dredging and Filling

Over the past 150 years, vast areas around the rimland of Clear Lake that previously were wetlands have been filled or converted to either private, commercial, or public use (for homes, businesses, or roads), especially in response to the population increase after about 1925. These projects also tended to deliver large volumes of sediment and nutrients to Clear Lake (Richerson et al., 1994). The residential subdivision of Clearlake Oaks (known as the Keys) resulted in the extensive dredging of wetlands during the 1960s, and in the generation of about 6.5 miles of navigable channels. Other similar developments include Corinthian Bay and Lands End. For other smaller projects, these sometimes subtle yet continuous changes have been the most difficult to document, for there are few records that quantify conversion of small- to medium-sized areas of wetlands, especially before the turn of the 20th century.

Within the past 5 years there has been a movement by one citizens' group to dredge Clear Lake to a depth of about 60 ft (about 18 m) or more, with the stated purpose of generally "improving water quality," but without any documented specifics. Because the average depth of Clear Lake in most locations is 8 to 10 m, this would involve dredging another 9 m deeper. This concept is fraught with problems, not only economic, but ecological as well. Because relatively high concentrations of mercury and pesticides (DDT) are buried in the sediments of Clear Lake (especially within the top 60 to 70 cm) (Suchanek et al., 1993, 1997; Richerson et al., 2000), these materials would have a high probability of becoming remobilized into the water column and bioaccumulated into the trophic web in the course of dredging. Another problem with increasing the depth of Clear Lake to 60 ft is related to the issue of summer water column stratification. Most deep lake systems undergo temperature and oxygen stratification during the summer, whereby a temperature discontinuity (thermocline) is formed in the water column with an associated water mass at the bottom (hypolimnion) that has dramatically different physical and chemical characteristics from the surface water mass. This hypolimnion is typically cooler and is much more likely to be anoxic than surface waters. Clear Lake's present depth creates a situation in which bottom waters (near the sediment–water interface) occasionally become anoxic, but this condition does not typically last long because of wind-driven mixing. If the lake were significantly deeper, this anoxic condition would persist for long periods of time, perhaps months. This is exactly the condition under which sulfate-reducing bacteria flourish. As this microbial group has been implicated in the conversion of inorganic mercury into toxic methyl mercury, a deeper lake would most likely promote a higher production of toxic methyl mercury in the bottom waters. Winter turnover of the water column would allow this methyl mercury to be remobilized and potentially bioaccumulated by organisms in the lake. Because mercury is already an issue of great concern in Clear Lake, any changes that would promote further methyl mercury production would be undesirable. Nevertheless, such proposals point to the need for ongoing studies and monitoring to understand how natural and anthropogenically mediated processes may influence the complex dynamics imposed by multiple stresses on this ecosystem.

Creek Bed, Water Table, and Shoreline Modifications

The lower reaches of Clear Lake hitch (Lavinia exilicauda) spawning streams have usually dried up naturally, but due to groundwater extraction, these areas dry up earlier, resulting in spawning failures; additionally, the loss of marshy wetland areas surrounding the lake limits the habitat available to larval hitch.

Agriculture

Private fruit and nut orchards were planted early (around 1860) within the Clear Lake Basin with the production of pears, plums, prunes, apples, almonds, peaches, nectarines, and grapes, and commercial orchards started in the 1880s (Simoons, 1952). Figure 121.11 provides estimates
of acreage planted in the top five crops and orchards since the early 1900s, when reasonably accurate records were first kept. Much of the increase in wetland reclamation was driven by a desire to convert rich, easily irrigable soils into profit-making tracts of land. The types of crops grown were driven, to a large degree, by market value. At present, wine has made a significant resurgence in the marketplace and a large movement to convert existing orchards (especially walnut orchards) into grape production is under way. Over the past 10 years, the land area committed to growing grapes has increased dramatically from about 2500 acres in 1989 to 7000 in 1999, with no immediate end of the surge in sight (see Figure 121.11). During at least the first 2 years of the establishment of a vineyard (before any ground cover can be established), there is the potential for sheet wash erosion to transport large volumes of sediment and associated nutrients into Clear Lake. This potential problem can be reduced by the early establishment of a ground cover crop that will help stabilize the soil. While this is a topic of considerable debate within the agricultural and environmental community in Lake County, to date we are unaware of any specific studies that have quantitatively addressed the impacts of vineyards or orchards on erosion within the Clear Lake Basin.

Cattle and Sheep Grazing

The first cattle (initially Longhorn, then many other breeds including Shorthorn, Hereford, Polled Hereford, Angus, and Scotch Highland) were brought to the Clear Lake area in 1839, and their grazing impacts on the landscape increased thereafter (Mauldin, 1968). Richerson and co-workers (2000) discuss some of the early farming and ranching practices. Sheep herds were abundant and peaked sharply in the late 1870s at about 50,000 head; declined dramatically thereafter due to declining pasture quality; increased again to nearly 40,000 head around the 1930s; and then steadily declined to today’s low levels. Goats and hogs peaked around the turn of the 20th century at about 10,000 each, yet cattle numbers were more stable with about 10,000 head from 1861 through the 1980s. Even in early days, there was a problem with overgrazing, which resulted in the eventual closing of most of the local forest to cattle ranchers in 1947 (Mauldin, 1968). Overgrazing causes decreased soil stability and increased erosion, and results in greater nutrient input to the lake. Recently, grazing has become a problem in regions of emergent vegetation, especially in low water years when cattle have access to tule beds (as happened in 1999), because it can impact grebe nesting colonies.
Soil Exposure and Transport

Construction of residential and commercial facilities along the rimlands and on the upper slopes of the Clear Lake watershed have the continual effect of transporting sediments and associated nutrients into Clear Lake during the rainy season. Nonpaved roads also contribute significant loading of erosional materials to Clear Lake. During the summer, large numbers of off-road vehicles traverse back country roads (e.g., about 20 miles along Cow Mountain), loosening soil from the roadbed. At the end of the summer season, there is often a 5- to 10-cm layer of fine-grained soil (and associated nutrients) on the surface of the roadbed, which is flushed into drainage pathways and the lake with the first major rainstorm.

Species Introductions

Due in large part to its high productivity, Clear Lake has continually supported a very rich fish fauna. The structure of the fish community has changed a great deal over the past 100 years in response to numerous alien fish introductions. Prior to European settlement, there were 13 naturally occurring fish species in the lake, 4 of which were endemic (Hopkirk, 1973). The current fish community consists of 21 species, only 5 (24%) of which are native to the lake (see Table 121.4). The introductions began in the late 1800s with the establishment of three species, the white catfish (Amia car使satus), brown bullhead (A. nebulosus), and common carp (Cyprinus carpio) (Murphy, 1951) and all three species continue to flourish in the lake.

The introduction with perhaps the greatest impact on the Clear Lake fish community in recent years was the inland silverside in 1967 (Li et al., 1976). Like the western mosquitofish (Gambusia affinis), the inland silverside was introduced primarily for control of the Clear Lake gnat. Within 1 year, they established themselves as one of the most abundant fish in the lake and now are the dominant planktivore of the littoral zone (Moyle, 2002). This niche dominance likely acted as a catalyst for sweeping changes throughout the lake. Upon its introduction, the inland silverside reduced zooplankton populations in the nearshore regions of Clear Lake, outcompeting other planktivorous fishes in that region (Moyle, 2002). Moyle also credits the introduction of the inland silverside as a major factor in the final demise of the planktivorous Clear Lake splittail (Pogonichthyes ciscoideis), a species already in serious decline. One example of the inland silverside’s effects on other fish is provided by the black crappie (Pomoxis nigromaculatus) and white crappie (P. annularis). After the introduction of the inland silverside, the mean standard length of young crappie (also planktivores) decreased and that of adult crappie increased from pre-introduction levels (Li et al., 1976). This suggests that the inland silverside may have competed with young crappie, and that adult crappie were likely preying on silversides. The silversides also have become the primary forage fish for other predatory species and undoubtedly have helped the already booming sport-fishing industry in Clear Lake.

Other introductions that have had dramatic impacts on the structure of the aquatic community are the myriad sportfishes such as several species of catfish (e.g., Amia carus, Ictalurus punctatus), the largemouth bass (Micropterus salmoides), and other centrarchids. Moyle (2002) notes that the success of the white catfish (A. carus) was associated with a decline of the native cyprinids. He additionally credits the elimination of the pikeminnow (Ptychocheilus grandis, previously called squawfish) and the extinction of the thicktail chub (Gila crassicauda) to the presence of the largemouth bass and other exotic predators.

The most-recent fish introduction is that of the threadfin shad (Dorosoma petenense) in 1985 (Anderson et al., 1986). The impacts of the shad introduction have not been thoroughly quantified; however, it is generally assumed that they compete heavily with the silversides for food, leading to greatly fluctuating zooplankton populations. It also has been observed that the shad themselves go through very large population fluctuations, as evidenced by numerous die-offs that have occurred since their introduction. These generally occur in winter (as occurred during the winters of 1990
<table>
<thead>
<tr>
<th>Species</th>
<th>Family</th>
<th>Native/Introduced</th>
<th>Trophic Position (Juvenile/Adult)</th>
<th>Current Status</th>
<th>Reason for Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thicktail chub (Gila crassicauda)</td>
<td>Cyprinidae</td>
<td>Native</td>
<td>Omnivorous piscivore and invertivore assumed trophic position</td>
<td>Extinct (1941–1950)</td>
<td>—</td>
</tr>
<tr>
<td>California roach (Lavinia symmetricus)</td>
<td>Cyprinidae</td>
<td>Native</td>
<td>Benthic browser</td>
<td>Extinct (>1963)</td>
<td>—</td>
</tr>
<tr>
<td>Clear Lake splittail (Pogonichthys ciscoides)</td>
<td>Cyprinidae</td>
<td>Native</td>
<td>Littoral planktivore/pelagic planktivore</td>
<td>Extinct (1972)</td>
<td>—</td>
</tr>
<tr>
<td>Hitch (Lavinia exilicauda)</td>
<td>Cyprinidae</td>
<td>Native</td>
<td>Littoral planktivore/pelagic planktivore</td>
<td>Abundant</td>
<td>—</td>
</tr>
<tr>
<td>Sacramento blackfish (Orthodon microlepidotus)</td>
<td>Cyprinidae</td>
<td>Native</td>
<td>Pelagic planktivore/benthic detritivore</td>
<td>Abundant</td>
<td>—</td>
</tr>
<tr>
<td>Sacramento pikeminnow (Ptychocheilus grandis)</td>
<td>Cyprinidae</td>
<td>Native</td>
<td>Pelagic invertivore/pelagic piscivore</td>
<td>Unknown</td>
<td>—</td>
</tr>
<tr>
<td>Threespine stickleback (Gasterosteus aculeatus)</td>
<td>Gasterostidae</td>
<td>Native</td>
<td>Benthivore</td>
<td>Extinct (>1994)</td>
<td>—</td>
</tr>
<tr>
<td>Rainbow trout (Onchorhynchus mykiss)</td>
<td>Salmonidae</td>
<td>Native</td>
<td>Pelagic and benthic invertivore</td>
<td>Extinct (>1963)</td>
<td>—</td>
</tr>
<tr>
<td>Pacific lamprey (Lemnoper tridentata)</td>
<td>Petromyzontidae</td>
<td>Native</td>
<td>Parasite</td>
<td>Unknown</td>
<td>—</td>
</tr>
<tr>
<td>Sacramento sucker (Catostomus occidentalis)</td>
<td>Catostomidae</td>
<td>Native</td>
<td>Benthic detritivore and invertivore</td>
<td>Unknown</td>
<td>—</td>
</tr>
<tr>
<td>Sacramento perch (Archoplites interruptus)</td>
<td>Centrarchidae</td>
<td>Native</td>
<td>Littoral planktivore/benthic invertivore and piscivore</td>
<td>Rare</td>
<td>—</td>
</tr>
<tr>
<td>Tule perch (Hyporcarpus traski)</td>
<td>Centrarchidae</td>
<td>Native</td>
<td>Planktivore and invertivore</td>
<td>Common</td>
<td>—</td>
</tr>
<tr>
<td>Prickly sculpin (Leptocottus arnatus)</td>
<td>Cottidae</td>
<td>Native</td>
<td>Benthic invertivore</td>
<td>Abundant</td>
<td>—</td>
</tr>
<tr>
<td>Lake whitefish (Coregonus clupeaformis)</td>
<td>Salmonidae</td>
<td>Introduced (1873)</td>
<td>Planktivore/benthic invertivore</td>
<td>Unsuccessful introduction</td>
<td>Sportfishery</td>
</tr>
<tr>
<td>Common carp (Cyprinus carpio)</td>
<td>Cyprinidae</td>
<td>Introduced (1880)</td>
<td>Benthic omnivore</td>
<td>Abundant</td>
<td>Accidental</td>
</tr>
<tr>
<td>Brown bullhead (Ameiurus nebulosus)</td>
<td>Ictalidae</td>
<td>Introduced (1880)</td>
<td>Benthic littoral omnivore</td>
<td>Abundant</td>
<td>Sportfishery</td>
</tr>
<tr>
<td>Largemouth bass (Micropterus salmoides)</td>
<td>Centrarchidae</td>
<td>Introduced (1888)</td>
<td>Top predator</td>
<td>Abundant</td>
<td>Sportfishery</td>
</tr>
<tr>
<td>Golden shiner (Notemigonus crysoleucas)</td>
<td>Cyprinidae</td>
<td>Introduced (1896)</td>
<td>Littoral and pelagic planktivore</td>
<td>Rare</td>
<td>Forage fish</td>
</tr>
<tr>
<td>Bluegill (Lepomis macrochirus)</td>
<td>Centrarchidae</td>
<td>Introduced (1910)</td>
<td>Planktivore/omnivore</td>
<td>Abundant</td>
<td>Sportfishery</td>
</tr>
<tr>
<td>Black crappie (Pomoxis nigromaculatus)</td>
<td>Centrarchidae</td>
<td>Introduced (1910)</td>
<td>Pelagic planktivore/omnivore</td>
<td>Common</td>
<td>Sportfishery</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Species</th>
<th>Family</th>
<th>Native/Introduced</th>
<th>Trophic Position (Juvenile/Adult)</th>
<th>Current Status</th>
<th>Reason for Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow perch (Perca flavescens)</td>
<td>Percidae</td>
<td>Introduced (1910)*</td>
<td>Littoral omnivore</td>
<td>Unsuccessful introduction</td>
<td>Sportfishery</td>
</tr>
<tr>
<td>Goldfish (Carassius auratus)</td>
<td>Cyprinidae</td>
<td>Introduced (1920)*</td>
<td>Littoral herbivore and detritivore</td>
<td>Common</td>
<td>Forage fish</td>
</tr>
<tr>
<td>Channel catfish (Ictalurus punctatus)</td>
<td>Ictaluridae</td>
<td>Introduced (1920)*</td>
<td>Omnivore, mostly invertebrates and fish</td>
<td>Common</td>
<td>Sportfishery</td>
</tr>
<tr>
<td>White catfish (Ameiurus catus)</td>
<td>Ictaluridae</td>
<td>Introduced (1923)*</td>
<td>Benthic invertivore/benthic omnivore</td>
<td>Abundant</td>
<td>Sportfishery</td>
</tr>
<tr>
<td>Brown trout (Salmo trutta)</td>
<td>Salmonidae</td>
<td>Introduced (1924)</td>
<td>Invertivores/predators</td>
<td>Extinct (<1963)</td>
<td>Sportfishery</td>
</tr>
<tr>
<td>Western mosquitofish (Gambusia affinis)</td>
<td>Poeciliidae</td>
<td>Introduced (1925)*</td>
<td>Invertivore</td>
<td>Common</td>
<td>Pest control</td>
</tr>
<tr>
<td>Green sunfish (Lepomis cyanellus)</td>
<td>Centrarchidae</td>
<td>Introduced (1935)*</td>
<td>Littoral omnivore</td>
<td>Common</td>
<td>Sportfishery</td>
</tr>
<tr>
<td>Fathead minnow (Pimephales promelas)</td>
<td>Cyprinidae</td>
<td>Introduced (1955)*</td>
<td>Benthic omnivore</td>
<td>Rare</td>
<td>Forage fish</td>
</tr>
<tr>
<td>White crappie (Pomoxis annularis)</td>
<td>Centrarchidae</td>
<td>Introduced (1955)*</td>
<td>Pelagic omnivore</td>
<td>Common</td>
<td>Sportfishery</td>
</tr>
<tr>
<td>Redear sunfish (Lepomis microlophus)</td>
<td>Centrarchidae</td>
<td>Introduced (1965)*</td>
<td>Molluscivore</td>
<td>Rare</td>
<td>Sportfishery</td>
</tr>
<tr>
<td>Inland silverside (Menidia beryllina)</td>
<td>Atherinidae</td>
<td>Introduced (1967)*</td>
<td>Littoral planktivore</td>
<td>Abundant</td>
<td>Pest control</td>
</tr>
<tr>
<td>Threadfin shad (Dorosoma petenense)</td>
<td>Clupeidae</td>
<td>Introduced (1985)</td>
<td>Epipelagic planktivore</td>
<td>Abundant</td>
<td>Forage fish</td>
</tr>
</tbody>
</table>

* From Moyle, 2002.
* Found in watershed streams.
* Formerly known as squawfish.
* From Murphy, 1951.
* From Li and Moyle, 1979.
to 1991 and 1998 to 1999 when tens of thousands of threadfin shad died and floated to shore, and likely is due to their poor tolerance of cold water, because they have great difficulty feeding below 9°C (Griffith, 1978). The introduction of the threadfin shad resulted in a significant decline in Daphnia populations that serve as the primary food source for young-of-year largemouth bass. Thus, a cascade effect that reduced the numbers of largemouth bass was correlated with the introduction of shad. Furthermore, when the shad population crashed in 1990, the largemouth bass population made a significant rebound, which most likely was due to the resurgence in the number of Daphnia found in the lake (Colwell et al., 1997). One study suggests that Daphnia consume primarily planktonic diatoms, but typically leave the less-palatable blue-green “algae” (Elser et al., 1990). Additionally, Colwell and co-workers (1997) have shown a strong positive correlation between threadfin shad abundance and that of various piscivorous birds such as Clark’s grebes (Aechmophorus clarkii) and western grebes (A. occidentalis), double-crested cormorants (Phalacrocorax auritus), and California gulls (Larus californicus). This may be because the shad prefer well-lighted surface waters, making them easy prey for the birds. After the 1990 population crash, the populations of the aforementioned birds returned to pre-introduction levels. This combination of top-down and bottom-up strong interactions suggests that if this species ever establishes permanently high densities, its introduction may result in dramatic changes throughout the ecosystem, perhaps greater than the changes caused by any previous introduction.

Over the past decade, there typically have been three to four commercial fishing licenses on Clear Lake, mostly focused on the Sacramento blackfish (Orthodon microlepidotus) and common carp (Cyprinus carpio), which typically are sold live to Asian markets in the San Francisco Bay region. In the 1960s and 1970s, there were years when more than 317,000 kg of carp were taken from the lake and sold mostly to processing plants for cat food. A single haul of carp in about 1990, toward the end of the 6-year drought, yielded about 45,400 kg; yet in recent years carp and blackfish have been in relatively low abundance (Meadows, personal communication, 2000).

Today, there still exist numerous threats to the survival of many Clear Lake fishes. For example, threats to hitch (Lavinia exilicauda) involve loss of spawning habitat and nursery areas. The establishment of the threadfin shad (Dorosoma petenense) tended to greatly reduce populations of the zooplankton Daphnia, a principal food of hitch.

Hydrilla (Hydrilla verticillata), indigenous to Southeast Asia (Langeland, 1996), is a noxious, nonnative, submerged aquatic weed that is spreading rapidly throughout the U.S. It was first discovered in Florida in the 1960s and for the first time in Clear Lake in August 1994 (O’Connell and Dechoretz, 1997; Dechoretz, 1998). Where it occurs it causes substantial economic hardships, interferes with various water uses, displaces native aquatic plant communities, and adversely affects freshwater habitats (Langeland, 1996). In 1994, about 175 to 200 surface acres in Clear Lake experienced infestation. This area increased to 648 acres by 1998 (Dechoretz, 1998), and in 1999 the affected area expanded to 845 acres* (Lockhart, personal communication, 2000). This weed is adapted to grow at low light levels, competes effectively for sunlight, and has a rapid growth rate (up to 1 in. per day). It has four different modes of reproduction and the potential to spread with enormous speed to clog enclosed and open waterways, including water bodies as large as Clear Lake (Langeland, 1996).

Ecosystem Complexity

The aquatic ecosystem of Clear Lake and its supporting basin and watershed are extremely productive and complex. The trophic structure of the lake’s biota is complicated and dynamic. Figure 121.12 represents a simplified version of an elaborate, multiltered trophic network for some of the more common species in Clear Lake. Richerson and co-workers (1994; Table 121.3.3) also provide documentation of a preliminary food web for Clear Lake, including known predator–prey

* In addition to regions actively infested, this figure for 1999 also includes all areas that still are being treated in which Hydrilla has ever been found, and may not represent current infestation.
Figure 1: Simplified food web for Clear Lake.
relationships. Many of the factors identified above are dynamic, affecting the ecological relationships between species, and present significant challenges to resolving systemwide ecological problems. While considerable research has been conducted on the Clear Lake aquatic ecosystem, there exists a large degree of uncertainty about our knowledge of the impacts from the multiple stresses outlined previously.

Multiple Management Objectives

The previous discussion highlights many multiple stresses that affect the aquatic ecosystem of Clear Lake proper and the surrounding watershed and basin. These impacts affect not only the natural ecology of the system, but interact with aesthetic and economic dimensions as well. The Clear Lake Basin is an aesthetically beautiful setting and, as it has for over a century, attracts many thousands of tourists each year. Tourist visitation revenues for Lake County were estimated at $162 million in 1992 and increased on average about 7.9% per year to $237.5 million in 1998 (Dean Runyan Associates, 1999). It is estimated that $7 to 10 million of tourist revenue is lost annually due to the influence of poor water quality associated with cyanobacterial blooms alone (Goldstein and Tolstorf, 1994). Given the complexities of managing a productive and multiuse watershed, many conflicts exist. For example, what is the best solution for maintaining the lake level? Downstream farmers in Yolo County would like to accumulate as much water as possible in Clear Lake during periods of winter precipitation for use the following summer; yet, the higher the lake levels rise, the greater risk of flooding to citizens living along the rimlands, as occurred when the first Clear Lake dam was erected in 1867 (see above). Another example relates to the use of pesticides and fertilizers for agricultural crops. Farmers typically use pesticides and fertilizers to maximize production; yet, the health of the aquatic ecosystem (especially its resources for sport and commercial fisheries) may be negatively affected by these practices. Some Lake County residents strive to enact regulations or change land-use patterns to reduce the free-floating cyanobacterial blooms and the noxious odors associated with their standing on shore. During years when the blooms are minimal, water clarity is improved but shallow-rooted aquatic macrophytes proliferate and clog boat propellers. Yet, macrophytes are desirable as refuges and habitats for increased biodiversity and often act as nursery grounds for young fishes. Trade-offs will always exist, but it is the responsibility of science to provide informed decision-making options (and their inherent consequences) before exploiting multiple-use resources found within Clear Lake and its watershed.

Lake County has been one of the most progressive counties in the state in developing a Coordinated Resource Management and Planning (CRMP) process (Follansbee, 1996). Simply put, using a consensus model, the CRMP process brings together citizen interest groups and representatives from local, state, and federal agencies to develop integrated approaches to complex resource management issues. The first use of the CRMP process in 1949 to address grazing for an allotment in Oregon was documented by Anderson and Baum (1988). Over 200 such CRMPs are in existence within California and several have been started within Lake County. One of the first Clear Lake CRMPs dealt with the problems associated with the cyanobacterial blooms. A committee initially established as the Algae Abatement Committee in 1984 (and now operating under a broader mandate as the Clear Lake Advisory Subcommittee [CLAS]) has met regularly since its inception to address problems and potential solutions to eutrophication and other issues related to water use and quality within Clear Lake and its surrounding watershed. It has since evolved into an entity that addresses county-wide resource issues in an integrated manner while attempting to maintain and enhance the ecosystems and economy of Lake County (Follansbee, 1996). This group has been folded into a more-structured Lake County Resource Management Committee (RMC), which began in 1989 and now includes representatives from county-level resource agencies, agricultural interests, Native Americans, fishing and hunting groups, environmental special interest groups, realtors, Chambers of Commerce, and the University of California. The structure of the RMC includes four subcommittees: Clear Lake Advisory, Biological Resources, Land and Water Resources, and Database and
Information Outreach. These subcommittees seek out information from each of the representative participants and draw heavily upon past and ongoing scientific research that is conducted on Clear Lake and its surrounding watershed. In general, the RMC seeks to improve coordination of planning, research, and land and resource management by obtaining input from all interested parties, sharing information, collecting data, conducting research, and developing policies and regulations that will maximize benefits for the citizenry of the county (Follansbee, 1996). In addition to the Clear Lake (Upper Cache Creek) Watershed CRMP, there are several other local and regional CRMPs that interact closely to resolve environmental issues. These include High Valley and Schindler Creek CRMP, Lake Pillsbury Watershed CRMP, Middle Creek CRMP, and the Scott's Creek CRMP.

Recommendations from the RMC, which receives input from the various CRMPs, are passed to the county Board of Supervisors, who then vote on whether to adopt or modify them. One example of a process initiated and mediated by the Clear Lake CRMP has been an investigation of "The Causes and Control of Algal Blooms in Clear Lake" (see Richerson et al., 1994). University of California, Davis (UCD), scientists conducted a study (funded by the U.S. EPA Clean Lakes Program) to evaluate possible remediation options to reduce blue-green "algal" blooms in Clear Lake. A series of recommendations from this study were provided to the RMC and voted on by the Board of Supervisors. As a result, Lake County has been engaged in several remediation strategies to reduce nutrient inputs to Clear Lake. Two examples include (1) stabilization of creek bed channels (disrupted by gravel mining) by replanting willows and cottonwoods, and (2) initiation of a process to restore and rehabilitate up to 1200 acres of wetlands in the northwest region of Clear Lake (formerly Robinson Lake) that were converted to agricultural production over the past 100 years. The CRMP process is holistic and appears to be working well, yet is always dependent on accurate scientific data for proper strategic planning.

Research

Some of the earliest environmental and ecological research at Clear Lake was a series of observations dealing with fish biology that were initiated shortly after Europeans arrived in the basin (Stone, 1874), and a more broadly based biological survey of the lake in the 1920s (Coleman, 1930). Unfortunately, we have found no documented history of the ecology of the lake before 1870, which would have provided a true aboriginal baseline, especially regarding the level of eutrophication in Clear Lake. The most productive periods of scientific research in Clear Lake have been associated with:

1. Application of DDD to control the Clear Lake gnat (Lindquist and Deonier, 1943; Dolphin, 1959; Hunt and Bischoff, 1960).
5. Studies on mercury and arsenic contamination from the Sulphur Bank Mercury Mine that are still ongoing (Columbia Geosciences, 1988; Chamberlin et al., 1990; Suchanek et al., 1993, 1995, 1997, 1998a,b, 2000a,b).
6. An ongoing monitoring program by the Lake County Vector Control District that encompasses water quality, plankton, benthic invertebrates and fishes.
7. A series of ongoing integrated studies by UCD researchers since the early 1990s on the impacts of multiple stresses on the Clear Lake aquatic ecosystem.
The earliest studies (e.g., water quality work, Clear Lake gnat research, cyanobacterial bloom studies), especially in the 1940s and 1950s, were typically “special purpose” programs designed to address specific problems. There was little integration and little continuity; the science was relatively unsophisticated, even though the scientific teams were utilizing the most modern standards of the day. Initially, DDD treatments of the lake were effective in cutting back the populations of the Clear Lake gnat, but some deleterious side effects did occur. Later observations, however, suggested failure of the large pesticide applications and fish predator introductions to reduce and eliminate populations of the Clear Lake gnat, and indicated secondary consequences of population crashes of the western grebe, presumably from DDD contamination. However, western grebes have rebounded in recent years, and exhibited the largest population size ever recorded at Clear Lake (about 210,000 individuals) in the year 2000. The 1970s spawned an era of more-consistent data-collection efforts, with the California Department of Water Resources (DWR) launching a water-quality monitoring program begun in 1969 and continuing to the present day. These data collection efforts provided continuity, but still lacked directed investigation or integration with lake-wide environmental issues. As addressed previously, results of Goldstein and Tolsdorf’s (1994) study suggested that compromised water quality in Clear Lake likely is diminishing tourism by $7 to $10M per year. The economic impact suggests that there has been far too little investment in acquiring management-relevant data. Unfortunately, Lake County’s responsibilities to support these efforts far outstrips its financial resources to do so.

The U.S. EPA has supported much of the recent work (since 1990) that has been conducted at Clear Lake, both on hypereutrophication and associated cyanobacterial blooms (Clean Lakes Program, about $100,000) and studies on multiple stresses affecting Clear Lake and its watershed (U.S. EPA Office of Research and Development, UCD Center for Ecological Health Research, about $100,000 per year from 1992 to 2001). The U.S. EPA also has funded studies on the impacts of mercury from the Sulphur Bank Mercury Mine on the lake’s aquatic ecosystem (U.S. EPA Superfund Program, about $500,000 per year from 1994 to 1998). As a cumulative effort since 1990, funding has supported about five master’s theses and seven Ph.D. dissertations (the result of about 42 graduate student study-years) to date.

The U.S. EPA-funded Center for Ecological Health Research (CEHR) at UCD, operating at the watershed scale, is utilizing Clear Lake as one of three model ecosystems (the other two are the Sierra Nevada Ecosystem, including Lake Tahoe, and the Sacramento River Watershed) to evaluate the impacts of multiple stresses on ecosystem health. Another U.S. EPA watershed project (funded by the National Center for Environmental Research Quality Assurance [NCEQA] program) involves policy and management issues associated with assessing water management options. The CEHR program at Clear Lake involves numerous subprojects that are focused on many interrelated questions associated with the dynamics of this system subjected to diverse natural and anthropogenic stresses and how these relate to more regionally based water-quality issues. The intimate relationship between the various disciplines and projects being undertaken by this program is diagrammed in Figure 121.13. Virtually every project has its own set of ongoing investigations (with a rich publication record too extensive to list here), but is well coordinated and integrated with the other projects. The CEHR work is interdisciplinary, reviewed semiannually through scoping and evaluation meetings with a CEHR national Scientific Advisory Committee, and is in the process of producing a synthetic publication summarizing nearly 10 years of research on this ecosystem.

To date, we have made significant progress in understanding the complex dynamics of natural and anthropogenic stressors on the Clear Lake aquatic ecosystem from first principles. For example, the ecological assessment of the impacts of the Sulphur Bank Mercury Mine on Clear Lake was nearing completion in 1995 when we discovered a significant amount of ongoing acid mine drainage (AMD) from the mine site entering Clear Lake through underground seepage, not just as surface runoff. This shifted the entire emphasis of the investigations from the lake bed sediments (which previously were believed to be the point source for the lake’s mercury contamination) to ongoing
investigations of AMD. This discovery was made possible only through an active and ongoing monitoring program (Suchanek et al., 2000b). It is possible that our current understanding of the dynamics and influence of sediment and nutrient loading on Clear Lake’s productivity also may be incomplete. No “silver bullets” have been found to resolve the complexities of the many natural and anthropogenic stresses imposed on Clear Lake and its surrounding watershed, nor are they likely to be. However, as our work demonstrates, although uncertainties about ecosystem processes remain, we continue to improve our abilities to predict the effects of anthropogenic impacts and manage this productive resource. With unpredictable changes associated with global and regional climate change, new species introductions (purposeful or accidental), and other as-yet-unidentified stressors, this system will need continued and sophisticated adaptive management. In a complex ecosystem such as Clear Lake, research can (1) make steady progress in understanding the complexities of the system, (2) guard against indefensible plans such as the deep dredging of Clear Lake, and (3) offer recommendations for future actions based in the spirit of adaptive management.

If society wants to manage complex ecosystems like Clear Lake at a state-of-the-art level, it must be prepared to make substantial investments in monitoring, research, and modeling on an ongoing basis. Because these investments involve contributions to understanding ecosystems at
a fairly fundamental level that will be applicable to many other similarly stressed systems, a substantial federal contribution is warranted. However, a healthy and meaningful program requires more state and local investment than has been forthcoming thus far. A strong commitment from federal, state, and local funding agencies will be needed to provide a reliable technical basis for science-based decision making and management. Lake Tahoe, with its much higher profile nationally, has a relatively well-funded research and monitoring program. However, even this program is weakly institutionalized, has periodic funding crises, and has a funding base that is none too generous considering the scope of its problems. Multiply stressed ecosystems require a sustained and rather costly investment of scientific and technical resources. Recent requests by the National Science Foundation for a major increase in environmental science funding are a step in the right direction, but the more applied and management-oriented part of the investment portfolio still will be neglected unless other agencies step forward.

ACKNOWLEDGMENTS

We would like to thank the County of Lake and specifically Supervisor Karan Mackey for continued support throughout the past decade. In addition, Art Colwell and Norm Anderson of the Lake County Vector Control District, Bob Reynolds of the Lake County Air Quality Management District, Bob Lossius and Tom Smythe of the Lake County Public Works Department, and Marty Winston of the Lake County Department of Public Health have given generously of their time and data to help evaluate and understand many of the stresses affecting Clear Lake. Art Colwell significantly improved the manuscript by providing historical accuracy. Peter Moyle helped us correct the simplified food web diagram. Many other people too numerous to mention have contributed in many ways to this effort. This work has been supported by the following grants or contracts: U.S. EPA Clean Lakes Program (contract 0-166-250-0 to the California State Water Resources Control Board), U.S. EPA Center for Ecological Health Research (R819658 and R825433), U.S. EPA-NSF Watershed Grant (R-825285-01-0), U.S. EPA Region IX Superfund Program (68-S2-9005), and a UCD Jastro Shields grant to E.J. Gilmartin. Although the information in this document has been funded in part by the United States Environmental Protection Agency, it may not necessarily reflect the views of the agency and no official endorsement should be inferred.

REFERENCES

Anon., History of Napa and Lake Counties, California, Slocum, Bowen & Co., 1881.
Becker, C.F., Geology of the quicksilver deposits of the Pacific slope, USGS Monogr., 13, 1888.

Curtis, T.C., Pesticide laboratory report, California Department of Fish and Game, E.P. No. P-133, 1977.

Menefee, C.A., Historical and Descriptive Sketchbook of Napa, Sonoma, Lake and Mendocino, Reporter Publishing House, Fairfield, CA, 1873.

Murphy, G.L., The fishery of Clear Lake, Lake County, California, Calif. Fish Game, 37, 439–484, 1951.

