
Yueran Yang
University of Nevada, Reno

Max Guyll and Stephanie Madon
Iowa State University

This article presents a new model of confessions referred to as the interrogation decision-making model. This model provides a theoretical umbrella with which to understand and analyze suspects' decisions to deny or confess guilt in the context of a custodial interrogation. The model draws upon expected utility theory to propose a mathematical account of the psychological mechanisms that not only underlie suspects' decisions to deny or confess guilt at any specific point during an interrogation, but also how confession decisions can change over time. Findings from the extant literature pertaining to confessions are considered to demonstrate how the model offers a comprehensive and integrative framework for organizing a range of effects within a limited set of model parameters.

Keywords: confessions, decision-making, expected utility, police interrogation

In the criminal justice system, a confession is among the most persuasive forms of incriminating evidence (Gudjonsson, 2003; Kassin, 2008; Leo & Drizin, 2010). A confession is so persuasive, in fact, that in many cases convictions have been determined on the basis of confession evidence alone (Conti, 1999; Kassin & Wrightsman, 1985). As the U.S. Supreme Court pointed out in the case of Bruton v. United States (1968), “the defendant’s own confession is probably the most probative and damaging evidence that can be admitted against him” (p. 7). McCormick (1972) expressed the same view when he wrote, “The introduction of a confession makes the other aspects of a trial in court superfluous” (p. 316).

Because of its incriminating power, a confession typically leads to legal sanctions (Kassin & Gudjonsson, 2004). Because these sanctions can be severe, common sense would seem to suggest that even guilty suspects would deny guilt during a custodial interrogation (Gudjonsson, 2003). On the contrary, however, between 42% and 55% of all interrogated suspects confess (Kassin & Gudjonsson, 2004), some of whom are innocent. Indeed, postconviction DNA testing has identified 344 wrongful convictions, to which can be added the 4,000 wrongful convictions that have been documented (http://www.innocenceproject.org).

The seemingly irrational act of confessing has led researchers to examine how specific interrogation tactics influence suspects' decision-making, especially the decision to falsely confess (for reviews, see Kassin, 2008, 2012; Kassin et al., 2010). The findings of this work have strong practical implications, but recommendations for interrogation reform will have greater scope and utility to the degree that awareness of specific problematic interrogation tactics is complemented by an understanding of the fundamental processes that underlie suspects’ decision-making (Meissner, Rusciano, & Narchet, 2010). For example, a theory-based approach has the potential to identify common causal processes underlying whole classes of interrogation tactics that affect the innocent as well as the guilty, thereby providing a more comprehensive analytic framework to guide reform efforts.

Recognizing the advantage of developing broader theory, scholars have advanced a variety of theoretical perspectives that explain why suspects choose to confess when interrogated, including models derived from psychoanalytic, cognitive–behavioral, and decision-making perspectives. Models reflecting a psychoanalytic perspective tend to emphasize the role of the unconscious as the key determinant of confessions and propose, for example, that feelings of guilt and remorse drive suspects to confess (e.g., Reik, 1959; Rogge, 1975). Models reflecting a cognitive–behavioral perspective emphasize factors that encourage suspects to confess by virtue of altering their emotions, thoughts, and actions. In particular, a five-factor model of confessions has been proposed in which a confession decision is held to be multiply determined by social, emotional, cognitive, situational, and physiological antecedents and consequences of the decision (Gudjonsson, 2003). Finally, models reflecting a decision-making perspective broadly emphasize the idea that suspects’ ability to make reasoned confession decisions on the basis of the likely consequences that will follow is undermined by contextual factors that are present during an interrogation, such as the stressfulness of the situation and the perceived authority of the police (Hilgendorf & Irving, 1981; Ofshe & Leo, 1997a, 1997b).

These theoretical models have advanced the field by providing explanatory accounts of suspects’ decisions to confess guilt. However, they are limited in the sense that they do not provide a comprehensive analysis of the multifaceted processes that collectively operate within a custodial interrogation. Stated differently,
these models help to explain why suspects may choose to make the seemingly irrational choice to confess, but because they focus on specific factors such as remorse, consequences, antecedents, and assessment of choices, they cannot explain the multifaceted causes of suspects’ decision-making, which requires a broader theoretical framework. In this article, therefore, we introduce a model of confessions that we refer to as the interrogation decision-making model. Our goal in developing this model was to provide a comprehensive account of suspects’ decision-making during custodial interrogations—an account that is capable of integrating the diversity of ideas and empirical findings that have emerged within the confession literature over the past several decades.

Overview of the Interrogation Decision-Making Model

The interrogation decision-making model conceptualizes suspects as decision-makers who must decide how to respond to police pressure to confess. The model’s conceptualization of suspects as decision-makers is consistent with existing models of confessions (Hilgendorf & Irving, 1981; Ofshe & Leo, 1997a, 1997b). However, unlike existing models, it characterizes the psychological mechanisms that underlie the decision to deny or confess guilt at a given point during an interrogation in terms of a small number of parameters that are general, broadly applicable, and suitable for representing a wide range of effects that influence suspects during interrogation. The interrogation decision-making model further accounts for the dynamic nature of interrogations by highlighting that the factors in the model are all potentially functional at any point in time. This characteristic enables the model to account for situations in which suspects may make a series of decisions throughout the course of an interrogation, and that their decisions may change depending upon what has previously occurred, such as when an innocent suspect makes multiple denials before ultimately confessing. Furthermore, the focus of previous models has been on the ability of situational influences to force a suspect to abandon rational decision-making and provide a confession. By contrast, the interrogation decision-making model is a more fundamental decision-making model that integrates these influences into what the suspect still experiences as a rationale decision-making process, albeit under prevailing conditions that may greatly influence the ultimate decision. In addition, it explicitly incorporates the greater power of the immediate and experienced situation as compared to a distant and abstract future. We next describe the model in greater detail, focusing on its constituent components and how they correspond to interrogation events.

How Suspects Make Decisions:
A Mathematical Account

In making a decision, an individual chooses among the options in a decision space, which refers to the collection of all of the choices that one perceives as being available to them at a given point in time. For example, during an interrogation, suspects may perceive themselves as having any number of choices, such as denying guilt, confessing guilt, invoking their Miranda rights, refusing to speak, speaking about unrelated matters, and so forth (Hilgendorf & Irving, 1981; Ofshe & Leo, 1997a). Although the model can accommodate all of the choices that exist within suspects’ decision space, for purposes of simplicity we have restricted the decision space to include only two choices: to deny guilt and to confess guilt.

Expected Utility

Deciding between a denial and a confession requires a suspect to consider and weigh the outcomes associated with both choices. To model this complex decision process we draw upon expected utility theory to account for the psychological mechanisms that underlie suspects’ decisions to deny or confess guilt during an interrogation, and specifically make use of the concept of expected utility from behavioral economics (Savage, 1954). Utility represents the experience of satisfaction, happiness, or “goodness.” Correspondingly, expected utility is the overall amount of utility one expects to experience as the result of a particular outcome (Mongin, 1988; Schoemaker, 1982). An outcome’s utility has two components: valence and magnitude. A desirably valenced outcome, a, has a positive utility, or u(a) > 0, whereas an undesirably valenced outcome, b, has a negative utility, or u(b) < 0. The magnitude of an outcome’s utility reflects how strongly the outcome is viewed as desirable or undesirable. If u(a) = 200 and u(b) = 100, then both a and b are desired, but a is twice as desired as b. Similarly, if u(a) = 200 and u(b) = −100, then a is desired and b is undesired, and furthermore, a’s desirability is twice the magnitude of b’s undesirability.

It is important to note that a single decision to deny or to confess is associated with multiple outcomes. Denial decreases the likelihood of conviction, but also extends the interrogation, which entails continued confrontational questioning and continued experience of negative emotions such as hopelessness, anxiety, and stress (Gudjonsson, 2003; Gudjonsson & Sigurdsson, 1999). Likewise, the choice to confess may be associated with ending the interrogation or being allowed to make a phone call, but also with potential distal outcomes, such as conviction, a lengthy prison sentence, or execution (Drizin & Leo, 2004; Gudjonsson, 2003). Thus, in evaluating the utility of a particular choice, suspects evaluate the overall utility associated with all the outcomes they expect to flow from that decision. Ultimately, suspects choose to either deny or confess guilt based on which choice they expect to yield greater utility. We use D and C to respectively denote the choices of denial and confession, and use X to refer to a choice in general, therefore representing a choice that could be either a denial or a confession.

Choice Evaluation

The expected utility of a choice, X, is taken as equivalent to the expected utility of all outcomes associated with that choice, the latter of which are represented by the vector, x, which in mathematical terms corresponds to, E[u(X)] = E[u(x)]. The vector of outcomes, x, includes all of the outcomes that suspects consider as possibilities that may follow from their choice, X, whether it be a denial or a confession. Therefore, the expected utility of a given choice X (either a denial or a confession) may be expressed as follows in Equation 1.

\[
E[u(x)] = E[u(x_D)] + 0E[u(x_C)]
\]

\[
= \sum_{i=1}^{n} p(x_D)u(x_D) + 0\sum_{i=1}^{n} p(x_C)u(x_C)
\] (1)
In the sections that follow, we explain the expected utility function presented by Equation 1, focusing on the four parameters, \(x, u(\cdot), p(\cdot), \) and \(\theta, \) that determine the expected utility of a choice, \(X. \)

Outcomes: Proximal and distal. As noted above, \(x \) corresponds to the set of outcomes that the suspect associates with making the choice, \(X. \) The vector of outcomes, \(x, \) is partitioned into two subvectors \(x_p \) and \(x_d. \) The subvector \(x_p = (x_{p1}, x_{p2}, \ldots, x_{pn}) \) includes the \(n_p \) **proximal outcomes** that suspects perceive will immediately follow from choice \(X \) during an interrogation, and the subvector \(x_d = (x_{d1}, x_{d2}, \ldots, x_{dn}) \) includes the \(n_d \) **distal outcomes** that suspects perceive will follow from choice \(X \) in the future after an interrogation has ended. To illustrate, a suspect who denies guilt is likely to consider a number of proximal outcomes, including longer detainment, additional confrontational questioning, and the continued experience of negative emotions such as hopelessness, anxiety, and stress (Gudjonsson, 2003; Gudjonsson & Sigurdsson, 1999). The same suspect may also perceive the choice of denying guilt to have a variety of distal outcomes, such as exculpation, or perhaps a lighter sentence if convicted. Likewise, a suspect who considers making a confession may perceive this choice to be associated with the proximal outcomes of being released from an interrogation or being given permission to make a phone call, but also with potential distal outcomes, some of which could be quite serious, such as conviction or a lengthy prison sentence (Drizin & Leo, 2004; Gudjonsson, 2003).

Outcome utility. Equation 1 also includes the utility function, \(u(\cdot), \) which represents the perceived utility of each potential outcome. That is, suspects evaluate the amount of satisfaction, happiness, or goodness they expect to experience as a result of each particular outcome.

Outcome probability. In addition to evaluating the utility of each outcome, expected utility theory holds that individuals will also assess the probability that an outcome will actually occur, denoted by the probability function, \(p(\cdot). \) The probability function represents suspects’ perception of how likely it is that a particular outcome will actually come to pass as a result of making a given choice (Gilboa, Postlewaite, & Schmeidler, 2008). For example, a suspect may expect a 20% chance of conviction if s/he denies guilt, but an 80% chance of conviction if s/he confesses. As depicted in Equation 1, the greater the perceived probability of an outcome, the more weight that is given to the utility of that outcome in the suspect’s decision-making (Yang, Madon, & Guyll, 2015).

Discounting of distal outcomes. It is well established that human beings temporally discount future outcomes (Berns, Laibson, & Loewenstein, 2007; Kalenscher & Pennartz, 2008). That is, people more heavily weight proximal outcomes than distal outcomes because a given benefit is valued more highly the more quickly it is to be received, and a given cost is judged more dear the more quickly it is to be incurred. Empirical research suggests that temporal discounting could influence suspects’ confession decisions wherein they give disproportionate weight to the proximal outcomes experienced during an interrogation (i.e., \(x_p \)), without sufficient consideration of the distal outcomes that may be levied by the judicial system if they are convicted (i.e., \(x_d \); Madon, Guyll, Scherr, Greathouse, & Wells, 2012; Madon, Yang, Smalarz, Guyll, & Scherr, 2013).

Drawing on this body of work, the model accounts for suspects’ discounting of distal outcomes by inclusion of the parameter \(\theta \) in Equation 1. In the interrogation decision-making model, the parameter \(\theta \) represents the discount factor, the values for which can range from 0 to 1, inclusive. The lower bound value of 0 represents full discounting: Suspects make their interrogation decisions entirely on the basis of anticipated proximal outcomes without any regard for distal outcomes. The upper bound value of 1, by contrast, represents the absence of discounting: Suspects make their interrogation decisions on the basis of both anticipated distal outcomes and proximal outcomes, without any discounting of distal outcomes.

Table 1 lists examples of suspects’ perceived proximal and distal outcomes for a denial and a confession. In addition to the classification of outcomes as either proximal or distal, Table 1 also separates the perceived outcomes according to their valence. Table 1 makes explicit that suspects can perceive a denial and a confession to produce different outcomes. For instance, suspects may expect that an interrogator will show disapproval in response to a denial but approval in response to a confession. It is also the case that suspects can perceive a denial and a confession to produce the same outcomes. For instance, guilty suspects may sometimes believe that the police have other incriminating evidence against them, leading them to view conviction as a likely outcome regardless of whether they deny or confess.

Subjectivity of judgments. It is important to emphasize that suspects’ perceptions of possible outcomes are subjective rather than objective. Moreover, because the information that is available to suspects can be both insufficient and inaccurate, their subjective judgments may not be reliable (Gilboa et al., 2008). In other words, it is suspects’ subjective beliefs about the probability and utility of likely outcomes, which may or may not be accurate, that influence their decisions in combination with their idiosyncratic discounting of future outcomes. When individuals’ perceptions are inaccurate, decision-making can be flawed, ultimately leading to errors and ill-advised poor choices (Tversky & Kahneman, 1974, 2011).

<table>
<thead>
<tr>
<th>Choice</th>
<th>Proximal outcomes</th>
<th>Distal outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative valence ((x_{p1}))</td>
<td>Positive valence ((x_{p2}))</td>
</tr>
<tr>
<td>Denial</td>
<td>Police disapproval; Extended detainment; More interrogation techniques; Anxiety, guilt, and remorse (if guilty)</td>
<td>Convince police of innocence; End interrogation</td>
</tr>
<tr>
<td>Confession</td>
<td>Discomfort from deception (if innocent)</td>
<td>Police approval; Relief from deception (if guilty); End interrogation</td>
</tr>
</tbody>
</table>
Using Expected Utilities: Illustrative Examples

To facilitate understanding of the expected utility framework, we next present two hypothetical situations to illustrate how suspects evaluate the expected utility of a denial and a confession to decide between these two choices. As noted previously, we have restricted the model’s decision space to two choices: a denial and a confession. Table 2 shows the mathematical expressions corresponding to the parameters involved in Equation 1. With these parameters, the expected utility of each choice can be evaluated.

In Table 2, the sets of outcomes a suspect associates with making a denial, D, and a confession, C, are represented by the vectors D and C, respectively. These vectors include both proximal and distal outcomes of both negative and positive valence, and may be expressed as $D = [D_1, D_2] = [(D_{p1}, D_{d1}), (D_{p2}, D_{d2})]$ and $C = [C_1, C_2] = [(C_{p1}, C_{d1}), (C_{p2}, C_{d2})]$, where $D_{p1}, D_{p2}, C_{p1}, C_{p2}$ represent the negative and positive proximal outcomes associated with denial and confession, and $D_{d1}, D_{d2}, C_{d1}, C_{d2}$ represent the negative and positive distal outcomes associated with denial and confession. Although there may be multiple proximal and distal outcomes which are both positive and negative for both denial and confession, in order to simplify the notations in each cell of Table 2, our examples consider only a single outcome for each of the possible permutations by which an outcome might be categorized. Specifically, denials and confessions are each associated with two proximal outcomes and two distal outcomes, and in each case there is only one positively valenced outcome and one negatively valenced outcome. Therefore, the expected utility of a denial can be expressed as

$$E[u(D)] = [p(D_{p1})u(D_{p1}) + p(D_{p2})u(D_{p2})]$$

and similarly, the expected utility of a confession can be expressed as

$$E[u(C)] = [p(C_{p1})u(C_{p1}) + p(C_{p2})u(C_{p2})]$$

Example 1. The first hypothetical situation to be discussed entails an innocent suspect who is under interrogation. This suspect’s perceptions of the utilities and probabilities of possible outcomes and the discount factor are quantified according to the values shown in Table 3. For the purpose of simplicity, we assume that the proximal and distal outcomes considered by this suspect are the same for a denial and for a confession. The suspect perceives that the negative distal outcome of future conviction (with a utility of $-10,000$) is substantially worse than the negative proximal outcome of being detained for further questioning (with a utility of -100). The suspect also perceives that the positive proximal outcome of escaping from the interrogation and the positive distal outcome of not being convicted in the future are equally desirable (each with a utility of $+100$). The probabilities of these proximal and distal outcomes, however, are different for a denial and a confession. The suspect believes that a denial has a 90% chance of causing continued detention (negative proximal outcome), but a 0% chance of leading to future conviction (negative distal outcome). The suspect also believes that a confession has a 0% chance of causing continued detention (negative proximal outcome) but a 50% chance of leading to future conviction (negative distal outcome). Furthermore, setting the discount factor for the distal outcomes at 0.1 means that this suspect will discount the distal outcomes by 90% when deciding whether to deny or to confess guilt. Inserting these values into Equations 2 and 3 yields the expected utilities of a denial and a confession, respectively, $E[u(D)] = [(−100)(90%) + (100)(10%)]$ and $E[u(C)] = [(−100)(0%) + (100)(100%)]$.

Example 2. Next consider the case of a guilty suspect who is under interrogation. This suspect’s perceptions of the utilities and probabilities of possible outcomes and the discount factor are quantified according to the values shown in Table 4. For simplicity it is assumed that the suspect’s perceptions of the utilities of all possible outcomes and the discount factor are the same as they were for the innocent suspect in the aforementioned example. The probabilities of the proximal outcomes are also identical to those in the previous example, but the probabilities of the distal outcomes are different. Being aware of other evidence collected by police investigators confirming her or his guilt, the guilty suspect believes that future punishment is highly probable even if s/he denies culpability. In particular, this suspect believes that the chance of

Note. 0 corresponds to the discount factor applied to expected utility assessments of distal outcomes.
future conviction is 90% if a denial is made, and is 100% if a confession is made. Given these perceived probabilities, the expected utilities of a denial and a confession are as follows,

\[E[D] = (-100)(0.90) + (100)(0.10) \]
\[E[C] = (-100)(0.00) + (100)(1.00) \]

Because the expected utility of a confession (\(E[C] = 900 \)) is greater than that of a denial (\(E[D] = 979 \)), the model predicts that this suspect will choose to confess at this point during the interrogation.

Summary. The hypothetical situations described above illustrate how the interrogation decision-making model can be used to understand suspects’ decision-making process during an interrogation. Simply put, the model suggests that interrogated suspects make the decision to either deny or confess guilt on the basis of comparing the expected utilities of their choices. In particular, suspects evaluate the expected utility of a choice in terms of the utilities and probabilities of its proximal and distal outcomes, and suspects naturally discount distal outcomes in this process.

Decision-Making in the Interrogation Context

Suspects’ decisions are not made in a vacuum, but rather in the course of dynamic circumstances that entail social influences, learning that occurs within the interrogation, and suspects’ personal characteristics and competencies. Accordingly, the interrogation decision-making model places the suspect’s expected utility evaluations that drive the immediate choice of making a denial or a confession within a larger context, as depicted in Figure 1. Each decision-making cycle begins with a set of prevailing conditions that includes a broad array of factors that have the potential to influence suspects’ decision-making. Pertinent factors pertain to the crime under investigation, the characteristics of the interrogator and the interrogation setting, and the suspect’s own characteristics, the latter of which include traits, experiences, competencies, knowledge, beliefs, expectations, and scripts. These prevailing conditions inform and influence the decision-making process wherein the suspect ultimately compares the expected utility of a denial with that of a confession, as previously detailed. After enacting the choice, the suspect experiences the consequences of that choice. These consequences then affect and contribute to the prevailing conditions at the start of the next decision-making cycle. Thus, the process is generally recursive, with suspects’ decisions having consequences which then affect subsequent decision-making. Figure 1 depicts this cyclical process by the arrow that originates at the postdecision consequences and returns to influence the prevailing conditions at the start of the next decision-making cycle.

Prevailing Conditions: Factors That Influence Suspects’ Decision-Making

Many factors may influence the subjective judgments that suspects make in assessing the expected utilities of a denial and a confession. These factors may be broadly classified according to whether they are primarily associated with characteristics of the crime under investigation, characteristics of the suspect, or characteristics of the interrogation. The interrogation decision-making model provides explanations for the mechanisms that operate in suspects’ interrogation decisions, and can account for the effects of

Table 3

Model Parameter Values for Example of Innocent Suspect’s Subjective Judgments

<table>
<thead>
<tr>
<th>Choice</th>
<th>Proximal outcomes</th>
<th></th>
<th>Distal outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative valence (x_{p-})</td>
<td>Positive valence (x_{p+})</td>
<td></td>
</tr>
<tr>
<td>Denial</td>
<td>-100, 90%</td>
<td>+100, 10%</td>
<td>0.1</td>
</tr>
<tr>
<td>Confession</td>
<td>-100, 0%</td>
<td>+100, 100%</td>
<td></td>
</tr>
</tbody>
</table>

Note. Each cell’s contents include the perceived utility and probability of an outcome. \(\theta\) corresponds to the discount factor applied to expected utility assessments of distal outcomes.

Table 4

Model Parameter Values for Example of Guilty Suspect’s Subjective Judgments

<table>
<thead>
<tr>
<th>Choice</th>
<th>Proximal outcomes</th>
<th></th>
<th>Distal outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative valence (x_{p-})</td>
<td>Positive valence (x_{p+})</td>
<td></td>
</tr>
<tr>
<td>Denial</td>
<td>-100, 90%</td>
<td>+100, 10%</td>
<td>0.1</td>
</tr>
<tr>
<td>Confession</td>
<td>-100, 0%</td>
<td>+100, 100%</td>
<td></td>
</tr>
</tbody>
</table>

Note. Each cell’s contents include the perceived utility and probability of an outcome. \(\theta\) corresponds to the discount factor applied to expected utility assessments of distal outcomes.

a Confession is chosen because expected utility of confession, \(E[u(C)]\), is greater than the expected utility of denial, \(E[u(D)]\).
these various factors on suspects’ choices to deny or confess guilt. In this section, we discuss the application of the model to explain major research findings relevant to confessions, focusing in turn on those pertaining to the crime, the suspect, and the interrogation. The examples discussed illustrate how the interrogation decision-making model may be applied to understand any particular effect, or to generate hypotheses regarding causal mechanisms. The set of examples discussed is not in any way intended to be exhaustive.

Crime factors. The proposal that crime-relevant facts should affect suspects’ decision-making is straightforward. Naturally, confessions to more serious crimes are discouraged because conviction entails more serious punishment, which is represented by a more negative utility of the distal outcomes associated with confession, \(u(C_{\text{conv}}) \). As an example, suspects accused of murder will be less likely to confess because they anticipate lengthy incarceration or execution, whereas those accused of larceny will be more likely to confess because they anticipate only probation. An additional crime factor that can influence decision-making is the state of the evidence. Guilty suspects who believe that objective evidence exists indicating their guilt will view conviction as highly probable for both a denial and a confession, suggesting that the probabilities of negative distal outcomes for both denial and confession are close to 100%, or \(p(D_{\text{conv}}) \approx 1 \) and \(p(C_{\text{conv}}) \approx 1 \). By contrast, guilty suspects who believe that no other evidence exists that will indicate their guilt should judge the likelihood of conviction as highly probable for both a denial and a confession, suggesting that the probabilities of negative distal outcomes for both denial and confession are close to 100%, or \(p(D_{\text{conv}}) \approx 1 \) and \(p(C_{\text{conv}}) \approx 1 \).
Suspect factors. Suspects’ decision-making processes can also be influenced by a variety of personal characteristics, such as personality traits, intelligence level, preexisting beliefs and expectations, knowledge of the legal system, factual innocence or guilt, and so forth. In particular, the rate of confessions is higher among juveniles than adults (Redlich & Drizin, 2007), higher among those with cognitive disabilities than those without (Cloud, Shepherd, Barkoff, & Shur, 2002; Meyer & Reppucci, 2007), higher among first-time offenders than recidivists (Gudjonsson, Sigurdsson, & Einarsdóttir, 2004; Pearse, Gudjonsson, Clare, & Rutter, 1998), and higher among the guilty than the innocent (Leo, Costanzo, & Shaked-Schroer, 2009). The interrogation decision-making model is useful for examining how such individual differences can affect suspects’ subjective judgments pertaining to the model parameters and thereby influence decision-making, as detailed next.

Juvenile and cognitively disabled. Both juvenile and cognitively disabled suspects tend to be impulsive and short-sighted in their confession decisions (Owen-Kostelik, Reppucci, & Meyer, 2006; Redlich, 2007). For adolescents, the immaturity in brain development, especially the frontal cortex, leads to impulsivity and lack of self-control in performing cognitive tasks, including making decisions (Cauffman & Steinberg, 2000). For suspects with a cognitive disability, low intelligence may limit their executive functions, reducing their ability to fully appreciate the future implications of their decisions in the present (Kassin & Gudjonsson, 2004). These characteristics may lead youth and the cognitively disabled to more strongly discount the future, thereby increasing their risk of confessing during an interrogation.

The interrogation decision-making model can account for this preexisting vulnerability through the discount factor, \(\theta \), included in Equation 1. As the discount factor, \(\theta \), gets smaller, the tendency to discount the future increases, and distal outcomes have less influence on suspects’ decisions. This means that suspects with a smaller discount factor are more strongly influenced by proximal outcomes than suspects with a higher discount factor. Consequently, juvenile and cognitively disabled suspects are likely characterized by smaller discount factors. This will incline them toward confession, thus contributing to the higher rates of both true and false confessions among these groups.

Recidivists versus first-time offenders. Suspects’ knowledge about the legal system plays a significant role in their evaluation of distal outcomes. In particular, a suspects’ familiarity with the legal system should have a direct effect on their decision-making, insomuch as they will more correctly assess the probabilities and utilities of various outcomes, including the relatively distal legal consequences associated with confession (Gudjonsson, 2003). Because this knowledge represents an advantage, recidivists may be more cognizant of the deterministic power of a confession than are suspects who have little knowledge of the legal system. Thus, whereas recidivists may perceive a confession as greatly increasing the probability of conviction, first-time offenders may perceive a confession as having relatively less effect on the probability of conviction. In terms of the model, parameter \(p(C_{p+}) \) would be greater for recidivists than first-time offenders. Furthermore, recidivists may be more likely to realize the severity of potential legal sanctions than first-time offenders, and accordingly assess these outcomes to have less utility. In terms of the model, this expectation would correspond to parameter \(u(C_{p+}) \) being more negative for recidivists than first-time offenders. These experience-based differences in judgment would ultimately be expected to lead recidivists to resist confession more strongly than first-time offenders.

An additional point that is important to emphasize is that suspects’ general knowledge of and experience with the legal system might even be expected to change their decision space. For example, suspects who are knowledgeable about their legal rights may invoke Miranda before being subjected to an interrogation, or consider invoking their right to silence and counsel during the interrogation itself. In other words, suspects’ knowledge about their legal rights can widen their decision space to include choices other than simply a denial and a confession.

Innocent versus guilty status. A critical attribute that plays an important role in suspects’ assessments of the expected utilities of denials and confessions is factual innocence versus factual guilt. Innocent versus guilty status is linked to differences in the conviction rate, with guilty suspects being more likely to confess than innocent suspects (Guyll et al., 2013; Leo et al., 2009; Russano, Meissner, Narchet, & Kassin, 2005). However, it is also the case that innocent suspects sometimes falsely confess (http://www.innocenceproject.org), an outwardly perplexing choice. We next consider how application of the interrogation decision-making model promotes comprehension of suspect’s thought processes with respect to these findings.

The greater propensity for guilty than innocent suspects to confess may result from the operation of several decision-making processes. For instance, consider the perceived proximal outcomes associated with a denial. Compared with innocent suspects, guilty suspects who consider denying guilt may anticipate experiencing anxiety and stress, as well as guilt and remorse (Gudjonsson, 2003). Thus, the utility of the negative proximal outcomes associated with a denial, \(u(D_{p-}) \), may be greater in magnitude for guilty suspects than innocent suspects. It is also likely that innocent and guilty suspects would differ with regard to their evaluations of confession outcomes. Whereas guilty suspects may anticipate a catharsis after admitting guilt, innocent suspects may expect to experience strong negative emotions after confessing as a result of betraying their innocence and integrity. Accordingly, the utility of the proximal outcomes associated with confession may be positive for guilty suspects, \(u(C_{p+}) \), and negative for innocent suspects, \(u(C_{p-}) \). In addition, guilty suspects may expect their guilt to be revealed by inculpatory evidence acquired outside of the interrogation. As a result, guilty suspects may perceive denials as being associated with a greater probability of the negative distal outcome of conviction, \(p(D_{p-}) \), as compared with innocent suspects, thereby encouraging the guilty to confess by lessening the expected utility of a denial. Thus, a number of effects may operate in concert to more strongly encourage confessions among guilty suspects than innocent suspects.

Although guilty suspects are generally more likely to confess than innocent suspects, innocent suspects do characteristically experience a frame of mind that can increase their susceptibility to providing a false confession. Referred to as the phenomenology of innocence, innocent suspects tend to believe that their innocence will be apparent to others and that it will be sufficient to protect them from conviction and punishment even if they provide a confession (Kassin, 2005). As a result of this mindset, innocent suspects may underestimate the probability of the negative distal
outcomes associated with confession, \(p(C_{d-}) \). Such an effect is evident in the reports of innocent individuals who have confessed. For example, consider the case of Jeffrey Deskovic. Deskovic falsely confessed to raping and murdering a high school classmate on the basis of the naïve belief that the DNA evidence obtained at the crime scene would prove his innocence. “I thought it was all going to be O.K. in the end,” he said, not realizing that the jury would be more persuaded by his confession than by the biological evidence (Santos, 2006). Deskovic’s reasoning illustrates how evidence (Santos, 2006). Deskovic’s reasoning illustrates how innocent suspects may perceive future punishment following their confessions as particularly improbable—a misperception that may increase innocent suspects’ willingness to confess (Kassin, 2005, 2012).

Interrogation factors

A third category of factors that can influence suspects’ subjective judgments relates to characteristics of the interrogation itself, including the physical and social environment, interpersonal influence tactics applied, and the interrogator. Interrogation techniques are particularly relevant because they can alter suspects’ decision-making by manipulating their perceptions of the probabilities and utilities of the outcomes associated with denials and confessions. By applying the model, it is possible to analyze how specific interrogation tactics can impact the parameters that affect expected utility assessments, thereby understanding how they influence suspects’ decisions to deny or to confess. The influence of interrogation tactics further implies the importance of the interrogator. Indeed, it is the interrogator who chooses and implements the tactics, and whose characteristics may also affect the suspect’s subjective evaluations. The following sections consider how the interrogation setting, tactics employed, and interrogator characteristics could influence suspects’ choices from the perspective of the interrogation decision-making model.

The interrogation environment

Interrogation manuals offer specific suggestions as to how the interrogation environment should be arranged. Suggesting that feelings of privacy encourage truthfulness, it is recommended that suspects be held in isolation in a small room with spartan accommodations (Inbau, Reid, Buckley, & Jayne, 2011). However, being separated from others will make suspects more vulnerable to interrogation-related social influence tactics, and reduce the chance that the suspect will widen their decision space beyond denial and confession to include the choice of invoking their constitutional right to silence and counsel. Furthermore, the custodial interrogation is a foreign experience that fosters feelings of powerlessness and strangeness that are inherently distressing (Leo, 2008), factors that decrease the utility of proximal outcomes of denial, \(u(D_{p-}) \), because it prolongs the unpleasant circumstances, which results in decreasing the expected utility of denial, \(E[u(D)] \). Moreover, it is recommended that the interrogation room contain no materials such as photographs or agency patches that could remind the suspect of future consequences associated with conviction (Inbau et al., 2011), effectively decreasing the subjective probability of negative distal outcomes associated with confession, \(p(C_{d-}) \), increasing the expected utility of a confession, \(E[u(C)] \). Accordingly, the interrogation setting may be structured in such a way as to encourage suspects away from denial and toward confession.

The third degree

Some interrogation techniques manipulate suspects’ perceptions of proximal outcomes following a denial. Colloquially known as “the third degree,” highly aversive and coercive interrogation techniques fall into this category and include isolation, physical abuse, prolonged detainment, torture, physical discomfort, psychological duress, and sleep and food deprivation (Leo, 2008). Denials are consistently followed by the perpetuation of these coercive conditions, thereby affecting suspects’ judgments of the proximal outcomes. In terms of the model’s parameters, the noxious circumstances make the utility of the proximal outcomes associated with denial, \(u(D_{p-}) \), more negative, and their consistency over time increases their perceived likelihood of occurrence, \(p(D_{p-}) \). Together, these effects serve to decrease the expected utility of a denial, \(E[u(D)] \), thereby encouraging a confession.

Maximization

Maximization techniques entail highlighting the seriousness of the offense and emphasizing the strength of the evidence against the suspect and have been shown to affect confession decisions (Horgan, Russano, Meissner, & Evans, 2012). Intimidating suspects, expressing anger, and threatening suspects with severe legal consequences encourages them to expect that a denial will produce negative proximal outcomes associated with social disapproval, and negative distal outcomes associated with a harsh sentence. In terms of the model’s parameters, such tactics translate into the utilities of both proximal and distal outcomes associated with a denial, \(u(D_{p-}) \) and \(u(D_{d-}) \), becoming more negative, reducing the expected utility of denial, \(E[u(D)] \).

Strategies associated with implementing a maximization technique can also manipulate the perceived probability of distal outcomes associated with a denial. For example, interrogators sometimes present suspects with false evidence, such as the results of a rigged forensic test or a staged eyewitness identification (Kassin et al., 2007; Perillo & Kassin, 2011). False evidence causes suspects to perceive that the probability of conviction is high even without a confession, consequently causing the probability of negative distal outcomes associated with a denial, \(p(D_{d-}) \), to increase. Such a change will also serve to decrease the expected utility of a denial, \(E[u(D)] \), making a confession more likely. This prediction is supported by research demonstrating that false evidence increases the likelihood that suspects will falsely confess in both laboratory experiments and actual criminal cases (Firstman & Salpeter, 2008; Kassin & Kiechel, 1996).

Minimization

Minimization. Interrogators will sometimes minimize the gravity of a crime by portraying it to the suspect in a way that makes it seem less serious, such as if it were committed for understandable reasons. Though not explicitly communicated, minimization tactics lead suspects to anticipate leniency to result from a confession (Kassin & McNall, 1991). In terms of the model, the utility of distal outcomes associated with a confession, \(u(C_{d-}) \), becomes less negative. In addition, combining minimization with rapport building and expressions of sympathy, understanding, and approval in response to the suspect providing incriminating statements will serve to increase the utility of positive proximal outcomes of a confession, \(u(C_{p+}) \). Both of the foregoing effects will increase the expected utility of a confession, \(E[u(C)] \), and suspects may come to perceive confession as the better choice, consistent with previous findings (Russano et al., 2005).

Bluff technique

Application of the interrogation decision-making model reveals that the effects of the bluff technique differ depending on whether it is applied to innocent or guilty suspects. It has been proposed that employing the bluff technique should increase confessions among the guilty, but that the innocent should be immune to its effects (Inbau et al., 2011). However, empirical
research has not supported this claim. Although the bluff technique does increase the likelihood that guilty suspects will confess, it has the same effect on innocent suspects (Kassin et al., 2007; Perillo & Kassin, 2011). The interrogation decision-making model offers insight as to why the bluff technique fails to differentiate between the guilty and the innocent. The bluff technique entails leading suspects to believe that there is forensic evidence, such as DNA, that has yet to be evaluated, but which will definitively show whether or not the suspect is guilty. In truth, no such forensic evidence exists. To the extent that guilty suspects are duped by this bluff, they should expect the evidence to confirm their guilt, thereby causing them to believe that conviction will occur regardless of whether they choose to deny or confess guilt during the interrogation. This effect was described in the section above pertaining to the suspect characteristic of innocent versus guilty status. Specifically, guilty suspects, believing that there is strong evidence against them, will perceive that even if they offer only denials, there is still a very high probability of conviction, \(p(D_{y_{-}}) \). Accordingly, the expected utility of denial, \(E[u(D)] \), is decreased and the guilty suspect becomes more likely to confess.

With respect to innocent suspects, the bluff technique operates differently but has the same effect of promoting a confession. Believing the interrogator, innocent suspects will expect the evidence to prove them innocent beyond a doubt, leading them to believe that exoneration is likely no matter what choice they may make during the interrogation (Perillo & Kassin, 2011). Accordingly, innocent suspects, believing that there will be incontrovertible evidence of their innocence, will perceive the probability of conviction, a negative distal outcome associated with confession, \(p(C_{y_{-}}) \), to be close to zero, increasing the expected utility of a confession, \(E[u(C)] \). Thus, the bluff technique serves to make both innocent and guilty suspects more likely to confess, albeit via different means.

Interrogator influences. The foregoing consideration of interrogation tactics further indicates the interrogator’s ability to influence a suspect’s decision-making. One can imagine that an interrogator’s demographic characteristics could affect suspects’ expected utility parameters. For example, similarity between two individuals can serve to increase one’s influence over the other (Cialdini, 2009). Therefore, tactics such as those reviewed above might be more effective when employed by an interrogator who matched the suspect with regard to characteristics such as ethnicity, sex, national origin, native language, or age. It is also conceivable that the interrogator’s dress could influence suspects’ decision-making. Interrogation manuals recommend that the interrogator not be in uniform and not have a weapon or badge to psychologically distance the suspect from thoughts about the consequences for making incriminating statements (Inbau et al., 2011), effectively decreasing the subjective probability of negative distal outcomes associated with confession, \(p(C_{y_{-}}) \). With respect to behavior, interrogators are advised to remain nonjudgmental, and to not use graphic language or photos in relation to the crime (Inbau et al., 2011), thereby decreasing suspects’ feelings of shame or concerns of social disapproval in admitting to criminal acts, corresponding to an increase in the utility of negative proximal outcomes associated with confession, \(u(C_{y_{-}}) \). Internal attributes of the interrogator are also of relevance. For example, a cognitive guilt bias may lead the interrogator to repeatedly refute suspect denials and use multiple interrogation tactics to obtain a confession (Narchet, Meissner, & Russano, 2011), thereby decreasing the suspect’s subjective probability that denials will be believed, \(p(D_{y_{+}}) \). Dispositional features could also shape interrogator behaviors. An authoritarian personality might lead the interrogator to perceive suspect denials as a refusal to comply and disinterest for their position. In turn, the interrogator may respond more negatively in response to denials, perhaps intimidating threats of future consequences if no confession is provided, corresponding to decreased utility for both proximal and distal outcomes associated with denial, \(u(D_{y_{-}}) \) and \(u(D_{y_{+}}) \). Implicit in the foregoing discussion is the recognition that interrogator factors can operate in two ways. Some characteristics such as the interrogator’s demographic traits might be viewed as constant features of the interrogation context and influence the participant in a constant fashion. Other attributes would be more likely to operate dynamically and in response to suspects’ choices, and would be delivered through the interrogators’ behaviors and implementation of interrogation tactics, as represented by the effect of interrogation factors on consequences depicted in Figure 1. The dynamic quality of interrogations is incorporated by the interrogation decision-making model as described in the following section.

Dynamic Nature of Suspects’ Interrogation Decisions

The discussion to this point has primarily focused on how suspects choose to deny or confess guilt at a specific point in time during an interrogation. However, suspects may not make just a single decision during an interrogation. Instead, one can imagine a suspect making a series of decisions—at first denials, and, at last, perhaps, a confession. The interrogation decision-making model accounts for the dynamic nature of suspects’ interrogation decisions by incorporating an iterative process that can yield a chain of successive decisions. The feedback arrow in Figure 1 illustrates how the choices and consequences of one decision-making process can shape the conditions that prevail at the start of the next cycle. As indicated in Figure 1 and detailed above, these factors can then influence the decision-making parameters, including the outcomes under consideration, their corresponding probabilities and utilities, as well as the discount factor. Accordingly, it should be understood that the perceived outcome examples listed in Table 1 and parameter values, such as those in Tables 3 and 4, can change during an interrogation. The dynamic nature of the decision-making process may be represented by generalizing Equation 1 to show that the parameters are actually functions of time, \(t \), as depicted in Equation 4.

\[
E[u(x_t)] = E[u(x_{t+1})] + \theta E[u(x_{t+2})]
\]

\[
= \sum_{i=1}^{n_{y_{d}}} p(x_{i_{d}})u(x_{i_{d}}) + \sum_{i=1}^{n_{y_{-}}} p(x_{i_{-}})u(x_{i_{-}})
\] (4)

The explicit inclusion of time in the interrogation decision-making model is critical for understanding how suspects may change their decisions within an interrogation, such as by the accumulation of interrogation effects over time, as is next discussed.

Cumulative Effects of Interrogation Techniques

Although described as functions of time, it should be apparent that the parameters of the expected utility function are not ex-
expected to vary simply because of the passage of time, but rather because of the events and experiences that transpire during the corresponding interval. For example, in the course of a lengthy and coercive interrogation, suspects will become fatigued, increasing the utility of being permitted to sleep, a positive proximal outcome associated with a confession, \(u(C_{p+}) \). It would also be anticipated that consistent rejections of a suspect’s declarations of innocence will decrease the perceived likelihood that one’s denials will be believed and lead to release, thereby decreasing the perceived probability of a positive proximal consequence of a denial, \(p(D_{p+}) \), and reducing the expected utility of a denial. In addition, protracted questioning may lead suspects to more greatly discount distal outcomes, decreasing the discount factor, \(\theta \), and increasing the influence of proximal outcomes, the latter of which is likely to encourage a confession (Madon et al., 2013). Accordingly, the model views interrogation tactics as consequences of suspect’s choices to deny or confess, which then alter the prevailing conditions at the start of the next decision-making cycle. Thus, the interrogator-controlled consequences have the ability to shape the suspects’ internal state over time, thereby altering the parameters of the expected utility function (i.e., utilities, probabilities, discount factor) and suspects’ evaluations of the choice to deny or confess. The effects of coercive police interrogation techniques can accumulate by progressively reducing the expected utility of a denial while increasing the expected utility of a confession. Accordingly, the likelihood that a suspect will switch from initially making denials to later making a confession will increase over time.

The use of multiple interrogation techniques over the course of an interrogation would also be expected to have cumulative effects on suspects’ decision-making. As previously discussed, various techniques will affect distinct parameters of the expected utility function. Therefore, multiple techniques implemented over time would be expected to more strongly influence suspects’ decisions than any single technique in isolation because their combined effect is greater than that of any one technique by itself, as has been shown by prior research (Russano et al., 2005). According to the model, therefore, the effects of multiple interrogation techniques can accumulate and these effects can—over time—continually move suspects’ from denials to a confession as the expected utility of the formers decreases, and that of the latter increases, as depicted in Figure 2.

It is also worthwhile to point out that the process of moving a suspect from denials to a confession should take longer for innocent suspects than guilty suspects. Because the initial discrepancy between the expected utilities of a denial and a confession should be larger for innocent suspects than guilty suspects, in corresponding fashion it should take longer for innocent suspects to reach the point at which the expected utility of a confession becomes greater than the expected utility of denial. This proposition is consistent with the extraordinary length of time that characterizes interrogations in which innocent suspects have provided documented false confessions. For example, among a sample of proven false confessors, more than 80% were interrogated for more than six hours, and approximately 50% were interrogated for more than 12 hours, with the average interrogation lasting 16.3 hours (Drizin & Leo, 2004). The length of time required to extract these false confessions is extraordinary in comparison to the typical interrogation, which characteristically lasts between 30 min and two hours (Cassell & Hayman, 1996; Kassin et al., 2007; Leo, 1996).

Strengths and Limitations

In the words of Box and Draper (1987), “essentially, all models are wrong.” This sentiment—articulated in a text devoted to the application of modeling—provides perspective for considering several limitations associated with the interrogation decision-making model. First, it has been shown that expected utility may be affected by parameters other than those specified by the model, such as confidence in one’s estimations. That is, a given suspect may be more confident in the estimation of one probability than another, and individuals are biased toward decisions based on known versus ambiguous probabilities (Ellsberg, 1961). It may be argued, however, that the relative improvement offered by adding confidence would be small and not justify the added complexity. Second, the model does not stipulate the exact form of the relationship linking suspects’ subjective judgments of probability and utility to the objective probability and utility values of an outcome. A large amount of research has shown that a simple linear function may not well describe the relationship between subjective judgments and objective values (Kahneman & Tversky, 1979; Tversky & Kahneman, 1986). Third, the model simplifies the expected utility of a choice as being a linear function of all parameters, which may not be accurate. For example, the expected utility may be proportional to the cubic function of the discount factor \(\theta \) (i.e., \(E[u(x)] \propto \theta^3 \)) or the exponential function of \(E[u(x)] \) and \(\theta \) (i.e., \(E[u(x)] \propto E[u(x)]^\theta \)). Although true that the above referenced relationships may be nonlinear, in the absence of empirical guidance it is preferable to model these functions as linear because doing so parsimoniously captures the monotonic relations in simplest form. Fourth, the model roughly categorizes outcomes as being either proximal or distal, and assumes that suspects apply the same discount factor, \(\theta \), to all distal outcomes. However, suspects likely recognize that some distal outcomes will occur in a matter of days, whereas others may not occur until many years in the future. Consequently, the value of the discount factor will vary depending...
corresponding to the more generalized expected utility function

\[E[u(x)] = \sum_{t=0}^{T} \sum_{i=1}^{n_i} \theta(t)p(x_i)u(x_{it}) \]

in which the outcomes can occur at any point in time, and each point in time is associated with a distinct discount factor, the latter of which decreases with time. It should be noted that \(r \) in Equation 5 above and Equation 6 below represents points of time in the future, and differs in meaning from \(r \) in Equation 4 which represents the length of time under interrogation.

We can further generalize the discount factor function, \(\theta(\cdot) \), to not only depend on how far in the future the outcome is expected to occur, but by the outcome to which it is applied. In other words, suspects’ discounting of distal outcomes may be related to both the temporal distance and unique characteristics of each outcome, corresponding to the more generalized expected utility function

\[E[u(x)] = \sum_{t=0}^{T} \sum_{i=1}^{n_i} \theta(t)p(x_i)u(x_{it}) \]

Though Equations 5 and 6 are more generalized and can thus deal with more complicated situations involving uncertain and intertemporal choices, the interrogation decision-making model as represented in Equation 1 is potentially more useful as a heuristic for understanding suspects’ confession decisions by virtue of its comparative simplicity. Moreover, it is not clear that additional complexity would improve accuracy. Specifically, suspects may generally consider all future outcomes together in their decision-making process, even though these outcomes may not happen at the same time in the future, and assigning different discount factors to different distal outcomes makes it difficult to describe suspects’ tendency to discount future outcomes. In addition, interrogation techniques may primarily serve to manipulate suspects’ perceptions of the probability and utility of specific outcomes, and may not directly affect the degree to which suspects discount distal outcomes. Therefore, it may not be necessary to include different discount factors for different outcomes. For the above reasons, it may be sufficient to apply only a single discount factor to all distal outcomes, and thereby achieve a degree of parsimony without degrading the adequacy of the interrogation decision-making model for describing and understanding suspects’ confession decisions.

The simplified form of the interrogation decision-making model presented in Equation 1 offers several directions for future research. Perhaps the most basic work suggested by the model lies in exploring established interrogation effects and determining whether they primarily affect confession decisions via their influence on subjective probabilities or utilities of proximal or distal outcomes, or on the degree to which distal outcomes are discounted. In addition to gaining insight regarding mediation, such work would serve to organize disparate research findings into a larger framework. That is, by virtue of their generality, the parameters of the interrogation decision-making model would facilitate development of a taxonomy of the variety of effects that affect suspects during interrogation. For instance, a group of superficially dissimilar tactics might be alike in that they all serve to decrease the utility of proximal outcomes associated with denials, or decrease the subjective probability of experiencing a negative distal outcome. Relatedly, the model suggests theoretically informed study of the means whereby effects on decision-making could accumulate. Specifically, one might hypothesize that the combined effect of two tactics would be greater if the individual tactics operated on different parameters. Finally, the parameters of the model offer outcome measures for interrogation research. Although provision of a denial versus a confession constitutes a dependent variable with high ecological validity, as a dichotomous outcome used in laboratory studies it can lack sensitivity, reduce statistical power, and demonstrate little variability among the truly guilty (e.g., Guyll et al., 2013). By contrast the assessment of subjective probabilities and utilities of outcomes tied to denial and confession could be more widely responsive to experimental manipulations, and thus more capable of discovering effects that might otherwise go undetected.

Conclusions

In this article, we have presented the interrogation decision-making model as a way to understand suspects’ decision-making process within the context of a custodial interrogation. Incorporating the tenets of subjective expected utility theory, the model proposes that interrogated suspects make decisions regarding whether to deny or confess guilt by comparing the expected utilities of those choices as determined by the utilities and probabilities of the outcomes they associate with each choice. Although suspects are unlikely to think explicitly in terms of maximizing expected utilities, recent experimental research supports the idea that they would do so intuitively, in so much as less probable and more distal outcomes had less effect on admitting to wrongdoing (Madon et al., 2013; Yang et al., 2015). Also supporting the usefulness of expected utility in determining confession decisions is that the model explains a wide range of empirical findings regarding how the crime under investigation, suspect characteristics, situational features, interrogation techniques and interrogator behaviors can influence confession decisions via their effects on the parameters of the expected utility function. Furthermore, the model also incorporates the dynamic character of interrogations by the inclusion of recursive effects that account for temporal variability in suspects’ confession decisions stemming from a variety of causes, such as fatigue, cumulative effects of interrogation techniques, or learning from choice-consequence pairings experienced during the interrogation. The broad and coherent quality of the interrogation decision-making model makes it a useful tool for determining the fundamental psychological processes that underlie any particular effect on suspects’ confession decisions. Moreover, the model offers a means to organize the wide array of observed effects according to a narrow set of parameters, thereby facilitating integration of empirical results and informing the consideration of possible interrogation reforms.

References

Received July 8, 2015
Revision received June 3, 2016
Accepted August 24, 2016