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Foreword by the President of the IAMT and the EAMT

Céad míle fáilte romhaibh!

It’s a pleasure for me to warmly welcome you all to the 17th Machine Translation Summit.
Every two years, the International Association for Machine Translation (IAMT), an umbrella

organization comprising the Asian Association for Machine Translation (AAMT), the Association
for Machine Translation in the Americas (AMTA), and the European Association for Machine
Translation (EAMT), jointly call everyone related in some way or another to machine trans-
lation and translation technologies to the most inclusive MT conference in the world, a real
Summit. It brings together senior and junior researchers, developers, vendors and all kinds of
users, coming from academia, industry, or even as freelancers, to share and become aware of any
new developments in the field.

This is the sixth such summit held in Europe, after having visited Munich (1989), Luxembourg
(1995), Santiago de Compostela (2001), Copenhagen (2007), and Nice (2013).

The organizers have assembled an excellent programme; after two days with a wide offer of
tutorials and workshops, the main conference features four tracks: the research track, the users’
track, a new translators’ track, and the usual projects track, and includes three invited talks,
poster sessions and oral sessions. Everyone will find something going on that interests them
throughout the event.

Every six years, the EAMT organizes the MT Summit in Europe. The EAMT is a growing
association, which organizes a yearly conference, sponsors research, development and community
outreach initiatives, and annually grants a Best Thesis Award. Individuals, institutions and
companies from Europe, Africa and the Middle East can join the EAMT for a modest fee and
benefit from all these activities. In addition to that, EAMT members (as AMTA and AAMT
members) enjoy attractive discounted fees when attending EAMT, AMTA and AAMT confer-
ences. This is possible thanks to our members but especially to my colleagues in the EAMT
Executive Committee —coming from both academia and industry— who work hard to make it
all happen.

The XVII MT Summit would not be possible without the hard work of our local organizers,
headed by my predecessor as EAMT president and current Executive Board member, Andy
Way, who have, with the help of other MT actors from the Adapt Centre and the professional
collaboration of Abbey Conference & Events, put together an excellent conference. I am very
thankful for their hard work and for having put their local MT expertise at the disposal of the
EAMT (and the IAMT).

Bainigí taitneamh as, that is, enjoy. Enjoy the programme, the company, and the city. Ten
years ago, I lived here and worked here for a year and I’ll miss it every day of my life. And I’ll
tell you something: it is especially the local people that makes Dublin —and all of Ireland— one
of the best places in the world to hold a conference like our Summit. I’m sure you’ll bring home
sweet memories of it!

Baile Átha Cliath/Dublin, Lúnasa/August 2019

Mikel L. Forcada
President of the IAMT and the EAMT
Professor of Computer Languages and Systems Universitat d’Alacant
Alacant, Valencian Country, Spain.
Email: mlf@ua.es

mlf@ua.es


Foreword by MT Summit 2019 Conference Chair

Back in 2017, on behalf of the International Association for Machine Translation (IAMT),
the European Association for Machine Translation (EAMT) entrusted me with hosting this
conference that you are currently attending.

While I was grateful for the trust shown in me, as a previous IAMT/EAMT president, I was
acutely aware of the need to deliver; compared to our annual EAMT conferences, MT Summits
provide us with the opportunity to show our Asian and American friends and colleagues that we
can put on an event that all three regional associations and the IAMT can be duly proud of; if
you mess up, Europe has to wait 6 years to try to put it right!

After two years of hard work, I can say with some confidence that we have achieved this.
One of the first things I did was put together a very strong support team. I would really like to
thank our seven co-chairs of the four tracks, namely:

• Research track co-chairs: Barry Haddow & Rico Sennrich (University of Edinburgh, UK)

• User track co-chairs: John Tinsley (Iconic Translation Machines, Ireland) & Dimitar Shte-
rionov (ADAPT Centre, Dublin City University, Ireland)

• Translator track co-chairs: Celia Rico (Universidad Europea de Madrid, Spain) & Federico
Gaspari (ADAPT Centre, Dublin City University, Ireland)

• Projects chair: Mikel L. Forcada (Universitat d’Alacant, Spain)

I am also very grateful to Laura Rossi (Lexis Nexis, The Netherlands) and Antonio Toral
(University of Groningen, The Netherlands) for acting as excellent Tutorials and Workshops
Chairs, respectively. I hope you all benefited from attending these pre-conference events!

For the most part, it is these 9 individuals who have put together the programme assembled
before you. Each of them will comment on their Tracks later in these proceedings, but they all
deserve our heartfelt thanks, as do the panels of reviewers they assembled which helped improve
all our papers. From a personal point of view, I am delighted that we have – for the first but
surely not the last time – included a Translator track; I have advocated for some time now that
it is only through dialogue that MT developers and the translator community can advance our
field. I have been very keen to take up a number of recent opportunities to speak at translator
conferences, so I am especially pleased to welcome translators to this event; thank you for coming!

I am of course grateful to everyone who submitted a paper; whether your work was selected
for presentation or not, if no-one had submitted, we wouldn’t have had a conference. For those of
you whose work was selected for presentation, many thanks for coming to Dublin, and to DCU,
which have been my home and workplace now for 28 years, half my life. All of you would have
interacted via EasyChair, and I am grateful to Carol Scarton, EAMT secretary, for her effort in
setting up the various accounts which enabled the submission and notification processes to run
so smoothly.

When you act as IAMT/EAMT president, or edit the Machine Translation journal, or act as
track chair at major conferences, sometimes you have to be a bit of a pain, because you are often
asking busy people to do things, mostly for free! Having been around the block a few times, I
have lots of contacts in the industry, so I made myself responsible for bringing in sponsorship.
I know they will say I was close to pestering them on many occasions, but I am truly grateful
for the hugely generous support we obtained from our sponsors from the translation and CAT
industry:

• Silver sponsors: Microsoft, and STAR

• Bronze sponsors: Pangeanic, text & form, CrossLang, Flitto, VistaTec



• Other sponsors: Welocalize, Iconic, XTM, Unbabel, DCU, ELRA, Tilde, Springer, Aper-
tium

I am also extremely grateful to Fáilte Ireland for their generous support of this conference,
which helped my ADAPT@DCU colleagues Joss Moorkens and Sharon O’Brien present our bid
in Nagoya in 2017, as well as supporting our excellent invited speakers: Laura Casanellas, Helena
Moniz, and Arianna Bisazza. With many women in our team, it’s extremely important to have
strong female role models, and we could not have asked for better from Laura, Arianna and
Helena; many thanks to all of you for agreeing to share your expertise with us!

We took the decision a while back to try to be as green a conference as possible. You will
already have noticed that, in order to reduce waste, there is no delegate bag. To reduce paper,
we are not producing paper proceedings, and the normal programme booklet has been replaced
by a smaller ‘bradge’ which doubles as a name badge. We are hoping to have a tree-planting
ceremony during the conference in order to reduce the carbon footprint of the Summit. To
reduce transport costs, we are using onsite accommodation at DCU, and will promote the use
of public transport to the off-site events. Thanks to DCU Sustainability Manager Sam Fahy for
her support in these efforts.

While we decided not to produce printed proceedings, they still needed to be put together
in electronic form. I am grateful to Jenny Walsh for producing such an excellent conference
logo, but huge thanks are due to Alberto Poncelas for putting together the proceedings, and for
helping workshop chairs to produce theirs. Alberto has also liaised with Matt Post to ensure
that your papers are indexed in perpetuity on the ACL Anthology!

I have two final people to thank. Firstly, I am very grateful to Grainne McQuaid and her
team in Abbey Conference and Events for their professional support of the conference. You will
have met them at registration, and they are available throughout the event to ensure your needs
are met. We have been engaging with them for 2 years now, and this has been a true partnership
that has made this journey an enjoyable one. Secondly, I am especially grateful to my colleague
Jane Dunne, for managing the planning of the conference, and for managing me too. Jane has
done this over and above her work on a European project, and I could not have chosen a better,
nicer person to engage with over these past two years – thank you Jane on behalf of everyone;
we are all deeply grateful for your huge effort in getting us to where we all are today!

Finally, I really hope that you all enjoy the conference, that you benefit from the excellent
programme that has been assembled, and that you go away from here having made new friends.
I am fortunate indeed that many of my very best friends are in the MT community, and I hope
to meet as many of you as possible during the event.

Andy Way
Chair, MT Summit 2019
Deputy Director ADAPT Centre School of Computing Dublin City University
Dublin, Ireland.
Email: Andy.Way@adaptcentre.ie

Andy.Way@adaptcentre.ie


Foreword by the Research Track Program Chairs

It is with great pleasure that we present the proceedings of the research track at MT Summit
XVII. We solicited full papers that present novel research contributions across all areas of MT,
particularly encouraging submissions that are oriented towards building robust and practical
systems.

We received 57 submissions for the research track. Out of these, 1 was withdrawn before the
notification of acceptance, and 31 were accepted (54%). 4 were withdrawn after the notification
of acceptance, resulting in 27 papers being presented at the MT Summit.

The selected papers span a wide range of topics in machine translation. Major themes include
translation from other modalities than text, especially speech, the analysis of MT models and
automatic translations, and the integration of MT into translation workflows, with studies on
post-editing and constrained/controllable MT.

We would like to thank the members of the Program Committee for their timely reviews.

Barry Haddow and Rico Sennrich
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Online Sentence Segmentation for Simultaneous Interpretation
using Multi-Shifted Recurrent Neural Network

Xiaolin Wang Masao Utiyama Eiichiro Sumita
Advanced Translation Research and Development Promotion Center

National Institute of Information and Communications Technology, Japan
{xiaolin.wang,mutiyama,eiichiro.sumita}@nict.go.jp

Abstract

This paper is devoted to developing a re-
current neural network (RNN) solution for
segmenting the unpunctuated transcripts
generated by automatic speech recognition
for simultaneous interpretation. RNNs are
effective in capturing long-distance depen-
dencies and straightforward for online de-
coding. Thus, they are ideal for the task
compared to the conventionaln-gram lan-
guage model (LM) based approaches and
recent neural machine translation based
approaches. This paper proposes a multi-
shifted RNN to address the trade-off be-
tween accuracy and latency, which is one
of the key characteristics of the task. Ex-
periments show that our proposed method
improves the segmentation accuracy mea-
sured in F1 by 21.1% while maintains ap-
proximately the same latency, and reduces
the BLEU loss to the oracle segmenta-
tion by 28.6%, when compared to a strong
baseline of the RNN LM-based method.
Our online sentence segmentation toolkit
is open-sourced1 to promote the field.

1 Introduction

Simultaneous interpretation (SI) is to translate one
spoken language into another spoken language in
real time. Automated SI typically requires inte-
grating two fundamental natural language process-
ing technologies – automatic speech recognition
(ASR) and machine translation (MT). Both tech-
nologies have become quite capable after half a

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
1https://github.com/arthurxlw/cytonNss

even cats were watching this video cats were
watching other cats watch this video but what ’s
important here is the creativity that it inspired
amongst this techie geeky internet culture there
were remixes someone made an old timey ver-
sion and then it went international there were
remixes someone made an old timey version

Table 1: Illustration of Input for Sentence Segmentation

century’s intensive study, but one problem makes it
difficult for them to work together – the raw tran-
scripts generated by ASR contains no segmenta-
tion (see Table 1 for an example), while MT ex-
pects segmented sentences as input.

Online sentence segmentation smoothly bridges
the gap between ASR and MT through segment-
ing the transcripts generated by ASR engines into
sentences in real time. As a matter of fact, the task
is non-trivial. The example presented in Table 1
is extracted from a TED talk2, which is used in
the experiments of this paper. Readers may find
the raw sequence of words difficult to read. How-
ever, the readability is greatly improved once it is
segmented as follows,

• even cats were watching this video

• cats were watching other cats watch this
video

• but what ’s important here is the creativity
that it inspired amongst this techie geeky in-
ternet culture

• there were remixes

• someone made an old timey version

2https://www.ted.com/

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 1



• and then it went international

• there were remixes someone made an old
timey version

Therefore, sentence segmentation is a meaningful
natural language processing task. Correctly seg-
menting an ASR transcript requires a certain level
of understanding the content.

This paper proposes a multi-shifted RNN to ap-
proach the problem of online sentence segmenta-
tion, which shifts target signals by multiple dura-
tions of time as illustrated by Table 2. This design
emphasizes two central elements of the task – ac-
curacy and latency. Usually, predicting a sentence
boundary immediately after a last input word is not
wise. Instead, waiting and checking a few words to
make sure that a new sentence has started can raise
the accuracy at the cost of latency. Shifting the tar-
get signalsn time stamps right implements the idea
of waiting and checking more words, but the opti-
mal n varies on different textual contexts. There-
fore, the proposed network learns multiple shifted
target signals during training, and maintains multi-
ple pathway of trading latency with accuracy dur-
ing test. Experimental results demonstrate the ef-
fectiveness of our proposed method.

The contributions of this paper include,

• proposing a multi-shifted RNN for online
sentence segmentation;

• achieving competitive performance on a real-
world corpus;

• releasing the source code for reproducibility.

The rest of the paper is organized as fol-
lows. Section 2 reviews a baselinen-gram LM-
based method which serves as a foundation of our
method. Section 3 describes our method from the
aspects of training, decoding and tuning. Sec-
tion 4 presents the experiments. Section 5 com-
pares our method with some related works. Sec-
tion 6 concludes this paper with a description on
future works.

2 Baseline: N -gram LM-based Method

N -gram LMs are used to segment unpunctuated
transcripts by Stolcke et al. (1996; 1998) and Wang
et al. (2016). They view sentence boundaries as
hidden events occurring between the input words,
and usen-gram LMs to compute the likelihood of

the input words with or without sentence bound-
aries. Among them, the work of Wang et al.(2016)
is the most related to this paper, because it ad-
dresses segmenting in an online manner for SI.
Suppose an input sequence of words is· · · , wt−1,
wt, wt+1, · · · . The following two hypotheses are
considered,

• Hypothesis I: there is no sentence boundary
after the wordwt, which assumes that the un-
derlying input remains the same as· · · , wt−1,
wt, wt+1, · · · .

• Hypothesis II: there is a sentence boundary
after the wordwt, which assumes that the
underlying input is· · · , wt−1, wt, 〈/s〉, 〈s〉,
wt+1, · · · .

The segmentation is predicted by comparing the
probabilities of the two sequences as,

st =
P

〈II〉
t

P
〈I〉
t

= p(〈/s〉|wt
t−o+2) ·

p(wt+1|〈s〉)
p(wt+1|wt

t−o−2)

·
t−o+1∏

k=t+2

p(wk|wk−1
t+1 , 〈s〉)

p(wk|wk−1
k−o+1)

(1)

whereo is the order of an-gram LM, andst is the
confidence score of placing a sentence boundary
afterwt. The left hand of the formula has one item
for 〈s〉, wt+1, . . . ,wt+o−1, respectively. Theoret-
ically, theo-1 future wordswt+1, . . . ,wt+o−1 are
required when predicting the segmentation for the
time stampt. Empirically, it is found that 1 or 2
future words is enough for accuracy while having
the merit of low latency.
N -gram LM-based methods are effective. How-

ever, they have two shortages. First,n-gram LMs
cannot capture the long-distance dependencies re-
quired by the task, as the length of a sentence
is typically larger than the order ofn-gram LMs.
Second, they are generative methods as the predic-
tion is made by comparing the generative proba-
bility of two sequences. The accuracy of gener-
ative methods is known to be lower than that of
discriminative methods. In the paper, we explore
using RNN LM (Mikolov et al., 2010) to extend
then-gram LM-based method to address the first
issue. This method turns out to be quite effec-
tive and serves as a strong baseline in this paper,
though it does not address the second issue. Our
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Time Stamp 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
Input i ’d like some tea and cake† that will be a very nice . . .
Target 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .
Shift by 1 0 0 0 0 0 0 0 1 0 0 0 0 0 . . .
Shift by 2 0 0 0 0 0 0 0 0 1 0 0 0 0 . . .
Shift by 3 0 0 0 0 0 0 0 0 0 1 0 0 0 . . .
Shift by 4 0 0 0 0 0 0 0 0 0 0 1 0 0 . . .

Table 2: Illustration of Multi-Shifted Target Signals for Sentence Segmentation. Theinput is a sequence of words. The target
signals are 0’s and 1’s where 1 means a sentence boundary after the current time stamp. The last four rows shift the target
signals by 1 to 4 time units.† Suppose the sentence ends here.

�u����]vP

ZEE�>�Ç���í

ZEE�>�Ç���î

ZEE�>�Ç���ï

Æ�

Kµ��µ��D���]vP

^}(�u�Æ

Ç�

Æ�rí

Ç�rí

y�=í

Ç�=í

Figure 1: Network Architecture of Multi-shifted RNN Sen-
tence Segmentor

proposed method addresses both issues; thus, it
achieves even higher accuracy.

3 Our Method

3.1 Network Architecture

A network architecture inspired by RNN LM is
adopted (illustrated by Figure 1). The network
works in an online manner by taking one wordxt
at each time stampt as input, and outputtingyt for
sentence segmentation.

The outputyt is an (m + 1)-dimensional vec-

tor (y〈1〉t , y
〈2〉
t , . . ., y

〈m〉
t , y

〈m+1〉
t ), wherey〈k〉t (

1 6 k 6 m ) presented the confidence of putting
a sentence boundary after the k-th word before the
time stampt, while y

〈m+1〉
t is imposed by the soft-

max layer to sum up the probabilities to one. To be
precise,

• y
〈1〉
t indicated segmenting afterwt−1 ;

• y
〈2〉
t indicated segmenting afterwt−2 ;

• . . .

• y
〈m〉
t indicated segmenting afterwt−m ;

• y
〈m+1〉
t equals to1− y

〈1〉
t − y

〈2〉
t . . .− y

〈m〉
t .

In contrast to LM-based methods, this design re-
moves the use of a fixed number of future words.
It enables the network to predict a sentence bound-
ary flexibly to time stamps.

3.2 Training

The proposed network is trained on the samples
extracted from neighboring sentences, and the
training target is to match the outputyt with the
oracle segmentation signals. The following two
paragraphs explain these two aspects in details.

3.2.1 Extracting Training Samples

SupposeS = (S1, S2, . . . ) is a sequence of sen-
tences which are taken from continuous text. In
other words,Si+1 is the succeeding sentence ofSi.

SupposeSi = ( wi
1, w

i
2, . . . ,wi

ni
) wherewi

t (1 6
t 6 ni) are theni words in the sentence.

One training sample (Xi , ni) is extracted from
(Si, Si+1) as ( illustrated by Figure 2 ),

xt =

{
wi
t 1 6 t 6 ni

wi+1
t−ni

ni + 1 6 t 6 ni +m
(2)

whereXi = (x1, x2, . . . , xni+m) is a sequence of
input words.

3.2.2 Training Criterion

The desired value ofyt is formulated as,

y
〈k〉
t

.
=





1 16 t6ni, k=m+1
1 ni+16 t6ni+m, k= t−ni

0 otherwise
(3)

Therefore, minimizing the cross entropy be-
tweenyt and the desired value is taken as the train-
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Figure 2: Unrolling a Sample on Multi-shifted RNN Sentence Segmentor. The ASR transcript is “i ’d like some strawberries
how much does it cost” where the first sentence ends after “strawberries”. Note thatyt’s last dimensiony〈4〉

t =1−y
〈1〉
t −y

〈2〉
t −

y
〈3〉
t is omitted for simplicity.

ing criterion,

E(S) = − E
(Xi,ni)

(
ni∑

t=1

log y
〈m+1〉
t

+

ni+m∑

t=ni+1

log y
〈t−ni〉
t

) (4)

Note that the equation 4 treats each dimension of
the outputyt separately. Other sophisticated train-
ing criteria that encourage the cooperation among
different dimensions have been tried, such as

E(S) = − E
(Xi,ni)

(
ni∑

t=1

log y
〈m+1〉
t

+
ni+m
max

t=ni+1
log y

〈t−ni〉
t

) (5)

which requires only one of the output to be1 if
the corresponding position is a sentence bound-
ary. However, decrease of segmentation accu-
racy is observed from this kind of training crite-
ria. We suspect that these criteria introduce de-
pendency among the different dimensions, which
reduces the robustness of the method and eventu-
ally harms the performance. Therefore, the idea
has been avoided.

3.3 Decoding

Decoding on the proposed network is to infer
the position of sentence boundaries from a se-
quence of real-number vectorsyt. The decod-
ing method should be both simple enough to

cause no additional latency, and effective enough
to achieve competitive accuracy. Therefore, the
threshold-latency hybrid decoding strategy pro-
posed by Wang et al. (2016) is extended for the
proposed network (illustrated by Figure 3).

The extended decoding strategy uses an m-
dimensional threshold vectorθ=(θ〈1〉, θ〈2〉, . . .,
θ〈m〉) to deal with the m-dimensional outputyt.
The strategy works as, for each time stampt,

1. if y〈k〉t exceedsθ〈k〉 ( k = m,m − 1, . . . , 1 ),
sett̂ = t− k and go to3;

2. if the buffered input exceed the maximum
length, findargmaxt′,k(y

〈k〉
t′ − θ〈k〉), sett̂ =

t′ − k and go to3;

3. predict a sentence boundary aftert̂, and
restart the decoding from̂t+ 1.

The method of tuningθ is described in Section 3.4.

3.4 Tuning

This subsection first defines an empirical score to
measure the overall performance of online sen-
tence segmentation, which serves as a target for
tuning; then presents an algorithm to search for the
optimal threshold vector to maximize the score.

3.4.1 Performance Measurement

An F1 score calculated on the base of sentences
is adopted to measure the accuracy of sentence
segmentation. According to our observation, SI
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Figure 3: Decoding a Sample on Multi-shifted RNN Sentence Segmentor. Suppose thethreshold vector is(0.40, 0.50, 0.60).
y
〈2〉
7 is the first value that exceeds the corresponding thresholdθ〈2〉. This correctly predicts a sentence boundary after the time

stamp 5. Note thatyt’s last dimensiony〈4〉
t =1−y

〈1〉
t −y

〈2〉
t −y

〈3〉
t is omitted for simplicity.

users often judge the performance based on sen-
tences – how many predicted sentences are cor-
rect and how many oracle sentences are recalled.
TheF1 score summarizes the precision and recall
through calculating the harmonic mean as,

F1 = 2
precision · recall
precision+ recall

. (6)

The latency of sentence segmentation is mea-
sured as the average distance per word between the
time stamp when a word is input to the segmentor,
and the time stamp when this word is output as part
of a sentence. Please see Section 4.2 on calculat-
ing the latency of the oracle segmentation for an
example.

An empirical score is proposed to summarize
accuracy and latency, calculated as

score = F1 − α · latency, (7)

The trade-off existed because a segmentor could
either trade latency for accuracy by waiting for
more input words to re-evaluate a prediction, or
trade accuracy for latency by predicting boldly
without waiting for more evidence brought by in-
put words. The trade-off ratioα is set to 0.01
in this paper according to our observation on SI
users and our test on practical sentence segmen-
tors. Note that this ratio can be changed to fit

practical applications without the need to revise the
proposed method.

3.4.2 Tuning Algorithm

Manually tuning the threshold vectorθ for the
proposed network is unfeasible as it hasm dimen-
sions. Therefore, we propose to use a heuristic
greedy search to maximize the score on a develop
set, presented in Algorithm 1. The algorithm in-
creases the efficiency by,

• prioritizing the threshold vectors whose par-
ent have achieved high scores;

• pruning the search space by the heuristic that
theθ〈k〉 ( k = 1 . . .m ) should be in descend-
ing order.

The intuition for the second point is that a higher
threshold should be given to the value derived from
fewer future words, because the evidence under
that circumstance is weaker.

4 Experiments

4.1 Experimental Setting

The corpora from the shared task in the interna-
tional workshop on spoken language translation
(IWSLT 2015) are used as the experimental cor-
pora (Cettolo et al., 2015)3. The task is to translate
3https://wit3.fbk.eu/mt.php?release=2015-01
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Algorithm 1 Tuning Threshold Vector
Require: θ0 ⊲ a seed threshold vector
Require: D ⊲ a development set
Require: µ ⊲ a search step on threshold
Require: ν ⊲ a margin on score

1: Θ ← [θ0 :0] ⊲ a sorted list of threshold vectors
descending on the scores of their parents

2: s∗ ← −∞ ⊲ the best score
3: θ∗ ← θ0 ⊲ the best threshold vector
4: dict ← {} ⊲ a dictionary of visited threshold

vectors
5: for θ in the beginning ofΘ do
6: removeθ fromΘ
7: if θ′ not indict then
8: dict ← dict ∪ {θ}
9: s ← decodeD usingθ and evaluate

10: if s > s∗ − ν then
11: if s > s∗ then
12: s∗ ← s
13: θ∗ ← θ
14: end if
15: for k in 1 tom do
16: θ′ ← increase/decreaseθ〈k〉 by

µ
17: if θ′〈k−1〉 > θ′〈k〉 > θ′〈k+1〉

and 0.0 6 θ′〈k〉 6 1.0 then
18: Θ ← Θ ∪ [θ′ :s]
19: end if
20: end for
21: end if
22: end if
23: end for

return θ∗

English TED talks into Chinese. Table 3 presents
the statistics of the corpora. The news commen-
tary corpora (Tiedemann, 2012)4 and a subset of
the OpenSubtitles corpora (Lison and Tiedemann,
2016)5 are used to scale up the in-domain training
set in order to achieve higher performance.

The corpora are pre-processed using standard
procedures for MT. The English text is tokenized
using the toolkit released with the Europarl cor-
pus (Koehn, 2005) and converted to lower case.
The Chinese text is tokenized into Chinese char-
acters and English words using the tool ofspli-
tUTF8Characters.pl from the NIST Open Ma-
chine Translation 2008 Evaluation6

4http://opus.nlpl.eu/News-Commentary.php
5http://opus.nlpl.eu/OpenSubtitles2016.php
6ftp://jaguar.ncsl.nist.gov/mt/resources/

Two operations are applied in order to simu-
late the transcripts generated by ASR following
the setting in (Wang et al., 2016) and (Cho et al.,
2017). First, because ASR engines normally do
not produce punctuation, punctuation is removed
from the text. Second, because ASR engines split
output based on long pauses, and each of the output
contains multiple sentences; every 10 neighboring
sentences in the development and test set are con-
catenated to form an input for sentence segmenta-
tion.

Two baselines are used in the experiments. The
first baseline is then-gram LM-based method pro-
posed by Wang et al. (2016). The toolkit of
SRILM (Stolcke, 2002)7 is used to buildn-gram
LMs with Kneser-Ney Smoothing and an order of
6.

The second baseline is an extension of the first
one by replacing then-gram LM with an RNN
LM. The settings of RNN LM follow the large
LSTM setting used by Zaremba et al. (2014)
which consists of two layers of 1500 LSTM
units (Hochreiter and Schmidhuber, 1997), and a
vocabulary size of 10K. A dropout of 0.65 is ap-
plied to the non-recurrent connections.

The proposed neural network adopts three layers
of 512 LSTM units, and an input vocabulary size
of 20K according to our pilot experiments. The
output dimensionm is 6. A dropout of 0.50 is ap-
plied to the non-recurrent connections. Larger net-
works have been tried in our experiments, but no
significant improvement has been observed.

Both the proposed network and RNN LM are
trained using SGD with a start learning rate of 1.0.
The cross-entropy on the development set is mea-
sured after each epoch. When the development
cross-entropy stops decreasing, the learning rate
starts to decay by 0.5 per epoch. The training ter-
minates when no improvement is made during 3
continuous attempts of decaying learning rates.

The numbers of future words for the two base-
line methods are enumerated from 1 to 6, and the
decoding thresholds are tuned by a grid search
from -1.6 to 1.6 with a step of 0.2. The decoding
threshold vector for the proposed method is tuned
by Algorithm 1 with θ0 = (0.9, 0.8, 0.7, 0.6, 0.5,
0.4),µ = 0.1, andν = 0.04 . The maximum sen-
tence length is set to 40 for all the methods, which
covers approximately 95% development and test
sentences.

7http://www.speech.sri.com/projects/srilm/
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Corpus Sentences Src. Tokens Trg. Tokens
IWSLT-Train 209,491 4,270,869 6,050,169
News Commentary 223,153 5,689,117 5,660,789
OpenSubtitle(subset)† 1,000,000 8,682,476 1,047,208
Dev (test2010 test2011) 2,815 55,426 83,317
Test (test2012 test2013) 2,658 52,766 74,822

Table 3: Experimental Corpora.† The subset consists of the first one million sentence pairs.

The software is implemented using C++ and
NVIDIA’s GPU-accelerated libraries. The exper-
iments are run on a workstation equipped with
an Intel Xeon CPU E5-2630 and a GPU Quadro
M4000.

4.2 Evaluation after Training on Standard
Set

The three methods – two baselines and the pro-
posed method – first learn their models on the
source side of the standard training set (Table 3).
Then-gram LM-based method learns a 6-ordered
n-gram LM whose perplexity on the development
set is 148.17. The RNN LM-based method learns
an RNN LM with a development perplexity of
62.93. The proposed method learns a network
model with a development cross entropy of 0.441.
After that, each method tunes its decoding param-
eters on the development set to maximize the score
(the equation 6). In the end, each method decodes
the test set using its learned method and tuned pa-
rameters. The evaluation of the results is presented
in Table 4.

The proposed method outperforms the stronger
baseline of the RNN LM-based method by 18.8%
on the measurement of score, which is quite large.
The improvement is caused by the rise of the mea-
surement of accuracy –F1 – which is improved by
13.5%, and the stableness of the latency which is
only enlarged by 3.4%. This result indicates that
the architecture of the proposed network suits the
task better than that of RNN LM. In addition, the
RNN LM-based method outperforms then-gram
LM-based method by 67.7%. This confirms our
expectation that RNN can model a sentence better
thann-gram as it can capture long-distance depen-
dencies.

The table also presents the latency of the oracle
segmentation which assumes that every sentence is
submitted to MT engines as soon as it ends. Sup-
pose thei-th sentence hasli words, the average la-
tency per word would be

P

i li·(li−1)/2
P

i li
. On the ex-

perimental test set in, the latency of the oracle seg-
mentation is 8.126, and the latency of the proposed
method is 12.386. This approximately means a de-
lay of 4.2 words per sentence, which is acceptable
in a real-world environment.

4.3 Evaluation after Adapting Models
Trained on Scaled-up Set

Luong et al. (2015) and Cho et al. (2016) show that
large-scale out-domain training data and model
adaption can effective improve the quality of NMT
models. They first train models on the union set
of in-domain and out-domain data, and then adapt
the models by resuming training on in-domain data
only. Inspired by their work, we scale up the stan-
dard training set to pursuit better performance for
sentence segmentation (see Table 3 for details) .

Through scaling up training set and model adap-
tation, the development perplexity of the RNN LM
is reduced by 8.06% (from 62.93 to 57.86), and the
development cross entropy of the model learned
by the proposed method decreases by 0.082 (from
0.441 to 0.359).

Then-gram LM is adapted by linear interpreta-
tion. The mixture weight is tuned to minimize the
development perplexity, whose value turns out to
be 0.7. The development perplexity of then-gram
LM is reduced by 8.25% (from 148.16 to 135.93)

Each method again tunes its decoding parame-
ters, and then decodes the test set as described in
Section 4.2. Table 5 summarizes the results, and
compares them with the previous ones on the stan-
dard training set. The performance of all three
methods is found to be improved, while the pro-
posed method achieves the largest improvement.

The detailed comparison between the two re-
sults (the last row in Table 5) shows that all the
individual performance measurements have been
improved. Moreover, the optimal thresholds gen-
erally get lower. This clearly indicates that the
quality of the trained model has been improved,
which is quite impressive. The same effects also
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Methods Parameters Performance
nf thresh. Precision Recall F1 Latency Score

Oracle 1.000 1.000 1.000 8.126 0.9187
n-gram LM 1 -0.6 0.1402 0.2432 0.1779 8.3410 0.0945

2 -0.6 0.1862 0.3087 0.2323 9.6480 0.1358
3 -0.6 0.1928 0.3005 0.2349 11.2520 0.1224
4 -0.6 0.1944 0.2993 0.2357 12.2930 0.1128
5 -0.6 0.1935 0.2959 0.2340 13.2410 0.1016
6 -0.6 0.1927 0.2937 0.2327 14.1570 0.0912

RNN LM 1 -0.8 0.2686 0.3213 0.2926 10.3503 0.1891
2 -0.6 0.3289 0.3683 0.3475 11.9733 0.2277
3 -0.8 0.3255 0.3743 0.3482 12.7531 0.2207
4 -0.8 0.3372 0.3845 0.3593 13.8317 0.2210
5 -0.8 0.3342 0.3822 0.3566 14.8643 0.2080
6 -0.8 0.3256 0.3740 0.3481 15.7449 0.1907

Proposed 1 – 6 (...)‡ 0.3583 0.4387 0.3945 12.3863 0.2706
Improve† 8.9% 19.1% 13.5% -3.4% 18.8%

Table 4: Performance after Training on Standard Set.† Improvement versus the stronger baseline of RNN LM.‡ The optimal
threshold vector is (1.0, 0.8, 0.8, 0.5, 0.5, 0.3).

Methods Parameters Performance
nf thresh. Precision Recall F1 Latency Score

n-gram LM 1 -0.6 0.1349 0.2541 0.1762 7.6290 0.1000
2 -0.4 0.2054 0.3163 0.2490 10.3310 0.1457 (+0.0099)†

3 -0.4 0.2125 0.3148 0.2537 11.6760 0.1369
4 -0.4 0.2129 0.3129 0.2534 12.7040 0.1264
5 -0.4 0.2125 0.3099 0.2521 13.6660 0.1154
6 -0.4 0.2120 0.3080 0.2512 14.5780 0.1054

RNN LM 1 -1.0 0.2574 0.3269 0.2880 9.7292 0.1907
2 -1.0 0.3205 0.3894 0.3516 11.2249 0.2394 (+0.0117)†

3 -0.8 0.3383 0.3856 0.3604 12.8106 0.2323
4 -1.0 0.3315 0.3894 0.3581 13.6455 0.2217
5 -1.0 0.3302 0.3871 0.3564 14.7268 0.2092
6 -1.0 0.3295 0.3845 0.3549 15.7642 0.1972

Proposed 1–6 (...)‡ 0.3959 0.4605 0.4257 12.1118 0.3046 (+0.0340)†

Imp. vs. RNN LM 23.5% 18.3% 21.1% -7.9% 27.2%
Imp. vs. standard† 10.5% 5.0 % 7.9% 2.2% 12.6%

Table 5: Segmentation Performance after Adapting the Models Trained on Scaled-up Set.† Compared to the best score of each
method on the standard training set.‡ The optimal threshold vector is (0.9, 0.8, 0.5, 0.5, 0.5, 0.4)

happen on the RNN LM-based method. Therefore,
adapting neural network models through resuming
training is a very effective technique.

4.4 Evaluation of End-to-end Translation
Quality

The best segmentations of each method, which are
listed in Table 5 in bold font, are post-processed to
recover case and punctuation, and then piped into

an English-to-Chinese NMT engine. The post-
processing is conducted by a monotone phrase-
based statistical MT system, which is trained to
translate lower-cased unpunctuated sentences to
cased punctuated sentences. Moses toolkit (Koehn
et al., 2007) is used. The NMT engine is an im-
plementation of attention-based encoder-decoder
proposed by Bahdanau et al. (2014) and Luong et
al. (2015), and the model is trained and tuned on an
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Methods BLEU Loss†

Oracle 19.73
n-gram LM 18.98 0.75
RNN LM 19.38 0.35
Proposed 19.48 0.25 (-28.6%)‡

Table 6: Evaluation of End-to-end Translation Quality.†

Compared to the BLEU of the oracle sentence segmentation.
‡ Compared to the stronger baseline of RNN LM.

in-house parallel corpus of approximately 21 mil-
lion sentence pairs from various domains.

The translations are evaluated following the of-
ficial guidelines of IWSLT 2015. The translations
are aligned to reference sentences through edit dis-
tance (Matusov et al., 2005). BLEU is calculated
on cased tokens including Chinese characters and
English words. Table 6 presents the results.

The results show that the proposed method
achieves the highest BLEU, which is lower than
that of the oracle segmentation only by 0.25. The
improvement compared to the stronger baseline of
the RNN LM-based method is 0.10 BLEU point,
or 28.6% calculated by 0.10 / 0.35.

5 Related Works

Segmenting the unpunctuated transcripts gener-
ated by ASR have attracted attentions from many
researchers. A large variety of methods have been
proposed.

Conditional random fields (CRFs) are used to
approach the problem. Hassan et al. (2014) did a
thorough treatment of this problem in 2014. How-
ever, CRFs have been outperformed by neural net-
works recently.

MT systems are used to approach the problem
by Cho et al.(2015), Ha et al. (2015), Kzai et
al. (2015), Cho et al. (2017), Pham et al. (2016),
Klejch et al. (2016; 2017) and Przybysz et
al. (2016). This approach builds MT systems to
translate unpunctuated text into punctuated text
which contains full stop marks as sentence bound-
aries. The drawback of this approach is that MT
systems normally expect complete sequences as
input, which prevents them from working in an on-
line manner. Cho et al. (2015; 2017) address the
issue using sliding windows. A fixed-length sub-
sequence of words are extracted from the stream of
words, and then feed into MT systems. The short-
age of this method is that the dependencies outside
the sliding windows are ignored, which will de-

crease the accuracy. In contrast, our RNN-based
method performs incremental decoding from the
beginning of sentences, so it can capture all the de-
pendencies within a whole sentence.

Pauses, or precisely the duration of silence be-
tween two spoken words, which can be captured by
ASR engines, are used to predict sentence bound-
aries by F̈ugen et al. (2007) and Bangalore et
al. (2012). However, studies on human interpreters
reveal that segmenting merely by pauses is insuf-
ficient, as human speakers might not pause be-
tween sentences. The mean proportion of silence-
based chunking by interpreters is 6.6% when the
source is English, 10% when it is French, and
17.1% when it is German (Venuti, 2012). There-
fore, this paper focuses on using linguistic infor-
mation. Nevertheless, pauses can be directly inte-
grated into our proposed method to boost perfor-
mance.

There are several segmentation methods that
target at splitting an input sentence into smaller
pieces for simultaneous interpretation, such as
Yarmohammadi et al. (2013), Oda et al. (2014),
and Fujita et al. (2013). However, these meth-
ods often assume that ASR transcripts have already
been segmented into sentences, which is the task
addressed by this paper. Therefore, our method is
orthogonal to these methods, and it is possible to
pipeline our proposed method with them.

6 Conclusion

In this paper, a multi-shifted RNN is proposed to
solve the problem of segmenting the unpunctuated
ASR transcripts for SI. The multi-shifted RNN ad-
dresses the trade-off between accuracy and latency
which are the two central elements of the problem.
The experiments show that the proposed method
greatly outperforms ann-gram LM-based method
and an RNN LM-based method on accuracy, la-
tency and end-to-end BLEU, under both a standard
training set and a scaled-up training set.
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Abstract

The goal of cross-lingual information re-
trieval (CLIR) is to find relevant docu-
ments written in languages different from
that of the query. Robustness to transla-
tion errors is one of the main challenges for
CLIR, especially in low-resource settings
where there is limited training data for
building machine translation (MT) systems
or bilingual dictionaries. If the test col-
lection contains speech documents, addi-
tional errors from automatic speech recog-
nition (ASR) makes translation even more
difficult. We propose a robust document
representation that combines N-best trans-
lations and a novel bag-of-phrases out-
put from various ASR/MT systems. We
perform a comprehensive empirical analy-
sis on three challenging collections; they
consist of Somali, Swahili, and Tagalog
speech/text documents to be retrieved by
English queries. By comparing various
ASR/MT systems with different error pro-
files, our results demonstrate that a richer
document representation can consistently
overcome issues in low translation accu-
racy for CLIR in low-resource settings.

1 Introduction

Cross-lingual Information Retrieval (CLIR) is a
search task where the user’s query is written in a
language different from that of the documents in
the collection. There are some important niche
applications, for example, a local news reporter

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

searching foreign-language news-feeds to obtain
different perspectives for her story, or a patent
writer exploring the patents in another country to
understand prior art before submitting her applica-
tion, or an aid worker monitoring the social media
of a disaster-affected area, looking for unmet needs
and new emergencies. In all these scenarios, CLIR
increases the user base by enabling users who are
not proficient in the foreign language to produc-
tively participate as knowledge workers. Even if
the user requires manual translations of the re-
trieved documents to complete her task, CLIR can
at least provide a triage/filtering step.

CLIR performance depends critically on the ac-
curacy of its underlying machine translation or
bilingual dictionary component. Recent advances
in MT suggest that it is now ever more possi-
ble to build CLIR for practical use. In particu-
lar, the availability of large amounts of parallel
text in some language-pairs (e.g. English sen-
tences and their aligned German translations from
European Parliamentary proceedings) had led to
dramatic improvements in MT quality. How-
ever, there are many language-pairs–what we term
”low-resource” settings–where parallel text is lim-
ited and the challenge is to make CLIR robust to
translation errors. Missing words in translation
may lead to degradation in recall, while extrane-
ous words may lead to degradation in precision.

In this work, we focus on the document trans-
lation approach to CLIR, where all foreign doc-
uments in the collection are translated into the
language of the user query prior to indexing and
search. While the use of N-best translations in
CLIR is not a new idea, the contribution of the pa-
per is a comprehensive analysis of how different
kinds of document representations perform under
low-resource settings. We compare whether in-
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dexing the N-best translations from MT leads to
better CLIR than indexing only the 1-best (most-
likely) translation. We also propose a novel bag-
of-phrases document representation and show that
it can be effectively combined with the N-best doc-
ument representations. The idea behind the bag-
of-phrases translation is the fact that less strict syn-
tax is required in a CLIR system, which is of-
ten based on keyword search. The bag-of-phrases
method relaxes the strict language grammar in the
target language when producing translations, and
instead, emphasizes the selection of translation
words.

We perform comprehensive experiments on
three low-resource test collections from the
IARPA MATERIAL project (OpenCLIR Evalua-
tion, 2018), where the documents are in Somali,
Swahili, and Tagalog and the queries are in En-
glish. The inclusion of speech documents (au-
dio files) in this collection means that automatic
speech recognition (ASR) has to be run before
MT, leading to further challenges in translation
accuracy. Our results demonstrate that a rich
document representation containing many transla-
tion hypotheses consistently improves CLIR per-
formance in these low-resource settings.

2 Related Work

The key component in CLIR is translation, to
resolve language gap between documents and
queries. An appropriate approach is query trans-
lation (Oard et al., 2008), where the query is trans-
lated into the desired language based on a dictio-
nary (Pirkola et al., 2001), or parallel corpora (Du-
mais et al., 1996). Query translation often suf-
fers from translation ambiguity due to the limited
amount of context in short queries. Another ap-
proach is document translation (Croft et al., 1991),
which can produce more precise translation due to
having more context. Several studies have com-
pared the query translation and document transla-
tion approaches (Nie, 2010; Dwivedi and Chandra,
2016).

In recent years, deep neural networks have
shown significant results on NLP tasks such as
machine translation (Bahdanau et al., 2014), how-
ever, applying such models to information re-
trieval tasks has had relatively less positive results
(Craswell et al., 2016). The reason is that, first, IR
tasks are fundamentally different from NLP tasks,
and second, the application of neural networks to

IR problems has been under-explored. Recently
some work on CLIR adopt word embedding ap-
proaches to use unlabeled text to learn the repre-
sentations in unsupervised manner, and use them
for document search (Vulić and Moens, 2015;
Litschko et al., 2018; Josifoski et al., 2019). Such
methods allow to learn representations from com-
parable data or independent monolingual data and
alleviate the need for full-fledged machine trans-
lation. However, these methods are mostly useful
when operating at Web scale, such as searching in
Wikipedia articles, is considered. In this study, we
focus on searching on a limited set of given docu-
ments in foreign low-resource language.

3 Task

The goal of the task we focus on this paper is to
develop ASR, MT, and IR methods to most ef-
ficiently respond to queries against multilingual
speech and text data in low-resource languages.
The system will take English queries as input, and
returns retrieved documents relevant to the queries
as output. To resolve language differences in doc-
uments and queries, we focus on the document
translation approach: all source documents in the
foreign low-resource language are translated into
English before search. Since some of the source
documents are speech documents (audio files), we
first run our ASR system on those to convert them
to text before translation.

For each input query, the translated speech and
text documents are searched via standard mono-
lingual information retrieval approaches (e.g.,
BM25), which match words between query and
document. Translation errors will naturally make
this retrieval step more difficult. The retrieved doc-
uments are sorted according to their match scores,
and we evaluate performance by comparing with
the true (human-labeled) relevance ranking using
standard metrics like Mean Averaged Precision
(MAP).

4 Methods

4.1 Index and Search

Our CLIR engine is based on the document trans-
lation approach, where all foreign documents are
translated beforehand and the English is what is
indexed. We use a pre-existing search engine im-
plementation Elasticsearch 1 to index, search, and

1https://www.elastic.co/products/elasticsearch
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Figure 1: N-best+Bag-of-Phrases document representations for CLIR.

rank our translated documents. We use a standard
built-in English analyzer to pre-process the docu-
ment and query text. The analyzer conducts tok-
enization, word stemming, and stop word removal.
We parse input query strings and convert them into
Elasticsearch executable JSON format, then use
those to retrieve search results from the Elastic-
search engine. We use Okapi BM25 (Robertson et
al., 2009) algorithm to score the documents. BM25
is a popular algorithm to rank documents based on
the relevance to a given query. We tuned the BM25
hyper parameters (for term frequency normaliza-
tion and document length normalization), for each
language to get the best CLIR performance. Fi-
nally the document ranking scores for each query
are passed to the evaluation. CLIR performance is
evaluated using the standard Mean Average Preci-
sion (MAP) measure.

4.2 Document Representations

To increase recall of documents and prevent error
propagation from potential ASR or MT errors, we
added multiple hypotheses capability to our CLIR
pipeline. We implemented three types of pipelines,
N-best decoding, bag-of-phrases, and combination
of the two representations.
N-best decoding For speech documents, first,
ASR generates N-best list for each input segment.
Then MT decodes each of the ASR segment tran-
scripts, generating M-best translations. The result

is an N×M list, which is indexed into the IR sys-
tem with equal weighting. We explored two varia-
tions of N-best decoding, first where the full N×M
matrix is included in the document to be indexed.
The second variation is where we sub-sample the
full N×M matrix to its diagonal elements, that is
the best translation of the best ASR output, the sec-
ond best translation of the second best ASR output,
and so on and so forth. We did not notice gains
in the CLIR performance from including the full
matrix in the document as opposed to including
only its diagonals. This shows that the redundancy
of hypotheses in the full matrix is not necessary
for CLIR. For simplicity, we only present results
where N=M. For text documents, MT generates N-
best translations of each sentence.

Bag-of-Phrases For speech documents, first, ASR
generates N-best list for each input segment. Then
we use the phrase-based MT system to generate
all possible phrases whose source side matches the
ASR transcripts. In other words, we output all the
translation options but do not perform a full decod-
ing search with language models. For each input
segment, all of the output phrases are concatenated
together to form the bag-of-phrases for that seg-
ment. For N > 1, bag-of-phrases of all of N-best
lists are considered. These bag-of-phrases are then
indexed into the IR system. The same procedure is
applied to each sentence in text documents.

Combination of N-best decoding and Bag-of-
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Figure 2: Bag-of-phrases (BoP) representation of the Swahili
sentence “Imeandikwa na Mwandishi Wetu”. The phrases in
the boxes are all possible phrases that can be extracted from
the phrase-based decoder.

Phrases Our IR system allows multiple “views”
of the same document. We can index on both
N-best decoding and bag-of-phrases (BoP). The
search function will score documents based on
how well the query matches either of the views.
As shown in Figure 1, foreign text documents are
run through a text MT system to produce N-best
and BoP outputs. Foreign speech documents are
first run through the ASR system to be transcribed
to N-best hypotheses. The hypotheses are then
run through the speech MT system, which is the
same as the text MT system but adapted to inter-
face better with ASR, to produce N-best and BoP
outputs. Finally, N-best and BoP outputs from for-
eign speech and text documents are indexed and
searched in response to English queries and rele-
vant documents are retrieved.

By indexing and searching both N-best and BoP
representations we not only consider the most ac-
curate translations achieved via N-best but also
take advantage of additional lexical variety pro-
vided by BoP. Figure 2 shows all possible phrases
from the phrase-based MT decoder for the ex-
ample input sentence ”Imeandikwa na Mwandishi
Wetu” in Swahili. These phrases, form the BoP
representation of that sentence, and as can be seen,
a variety of translations for different input spans

are produced (e.g., the translations “author”, “re-
porter”, “writer”, and “Journalist” for the Swahili
word “Mwandishi”). The N-best (N=5) transla-
tions of the sentence are all the same sentence “it
has been written by our writer” with different prob-
abilities. Although the N-best output is a descent
translation of the input in this example, it does not
have as much word diversity as we could get from
the BoP translation, thus hurting the retrieval of
documents relevant to the query. For example, the
word “Journalist” that is present in the BoP rep-
resentation does not appear in the top 100 transla-
tions of the N-best representation. Thus, if a query
includes that specific word, the chance of retriev-
ing the document decreases if only the N-best rep-
resentation is searched.

5 Data

5.1 CLIR Data

Given a query the system should detect which doc-
uments out of a set of documents are responsive to
the query. Queries are English word strings that
may contain words from any part of speech. There
are different types of queries such as a lexical
query consisting of a single word (e.g., “ocean”), a
lexical query consisting of a multiple words (e.g.,
“bicycle race”), or conceptual queries that are sub-
ject to semantic expansion (e.g., “expiration+”).
The set of documents includes speech and text doc-
uments from different genres. Table 1 shows the
number of queries and documents we used for test-
ing our CLIR system. Number of text documents
is almost as twice as number of speech documents
in each language.

5.2 ASR and MT Data

To train our ASR systems, we used ”train” and
”tune” data, which are transcribed conversational
audio, as training and development sets. In addi-
tion, we used a large amount of untranscribed au-
dio, the ”unlabaled” set, for semi-supervised train-
ing of the acoustic model, as described in Section
6.1.

# queries
(English)

# documents (Foreign)
speech text total

Somali 442 279 559 838
Swahili 547 266 547 813
Tagalog 537 315 529 844

Table 1: CLIR test collection statistics.
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ASR Length (hours)
train ∼40
tune ∼10
unlabeled ∼250
test ∼20

MT
train (# Eng tokens) test

(#sent)baseline crawled
Somali 800k 1.7M 9.5k
Swahili 808k 5.2M 11.7k
Tagalog 759k 12.3M 11.4k

Table 2: ASR and MT data statistics.

We used parallel corpora (bitext) of around 800k
English words to train our MT systems for trans-
lating from Somali, Swahili, or Tagalog to English.
This data is provided in the BUILD package of
the MATERIAL project and contains news, top-
ical, and blog texts with provided source URLs.
In addition, we harvested and filtered bitext from
Web to augment this baseline bitext. We made this
data publicly available2. It is important to filter
web bitext to reduce noise. We filtered the web
bitext using Zipporah (Xu and Koehn, 2017) and
chose filter thresholds optimized on tune sets. The
crawled data improved the MT system by 1 point
BLEU or more for these languages. We also added
monolingual WMT news and LDC Gigaword data,
which include 8.2 billion English tokens in total to
train the language models of our MT systems.

The IR system indexes and searches ”test” doc-
uments that are either speech or text. There are
around 20 hours of test speech data and 10k for-
eign sentences of test text data for each language.
We have the reference transcripts and translations
of ”test”, hence, we can measure the performance
of our ASR and MT systems on the test set in terms
of WER and BLEU scores, and also investigate
how ASR/MT systems with different WER/BLEU
scores impact CLIR. Table 2 shows the statistics of
the ASR and MT data. For information about the
number of test speech and text documents in each
language see Table 1.

6 Experimental Setup

6.1 ASR system

Our ASR system follows normal pattern for Kaldi-
based (Povey et al., 2011) system build. Our recipe
is publicly available at GitHub3.
Acoustic and language model. We use GMM
training to create alignments and lattice-free MMI-
trained neural network (Povey et al., 2016) with
factorized TDNN (Povey et al., 2018). We gen-
2http://www.paracrawl.eu/
3https://github.com/kaldi-asr/kaldi/tree/
master/egs/material

erate lattices with n-gram ARPA-style language
model and re-score them with an n-best RNN lan-
guage model (Xu et al., 2018a; Xu et al., 2018b).
Source-side bitext and crawled monolingual data
are used in building the n-gram LM, RNNLM re-
scoring, as well as extending the baseline lexicon.

In addition to supervised training, we ran semi-
supervised training of acoustic models using the
extension of lattice-free MMI to semi-supervised
scenarios (Manohar et al., 2018). We added un-
labeled audio to the labeled audio in the training
set to train the acoustic model. Table 3 shows
the WER improvements from supervised to semi-
supervised setup for Somali, Swahili, and Taga-
log. To study the effect of ASR errors on CLIR,
we tried both supervised and semi-supervised ASR
systems in our experiments.
ASR input and output. Test data come in long
unsegmented files of over a minute. To deal with
this, we split the input into equal-size (15 second)
slightly overlapping segments and stitch together
the ASR outputs. For consistency, we lower-case
all text resources that are used in training the ASR
system, which include transcripts and external re-
sources for language modeling (source-side bitext,
web crawled monolingual text). As a result, the
ASR output would be all lower-case. However,
the machine translation system expects inputs that
have been tokenized and true-cased. Thus, we
post-process ASR output to normalize punctua-
tion, tokenize, and true-case using the models and
scripts that are used in MT training and decoding.
This post-processing helps passing names through
the MT system, and improves the IR performance.

6.2 MT System

We tried phrase-based machine translation
(PBMT) as well as neural machine translation
(NMT) for Somali-English, Swahili-English, and
Tagalog-English language pairs. The PBMT sys-
tems were developed using the Moses SMT toolkit
(Koehn et al., 2007). We trained our systems
with the following settings: a maximum sentence
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ASR ASR1 ASR2

Somali
tune 57.8 57.7
test 56.7 48.4

Swahili
tune 38.9 36.7
test 39.7 32.9

Tagalog
tune 47.5 46.6
test 51.4 40.3

MT
BLEU
PBMT

BLEU
NMT

Somali 18.31 18.83
Swahili 28.66 30.18
Tagalog 33.05 29.95

Table 3: %WER for supervised (ASR1) and semi-supervised (ASR2) systems, BLEU scores for PBMT and NMT systems.

length of 80, grow-diag-final-and symmetriza-
tion of GIZA++ alignments, an interpolated
Kneser-Ney smoothed 5-gram language model
with KenLM (Heafield, 2011) used at runtime,
hierarchical lexicalized reordering (Galley and
Manning, 2008), a lexically-driven 5-gram opera-
tion sequence model (OSM) (Durrani et al., 2013)
with count bin features (Chiang et al., 2009), a
distortion limit of 6, maximum phrase-length of 5,
200-best translation options, compact phrase table
(Junczys-Dowmunt, 2012) minimum Bayes risk
decoding (Kumar and Byrne, 2004), cube pruning
(Huang and Chiang, 2007), with a stack-size of
1000 during tuning and 5000 during test. We
optimize feature function weights with k-best
MIRA (Cherry and Foster, 2012).

The NMT systems are LSTM sequence-to-
sequence models (Luong et al., 2015). The layer
size is 512, and the number of layers is 4 for
Swahili and Tagalog, 2 for Somali. The models
were developed using the Fairseq4 toolkit. For
NMT, we applied Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016) to split word into subword seg-
ments for both source and target languages. The
number of BPE operations is 3000 for all three
languages. We observed improvements in BLEU
scores under small BPE settings for all three lan-
guage pairs.

We filtered noisy crawled bitext using Zipporah
(Xu and Koehn, 2017) and applied the unsuper-
vised morphology induction tool Morfessor (Vir-
pioja et al., 2013) to split words up into putative
morphemes, with keeping numbers and names un-
changed. We noticed that splitting the words to
morphemes improves BLEU scores for Somali and
Swahili, but does not help for Tagalog.

To better translate speech documents, we built
systems that are adapted to interface better with
ASR, which we refer to as speech MT systems. For

4We used a PyTorch implementation : https://github.
com/pytorch/fairseq

building speech MT systems, we removed punc-
tuation and spelled out the numbers in the bitext
before training the MT systems, which both im-
proved BLEU scores.

7 Results

We run our CLIR system using document rep-
resentations based on a combination of N-best
transcriptions/translations and the novel bag-of-
phrases output from ASR/MT. A simple baseline
for comparison is the query translation approach,
where each word in English query is translated
into its most likely foreign word using dictionary
extracted from bitext. This baseline achieves the
MAP scores of 0.0967, 0.1204, 0.2293 for Somali,
Swahili, and Tagalog respectively, which all are in-
ferior to the results we present in this section.

Table 4 shows MAP scores for different
MT/ASR and document representation combina-
tions for the three languages. For N-best and BoP
representations, the results for N = 5 are shown
in the table. For text, top 5 translations for each
sentence are combined and indexed as the N-best
document. For speech, 5 translations of the diag-
onal of the ASR × MT matrix for each speech
segment are combined and indexed as the N-best
document. For speech, BoP is the aggregation of
bag-of-phrases translations of top 5 ASR outputs.

We observe that N-best+BoP achieves the best
MAP scores across all settings. For example
in the Somali ASR1+PBMT / PBMT pipeline,
N-best+BoP achieves 0.2444, outperforming the
1-best baseline (0.1894), and isolated N-best
(0.1902) and BoP (0.1999). This result even out-
performs the 1-best reference translation (0.1956),
indicating that a richer document representation
based on multiple ASR/MT hypotheses, even if
potentially error-prone, is better than a single pro-
fessional translator’s result in the context of CLIR.
This is likely due to the challenge of finding exact
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Somali

Speech/Text 1-best N-best BoP N-best+BoP
ASR1+PBMT/PBMT 0.1894 0.1902 0.1999 0.2444
ASR2+PBMT/PBMT 0.1970 0.2182 0.2080 0.2526
ASR1+NMT/NMT 0.1322 0.1623 n/a n/a
ASR2+NMT/NMT 0.1321 0.1630 n/a n/a
ASR2+PBMT+NMT/PBMT+NMT 0.1999 0.2231 0.2080 0.2521
Ref transcript+PBMT/PBMT 0.1965 0.2169 0.2268 0.2633
Ref transcript+NMT/NMT 0.1509 0.1788 n/a n/a
Ref translation/Ref translation 0.1956 n/a n/a n/a

Swahili

Speech/Text 1-best N-best BoP N-best+BoP
ASR1+PBMT/PBMT 0.2234 0.2398 0.2072 0.2582
ASR2+PBMT/PBMT 0.2306 0.2474 0.2135 0.2634
ASR1+NMT/NMT 0.1897 0.2061 n/a n/a
ASR2+NMT/NMT 0.1896 0.2104 n/a n/a
ASR2+PBMT+NMT/PBMT+NMT 0.2299 0.2516 0.2135 0.2632
Ref transcript+PBMT/PBMT 0.2437 0.2600 0.2170 0.2768
Ref transcript+NMT/NMT 0.1902 0.2099 n/a n/a
Ref translation/Ref translation 0.2408 n/a n/a n/a

Tagalog

Speech/Text 1-best N-best BoP N-best+BoP
ASR1+PBMT/PBMT 0.2947 0.3162 0.3114 0.3355
ASR2+PBMT/PBMT 0.2945 0.3159 0.3392 0.3617
ASR1+NMT/NMT 0.2226 0.2437 n/a n/a
ASR2+NMT/NMT 0.2470 0.2683 n/a n/a
ASR2+PBMT+NMT/PBMT+NMT 0.3150 0.3380 0.3392 0.3623
Ref transcript+PBMT/PBMT 0.3660 0.3906 0.3884 0.4187
Ref transcript+NMT/NMT 0.2803 0.3039 n/a n/a
Ref translation/Ref translation 0.3847 n/a n/a n/a

Table 4: MAP scores for various ASR/MT systems and document representations (N=5) on Somali, Swahili, and Tagalog test
sets.

Table 1

recall_1000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
PBMT 1-best 135 1 6 9 14 5 28 20 8 18 198
PBMT N-best 131 1 6 8 14 4 26 18 10 18 206
PBMT BoP 86 0 2 4 4 4 23 21 13 15 270
PBMT N-
best+BoP 79 0 3 3 5 3 21 21 13 16 278

PBMT+NMT N-
best+BoP 74 0 3 4 5 2 20 18 16 14 286

recall_1000 0 0<x<0.1 0.1<=x<0.2 0.2<=x<0.3 0.3<=x<0.4 0.4<=x<0.5 0.5<=x<0.6 0.6<=x<0.7 0.7<=x<0.8 0.8<=x<0.9 1
PBMT 1-best 93 0 3 6 10 4 32 17 11 9 361
PBMT N-best 92 0 3 6 10 3 29 16 11 11 366
PBMT BoP 81 0 0 9 8 6 23 14 4 3 399
PBMT N-
best+BoP 53 0 0 5 6 4 20 14 5 4 436

PBMT+NMT N-
best+BoP 48 0 0 6 4 4 21 16 4 4 440

recall_1000 0 0<x<0.1 0.1<=x<0.2 0.2<=x<0.3 0.3<=x<0.4 0.4<=x<0.5 0.5<=x<0.6 0.6<=x<0.7 0.7<=x<0.8 0.8<=x<0.9 1
PBMT 1-best 101 1 3 4 16 5 33 20 11 23 320
PBMT N-best 99 1 3 4 14 5 34 21 11 23 322
PBMT BoP 54 0 2 2 6 1 17 15 10 13 417
PBMT N-
best+BoP 51 0 2 3 5 1 17 12 12 13 421

PBMT+NMT N-
best+BoP 47 0 2 0 6 1 15 13 11 11 431
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Figure 3: Per query recall@1000 for different systems.
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match between the query and the document.5 We
also observe that the MAP scores from the ASR
systems with lower word error rate (ASR2) are in
general better than those from the ASR systems
with higher word error rate (ASR1). This observa-
tion underscores the impact of a high quality ASR
system on improving the performance of CLIR.

We noticed that NMT has much higher missed
detection rate compared to PBMT, which turns
into a low MAP score. Although the NMT model
has comparable BLEU score, high missed detec-
tion indicate that NMT somehow fails to pro-
duce the tokens that IR system is interested in.
More investigation of the reason is future work.
We also use NMT translations as an additional
field to PBMT translations (ASR2+PBMT+NMT
/ PBMT+NMT). We can observe that there is
a small improvement over PBMT N-best+BoP
method for Tagalog. We plotted number of queries
versus the recall after 1000 documents are re-
trieved for different systems. As Figure 3 shows,
when using N-best, BoP, N-best+BoP, and NMT as
an additional feature, the number of queries with 0
recall decreases consistently in all three languages.
This indicates that a richer document representa-
tion is indeed helping in retrieving relevant docu-
ments.

8 Conclusion and Future Work

The key component in CLIR is translation. The ob-
jective of translation in CLIR is different from Ma-
chine Translation tasks, as in information retrieval
settings the goal is to retrieve relevant documents
rather than having a high quality translation per se.
In this study, we augmented high quality transla-
tion through N-best lists with the lexical variety
of translation required for IR through BoP transla-
tions. We explored combinations of ASR and MT
systems with different error profiles, and showed
that our proposed N-best+BoP representation con-
sistently performs well for CLIR on all three low-
resource languages we studied. We plan to con-
duct various error analyses in future work to cate-
gorize the error types in our end-to-end CLIR sys-
tem, as well as comparing PBMT and NMT sys-
tems. Another interesting future direction is to re-
investigate these representations in the context of

5Note that these results are not necessary our best results,
since we have not tuned for scoring function and various other
hyper-parameters. This exercise is meant to compare multi-
ple systems in a simple setting that varies only the document
representation.

high-resource languages and stronger component
systems, to contrast with the low-resource setting.
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Abstract

Neural end-to-end architectures have been
recently proposed for spoken language
translation (SLT), following the state-of-
the-art results obtained in machine transla-
tion (MT) and speech recognition (ASR).
Motivated by this contiguity, we propose
an SLT adaptation of Transformer (the
state-of-the-art architecture in MT), which
exploits the integration of ASR solutions
to cope with long input sequences featur-
ing low information density. Long audio
representations hinder the training of large
models due to Transformer’s quadratic
memory complexity. Moreover, for the
sake of translation quality, handling such
sequences requires capturing both short-
and long-range dependencies between bi-
dimensional features. Focusing on Trans-
former’s encoder, our adaptation is based
on: i) downsampling the input with con-
volutional neural networks, which enables
model training on non cutting-edge GPUs,
ii) modeling the bidimensional nature of
the audio spectrogram with 2D compo-
nents, and iii) adding a distance penalty
to the attention, which is able to bias it
towards short-range dependencies. Our
experiments show that our SLT-adapted
Transformer outperforms the RNN-based
baseline both in translation quality and
training time, setting the state-of-the-art
performance on six language directions.

∗∗Work done during a summer internship at the Machine
Translation Research Unit at Fondazione Bruno Kessler.
∗c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

1 Introduction

Neural encoder-decoder models (Sutskever et al.,
2014) with attention (Bahdanau et al., 2015) is
a general architecture that, by enabling to tackle
sequence-to-sequence problems with a single end-
to-end model, achieved state-of-the-art results on
machine translation (MT) (Bentivogli et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017; Chen
et al., 2018) and obtained increasingly good per-
formance in automatic speech recognition (Chan
et al., 2016; Chiu et al., 2018; Zhang et al., 2017;
Zeyer et al., 2018; Dong et al., 2018). The advan-
tages of end-to-end techniques, besides their con-
ceptual simplicity, reside on the prevention of er-
ror propagation, and a reduced inference latency.
Error propagation is particularly problematic for
the SLT task (Ruiz et al., 2017), in which MT
would be significantly penalized by errors result-
ing from the previous ASR processing step. For
this reason, end-to-end solutions have been re-
cently proposed (Bérard et al., 2016; Weiss et al.,
2017; Anastasopoulos and Chiang, 2018; Liu et
al., 2018; Di Gangi et al., 2018) but, in terms of
performance, they are still far behind the pipeline
approach. The reason of the worse performance
for this task can be found in its intrinsic diffi-
culty, as it inherits and combines the challenges
of the two pipelined tasks. Indeed, SLT mod-
els map audio features into words, like in ASR,
but the input is mapped into text in a different
target language, like in MT. Thus, the problems
of word reordering and ambiguous meaning typ-
ical of translation are combined with the ambi-
guity of speech signal and speaker variety. One
possible approach to deal with this task is to start
from an MT solution and adapt it to speech input.
Transformer (Vaswani et al., 2017) is an encoder-
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decoder architecture based on self-attention net-
works (SAN, (Cheng et al., 2016)) that, because
of its strong results, is the most popular architec-
ture in MT, and is now used as a base for many
NLP tasks (Devlin et al., 2018). While LSTMs
are known to require long trainig time (Lei et al.,
2017; Di Gangi and Federico, 2018; Kalchbren-
ner et al., 2016), Transformer reduces the train-
ing time by performing parallel computation along
all the time steps, similarly to convolutional neural
networks (CNNs). Despite the appealing advan-
tages, the research on end-to-end SLT has focused
so far on recurrent architectures, and only big in-
dustrial players have been able to train networks
with many layers, many parameters, and additional
synthetic data (Jia et al., 2018). In fact, for compu-
tational and modeling reasons, the application of
SANs to speech input has to face additional chal-
lenges compared to handling textual data. In par-
ticular, these include:

1. SANs have a memory complexity that is
quadratic in the sequence length. From a
computational perspective, this becomes a
problem when the input is an audio signal,
which is typically represented as a very long
sequence of log-filter-banks. For the same
utterance, this type of input is considerably
longer than the corresponding textual repre-
sentation fed to MT encoders.

2. The bidimensional dependencies along the
time and frequency dimensions in the spec-
trogram (Li et al., 2016). This 2-dimensional
representation is more difficult to handle
compared to the 1-dimensional input repre-
sentation (i.e. along the time dimension only)
processed by MT encoders.

3. The absence of an explicit bias towards the
local context. Differently from MT, model-
ing long-range dependencies between words
is logically preceded, as the input is unseg-
mented, by modeling short-range dependen-
cies between time-frames belonging to the
same linguistic constituents (Sperber et al.,
2018).

Focusing on these problems, in this paper we ex-
plore different adaptations of Transformer to the
end-to-end SLT task. Initially, we show that as-
is and with a comparable number of parameters,
Transformer is not competitive with LSTM mod-
els. In order to investigate the reasons of its lower

performance, we posit that the problem lies in
the inability of the Transformer encoder to prop-
erly model long audio input. This hypothesis is
checked by switching the encoders and decoders of
the Transformer and LSTM architecture, which re-
sults in better performance when the Transformer
decoder is preceded by the LSTM encoder. These
results inform and motivate our enhancements to
the Transformer architecture. To this aim, we pro-
ceed incrementally showing, through comparative
experiments, that:

1. Sequence compression with CNNs and down-
sampling enables effective audio encoding
while allowing to train the system even on
single GPUs;

2. Modeling 2D dependencies produces more
stable and better results;

3. Biasing the encoder self-attention with a dis-
tance penalty improves translation quality.

Our experiments are run on different datasets
covering different languages. First, we evalu-
ate our architecture on two relatively small cor-
pora: Augmented Librispeech (Kocabiyikoglu et
al., 2018) for English→French and IWSLT 2018
for English→German. Then, we broaden the lan-
guage coverage through experiments with MuST-
C (Di Gangi et al., 2019),1 a large multilingual
SLT dataset recently released. This allows to val-
idate our findings on six language directions (En-
De/Es/Fr/Pt/Ro/Ru).

Overall, our evaluation indicates that the pro-
posed SLT-oriented adaptation of Transformer re-
sults in a model that significantly outperforms
a strong end-to-end system both in translation
quality and training speed. For the sake of re-
sults’ replicability the code developed for the ex-
periments described in this paper can be down-
loaded at http://github.com/mattiadg/
FBK-Fairseq-ST.

2 Related works

Our work has been influenced by the recent works
on end-to-end SLT, as well as the applications of
SANs to the task of ASR.

End-to-end SLT. The first encoder-decoder ar-
chitecture based on LSTM was introduced for SLT
by Bérard et al. (2016) showing the feasibility of
1http://mustc.fbk.eu
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directly translating from the audio signal. Weiss et
al. (2017) enhanced this approach by exploring set-
tings with different numbers of layers in encoder
and decoder and testing various multitask learn-
ing strategies. Bérard et al. (2018) trained a single
model to translate English audiobooks into French
and shown that pre-training the encoder on ASR
data improves the final result. All these works
showed that the input sequence length has to be re-
duced to work with recurrent models. To cope with
the lack of end-to-end data, different directions
have been evaluated. For instance, (Anastasopou-
los and Chiang, 2018) and (Weiss et al., 2017) per-
formed analyses of different multitask settings to
leverage more data. Bansal et al. (2018) shown
that the pre-training of the encoder is also helpful
when performed on a different language, in partic-
ular when the source language is low–resourced.
(Jia et al., 2018) increased the training data by us-
ing a large quantity of synthetic data that results
in an end-to-end system able to outperform the
cascade model. Their architecture still relies on
LSTMs. Transformer has been applied to this task
(Vila et al., 2018) using only a small training set
and taking advantage of the computational power
of TPUs. Differently from these works, we en-
hance the Transformer architecture to be trained on
GPUs, in shorter time compared to LSTM models,
and without using multi-task learning.

Self-attention for ASR. Given the results of
Transformer in MT, recent works on ASR pro-
posed SANs for both acoustic modeling (Sperber
et al., 2018; Povey et al., 2018) and end-to-end
ASR (Dong et al., 2018; Zhou et al., 2018a; Zhou
et al., 2018b). Some works trained Transformer
for (multilingual) ASR with little modification to
its architecture (Zhou et al., 2018a; Zhou et al.,
2018b), showing the feasibility of this approach
in terms of results. Dong et al. (2018) proposed
the Speech-Transformer for end-to-end ASR with
the goal of encoding efficiently an effectively au-
dio input. They rely on CNNs to reduce the se-
quence length, and propose 2D self-attention to
capture the dependencies in the two dimensions
of a spectrogram (Li et al., 2016) that are out of
the range of CNNs. In this paper we show that
only Speech-Transformer is not enough to outper-
form an LSTM-based model on end-to-end SLT,
because the lack of an explicit bias towards local
context seems to be harmful for SANs when ap-
plied to audio input. In ASR to address a simi-

lar problem, Povey et al. (2018) use hard mask-
ing to force the self-attention into a local context,
while Sperber et al. (2018) use a Gaussian distance
penalty to reduce the attention weights according
to the distance between input elements. Though
effective, the results of this distance penalty are
highly dependent on the initial value of the Gaus-
sian variance. Our work tests, for the first time, the
distance penalty in the task of SLT and proposes a
penalty function that, without additional hyperpa-
rameters, allows the Transformer model to outper-
form the LSTM architecture.

3 Background

Sequence-to-sequence models map a variable-
length source sequence into a variable-length tar-
get sequence. They are usually composed of three
conceptual blocks. An encoder maps an input se-
quence X = (x1,x2, . . . ,xn) of n time steps into
a hidden representation H = (h1,h2, . . . ,hn′) of
contextualized vectors, where n′ can be different
from n. A decoder generates a target sequence of
tokens Y = (y1,y2, . . . ,ym) in an autoregressive
manner. The connection between encoder and de-
coder is given by one or multiple attentions that
weight the elements of H according to their rel-
evance for the current decoder time step. Such a
network is trained by minimizing the cross-entropy
between the probability distribution of the target
tokens estimated by the network, and the gold la-
bels:

L(θ) =
m∑

i=0

P (ỹi = yi|X,y<i; θ) (1)

In this paper, X is a sequence of audio spectrogram
frames, while Y is a sequence of characters in the
target language.

Two encoder-decoder architecture that are rel-
evant for this work are: the recurrent model for
end-to-end SLT proposed in (Bérard et al., 2018),
which is based on LSTM and CNNs, and the
Transformer, as proposed for MT.

3.1 End-to-end SLT
Bérard et al. (2018) proposed a recurrent sequence-
to-sequence architecture for SLT based on LSTMs.
The encoder receives an input in the form of se-
quences of Mel-filterbanks. The input is first pro-
jected to a larger space with two affine transforma-
tions, each followed by ReLU activation. The ex-
panded input is then reduced by a factor of 4 with
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two following strided 2D convolutions. Finally,
the resulting tensor is linearized and processed as
a sequence by three stacked bi-directional LSTMs.

The average of the encoder outputs along the
time dimension is used to initialize the first of two
LSTMs in the decoder. The output of the first
LSTM is used by an attention network to com-
pute a context vector of the source, which is fed
as input to the second LSTM. The output of the
second LSTM is used to compute the target prob-
abilities and also as a hidden state for the first
LSTM (deep transition LSTMS (Pascanu et al.,
2014)). Hencefort, we will refer to this approach
as CNN+LSTM.

3.2 Transformer

Transformer (Vaswani et al., 2017) is an encoder-
decoder architecture entirely based on attention
networks. Given three sequences Q,K,V the at-
tention computes a context vector di for each query
time step i (Qi) that is a weighted average of the
values V, where the weights are computed as a
normalized score of the similarity between Qi and
all the key values K:

di = softmax(QKT /
√
dmodel) ·V (2)

where
√
dmodel is a constant scaling factor based

on the layer size dmodel. The core component of
Transformer is the multi-head attention (MHA), a
network that, given two input sequences a,b com-
putes attention between a and b in multiple, par-
allel branches. MHA is used to model dependen-
cies both between encoder and decoder (K,V = a
and Q = b), and within the two networks (self-
attention, K,V,Q = a). As it is shown in Equa-
tion 2, MHA is fully content-based and, as such,
it is position invariant. The positional informa-
tion within the sequence is conveyed by summing
the vector content with a fixed positional encoding
based on trigonometric functions. Another rele-
vant property of the MHA is the possibility to com-
pute it in parallel for all the time steps in both Q
and K, as well as for all the multiple heads, but
this comes at the cost of a quadratic memory com-
plexity.

4 SLT Transformer

The application of Transformer to speech input is
not trivial because of i) computational issues that
hinder its use; and ii) modeling limitations that

Figure 1: Three Transformer encoders for SLT. Components
in grey are non-learnable.

harms its performance. The first issue to over-
come is the quadratic GPU memory occupation
of Transformer, which is particularly relevant on
speech because the sequences are order of magni-
tudes larger than in text. On the modeling side,
Transformer’s performance is limited by the ab-
sence of a bias to capture short-range dependen-
cies along time (Sperber et al., 2018; Povey et al.,
2018), as well as the 2D joint dependencies over
the time and frequency dimensions that character-
ize a spectrogram (Li et al., 2016). Strided 2D
CNNs can compress the input sequence while also
modeling 2D dependencies. However, the result-
ing sequences are still much longer than an equiv-
alent text sequence, and thus we propose a distance
penalty to enforce the modeling of short-range de-
pendencies.

4.1 Encoding with 2D CNNs

In this section, we propose three variants of Trans-
former. B- and R-Transformer replace the LSTM
layers in CNN+LSTM with Transformer encoder
layers and differ in their use of the positional en-
coding. S-Transformer is a further improvement
of R-Transformer that adds to the encoder the ca-
pability of modeling 2D dependencies in the in-
put data. In all the three variants, the adaptations
regard only the layers preceding the Transformer
encoder. The following Transformer encoder and
decoder stacks are left unchanged.
B-Transformer (Figure 1a). Our baseline model
uses the same encoder as CNN+LSTM (Bérard
et al., 2018) but replaces the LSTM layers with
Transformer encoder layers. The replacement of
LSTMs makes the encoder position invariant, and
thus the sequential order is conveyed by summing
the positional encoding directly to the input fea-
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Figure 2: Schematic representation of 2D self-attention.

tures.2

R-Transformer (Figure 1b). As the positional en-
coding and the input are both fixed vectors, we pro-
pose to sum the positional encoding right before
the Transformer encoder (the part of the network
that requires a positional information). The sum is
preceded by a linear transformation of the CNN
output followed by ReLU non-linearity, whose
goal is to transform its input into a space where the
fixed positional encoding can be more effective.
S-Transformer (Figure 1c). Our second improve-
ment follows the idea of modeling 2D joint depen-
dencies in the input signal by applying a stack of
2D components to the input (Dong et al., 2018).
The first two CNNs capture local 2D-invariant fea-
tures (Amodei et al., 2016) in the input, while
the following two 2D self-attention layers (Figure
2) model long-range context (Dong et al., 2018).
The 2D self-attention computes the three tensors
K,Q,V with three parallel 2D CNNs of its in-
put with c output channels. Each of the c chan-
nels is used as an attention head in an MHA net-
work. K,Q and V are used to compute the atten-
tion over the temporal dimension as in Equation
2. Then, the three matrices are transposed and an-
other MHA is computed over the frequency dimen-
sion. Finally, the 2c channels from the two MHAs
are concatenated and processed by an additional
2D CNN with n output channels. The 2D atten-
tions enrich the encoder representation by model-
ing 2D dependencies that cannot be captured by
CNNs.

4.2 Distance Penalty

To further improve the encoder capability of mod-
eling short-range dependencies, we introduce, be-
sides CNNs, a distance penalty mechanism in the

2Due to its high GPU memory occupation, we could not train
a baseline Transformer (comparable in size to the other mod-
els used for experiments) without input compression.

encoder self-attention. This mechanism biases the
network towards the local context without impos-
ing hard constraints that would prevent it from
finding long-range dependencies. The attention
computation (Equation 2) is modified as follows:

c = softmax(QKT/
√
dmodel − π(D))V (3)

where D is a matrix containing, in each cell di,j ,
the position distance |i − j|, and π is a distance
penalty function.

In this paper, we experiment with distance
penalty computed with two different functions.
The Gaussian penalty introduced in (Sperber et al.,
2018) computes a Gaussian-shaped penalty distri-
bution with a distinct learnable variance σ for each
head in the MHA as follows:

πG(d) =
(d)2

2σ2
(4)

This function gives to a network the flexibility to
shrink or extend the attention span in each atten-
tion head. In this way, the network can extract
different features from different heads in a layer,
but also in different layers. Indeed, in (Sperber et
al., 2018) only the first layer restricts its attention
span in the best setting. The downside of this ap-
proach is that the initial value of the variance is an
additional hyperparameter that highly affects the
performance. In order to eliminate this additional
hyperparameter, we propose to use a logarithmic
function as a distance penalty:

πlog(d) =

{
0, if d = 0
loge(d), else

(5)

The logarithm biases the network towards the
local context but the penalty grows slowly with
distance, and thus it does not impede the model-
ing of global dependencies.

5 Experiments

We run our experiments on three SLT datasets, of
which two comprise a single language direction
and one comprises 6 language directions. In all
cases, English is the source language.
Monolingual datasets. The first one monolin-
gual corpus is built from material released for the
IWSLT evaluation campaigns, namely the En→De
training data from IWSLT 2018 (Niehues et al.,
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Corpus Hours Train Valid Test
IWSLT (En-De) 273 171K 1000 1000
Librispeech (En-Fr) 236 95K 1071 2048
Multilingual

En-De 408 234K 1423 2641
En-Es 504 270K 1316 2502
En-Fr 492 280K 1412 2632
En-Pt 385 210K 1367 2502
En-Ro 432 240K 1370 2556
En-Ru 489 270K 1317 2513

Table 1: Data statistics for IWSLT, Librispeech and our mul-
tilingual corpus. Train, Valid and Test are numbers of sen-
tence pairs.

2018) and the test data from IWSLT 2014 (Cet-
tolo et al., 2014).3 The second dataset is the Aug-
mented Librispeech corpus (Kocabiyikoglu et al.,
2018) that is produced using English audiobooks
of novels, and their translations into French.
Multilingual dataset. We have recently devel-
oped a large corpus from English TED talks, called
MuST-C (Di Gangi et al., 2019). Unlike IWSLT
and Librispeech, MuST-C covers multiple lan-
guage directions (En→De/Es/Fr/Pt/Ro/Ru). We
built it following the alignment-based approach
proposed in (Kocabiyikoglu et al., 2018) and us-
ing English speech recordings and their transla-
tions available on the TED talks website.4 For each
target language, we aligned text in English and
in the target language using the Gargantua toolkit
(Braune and Fraser, 2010), then we aligned the
resulting English sentences with the correspond-
ing audio using Gentle,5 a forced-aligner based on
the Kaldi toolkit (Povey et al., 2011). In order to
improve the alignment quality we performed two
successive steps of filtering. In the first step, we
removed all the talks where at least 15% of the
words have not been recognized by Gentle. In the
second step, we removed from the remaining talks
all the sentences with no recognized words. For
replicability of results, the corpus is released with
a predefined train, validation and test split. The
corpora statistics are listed in Table 1 and show
that each language direction of MuST-C is consid-
erably larger than the other 2 corpora.
Experimental setup. For a fair comparison of the
different architectures, we first set the parameters
of the recurrent baseline (CNN+LSTM, §3.1) sim-
ilar to what reported in (Bérard et al., 2018). Then,

3We could not use the IWSLT 2018 test data, because the gold
standard has not been released.
4http://www.ted.com – dump of April 2018
5github.com/lowerquality/gentle

we adjust the Transformer to have a number of pa-
rameters similar to the recurrent one (∼9.5M). The
CNNs have a 3×3 kernel and 16 output filters. The
LSTMs in the baseline have a hidden size of 512,
with 3 layers in the encoder and 2 in the decoder.
The initial encoder states are learnable parameters,
while the initial decoder state is computed as the
mean of the encoder states. We found the learn-
able encoder states to be critical to reach conver-
gence. The Transformer models have 6 layers in
both encoder and decoder, with layer size of 256,
hidden size of 768 and 4 heads in multi-head atten-
tion. To further asses the performance of our mod-
els, we also experiment with a BIG version with
more parameters, featuring layer size 512, hidden
size 1024, and 8 heads. set dropout to 0.2 for
CNN+LSTM and 0.1 for Transformer. No dropout
is applied in the recurrent connections. Training is
performed using the Adam optimizer (Kingma and
Ba, 2015) with learning rate 0.001 for LSTM and
0.0002 for Transformer. The learning rate is kept
fixed for Transformer for the sake of a fair compar-
ison with the baseline. B-Transformer serves as
a baseline to evaluate the impact of the proposed
adaptations. We train our R- and S-Transformer
models with and without distance penalty, either
Gaussian or logarithmic. We test all these config-
urations on the IWSLT and Librispeech corpora.
Then, due to the higher number of directions in
the multilingual corpus, we only run experiments
on it with the best-performing system. Following
(Bansal et al., 2018; Bérard et al., 2018), we first
train a model with the ASR part of each corpus and
then we use it to initialize the weights of the SLT
encoder. All the experiments are run on a single
GPU Nvidia 1080 Ti with 12G of RAM, and the
code used for all the experiments is based on Py-
torch (Paszke et al., ).

Data processing and evaluation. 40-dimensional
MFCC filter-banks were extracted from the audio
signals of each dataset using window size of 25 ms
and step size 10 ms. The frame energy feature was
additionally extracted from the LibriSpeech audio,
similarly to (Bérard et al., 2018). All texts were
tokenized and split into characters. Performance
is evaluated with BLEU (Papineni et al., 2002) at
token level after aggregating the output characters
into words.
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Librispeech Enc Dec BLEU ↑
CNN+LSTM - - 10.7

X - 13.2
X X 13.0

B-Transformer - - 6.3
X - 9.0
X X 9.5

IWSLT
LSTM - - 8.5

X - 9.2
X X 7.5

B-Transformer - - 7.9
X - 7.3
X X 5.9

Table 2: Speech translation results for the Librispeech and
IWSLT corpora wuth our two baseline models. A checkmark
on Enc (Dec) means that the encoder (decoder) has been pre-
trainined.

Enc / Dec LSTM Transformer
LSTM 13.2 11.9
Transformer 8.2 9.0

Table 3: Mixed-architecture experiments on Librispeech.

6 Results and Discussion

6.1 Baseline.

As a first step, we want to evaluate our base-
line B-Transformer against CNN+LSTM to un-
derstand the effectiveness 2D convolutional com-
pression with Transformer. We ran the ex-
periments with no pre-training, by pre-training
only the encoder or both encoder and decoder.
As can be seen in Table 2, the best results with
CNN+LSTM are obtained by pre-training only the
encoder, while for B-Transformer the training is
more unstable and this is reflected also in the re-
sults. Considering the results of CNN+LSTM
and the relatively good results of B-Transformer
when pre-training only the encoders, we decided
to follow this practice in all the following experi-
ments. When considering only the results with the
pre-trained encoder, CNN+LSTM outperforms B-
Transformer by 4 BLEU points on Librispeech and
2.1 BLEU points on IWSLT. To better understand
the source of degradation for the B-Transformer,
we performed an experiment switching encoder
and decoder between the two architectures with
pre-trained encoder (table 3) and evaluated them
on Librispeech. When using CNN+LSTM en-
coder, the Transformer decoder causes a degra-
dation of 1.3 BLEU points, while having Trans-
former encoder and LSTM decoder causes a degra-
dation of 5 points over CNN+LSTM. Given these

Librispeech BLEU ↑ Time (s) Time/Ep.
CNN+LSTM 13.2 248K ∼ 2.8K
B-Transformer 9.0 101K ∼ 0.69K
R-Transformer 11.5 72K ∼ 0.73K
- Gauss penalty 12.5 82K ∼ 0.75K
- log penalty 12.3 64K ∼ 0.75K
S-Transformer 12.5 76K ∼ 0.79K
- Gauss penalty 13.8 88K ∼ 0.86K
- log penalty 13.5 76K ∼ 0.86K
IWSLT BLEU ↑ Time (s) Time/Ep.
CNN+LSTM 9.2 112K ∼ 2.9K
B-Transformer 7.1 67K ∼ 1.0K
R-Transformer 9.8 92K ∼ 1.0K
- Gauss penalty 10.8 101 K ∼ 1.1K
- log penalty 10.5 93K ∼ 1.1K
S-Transformer 9.8 89K ∼ 1.1K
- Gauss penalty 10.8 90K ∼ 1.2K
- log penalty 10.6 81K ∼ 1.2K

Table 4: Results on the Librispeech and IWSLT 2014 test set.
Differences wrt the baseline (CNN+LSTM) are statistically
significant (randomization test, p=0.05).

results, the following experiments all focus on en-
hancing the B-Transformer encoder. Despite the
poor translation quality, exploring the Transformer
is still interesting because of its reduced training
time (listed on Table 4), which is reduced by a fac-
tor of 2 on IWSLT (67K vs 112K seconds) and
even more on Librispeech (101K vs 248K sec-
onds). These results show that input compres-
sion makes the training of Transformer feasible for
SLT, but it does not result in immediate improve-
ments over LSTMs.

6.2 Encoder Enhancements

In the following, we discuss the results obtained
with our enhancements to the Transformer en-
coder, i.e. modify the use of position encoding,
model 2D dependencies with CNNs and 2D self-
attention, and insert a distance penalty to the en-
coder self-attention.

R-Transformer differs from B-Transformer in
the layer where the position encoding is summed
to the input. As can be seen in Table 4, this detail
is very relevant as R-Transformer improves over
B-Transformer by more than 2.5 BLEU points in
both datasets with less training time. However, it
is significantly worse than CNN+LSTM on Lib-
rispeech (−1.7 BLEU points) and slightly better
on IWSLT (+0.6).

The next step is to evaluate the enhancements
in modeling 2D input proposed in S-Transformer.
Its results are 1.0 BLEU point better than R-
Transformer in Librispeech, and equal on IWSLT,
while having a similar parameter count and con-
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Initial variance Librispeech IWSLT
5.0 13.8 10.8
100.0 13.1 10.9

Table 5: Results with different values of initial variance for
Gaussian penalty and S-Transformer.

vergence time. Despite the improvement, S-
Transformer is 0.7 points less than CNN+LSTM
on Librispeech.

In Table 4 we show the results obtained using
the distance penalties introduced in §4.2 to model
short-range dependencies in the Transformer en-
coder. Distance penalties produce performance
improvements for R- and S-Transformer that range
from 0.7 to 1.3 BLEU points, with the Gaussian
penalty (initial variance = 5.0) being 0.2 ∼ 0.3
BLEU points better than the logarithmic one. S-
Transformer with Gaussian penalty obtains the
best results in both corpora, with improvements
of +0.6 and +1.6 BLEU points over CNN+LSTM
on, respectively, Librispeech and IWSLT. The re-
sults with Gaussian penalty are computed using
initial variance (for the ASR training) of 5.0. Us-
ing an initial variance of 100.0 (the value recom-
mended in the work by Sperber et al. (2018)) we
obtained a significant degradation on Librispeech
with a BLEU of 13.1 and a comparable result
on IWSLT with 10.9 (Table 5). These results
show that biasing the self-attention with a distance
penalty is critical to obtain competitive translation
quality with Transformer and also outperform the
strong CNN+LSTM baseline.

6.3 Gaussian variances

Sperber et al. (2018) have shown that the vari-
ances of the Gaussian penalty are smaller in the
first layer and larger in the second layer of their 2-
layered self-attentional acoustic model. Based on
this observation, they suggest that it is better for
the first layer to have a restricted range, while a
global range is desirable for the upper layer. We
performed a similar analysis for our models, but
obtained quite different results. First of all, Table
5 shows that, in our experiments, the initial value
of variance plays a role but it appears to be less
critical. An inspection of the final variance values
is shown in Figure 3, in which we do not observe
any relation between the layers and the variance.
On the contrary, we observe that different heads in
the same layer can differ significantly. Addition-
ally, the initial weight makes a big difference for

LSTM log Gauss BIG+log BIG+Gauss
De 12.9 14.5 14.4 17.3 16.2
Es 17.9 18.4 18.6 20.8 20.1
Fr 22.3 23.1 24.0 26.9 24.7
Pt 17.1 18.6 19.7 20.1 19.3
Ro 13.4 14.7 15.0 16.5 16.1
Ru 7.2 8.8 9.1 10.5 8.5

Table 6: Results on six language pairs covered by the mul-
tilingual corpus. LSTM is the CNN+LSTM model. Results
in columns 3-6 are computed with S-Transformer with loga-
rithmic (log) or Gaussian (Gauss) distance penalty. Improve-
ments over CNN+LSTM are statistically significant.

the final values but, as shown in table 5, this does
not affect the performance significantly. To under-
stand whether results’ differences from the work
of Sperber et al. (2018) are related to the task (SLT
instead of ASR), we checked the weights of our
ASR models and find that they do not differ sig-
nificantly from the ones showed in Figure 3. The
absence of a pattern in the distribution of the vari-
ance is a further justification to use a logarithmic
distance penalty in all the layers.

6.4 Additional experiments

The previous experiments have shown that S-
Transformer performs better than the other vari-
ants, and as such we report experiments on the
larger MuST-C corpus only with S-Transformer
and the two distance penalties. S-Transformer
outperforms CNN+LSTM on all the 6 language
directions with gains from +0.5 to +1.6 BLEU
points with log penalty and from +0.7 to +2.6
with Gaussian penalty. Gaussian penalty gener-
ally achieves results only slightly better than the
logarithmic one, except for the top improvements
of +0.9 and +1.1 respectively on En→Fr and
En→Pt. To explain this difference, it is useful
to recall that the parameters of the encoders of
SLT models (including their Gaussian variances)
are initialized from a model pre-trained on English
ASR. In particular, for the multilingual corpus we
use the same model trained on the larger dataset.
The inherited variance from this model may affect
differently the different target languages.

Experiments with a larger model (S-
Transformer BIG) show further improvements
from a minimum of 1.5 points for En→Pt to
a maximum of 3.8 points for En→Fr with log
penalty, while the poor results with Gaussian
penalty confirm that it is less stable than the
logarithmic one. The number of training iterations
is also reduced to less than half of the previous
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(a) (b)

(c) (d)

Figure 3: Final values of the variances for the SLT task in Librispeech (top) and IWSLT (bottom) with initial variance of 5.0
(left) and 100.0 (right).

experiments. The improvements obtained in this
experiment, up to 4.6 BLEU point in En→Fr
over the baseline, represent a step forward to-
wards a translation quality that allows real-world
applications for end-to-end SLT.

To conclude, our experiments show that: i) our
task-specific adaptations make the Transformer
trainable for the SLT task, also on a single GPU;
ii) when both short-range and 2D dependencies
are explicitly addressed in the model, they allow it
to outperform a strong baseline based on LSTMs;
iii) the logarithmic distance penalty can be prefer-
able over the Gaussian one because it does not re-
quire additional hyperparameter tuning and results
in competitive performance.

7 Conclusion

We have shown that the application of Transformer
to end-to-end SLT is problematic in the encoder
side. Consequently, we have proposed to enhance
the Transformer encoder by taking into account the
characteristics of a speech spectrogram. Our solu-
tion consists of: i) 2D processing of the input to

compress it effectively before the self-attentional
stack; and ii) a distance penalty in the encoder
self-attention layers that forces the network to give
more attention to neighboring time steps.We have
shown that, although using a distance penalty is al-
ways beneficial, a simple logarithmic function can
result in equal or better improvements than a learn-
able Gaussian penalty. Experimental results per-
formed on three different corpora, for a total of 6
language directions, show that our approach out-
performs a strong recurrent baseline in both trans-
lation quality and training time.
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Abstract

In recent years, pretrained word embed-
dings have proved useful for multimodal
neural machine translation (NMT) mod-
els to address the shortage of available
datasets. However, the integration of
pretrained word embeddings has not yet
been explored extensively. Further, pre-
trained word embeddings in high dimen-
sional spaces have been reported to suf-
fer from the hubness problem. Although
some debiasing techniques have been pro-
posed to address this problem for other nat-
ural language processing tasks, they have
seldom been studied for multimodal NMT
models. In this study, we examine various
kinds of word embeddings and introduce
two debiasing techniques for three mul-
timodal NMT models and two language
pairs — English–German translation and
English–French translation. With our op-
timal settings, the overall performance
of multimodal models was improved by
up to +1.62 BLEU and +1.14 METEOR
for English–German translation and +1.40
BLEU and +1.13 METEOR for English–
French translation.

1 Introduction

In multimodal machine translation, a target sen-
tence is translated from a source sentence together
with related nonlinguistic information such as vi-
sual information. Recently, neural machine trans-
lation (NMT) has superseded traditional statisti-
cal machine translation owing to the introduction

c⃝ 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

of the attentive encoder-decoder model, in which
machine translation is treated as a sequence-to-
sequence learning problem and is trained to pay
attention to the source sentence while decoding
(Bahdanau et al., 2015).

Pretrained word embeddings are considered an
important part of neural network models in many
natural language processing (NLP) tasks. In the
context of NMT, pretrained word embeddings have
proved useful in low-resource domains (Qi et al.,
2018), in which FastText (Bojanowski et al., 2017)
embeddings are used to initialize the encoder and
decoder of the NMT model. They provided sub-
stantial overall performance improvement for low-
resource language pairs. Similarly, Hirasawa et
al. (2019) introduced a multimodal NMT model
with embedding prediction that provided substan-
tial performance improvement.

However, when word embeddings are used in
the k-nearest neighbor (kNN) problem, certain
words appear frequently in the k-nearest neighbors
for other words (Dinu et al., 2015; Faruqui et al.,
2016); this is called the hubness problem in the
general machine learning domain (Radovanović et
al., 2010). This phenomenon harms the utility of
pretrained word embeddings. In the context of
NMT, Rios Gonzales et al. (2017) reported that
NMT models produce less-accurate translations
for less-frequent words, but they are not aware of
the hubness problem in word embeddings. Instead,
they proposed annotating sense labels or lexical la-
bels to address this problem. However, it is known
to be effective to debias word embeddings based
on their local bias (Hara et al., 2015) or global bias
(Mu and Viswanath, 2018) for word analogy tasks,
which does not require extra expensive annotations
and references.

In this study, we explore the utility of well-
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established word embeddings and introduce de-
biasing techniques for multimodal NMT models.
The main contributions of this study are as follows:

1. We show that GloVe word embeddings are
useful for various multimodal NMT models
irrespective of the extent to which visual fea-
tures are used in them.

2. We introduce All-but-the-Top debiasing tech-
nique for pretrained word embeddings to fur-
ther improve multimodal NMT models.

2 Related Works

With the recent development of multimodal paral-
lel corpora such as Multi30K (Elliott et al., 2016),
many multimodal NMT models have been pro-
posed. Most of these models are divided into two
categories: visual feature integration and multitask
learning. In both categories, visual features are ex-
tracted using image processing techniques.

Visual feature adaptation Visual features are
extracted using image processing techniques and
then integrated into a machine translation model
in many ways. These studies include incorpora-
tion with visual features in NMT models (Calixto
et al., 2017; Zhou et al., 2018) and multitask learn-
ing models (Elliott and Kádár, 2017; Zhou et al.,
2018), as discussed later in Section 3.

Data augmentation Owing to the lack of the
available datasets, data augmentation is widely
studied in multimodal NMT. Compared to a paral-
lel corpus without images (Grönroos et al., 2018)
and a pseudo-parallel corpus (Helcl et al., 2018),
few studies have used monolingual data. Hirasawa
et al. (2019) proposed a multimodal NMT model
with embedding prediction to fully use pretrained
word embeddings. However, the use of word em-
beddings has not been studied among various mul-
timodal NMT models. We examine three differ-
ent word embeddings for three multimodal NMT
models.

3 Multimodal Neural Machine
Translation

In this study, we measure the effectiveness of
pretrained word embeddings for doubly-attentive
NMT (Calixto et al., 2017), IMAGINATION
(Elliott and Kádár, 2017), and visual attention
grounding NMT (Zhou et al., 2018); these use

visual feature integration, multitask learning, and
mixed model, respectively.

First, in visual feature integration, visual fea-
tures are incorporated into NMT models in differ-
ent ways. Calixto et al. (2017) separately calculate
textual and visual context vectors using an atten-
tion mechanism and then forward the concatenated
context vector to output the probabilities of target
words. Caglayan et al. (2018) use hidden states
in the encoder to mask the local visual features
and concatenate the textual context vector and the
masked visual context vector to obtain the final
context vector.

Second, in multitask learning, most multitask
learning models use latent space learning as an
auxiliary task. Models share the encoder between
the main translation task and the auxiliary task,
thereby improving the encoder. Elliott and Kádár
(2017) proposed the IMAGINATION model that
learns to construct the corresponding visual feature
from the hidden states of the textual encoder of a
source sentence.

Third, visual feature integration and multitask
learning are not mutually exclusive and can be
used together. Zhou et al. (2018) compute the
text representation from a source sentence while
paying attention to each word based on the paired
image. This text representation is used in both
the machine translation task and the shared space
learning task.

All of these models tackle machine transla-
tion as a sequence-to-sequence learning prob-
lem in which a neural model is trained to
translate a source sentence of N–tokens x =
{x1, x2, · · · , xN} into the target sentence of M–
tokens y = {y1, y2, · · · , yM}.

3.1 Doubly-attentive NMT

Doubly-attentive NMT (Calixto et al., 2017) has a
simple encoder and a modified decoder from Bah-
danau et al. (2015) that uses two individual atten-
tion mechanisms to compute the textual context
vector and the visual context vector.

Architecture The encoder is a bidirectional
gated recurrent unit (GRU) (Cho et al., 2014), in
which a forward GRU encodes source sentence x
in the normal order to generate a sequence of for-
ward hidden states

−→
h = {−→h1,

−→
h2, · · · ,

−→
hN} and a

backward GRU encodes this source sentence in the
reversed order to generate a sequence of backward
hidden states

←−
h = {←−h1,

←−
h2, · · · ,

←−
hN}. The final

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 33



hidden states h for each position i are given as
a concatenation of each forward hidden state and
each backward hidden state.

−→
hi =

−−−→
GRU(

−−→
hi−1, eenc(xi)) (1)

←−
hi =

←−−−
GRU(

←−−
hi+1, eenc(xi)) (2)

hi = [
−→
hi;
←−
hi] (3)

where i ∈ [1, N ] denotes each position in a source
sentence;

−−−→
GRU and

←−−−
GRU are the forward and

backward GRU, respectively; and eenc(xi) is the
embedding representation for a word xi.

While decoding, the model first computes a hid-
den state proposal sj for each time step j ∈ [1,M ].

sj = GRU(ŝj−1, edec(ŷj−1)) (4)

where ŝj−1 is the previous hidden state and
edec(ŷj−1) is the embedding for the previous out-
put word ŷj−1.

The textual context vector and the visual con-
text vector are computed using two independent
attention mechanisms. In each time step j while
decoding, a feed-forward layer is used to calculate
a normalized soft alignment αj,i with each source
hidden state hi, and the textual context vector ctj
is computed as a weighted sum of source hidden
states.

ztj,i = vttanh(U
t
αsj +W t

αhi) (5)

αt
j,i =

exp(ztj,i)∑N
k=1 exp(z

t
j,k)

(6)

ctj =

N∑

i=1

αt
j,ihi (7)

where vt, U t
α and W t

α are model parameters.
The visual context vector cvj is also computed

from the spatial visual features vi of the paired
image in the same manner as the textual context
vector along with the gating scalar mechanism, in
which a scalar variable is computed based on the
previous hidden state to decide how much atten-
tion should be paid to the entire visual features.

zvj,i = vvtanh(U
v
αsj +W v

αvi) (8)

αv
j,i =

exp(zvj,i)∑N
k=1 exp(z

v
j,k)

(9)

βj = σ(Wsŝj−1 + bs) (10)

cvj = βj

N∑

i=1

αv
j,ivi (11)

where vv, U v
α, W v

α , Ws, and bs are model param-
eters. σ is the gating scalar function learnt while
training; it projects a vector to a scalar value and
activates with a sigmoid function.

The final hidden state ŝj is computed using the
hidden state proposal sj , textual context ctj , and
visual context cvj .

zj = σz(W
t
zc

t
j +W v

z c
v
j +Wzŝj) (12)

rj = σr(W
t
rc

t
j +W v

r c
v
j +Wrŝj) (13)

s′j = tanh(W t
zc

t
j +W v

z c
v
j + rj ⊙ (Uŝj)) (14)

ŝj = (1− zj)⊙ s′j + zj ⊙ sj (15)

where σz and σr are feed-forward layers with sig-
moid activation, and W t

z , W v
z , Wz , W t

r , W v
r ,

Wr, W t
z , W v

z , and U are model parameters.
The system output at timestep j is obtained us-

ing the current hidden state, previous word embed-
ding, textual context, and visual context.

p(w|ŷ<j) = softmax(tanh(Lsŝj

+Lwedec(ŷj−1) +Ltctj +Licvj ))

(16)

ŷj = argmax
w∈V

{p(w|ŷ<j)} (17)

where Ls, Lw, Lt and Li are model parameters.

Loss function We use the negative log likeli-
hood of the probabilities to generate reference to-
kens as the loss function J for this model.

J = −
M∑

j=1

log(p(yj |ŷ<j)) (18)

3.2 IMAGINATION
IMAGINATION (Elliott and Kádár, 2017) is a
multitask learning model that jointly learns ma-
chine translation and visual latent space models.
It trains an NMT model for a machine translation
task and a latent space learning model for an auxil-
iary task, in which a source sentence and the paired
image are mapped closely in the latent space. The
models for each task share the same encoder in a
multitask scenario.

Architecture The encoder is the same as that in
the doubly-attentive NMT model described in Sec-
tion 3.1. The decoder in the NMT model is the
same as that proposed by Bahdanau et al. (2015);
it first computes the hidden state proposal sj , then
estimates context vector cj over source hidden
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states, and finally outputs the predicted word yj for
each time step j ∈ [1,M ].

sj = GRU(ŝj−1, edec(ŷj−1)) (19)

zj,i = vatanh(Wasj +Uahi) (20)

αj,i =
exp(zj,i)∑N

k=1 exp(zj,k)
(21)

cj =
N∑

i=1

αj,ihi (22)

p(w|ŷ<j) = softmax(tanh(sj+edec(ŷj−1)+cj))
(23)

ŷj = argmax
w∈V

{p(w|ŷ<j)} (24)

where Wa, Ua and va are model parameters.
The latent space learning model calculates the

average vector over the hidden states hi in the en-
coder and maps it to the final vector v̂ in the latent
space.

v̂ = tanh(Wv ·
1

N

N∑

i

hi) (25)

where Wv is a model parameter.

Loss function The loss function for IMAGINA-
TION is the linear interpolation of loss functions
of each task.

J = λJT(θ, ϕT) + (1− λ)JV(θ, ϕV) (26)

where θ is the parameter of the shared encoder; ϕT

and ϕV are parameters of the machine translation
model and latent space model, respectively; and λ
is the interpolation coefficient1.

We use the loss function defined in Eq. 18 for
the NMT model JT(θ, ϕT).

JT(θ, ϕT) = −
M∑

j=1

log(p(yj |ŷ<j)) (27)

The max margin loss is used as the loss function
for latent space learning; it makes corresponding
latent vectors of a source sentence and the paired
image closer.

JV(θ, ϕV) =
∑

v′ ̸=v

max{0, α−d(v̂,v)+d(v̂,v′)}

(28)
where v is the latent vector of the paired image;
v′, the image vector for other examples; d, the co-
sine similarity function that is used to calculate the
word similarity; and α, the margin that adjusts the
sparseness of each vector in the latent space2.
1We use λ = 0.5 in our experiment.
2We use α = 0.1 in our experiment.

3.3 Visual Attention Grounding NMT
Visual Attention Grounding NMT (VAG-NMT)
(Zhou et al., 2018) uses a combination of the visual
feature integration model and the multitask learn-
ing model, which also uses latent space learning as
the auxiliary task.

Architecture The shared encoder of this model
is an extension of Bahdanau et al. (2015), in which
the model computes the sentence representation t
by paying attention to the hidden states hi based
on the visual feature v.

zi = tanh(Wvv) · tanh(Whhi) (29)

βi =
exp(zi)∑N

k=1 exp(zk)
(30)

t =
N∑

i=1

βihi (31)

where Wv and Wh are model parameters.
The decoder of the NMT model is the same as

that used in IMAGINATION (Section 3.2) with a
slight modification for initializing the hidden state
with the sentence representation t.

s0 = tanh(Winit(ρt+ (1− ρ)
1

N

N∑

i

hi)) (32)

where Winit is a model parameter; and ρ, a hyper-
parameter to determine the ratio of text representa-
tion in the decoder initial state 3.

In latent space learning, both the sentence repre-
sentation t and the visual representation v are pro-
jected to the latent space and made closer in the
space during training.

temb = tanh(Wtt+ bt) (33)

vemb = tanh(Wvv + bv) (34)

where Wt, bt, Wv, and bv are model parameters.

Loss function The loss function for VAG-NET
is given as described in Eq.26, and we use the loss
function defined in Eq.27 for JT(θ, ϕT).

The max margin loss with negative sampling is
used as the loss function for latent space learning.

JV(θ, ϕV)

=
∑

p

∑

k

max{0, γ − d(vp, tp) + d(vp, tk ̸=p)}

+
∑

k

∑

p

max{0, γ − d(tk,vk) + d(tp,vk ̸=p)}

(35)
3We use ρ = 0.5 in our experiment.
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where d is a cosine similarity function; k and p is
the index for sentences and images, respectively;
tk ̸=p, the negative samples for which all examples
in the same batch with the target example are se-
lected; and γ, the margin that adjusts the sparse-
ness of each item in the latent space4.

4 Word Embedding

In this study, we compare three different word
embeddings: word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), and FastText (Bo-
janowski et al., 2017). Section 5.1 describes the
configurations to build each embedding.

When we use word embeddings of high dimen-
sion in the kNN problem in which the similar-
ity of two words is computed using a distance
function, certain words frequently appear in the
k-nearest neighbors of other words (Dinu et al.,
2015; Faruqui et al., 2016); this is called the
hubness problem in the general machine learning
domain (Radovanović et al., 2010). This phe-
nomenon harms the utility of pretrained word em-
beddings. In the context of NMT, Rios Gonzales et
al. (2017) report that less-frequent words are trans-
lated with low-accuracy; that may be influenced by
the hubness problem.

To address this problem, localized centering
(Hara et al., 2015) and All-but-the-Top (Mu and
Viswanath, 2018) have been proposed in NLP lit-
erature, in which pretrained word embeddings are
debiased using the local bias of each word or the
global bias of the entire vocabulary. In this study,
both debiasing techniques are tested for all embed-
ding types.

Localized centering Localized centering shifts
each word based on its local bias. The local cen-
troid for each word x is computed and subtracted
from the original word x to obtain the new embed-
ding x̂.

ck(x) =
1

k

∑

x′∈kNN(x)

x′ (36)

x̂ = x− ck(x) (37)

where k is a hyperparameter called local segment
size 5; kNN(x) returns the k–nearest neighbors of
the word x.

4We use γ = 0.1 in our experiment.
5We use k = 10 in our experiment.

Language Lines Types Tokens

English 96M 10M 2,347M
German 35M 11M 829M
French 39M 4M 703M

Table 1: Statistics of Wikipedia corpus for each language.

All-but-the-Top All-but-the-Top uses the global
bias of the entire vocabulary to shift the embedding
of each word. The algorithm of All-but-the-Top
has three steps: subtract the centroid of all words
from each word x, compute the PCA components
for the centered space, and subtract the top n PCA
components from each centered word to obtain the
final word x̂.

x′ = x− 1

|V|
∑

w∈V
w (38)

u1, u2, · · · , uD = PCA(x′ ∈ V) (39)

x̂ = x′ −
D∑

i=1

(uTi x
′)ui (40)

where D is a hyperparameter that is used to de-
termine how many principal components of pre-
trained word embeddings are ignored6.

5 Experiment

5.1 Word Embeddings
Training corpus As publicly available pre-
trained word embeddings use different training
corpora, we created a monolingual corpus from
Wikipedia for a fair comparison. We downloaded
the January 20, 2019, version of Wikidump for En-
glish, German, and French7 and extracted article
pages. All extracted sentences are preprocessed
by lower-casing, tokenizing, and normalizing the
punctuation using the Moses script 8. Table 1
shows the statistics of the preprocessed Wikipedia
corpus for each language.

Training settings All embeddings trained on
Wikipedia have a dimension of 300. The specific
options set for training are as follows; default val-
ues were used for other options.

We trained the word2vec model9 using the
CBOW algorithm with window size of 10, nega-
6We use D = 3 in our experiment.
7https://dumps.wikimedia.org/
8We applied preprocessing using task1-tokenize.sh
from https://github.com/multi30k/dataset.
9We train using https://github.com/tmikolov/word2vec.
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tive sampling of 10, and minimum count of 10; the
GloVe model10 with windows size of 10 and mini-
mum count of 10; and the FastText model11 using
the CBOW algorithm with word n-gram of 5, win-
dow size of 5, and negative sampling of 10.

Unknown words There are two types of un-
known words: words that are a part of pretrained
word embeddings but are not included in a vo-
cabulary (Out-Of-Vocabulary (OOV) words) and
words that are a part of a vocabulary but are not
included in pretrained word embeddings (OOV
words for embeddings). OOV words for embed-
dings only exist when using word-level embed-
dings (word2vec and glove); the embeddings of
such words in FastText are calculated as the mean
embedding of character n-grams consisting of the
word.

The embeddings for both types of OOV words
are calculated as the average embedding over
words that are a part of pretrained word embed-
dings but are not included in the vocabularies, and
they are updated individually during training.

5.2 Dataset

We train, validate, and test all multimodal NMT
models using the Multi30K (Elliott et al., 2016)
dataset. English is selected as the source lan-
guage, and German/French are selected as target
languages. All sentences in all languages are pre-
processed by lower-casing, tokenizing, and nor-
malizing the punctuation.

We run experiments without byte pair encod-
ing (BPE) (Sennrich et al., 2016) for all models
as BPE breaks a word into subwords, resulting
in an increase in OOV words for word2vec and
GloVe embeddings. In addition, we also run ex-
periments using BPE with 10k merge operations
to show the utility of pretrained word embeddings.
The BPE subwords are shared for source and tar-
get languages and learnt from training dataset12.
Table 2 shows the statistics of vocabularies in the
Multi30K training data.

Visual features are extracted using pretrained
ResNet-50 (He et al., 2016). We encode all images
in the Multi30K dataset using ResNet-50 and pick
out the hidden state in the res4f layer of 1024D for
the doubly-attentive model, and that in the pool5

10We train using https://github.com/stanfordnlp/GloVe.
11We train using https://github.com/facebookresearch/fastText.
12We use https://github.com/rsennrich/subword-nmt to train
and apply BPE.

OOV
Language Types Tokens Vocab Embed

English 10,210 377,534 10M 129
German 18,722 360,706 11M 1,841
French 11,219 409,845 4M 89

with BPE

English 5,199 397,793 N/A N/A
→ German 7,062 400,507 N/A N/A
English 5,830 394,353 N/A N/A
→ French 6,572 428,762 N/A N/A

Table 2: Statistics of vocabularies without BPE (upper) and
with BPE (lower) in Multi30K training data. “Vocab” denotes
the number of OOV words for the vocabulary. “Embed” de-
notes the number of OOV words for embeddings. “English →
German” shows statistics of the shared subwords for English–
German translation, and “English → French” for English–
French translation.

layer of 2048D for IMAGINATION and VAG-
NET, respectively.

5.3 Model

All models are implemented using nmtpytorch
toolkit v3.0.013 (Caglayan et al., 2017).

The encoder for each model has one layer with
256 hidden dimensions, and therefore the bidirec-
tional GRU has 512 dimensions. We set the latent
space vector size for IMAGINATION to 2048 and
the dimension of the shared visual-text space for
VAG-NET to 512. The input word embedding size
and output vector size are 300 each.

We use the Adam optimizer with learning rate of
0.0004. The gradient norm is clipped to 1.0. The
dropout rate is 0.3.

BLEU (Papineni et al., 2002) and METEOR
(Denkowski and Lavie, 2014) are used as perfor-
mance metrics. As in (Qi et al., 2018), we also
evaluated the models using the F-score of each
word. The F-score is calculated as the harmonic
mean of the precision (the fraction of produced
sentences containing a word that is in the refer-
ences sentences) and the recall (the fraction of ref-
erence sentences containing a word that is in the
model outputs). We ran the experiment three times
with different random seeds and obtained the mean
for each model.
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English→ German

debiasing None Localized Centering All-but-the-Top
Model embedding BLEU METEOR BLEU METEOR BLEU METEOR

NMT random 34.57 54.50
Doubly-attentive random 33.50 52.75
IMAGINATION random 34.97 54.21
VAG-NET random 35.55 54.87

NMT word2vec 34.23 52.83 34.14 53.09 33.88 52.66
GloVe 35.49 55.14 35.33 54.89 35.98 55.15
FastText 33.63 52.48 33.42 52.34 33.91 52.65

Doubly-attentive word2vec 32.05 50.85 32.07 51.23 32.73 51.04
GloVe 34.06 53.74 33.37 52.98 34.77 53.86
FastText 31.14 49.29 31.04 50.33 30.86 50.13

IMAGINATION word2vec 33.97 52.59 33.43 52.32 34.35 52.79
GloVe 35.74 55.00 35.92 55.15 36.59 55.35
FastText 34.21 52.53 33.69 52.22 33.83 52.31

VAG-NET word2vec 34.32 53.01 34.10 53.40 33.91 52.70
GloVe 36.01 55.31 35.56 54.61 36.36 55.17
FastText 34.12 52.56 33.92 52.75 33.82 52.38

Table 3: Results obtained using Multi30K test2016 dataset for English–German translation. “NMT” shows the results of
Bahdanau et al. (2015). When the debiasing is “None,” we show the results obtained with raw pretrained word embeddings or
random values.

English→ French

debiasing None Localized Centering All-but-the-Top
Model embedding BLEU METEOR BLEU METEOR BLEU METEOR

NMT random 57.15 72.47
Doubly-attentive random 54.85 71.06
IMAGINATION random 57.38 72.57
VAG-NET random 57.78 73.21

NMT word2vec 55.65 70.79 55.82 70.90 56.20 71.20
GloVe 58.14 73.67 57.76 73.00 58.24 73.40
FastText 55.13 70.18 55.24 70.56 55.42 70.60

Doubly-attentive word2vec 52.32 68.06 53.30 68.98 52.95 68.68
GloVe 56.25 72.19 54.58 71.23 56.12 71.91
FastText 50.46 66.35 51.02 67.20 51.22 67.09

IMAGINATION word2vec 55.94 70.91 55.63 70.73 55.96 70.93
GloVe 57.89 73.09 57.65 73.16 58.10 73.26
FastText 55.12 70.17 55.52 70.77 55.52 70.42

VAG-NET word2vec 56.23 71.14 55.79 70.82 56.33 71.34
GloVe 58.45 73.59 57.31 73.16 57.94 73.40
FastText 55.25 70.45 55.33 70.51 55.49 70.63

Table 4: Results obtained using Multi30K test2016 dataset for English–French translation. “NMT” shows the results of
Bahdanau et al. (2015). When the debiasing is “None,” we show the results obtained with raw pretrained word embeddings or
random values.
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Figure 1: F-score of word prediction per frequency breakdown in training corpus. The model without brackets is initialized
with random values: “(None),” GloVe without debiasing; “(LC),” GloVe with localized centering; and “(AbtT),” GloVe with
All-but-the-Top.

Source two men playing guitar in front of a large au-
dience .

Reference zwei männer spielen gitarre vor einem großen
publikum .

VAG zwei männer spielen vor einem großen pub-
likum gitarre .

VAG (GloVe) zwei männer spielen gitarre vor einem großen
publikum .

Table 5: Examples of English–German translations obtained using test dataset. “(GloVe)” denotes the model with the optimal
settings for GloVe.

5.4 Results

Table 3 shows the overall performance of the
randomly initialized models and the models ini-
tialized with pretrained word embeddings for
English–German translation. Though GloVe em-
beddings show considerable improvement for both
in text-only NMT and all types of multimodal
NMT, word2vec and FastText embeddings greatly
reduce model performance even with some debi-
asing. With GloVe embeddings, All-but-the-Top
debiasing results in further improvement. In par-
ticular, IMAGINATION is improved with GloVe
embedding initialization (+0.77 BLEU and +0.79
METEOR) and showed further improvement with
All-but-the-Top debiasing (+1.62 BLEU and +1.14
METEOR).

Table 4 shows that the combination of GloVe
embedding and All-but-the-Top debiasing greatly
improves the overall performance of each model
for English–French translation. The model with
GloVe and All-but-the-Top surpasses the randomly

13https://github.com/toshohirasawa/mmt-emb-init

initialized model by +1.09 BLEU and +0.93 ME-
TEOR in the text-only NMT model, by +1.27
BLEU and +0.85 METEOR in the doubly-attentive
model, by +0.72 BLEU and +0.69 METEOR in
the IMAGINATION model, by +0.16 BLEU and
+0.19 METEOR in the VAG-NET model, respec-
tively.

6 Discussion

Word embedding In our study, GloVe performs
the best among three word embeddings, while
word2vec and FastText do not help multimodal
NMT models; the degradation of word2vec is at-
tributed to the cohesiveness of word embeddings
and that of FastText the shortage of training data,
respectively.

The word embeddings in word2vec are reported
to be cohesively clustered and not evenly dis-
tributed, while those in GloVe are well distributed
(Mimno and Thompson, 2017). This makes it
harder to train the model with word2vec rather
than the model initialized using random values, as
the model with word2vec is required to learn all the
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English→ German

BPE Init BLEU METEOR

No random 35.55 54.87
No GloVe 36.36 55.17
Yes random 35.46 55.30

English→ French

BPE Init BLEU METEOR

No random 57.78 73.21
No GloVe 58.45 73.59
Yes random 56.63 72.38

Table 6: Results of VAG-NET with various settings obtained
using Multi30K test2016 dataset for English–German transla-
tion (upper) and English–French translation (lower). “BPE”
denotes whether a model uses BPE. “Init” denotes the ini-
tialization strategy: “random,” a model initialized using ran-
dom values and “GloVe,” a model initialized using GloVe em-
beddings with All-but-the-Top debiasing (English–German)
or without debiasing (English–French).

word representations from almost the same value
i.e. the mean vector of entire embeddings.

FastText requires more training data than GloVe
does, as it learns not only embeddings for words
but also those of their subwords. Our pre-
trained word embeddings are trained using only
Wikipedia and do not use Common Crawl; it con-
tains at least 50 times tokens and three times words
than Wikipedia does, and is used together with
Wikipedia to construct FastText embeddings that
improve NMT models (Qi et al., 2018).

Debiasing All-but-the-Top improves most of
models for both English–German translation and
English–French translation; this may prove the
idea suggested in Mu and Viswanath (2018), in
which neural network models may not be able to
learn the debiasing technique by themselves.

In contrast, models using localized centering
only show a comparable performance with models
not using debiasing. It is because that the debiased
vector has small norm and thus the additional train-
ing may break the relation of debiased vectors, as
localized centering subtracts the local centroid of
a word that is quite similar with the word. This
observation is contrary with Hara et al. (2015), in
which debiased word embeddings are used without
the additional training.

Languages We found that pretrained word em-
beddings are more useful for English–German
translation than for English–French translation.
The best models with GloVe embedding surpasses
the randomly initialized model by +1.28 BLEU
in average for English–German translation, but by
only +0.97 BLEU for English–French translation
with the optimal settings. This is because the Ger-
man decoder has more unique words (18,722 for
German and 11,219 for French, as listed in Table
2) in the original training dataset, resulting in less
in-vocabulary words after restricting the vocabu-
lary and making it difficult for the German decoder
learn embeddings from scratch.

BPE BPE is an alternative approach to improve
translation quality. Therefore, we compared the
VAG-NET model with GloVe embeddings and the
VAG-NET model with BPE to validate which ap-
proach would contribute more to the overall per-
formance (Table 6). Although BPE does not
improve the VAG-NET model for both English–
German and English-French translation, GloVe
embeddings provide a substantial improvement in
both language pairs.

Translation quality To understand the model
performance for translating rare words, we com-
puted the F-score of VAG-NET models with var-
ious debiasing techniques (Figure 1). Although
VAG-NET models with GloVe embeddings out-
perform the model with random initialization, we
do not observe a consistent improvement for rare
word translation, as reported in (Qi et al., 2018).

Translation examples Table 5 shows English–
German translations generated by VAG-NET mod-
els with different initialization strategies. Com-
pared to the model without pretrained word em-
beddings, the model with GloVe embeddings gen-
erates a more fluent sentence.

7 Conclusion

We have explored the use of pretrained word em-
beddings with various multimodal NMT models.
We showed that GloVe embeddings improve the
performance of all multimodal translation models,
and All-but-the-Top debiasing can result in further
improvement.

In the future, we will examine training ap-
proaches for word embeddings that are more suit-
able for multimodal NMT, especially by consider-
ing MT evaluation metrics when training word em-
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beddings. For example, fine-tuning word embed-
dings based on BLEU or other metrics for machine
translation could further improve the compatibility
of pretrained word embeddings with multimodal
NMT models.
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Abstract

The combination of machines and humans
for translation is effective, with many stud-
ies showing productivity gains when hu-
mans post-edit machine-translated output
instead of translating from scratch. To
take full advantage of this combination,
we need a fine-grained understanding of
how human translators work, and which
post-editing styles are more effective than
others. In this paper, we release and an-
alyze a new dataset with document-level
post-editing action sequences, including
edit operations from keystrokes, mouse ac-
tions, and waiting times. Our dataset com-
prises 66,268 full document sessions post-
edited by 332 humans, the largest of the
kind released to date. We show that ac-
tion sequences are informative enough to
identify post-editors accurately, compared
to baselines that only look at the initial and
final text. We build on this to learn and vi-
sualize continuous representations of post-
editors, and we show that these representa-
tions improve the downstream task of pre-
dicting post-editing time.

1 Introduction

Computer-aided translation platforms for interac-
tive translation and post-editing are now com-
monly used in professional translation services
(Alabau et al., 2014; Federico et al., 2014; Green
et al., 2014; Denkowski, 2015; Hokamp, 2018;
Sin-wai, 2014; Kenny, 2011). With the in-
creasing quality of machine translation (Bahdanau

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

et al., 2014; Gehring et al., 2017; Vaswani et al.,
2017), the translation industry is going through a
transformation, progressively shifting gears from
“computer-aided” (where MT is used as an in-
strument to help professional translators) towards
human-aided translation, where there is a hu-
man in the loop who only intervenes when needed
to ensure final quality, and whose productivity is
to be optimized. A deep, data-driven understand-
ing of the human post-editing process is key to
achieve the best trade-offs in translation efficiency
and quality. What makes a “good” post-editor?
What kind of behaviour shall an interface pro-
mote?

There is a string of prior work that relates the
difficulty of translating text with the cognitive load
of human translators and post-editors, based on in-
dicators such as editing times, pauses, keystroke
logs, and eye tracking (O’Brien, 2006; Doherty
et al., 2010; Lacruz et al., 2012; Balling and Carl,
2014, see also §6). Most of these studies, however,
have been performed in controlled environments
on a very small scale, with a limited number of
professional translators and only a few sessions. A
direct use of human activity data for understand-
ing and representing human post-editors, towards
improving their productivity, is still missing, ar-
guably due to the lack of large-scale data. Under-
standing how human post-editors work could open
the door to the design of better interfaces, smarter
allocation of human translators to content, and au-
tomatic post-editing.

In this paper, we study the behaviour of hu-
man post-editors “in the wild” by automatically
examining tens of thousands of post-editing ses-
sions at a document level. We show that these
detailed editor activities (which we call action se-
quences, §2) encode useful additional information
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besides just the initial machine-translated text and
the final post-edited text. This is aligned to re-
cent findings in other domains: Yang et al. (2017)
and Faruqui et al. (2018) have recently shown that
Wikipedia page edits can represent interesting lin-
guistic phenomena in language modeling and dis-
course. While prior work analyzed the cognitive
behaviour of post-editors and their productivity by
collecting a few statistics, we take a step forward in
this paper, using state-of-the-art machine learning
techniques to represent editors in a vector space
(§4). These representations are obtained by train-
ing a model to identify the editor based on his ac-
tion sequences (§3). This model achieves high ac-
curacy in predicting the editor’s identity, and the
learned representations exhibit interesting correla-
tions with the editors’ behaviour and their produc-
tivity, being effective when plugged as features for
predicting the post-editing time (§5).

Overall, we use our action sequence dataset to
address the following research questions:

1. Editor identification (§3): are the post-
editors’ activities (their action sequences)
informative enough to allow discriminating
their identities from one another (compared to
just using the initial machine-translated text
and the final post-edited one)?

2. Editor representation (§4): can the post-
editors’ activities be used to learn meaningful
vector representations, such that similar ed-
itors are clustered together? Can we inter-
pret these embeddings to understand which
activity patterns characterize “good” editors
(in terms of translation quality and speed)?

3. Downstream tasks (§5): do the learned ed-
itor vector representations provide useful in-
formation for downstream tasks, such as pre-
dicting the time to translate a document, com-
pared to pure text-based approaches that do
not use them?

We base our study on editor-labeled action se-
quences for two language pairs, English-French
and English-German, which we make available for
future research. In both cases, we obtain positive
answers to the three questions above.

2 Post-Editor Action Sequences

A crucial part of our work is in converting raw
keystroke sequences and timestamps into action

Action Symbol Appended Info

Replace R new word
Insert I new word
Delete D old word
Insert Block BI new block of words
Delete Block BD old block of words

Jump Forward JF # words
Jump Back JB # words
Jump Sentence Forward JSF # sentences
Jump Sentence Back JSB # sentences
Mouse Clicks MC # mouse clicks
Mouse Selections MS # mouse selections
Wait W time (seconds)
Stop S –

Table 1: Text-editing and non-editing actions.

sequences—sequences of symbols in a finite al-
phabet that describe word edit operations (inser-
tions, deletions, and replacements), batch opera-
tions (cutting and pasting text), mouse clicks or
selections, jump movements, and pauses.

Each action sequence corresponds to a single
post-editing session, in which a human post-edits a
document. The starting point is a set of source doc-
uments (customer service email messages), which
are sent for translation to Unbabel’s online trans-
lation service. The documents are split into sen-
tences and translated by a domain-adapted neu-
ral machine translation system based on Marian
(Junczys-Dowmunt et al., 2018). Finally, each
document is assigned to a human post-editor to
correct eventual translation mistakes.1 These post-
editing sessions are logged, and all the keystroke
and mouse operation events are saved, along with
timestamps. A preprocessing script converts these
raw keystrokes into word-level action sequences,
as we next describe, and a unique identifier is ap-
pended that represents the human editor.

The preprocessing for converting the raw
character-level keystroke data into word-level ac-
tions is as follows. We begin with a sequence
of all intermediate states of a document between
the machine-translated and the post-edited text,
containing changes caused by each keystroke.
We track the position of the word currently be-
ing edited and store one action summarizing the
change in that word. A single keystroke may also

1The human post-editors are native or proficient speakers
of both source and target languages, although not necessar-
ily professional translators. They are evaluated on language
skills and subject to periodic evaluations by Unbabel. Editors
have access to whole documents when translating, and they
are given content-specific guidelines, including style, regis-
ter, etc.
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Source

Hey there,
Some agents do speak Spanish, otherwise our system will translate :)
Best,
<Name>

MT

Bonjour,
Certains agents parlent espagnol, sinon notre système se traduira par :)
Cordialement,
<Name>

PE

Bonjour,
Certains agents parlent espagnol, sinon notre système traduit :)
Cordialement,
<Name>

Actions W:23 JSF:1 JF:8 D:se W:2 MC:1 MS:1 JF:1 D:par W:7
MC:1 MS:1 JB:1 R:traduit W:2 MS:1 S:–

Table 2: Example of a document and corresponding action sequence. We mark in red the MT words that have been corrected
and in blue their replacement. The actions used here were W (wait), JSF (jump sentence forward), JF (jump forward), D
(delete), MC (mouse clicks), MS (mouse selections), JB (jump back), R (replace) and S (stop).

cause simultaneous changes to several words (e.g.
when pasting text or deleting a selected block), and
we reserve separate actions for these. Overall, five
text-editing actions are considered: inserting (I),
deleting (D), and replacing (R) a single word, and
inserting (BI) and deleting (BD) a block of words.
Each action is appended with the corresponding
word or block of words, as shown in Table 1.

Other actions, dubbed non-editing actions, do
not change the text directly. Jump-forward (JF)
and jump-backward operations (JB) count the dis-
tance in words between two consecutive edits. An-
other pair of actions informs when a new sen-
tence is edited: a sentence jump (JSF/JSB) indi-
cates that we moved a certain number of sentences
forth/back since the previous edit. Mouse clicks
(MC) and mouse selections (MS) count their occur-
rences between two consecutive edits. Wait (W)
counts the seconds between the beginning of two
consecutive edits. Finally, stop (S) marks the end
of the post-editing session.

Since we do not want to rely on lexical informa-
tion to identify the human post-editors, only the 50
most frequent words were kept (most containing
punctuation symbols and stop-words), with the re-
maining ones converted to a special unknown sym-
bol (UNK). Moreover, the first waiting time is split
in two: the time until the first keystroke occurs and,
in case the first keystroke is not part of the first ac-
tion (e.g. a mouse click), a second waiting time
until the first action begins.

Table 2 shows an example of a small document,
along with the editor’s action sequence. The edi-
tor began on sentence 2 (“Certains agents...”) and
the word on position 9, since there was a jump for-

ward of 1 sentence and 8 words. After deleting
“se”, position 9 became “traduira”. Since the edi-
tor opted to delete “par” (using a mouse selection)
before changing the verb, there is a jump forward
of 1 word to position 10. Then we have a jump
back of 1 before changing the verb to “traduit”.

Datasets. We introduce two datasets for this
task, one for English-French (En-Fr) and an-
other for English-German (En-De). For each
dataset, we provide the action sequences for
full documents, along with an editor identifier.
To ensure reproducibility of our results, we
release both datasets as part of this paper, avail-
able in https://github.com/Unbabel/
translator2vec/releases/download/
v1.0/keystrokes_dataset.zip. For
anonymization purposes, we convert all editor
names and the 50 tokens in the word vocabulary
to numeric identifiers. Statistics of the dataset are
shown in Table 3: it is the largest ever released
dataset with post-editing action sequences, and
the only one we are aware of with document-level
information.2 Each document corresponds to a
customer service email with an average of 116.6
tokens per document. Each sentence has an
average length of 9.4 tokens.

2The closest comparable dataset was released by Specia et al.
(2017) in the scope of the QT21 project, containing 176,476
sentences spanning multiple language pairs (about 4 times
less), with raw keystroke sequences being available by re-
quest. In contrast to ours, their units are sentences and not
full documents, which precludes studying how human post-
editors jump between sentences when translating a document.

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 45



Figure 1: Left: our Action Seq model for editor identification. Right: our model for post-editing time prediction.

# docs # sents # words

train 17,464 154,026 1,895,389
En-Fr dev 5,514 52,366 659,675

test 9,441 86,111 1,072,807

train 17,403 169,478 2,053,407
En-De dev 6,722 66,521 826,791

test 9,724 98,920 1,221,319

Total 66,268 627,422 7,729,388

Table 3: Number of documents, sentences, and words in En-
glish source text per dataset. There are 149 unique editors
across all En-Fr datasets, and 183 in En-De.

3 Editor Identification

We now make use of the dataset just described to
answer the three research questions stated at the
end of §1, starting with editor identification.

3.1 Data Preparation

For this experiment, we took the action sequence
dataset described in §2 and selected a small num-
ber of human translators for both language pairs
who post-edited a number of documents above a
threshold: this yielded 6 editors for En-Fr and 7
editors for En-De. To ensure balanced datasets,
we filtered them to contain the same number of
samples per selected editor. This filtering yielded a
total of 998/58/58 training/dev/test documents per
editor for En-Fr, and 641/128/72 for En-De.

A random baseline for this dataset would obtain
an editor identification accuracy of 1/6 = 16.7%
for En-Fr and 1/7 = 14.3% for En-De.

3.2 A Model for Editor Identification

Let 〈x1, . . . , xL〉 be an action sequence produced
by a post-editor y. To identify the editor of a
task, we build a model P (y | x1, . . . , xL) using
a neural network as we next describe (shown in
Figure 1). Each action xi is first associated to a
one-hot vector. All numeric actions are grouped

into bins—e.g. waiting times of 200 seconds and
higher all correspond to the same one-hot repre-
sentation. Bins were defined manually, providing
higher granularity to small values than to larger
ones.3 Each one-hot is then mapped to a learn-
able embedding, and the sequence of embeddings
is fed to a 2-layer bidirectional LSTM (biLSTM;
Hochreiter and Schmidhuber (1997); Graves and
Schmidhuber (2005)), resulting in two final states−→
h ,
←−
h . Then we concatenate both, apply dropout

(Srivastava et al., 2014) and feed them to a feed-
forward layer with a ReLU activation (Glorot et al.,
2011) to form a vector h. This vector is taken as
the representation of the action sequence. Finally,
we define P (y | x1, . . . , xL) = softmax(Wh +
b).

We call this model Action Seq, since it exploits
information from the action sequences.

3.3 Baselines

To assess how much information action sequences
provide about human editors beyond the initial
(machine translation) and final (post-edited) text,
we implemented various baselines which do not
use fine-grained information from the action se-
quences. All use pre-trained text embeddings from
FastText (Joulin et al., 2017), and they are all tuned
for dropout and learning rate:

• One using the machine-translated text only
(MT). Since this text has not been touched by
the human post-editor, we expect this system to
perform similarly to the random baseline. The
goal of this baseline is to control whether there
is a bias in the content each editor receives that
could discriminate her identity. It uses word
embeddings as input to a biLSTM, followed by
feed-forward and softmax layers.

3We used {0, . . . , 5, 7, 10, 15, 20, 30, 50, 75, 100, 150, 200+}
for wait and jump events (in seconds and word positions,
respectively); and {0, . . . , 5, 7, 10+} for sentence jumps and
mouse events (in sentence positions and clicks).
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• Another one using the posted-edited text only
(PE). This is used to control for the linguistic
style of the post-editor. We expect this to be a
weak baseline, since although there are positive
results on translator stylometry (El-Fiqi et al.,
2019), the task of post-editing provides less op-
portunity to leave a fingerprint than if writing a
translation from scratch. The architecture is the
same as in the MT baseline.

• A baseline combining both MT and PE using a
dual encoder architecture (MT + PE), inspired
by models from dialogue response (Lowe et al.,
2015; Lu et al., 2017). This baseline is stronger
than the previous two, since it is able to look
at the differences between the initial and final
text produced by the post-editor, although it ig-
nores the process by which these differences
have been generated. Two separate biLSTMs
encode the two sequences of word embeddings,
the final encoded states are concatenated and fed
to a feed-forward and a softmax layer to provide
the editors’ probabilities.

• Finally, a stronger baseline (MT + PE + Att)
that is able to “align” the MT and PE, by aug-
menting the dual encoder above with an atten-
tion mechanism, inspired by work in natural lan-
guage inference (Rocktäschel et al., 2016). The
model resembles the one in Figure 1 (right),
with a softmax output layer and without the
editor representation layer. Two separate biL-
STMs are used to encode the machine-translated
and the post-edited text. The final state of
the MT is used to compute attention over the
PE, then this attention-weighted PE is concate-
nated with MT’s final state and passed through
a feed-forward layer. Symmetrically we obtain
a representation from PE’s final state and an
attention-weighted MT. Finally both vectors are
concatenated and turned into editors’ probabili-
ties through another feed-forward layer.

Additionally, we prepare another baseline
(Delta) as a tuple with meta information contain-
ing statistics about the difference between the ini-
tial and final text (still not depending on the ac-
tion sequences). This tuple contains the following
5 elements: a count of sentences in the document,
minimum edit distance between MT and PE, count
of words in the original document, in MT and in
PE. Each of these elements is binned and mapped
to a learnable embedding. The 5 embeddings are

En-De (%) En-Fr (%)

Delta 16.15 26.09
MT 18.21 16.44
PE 27.38 30.00
MT + PE 26.63 31.78
MT + PE + Att 30.12 35.06

Action Seq 84.37 67.07

Table 4: Results of model and baselines for editor identifica-
tion. Reported are average test set accuracies of 5 runs, with
7 editors for En-De and 6 editors for En-Fr.

En-De (%) En-Fr (%)

Action Seq 83.31 73.16

w/out editing actions 80.60 69.37
w/out mouse info 75.49 66.38
w/out waiting time 80.42 70.92
w/out 1st waiting time 78.60 71.15
only editing actions 60.20 59.08
only mouse info 56.43 55.06
only waiting time 53.53 44.02
only 1st waiting time 24.22 23.11

Table 5: Ablations studies for editor identification. Reported
are average development set accuracies of 5 runs, with 7 edi-
tors for En-De and 6 editors for En-Fr.

concatenated into a vector e, followed by a feed-
forward layer and a softmax activation.

3.4 Editor Identification Accuracy
Table 4 compares our system with the baselines
above. Among the baselines, we observe a grad-
ual improvement as models have access to more
information. The fact that the MT baseline per-
forms closely to the random baseline is reassuring,
showing that there is no bias in the type of text
that each editor receives. As expected, the dual en-
coder model with attention, being able to attend to
each word of the MT and post-edited text, is the
one which performs the best, surpassing the ran-
dom baseline by a large margin. However, none of
these baselines have a satisfactory performance on
the editor identification task.

By contrast, the accuracies achieved by our pro-
posed model (Action Seq) are striking: 84.37% in
En-De and 67.07% in En-Fr, way above the closest
baselines. This large gap confirms our hypothesis
that the editing process itself contains informa-
tion which is much richer than the initial and
final text only.
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Ablation studies. To understand the importance
of each action type in predicting the editor’s iden-
tity, we conduct a series of ablation studies and re-
port development set accuracies in Table 5. These
experiments involve removing mouse information,
time information, initial waiting time or editing ac-
tions. Also, we try keeping only each of the previ-
ous four. We find that all action types contribute to
the global accuracy, although to different extents.
Also, some action types achieve high performance
on their own. Somewhat surprisingly, mouse infor-
mation alone achieves remarkably high accuracy.
Although waiting times also perform well on their
own, removing them has little impact on the final
score.

4 Editor Representation

The previous section has shown how the action se-
quences are very effective for identifying editors.
As a by-product, the Action Seq model used for
that task produced an internal vector h that repre-
sents the full post-editing session. This suggests
a strategy for obtaining editor representations:
simply average all such vectors from each editor.
One way of looking at this is regarding editor iden-
tification as an auxiliary task that assists us in find-
ing good editor representations. This draws inspi-
ration from previous work, such as Mikolov et al.
(2013), as well as its applications to recommenda-
tion systems (Grbovic et al., 2015, 2016). In the
last two works, an auxiliary task also helps to pro-
vide a latent representation of an object of interest.

Visualization of translation sessions. To visu-
alize the vectors h produced during our auxiliary
task, we use Parametric t-SNE (Maaten, 2009) for
dimensionality reduction. Unlike the original t-
SNE (Maaten and Hinton, 2008), the parametric
version allows to reapply a learned dimensional-
ity reduction to new data. This way it is possible
to infer a 2D structure using the training data, and
check how well it fits the test data.

In Figure 2 we show a projection of vectors
h for both language pairs, using a t-SNE model
learned on the training set vectors; each color cor-
responds to a different editor. In the training set
(used to train both the editor identification model
and the Parametric t-SNE) there is one clear clus-
ter for each editor, in both languages. Using test
set data, new tasks also form clusters which are
closely related to the editors’ identity. Some clus-
ters are isolated while others get mixed near their

(a) En-De training set (b) En-Fr training set

(c) En-De test set (d) En-Fr test set

Figure 2: Embeddings of each translation session in the edi-
tor identification train and test sets, with editors identified by
different colors. For each language, the dimensionality re-
duction was learned by training parametric t-SNE (Maaten,
2009) on the train data, and then applying it to both train and
test data. En-De contains 7 editors, each with 641 train and
72 test samples per editor. En-Fr contains 6 editors, each with
998 train and 58 test samples per editor.

borders, possibly meaning that some editors be-
have in a more distinctive manner than others.

Visualization of editor representations. To
represent an editor with a single vector, we aver-
age the h’s of all tasks of a given editor to obtain
his representation. Figure 3 contains representa-
tions for En-Fr editors (similar results have been
achieved for En-De editors), using the exact same
model as in Figure 2b to produce session embed-
dings, and the same t-SNE model for visualization.
To reduce noise we discard editors with less than
10 samples, keeping 117 out of 149 editors. In Fig-
ure 3 we show percentiles for 3 editor features, us-
ing one point per editor and setting color to repre-
sent a different feature in each panel. In Figure 3a,
color represents percentiles of average initial wait-
ing time, and in Figure 3b, percentiles of counts of
jump-backs per MT token. We can observe that the
model learned to map high waiting times to the left
and high counts of jump-backs to the right. In Fig-
ure 3c we have mouse activity per user (percentiles
of counts of mouse clicks and selections). Here we
can see a distribution very similar to that of count
of jump-backs.
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Mouse and JB (%) 1st WT and JB (%)

En-Fr 80.75 −39.65
En-De 59.62 −31.11

Table 6: Pearson correlation between two pairs of variables:
mouse actions / jump backs and first waiting time / jump
backs.

We hypothesize that there are two types of hu-
man editors: those who first read the full document
and then post-edit it left to right; and those who
read as they type, and go back and forth. To check
these hypothesis, we measure the Pearson correla-
tion between two pairs of variables in Table 6. In-
deed, there is a slight negative correlation between
the average initial pause and the count of jump
backs per word. This matches intuition, since a
person who waited longer before beginning a task
will probably have a clearer idea of what needs to
be done in the first place. We also present the cor-
relation between the count of mouse events (clicks
and selections) and count of jump backs, which
we observe to be very high. This may be due to
the need to move between distant positions of the
document, which is more commonly done with the
mouse than with the keyboard.

5 Prediction of Post-Editing Time

Finally, we design a downstream task with the
goal of assessing the information contained in each
translator’s vector h and observing its applicability
in a real-world setting. The task consists in predict-
ing the post-editing time of a given job, which has
been used as a quality estimation task in previous
work (Cohn and Specia, 2013; Specia, 2011). As a
baseline, we use the previously described dual en-
coder with attention (Figure 1, right). The inputs
are the word embeddings of the original document
and of the machine translation. In the output layer,
instead of predicting each editor’s logit, we predict
the logarithm of the post-editing time per source
word, following Cohn and Specia (2013). We use
mean squared error as the loss. For our proposed
model, we augment this baseline by providing a
“dynamic” representation of the human post-editor
as described below.

Dynamic editor representations. In order to
obtain an editor’s embedding in a real-time setting
we do the following: For each new translation ses-
sion, we store its corresponding embedding, keep-
ing a maximum of 10 previous translations per ed-

(a) First wait time (b) Jump-Backs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Mouse Events

Figure 3: Embeddings of each En-Fr editor, mapped using
the same parametric t-SNE as in Figure 2. In 3a we have
average pause before beginning for each editor, in percentile.
In 3b we have the count of jump-backs per MT token of each
editor, also in percentile. In 3c we have percentiles of counts
of mouse clicks and selections per editor.

itor. Whenever an editor’s embedding is required,
we compute the average of his stored translations
into a single vector. This allows updating the ed-
itors’ representations incrementally in a dynamic
fashion, coping with the fact that editors change
their behaviour over time as they learn to use the
translation interface.

To introduce a translator vector h into the pre-
viously described baseline, we increase the input
size of the feed-forward layer which receives both
encoders’ outputs, and we introduce h in this step
by concatenating it to the encoders’ outputs.

Results. Both models are evaluated using Pear-
son correlation between the predicted and real log-
times. Results in Table 7 confirm our hypothesis
that editor representations can be very effective
for predicting human post-editing time, with
consistent gains in Pearson correlation (+30.11%
in En-Fr and +15.05% in En-De) over the base-
line that does not use any editor information. Our
approach also allows for initializing and updating
editor embeddings dynamically, i.e. without hav-
ing to retrain the time-prediction model.4

4This experiment also reveals that previous work on transla-
tion quality estimation (Specia et al., 2018) using time predic-
tions can have biased results if different types of translators
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Using source text
and MT (%)

Adding dynamic
editor embedding (%)

En-Fr dev 19.53 42.98
test 17.58 47.69

En-De dev 27.62 47.40
test 23.67 38.72

Table 7: Pearson correlation between real and predicted log-
arithm of time per word in source text.

6 Related Work

There is a long string of work studying the cog-
nitive effort in post-editing machine translation.
One of the earliest instances is O’Brien (2006),
who investigates the relationship between pauses
and cognitive effort in post-editing. This corre-
lation has also been studied by examination of
keystroke logs (Lacruz et al., 2012; Lacruz and
Shreve, 2014). Our results further confirm this,
and also identify other characteristics as a finger-
print of the editors: mouse information and jumps.

More recently, Moorkens and O’Brien (2015)
compare novice and professional post-editors in
terms of their suitability as research participants
when testing new features of post-editing envi-
ronments. They conclude that professionals are
more efficient but less flexible to interface changes,
which confirms the existence of several editor pro-
files, not necessarily ones better than the others.

Other small-scale studies identify editor be-
haviour during translation. Asadi and Séguinot
(2005) distinguish between translators who plan
ahead and those who type as they think. Daems
and Macken (2019) identify personal prefer-
ences between usage of mouse vs. keyboard.
De Almeida (2013) studies differences and simi-
larities in editor behaviour for two language pairs,
regarding types of edits, keyboard vs. mouse usage
and Web searches.

Carl et al. (2011) have shown that human trans-
lators are more productive and accurate when post-
editing MT output than when translating from
scratch. This has recently been confirmed by Toral
et al. (2018), who have shown further gains with
neural MT compared to phrase-based MT. Kopo-
nen et al. (2012) show HTER (Snover et al., 2006)
is limited to measure cognitive effort, and suggest
post-editing time instead. On the other hand, Her-
big et al. (2019) measure cognitive effort subjec-
tively by directly inquiring translators, and then

edit different documents. Our editor representations can be
potentially useful for removing this bias.

use a combination of features to predict this cog-
nitive effort – such task could potentially be im-
proved by including translator representations as
an additional feature. Blain et al. (2011) take a
more qualitative approach to understanding post-
editing by introducing a measure based on post-
editing actions. Specia (2011) attempts to predict
the post-editing time using quality estimation, and
Koehn and Germann (2014); Sanchez-Torron and
Koehn (2016) study the impact of machine trans-
lation quality in post-editor productivity. Tatsumi
et al. (2012) study the effect of crowd-sourced
post-editing of machine translation output, find-
ing that larger pools of non-experts can frequently
produce accurate translations as quickly as experts.
Aziz et al. (2012) developed a tool for post-editing
and assessing machine translation which records
data such as editing time, keystrokes, and transla-
tor assessments. A similar tool has been developed
by Denkowski and Lavie (2012); Denkowski et al.
(2014b), which is able to learn from post-editing
with model adaptation (Denkowski et al., 2014a).
Our encouraging results on time prediction using
editor representations suggests that these represen-
tations may also be useful for learning personal-
ized translation models.

Yin et al. (2019) learn representations of sin-
gle edits, and include a downstream task: apply-
ing these edits to unseen sentences. Wikipedia ed-
its have been studied by Yang et al. (2017) and
Faruqui et al. (2018). The latter study what can
be learned about language by observing the editing
process that cannot be readily learned by observ-
ing only raw text. Likewise, we study what can be
learned about the translation process by observing
how humans type, which cannot be readily learned
by observing only the initial and final text.

Our work makes a bridge between the earli-
est studies on the cognitive effort of human post-
editors and modern representation learning tech-
niques, towards embedding human translators on
a vector space. We draw inspiration on tech-
niques for learning distributed word representa-
tions (Mikolov et al., 2013; Pennington et al.,
2014), which have also been extended for learn-
ing user representations for recommendation sys-
tems (Grbovic et al., 2015, 2016). These tech-
niques usually obtain high-quality embeddings by
tuning the system for an auxiliary task, such as
predicting a word given its context. In our case,
we take editor identification as the auxiliary task,
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given a sequence of keytrokes as input. A related
problem (but with a completely different goal) is
the use of keystroke dynamics for user authenti-
cation (Monrose and Rubin, 2000; Banerjee and
Woodard, 2012; Kim and Kang, 2018). Unlike
this literature, our paper is focused on post-editing
of machine-translated text. This is more similar
to El-Fiqi et al. (2019), who focus on identifying
the translator of a book from his translation style.
However, we are not interested in the problem of
editor identification per se, but only as a means to
obtain good representations.

7 Conclusions

We introduced and analyzed the largest public
dataset so far containing post-editing information
retrieved from raw keystrokes. We provided strong
evidence that these intermediate steps contain pre-
cious information unavailable in the initial plus fi-
nal translated document, by formulating and pro-
viding answers to three research questions: (i) that
action sequences can be used to perform accu-
rate editor identification; (ii) that they can be used
to learn human post-editor vector representations
that cluster together similar editors; and (iii) that
these representations help downstream tasks, such
as predicting post-editing time. In sum, we showed
that fine-grained post-editing information is a rich
and untapped source of information, and we hope
that the dataset we release can foster further re-
search in this area.
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Abstract

Translation quality could degrade non-
gracefully outside the desired domain for
MT. Meanwhile, translation requests are
often unknown and potentially out-of-
domain in practice. This paper shows that
having an ecosystem with a range of pre-
trained domain-specific MT systems can
reduce the effect: a translation task can
be out of scope of most pre-trained MT
systems, but a few others can be capable
of handling the task. But how to obtain
the best translation from an ecosystem for
such translation requests? We contribute
two frameworks to address the problem.
Experiments show that our frameworks
give the performance in the middle be-
tween top rank MT systems with reason-
ably large-scale ecosystems.

1 Introduction

Translation models have been developed under the
assumption that we know the domain at test time in
advance, and the domain is strictly relevant to our
training data. However, we inevitably will come
across test data that is sampled from a different dis-
tribution to our training data when using the mod-
els in the wild. Another critical thing is that the
domain of test data is often unknown in practice
(e.g. Google Translate and Microsoft Translators
receive translation requests from their users with-
out knowing in advance their interests).

We have not had a solution for this well-known
problem yet. Machine Translation (MT) has been

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

advanced by new models, including using Neu-
ral Machine Translation (NMT) instead of Sta-
tistical Machine Translation (SMT). The hope is
that a better translation model would improve the
translation in all settings/situations. This, how-
ever, is not true. Translation quality could degrade
nongracefully outside the desired domain for both
NMT and SMT. In fact, it has been known that
NMT suffers even harder than SMT when the test
data is out-of-domain (Koehn and Knowles, 2017;
Chu and Wang, 2018). We also improve MT by
using domain adaptation methods (i.e. improving
translation system from having a small seed in-
domain data such as system interpolation, instance
weighting and data selection). In practice, this is
not a thorough solution because we do not know
the domain of user translation requests in advance.

The contribution of this work is to pro-
vide a simple, easy-and-fast-to-deploy, translation
model-agnostic1 solution to the challenging prob-
lem. Our approach is to construct an “ecosystem”
with a range of pre-trained domain-specific MT
systems, each specialized in a certain domain (e.g.
Speech, Financial, Food, etc.). Our intuition is
that having such an ecosystem could reduce the de-
crease in translation quality for an outside domain.
That is, an out-of-domain translation task can be
out of scope of most pre-trained MT systems in
the ecosystem. However, with the diversity of do-
mains in a reasonably large ecosystem, we hope
there is a chance to have certain pre-trained sys-
tems in the ecosystem that can be capable of han-
dling the task well. The larger our ecosystem is,
the more likely we have more capable pre-trained
MT systems to an out-of-domain task.

The next step is to work on an unsupervised

1We aim for a solution that works with both NMT, SMT or
other translation models.
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method that automatically finds the best transla-
tions from an ecosystem for every translation re-
quest from an unknown and out-of-domain trans-
lation task. This is surprisingly difficult. Creat-
ing a domain classifier for translation requests pro-
vides suboptimal performance, because the target
domain is unknown and out-of-domain. System
combination could degrade translation quality sub-
stantially, as the majority of pre-trained MT sys-
tems in the ecosystem are incapable of handling
the task. We propose two frameworks to address
the problem.

VOTING I involves two separate steps for han-
dling each translation request: First, the request
is translated by all pre-trained MT systems. Sec-
ond, the translation output that is most similar to
others is returned to the user. An agreement mea-
sure is proposed to calculate how similar transla-
tion outputs are. The intuition behind VOTING I
is that good translations may be similar to the oth-
ers. That is, because they are good translations,
they must be similar to translation references, and
therefore it is likely that they are similar to the oth-
ers as well.

VOTING II selects only a limited number of MT
systems for decoding. Decoding cost is thus sub-
stantially cheaper in VOTING II. The intuition be-
hind VOTING II is that MT systems that are good
in a domain tend to agree with each other. How-
ever, the expertise parameters of MT systems re-
garding to an unknown domain are hidden and we
thus do not know which MT systems we should
select. In VOTING II expertise parameters are ini-
tialized randomly and our heuristic learning algo-
rithm consequently updates the parameters during
translation. We note that VOTING II works with
the assumption that the translation requests would
be handled in sequential (not parallel). While this
is not true for all cases, it is true when we trans-
late request translations of large documents as one
task.

We conduct extensive experiments with
Spanish-English, French-English and German-
English to support our intuition. Experiments
show that VOTING I gives the performance in
between the top two systems for medium-scale
ecosystem, and in between the top three systems
for a large-scale ecosystem. VOTING II performs
substantially better than VOTING I and occasion-
ally reaches close to the top Rank 1 MT system
for medium-scale ecosystems. Our framework

is scalable and has promising applications to
large-scale online translation services.2

2 Related Work

This paper discusses a complementary problem to
domain adaptation: How to handle unknown and
out-of-domain translation tasks. Domain adapta-
tion has been an active topic of research for many
years. A survey of domain adaptation for MT can
be referred to (Chu and Wang, 2018; Cuong and
Sima’an, 2017). Within MT, but the domain of
the request is typically known in advance. do-
main adaptation can be regarded as injecting prior
knowledge about the target translation task into
learning.

Combination of in-domain data with a general-
domain system A common is approach is to
combine a system trained on the in-domain
data with a general-domain system (Koehn and
Schroeder, 2007; Farajian et al., 2017; Kobus et
al., 2017; Foster et al., 2010; Shah et al., 2010;
Bisazza et al., 2011; Sennrich, 2012b; Razmara
et al., 2012; Cuong and Sima’an, 2014a; Cuong
and Sima’an, 2015; Sennrich et al., 2013; Haddow,
2013; Hildebrand and Vogel, 2008; Joty et al.,
2015; Wang et al., 2018; Khayrallah et al., 2017;
Chen et al., 2017; Tars and Fishel, 2018) or to com-
bine the in-domain system with a system trained on
a selected subset (Axelrod et al., 2011; Duh et al.,
2013; Kirchhoff and Bilmes, 2014; Eetemadi et al.,
2015; Chen and Huang, 2016; Wang et al., 2018;
van der Wees et al., 2017; Cuong and Sima’an,
2014b).

Meta-information Prior knowledge may also lie
in meta-information about training data. This
could be document-annotated information (Eidel-
man et al., 2012; Hu et al., 2014; Hasler et
al., 2014; Zhang et al., 2014; Su et al., 2015),
and domain-annotated sub-corpora (Chiang et al.,
2011; Sennrich, 2012b; Chen et al., 2013; Kothur
et al., 2018; Michel and Neubig, 2018; Bapna and
Firat, 2019).

Other DA Topics Recent work also performs
adaptation by exploiting separate in-domain devel-
opment sets (Sennrich, 2012a; Carpuat et al., 2013;
Mansour and Ney, 2014; Clark et al., 2012; Wang
et al., 2012). Rewarding domain invariance is also

2The code can be downloaded at:
github.com/hoangcuong2011/UnsupervisedDomainAdaptation.
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another approach to perform unsupervised adapta-
tion (Cuong et al., 2016). Combining several dif-
ferent Machine Translation outputs operating on
the same input is also a promising DA approach
(Jayaraman and Lavie, 2005; Hildebrand and Vo-
gel, 2008).

Using online methods for adapting MT sys-
tems in a scenario where human feedback (e.g.
post-edited MT output) is constantly returned has
been gaining interest recently (Ortiz-Martı́nez et
al., 2010; Koehn et al., 2014; Denkowski et al.,
2014; Bertoldi et al., 2014; Blain et al., 2015;
Ortiz-Martı́nez, 2016; Wuebker et al., 2016; Ka-
rimova et al., 2018). Using Bayesian models pro-
vides promising results for adapting MT systems
(e.g. see (Denkowski et al., 2014; Bertoldi et al.,
2014; Blain et al., 2015; Peris and Casacuberta,
2018)). Recently, deploying bandit learning algo-
rithms shows promising results for minimizing the
cost of human feedback for improving system per-
formance (e.g. see (Sokolov et al., 2015; Sokolov
et al., 2016; Sokolov et al., 2017; Nguyen et al.,
2017)).

3 Our Framework

Assume we are given a set of N pre-trained MT
systems mN

1 = {m1, m2, . . . , mN}. At test
time, our goal is to handle an unknown and out-of-
domain translation task: fK1 = {f1, f2, . . . , fK}.
Note that the requests may be submitted intermit-
tently by the user, which is common in practice
(e.g. as in web-based translation services).

3.1 Voting I
Our first proposed framework is VOTING I. It in-
volves two separate steps. First, each translation
request f is translated by all pre-trained MT sys-
tems. Second, the translation output produced by
an MT system that is most similar to others is re-
turned to the user. Note that this approach is quite
similar to (Macherey and Och, 2007), only that the
approach here is made to be symmetrical.

Technically, the agreement between two trans-
lation outputs em and e

m′ produced by two dif-
ferent MT systems m and m′ is calculated as
the arithmetic mean between BLEU+1(e, e′) and
BLEU+1(e′,e):

a(em, em′) =
BLEU+1(em, em′) + BLEU+1(em′, em).

2

Here, BLEU+1 (Lin and Och, 2004) is a variant
of BLEU for sentence-level assessment (Papineni

et al., 2002). Given that all N MT systems are
used to decode each translation request, the aver-
age agreement score between one translation out-
put em produced by an MT system m and all the
others produced by other MT systems m′ is calcu-
lated as:

a(em) =
∑

m′6=m

1

N − 1
a(em, em′). (1)

VOTING I simply uses the proposed agree-
ment measure to rank translation outputs. As dis-
cussed, our assumption is that good translations
(e.g. Book, Wikipedia) is likely to be similar to
the others. See Table 1 for a positive example we
obtain from our experiments with VOTING I .

3.2 Voting II
MT systems can generate similar translations by
chance. We show such an example we obtain from
our experiments with VOTING I in Table 2 (on the
left). There are also cases of “black sheep”: a very
good translation may be too different from the oth-
ers. Table 2 (on the right) shows such an exam-
ple. VOTING I is not able to handle these issues.
Applying VOTING I is expensive regarding the de-
coding cost.

How to address these issues? In our refined
framework – VOTING II, we introduce a set of
expertise parameters of all MT systems: ΘN

1 =
{θm1 , θm2 , . . . , θmN }. Here, expertise parameter
θm represents how suitable a systemm to a certain
domain. VOTING II simply selects only the top M
MT systems with the highest expertise parameters,
instead of using all N MT systems for decoding
each translation request. In our experiments, we
set M = 3.

VOTING II addresses the shortcomings of VOT-
ING I as follows:

• (1) VOTING II explicitly filters bad MT sys-
tems for a certain domain;

• (2) VOTING II ranks translation outputs ac-
cording to a sum of a(em) + θm instead of
only a(em) as in VOTING I;

• and (3) the decoding cost is substantially re-
duced (with a ratio of (N −M)/N ). As dis-
cussed, VOTING II works with the assump-
tion that the translation requests would be
handled in sequential and not parallel (e.g.
we translate request translations of large doc-
uments as one task).
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Medicine Input: aliments et boissons abilify peut se prendre pendant ou en dehors des repas .
Reference: taking abilify with food and drink abilify can be taken regardless of meals .

MT System Score Translation Output
Book 0.70 food and drink abilify can take during or outside meals .
Speech 0.64 food and drink abilify can take yourself for or outside meals .
IT 0.45 aliments and boissons abilify might take in or out of meal .
Bank 0.58 foods and beverages abilify may take during or outside the repas .
News 0.65 foods and drinks abilify can take during or outside the meal .
Wikipedia 0.69 food and drink abilify can be take during or outside the meal .
Legal 0.52 feedingstuffs and beverages abilify may be taken during or outside the meals .
Europarl 0.65 food and drink abilify can take over or outside meals .
Subtitles 0.58 aliments and drinks abilify can take for or out the food .

Table 1: Positive example with VOTING I: Good translations (e.g. Book, Wikipedia) tend to be similar to the others.

Medicine Input: resume des caracteristiques du produit Input: étiquetage et notice
Reference: summary of product characteristics Reference: labelling and package leaflet

MT System Score Translation Output Score Translation Output
Book 0.62 resume of product characteristics 0.30 labelling and package leaflet
Speech 0.78 resume of caracteristiques of the product 0.53 étiquetage and warning
IT 0.77 resume of caracteristiques the product 0.53 tag and notice
Bank 0.46 summary of characteristics of product 0.74 étiquetage and notice
News 0.78 resume of caracteristiques of the product 0.74 étiquetage and notice
Wikipedia 0.74 resume the caracteristiques of the product 0.74 étiquetage and notice
Legal 0.69 resume of the characteristics of the product 0.36 labelling and document
Europarl 0.70 resume the caracteristiques product 0.74 étiquetage and notice
Subtitles 0.63 resume some caracteristiques the product 0.74 étiquetage and notice

Table 2: Two negative examples with VOTING I. On the left: bad translations (e.g. IT, Wikipedia, Speech) are also similar to
the others by chance. On the right: a case of “black sheep”: a very good translation (Book) is too different from the others.

Of course the expertise parameters of MT sys-
tems are hidden. The question is how to learn
them? The intuition behind VOTING II is that MT
systems that are good in a certain domain are likely
to agree with each other.

Two models are proposed in this paper to im-
plement the idea. They are in the same spirit: the
expertise parameter of each system m is sampled
from a posterior distribution πm(θ): θm ∼ πm(θ).
Our heuristic learning algorithm starts in a naive
state, and we do not have any a-priori preference
for one system over another. The algorithm con-
sequently updates the parameters of the posterior
distribution πm(θ) based on agreement scores for
translation outputs produced by system m. The
proposed models use different posterior distribu-
tions π(θ) for sampling θ. Our goal of proposing
different models is to investigate which one that
addresses the problem best.

Figure 1 illustrates the framework.

3.2.1 Voting II Real

Our first model (VOTING II - REAL) uses nor-
mal distribution to sample expertise parameters.
Let us assume a sample of agreement scores from
all translation outputs produced by an MT system
m as Am = {a1, a2, . . . , a|Am|}. Here, |Am| de-
notes the sample size. Let us denote the sample
mean and sample variance as µ̄m and δ2

m.
In VOTING II - REAL, we assume (by way of

the Central Limit Theorem) that the expertise pa-
rameter of systemm is approximately normal with
mean µ̄m and variance δ2

m/|Am|:

θm ∼ N (µ̄m, δ
2
m/|Am|). (2)

We propose a heuristic algorithm for learning
expertise parameters in VOTING II - REAL:

• Given each translation request f , expertise pa-
rameter is first drawn from the posterior distri-
bution for each MT system.
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1 2 3 4 5

e1 e2 e4

θ1 ∼ π1(θ) θ2 ∼ π2(θ) θ3 ∼ π3(θ) θ4 ∼ π4(θ) θ5 ∼ π5(θ)

a(e1) a(e2) a(e4)

Sample Expertise Parameters

Select Top Systems

Perform Translation

Compute Agreement Score

Return em̂, with m̂ = argmax
m=1,2,4

a(em) + θm, and up-

date posterior distributions πm(θ) for selected systems

Figure 1: The setup of VOTING II for N = 5. Expertise θ is sampled from posterior distribution π(θ) for each system, and
three systems are selected. Here we assume the top 3 systems arem1,m2 andm4. Then, agreement scores for their translations
are calculated. The translation with the highest agreement is returned. Finally, the posterior distributions are updated for all
three selected systems.

• Select top three MT systems m, m′ and m′′

with the highest expertise parameters and de-
code translation request f . Let us assume trans-
lation outputs are as em, e

m′ and e
m′′ respec-

tively.

• Compute a(em), a(e
m′) and a(e

m′′).

• Add a(em) to Am, a(e
m′) to A

m′ and a(e
m′′)

to A
m′′. Update sample mean µ̄m and sample

variance δ2
m for Am, A

m′ and A
m′′.

Analysis: MT systems are promoted/demoted ex-
plicitly during learning. A high agreement score
increases the sample mean for a promoted system,
while a low agreement score decreases the sample
mean for a demoted system. A promoted system
becomes more likely to be selected in later rounds,
but it is not the case for a demoted system.

The chance of being selected for MT systems
also depends on variance for sampling expertise
parameters. The variance effect decreases with
sample size |A|. This reflects that the learning be-
comes gradually more confident about its estimate
of expertise parameters.

3.2.2 Voting II Binary
Our second model (VOTING II - BINARY) uses

Beta distribution to sample expertise parameters.
The parameters of the posterior distribution is up-
dated based on a simplified outcome of agreement
scores, which has only two values: [0, 1] (i.e.
SUCCESS/FAILURE). This is done by perform-
ing a Bernoulli trial with success probability ex-
actly as the agreement score.

Let us assume a sample of simplified agreement
scores from all translation outputs produced by an

MT system m as Ām = {ā1, ā2, . . . , ā|Ām|}. For
this sample, we focus on the numbers of SUC-
CESSes/FAILUREs instead of the sample mean
and sample variance. Let us denote the numbers
as Sm and Fm.

In VOTING II - BINARY, we assume that for a
sample of simplified agreement scores Ā, the num-
ber of SUCCESSes is the output of a Binomial
probability distribution with |Ā| Bernoulli trials
with success probability exactly as expertise pa-
rameter θ. We also use the Beta distribution with
two hyper-parameters α and β for priors for the ex-
pertise parameter θ in VOTING II - BINARY, main-
taining uncertainty over their values.

This results in a Beta-Binomial model for VOT-
ING II - BINARY: the expertise parameter θm of
each MT system m is sample from a Beta distribu-
tion with hyper-parameters Sm + α and Fm + β:

θm ∼ Beta(Sm + α, Fm + β). (3)

In our experiments we set α = β = 1 for every
MT system.

Our heuristic algorithm for learning expertise
parameters in VOTING II - BINARY is in the same
spirit as in VOTING II - REAL. Given a translation
request f , expertise parameters are drawn from the
posterior distributions, and top three MT systems
m, m′ and m′′ with the highest expertise parame-
ters are selected to decode f . This results in dif-
ferent translation outputs em, e

m′ and e
m′′ respec-

tively. The update is as follows:

• Compute a(em), a(e
m′) and a(e

m′′).

• Sample ā(em), ā(e
m′) and ā(e

m′′) from
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Bernoulli trials with success probability exactly
as a(em), a(e

m′) and a(e
m′′) respectively.

• Add ā(em) to Ām, ā(e
m′) to Ā

m′ and ā(e
m′′) to

Ā
m′′. Update for Sm and Fm for Ām, S

m′ and
F
m′ for Ā

m′, Sm′′ and F
m′′ for Ā

m′′.

Analysis: MT systems are promoted/demoted ex-
plicitly during learning: the posterior Beta(S+1+
α, F +β) has a higher mean than Beta(S+α, F +
β) and the posterior Beta(S + α, F + 1 + β) has a
lower mean than distribution Beta(S + α, F + β).

Both Beta(S + 1 + α, F + β) and Beta(S +
α, F + 1 + β) have a lower variance than distri-
bution Beta(S + α, F + β). The variance effect
thus also decreases with sample size |Ā|.

4 Experiment Design

We conduct experiments with three language pairs:
Spanish-English, French-English and German-
English. We create different translation ecosys-
tems with a large number (from 6 to 10) of domain-
specific MT systems for experiments. Our experi-
ments are extensive with 23 translation tasks in to-
tal, which are unknown and out-of-domain. Note
that we use NMT for one language pair and SMT
for the rest, and the motivation behind this deci-
sion is simply that training SMT is somewhat eas-
ier than NMT for us.

4.1 Domain-specific MT system

Spanish-English: Our MT system is an attention-
based Neural MT system (Bahdanau et al., 2015)
for English-Spanish. We use Nematus (Sen-
nrich et al., 2016; Sennrich and Haddow, 2016)
with 512-dimensional word embeddings and lay-
ers. We use a vocab size of 50K for both the
source and target languages. The vocabulary con-
tains the top word types from all domains com-
bined, and we train on sentences up to length 50.
Pervasive dropout (Gal and Ghahramani, 2015) is
applied to all vertical and recurrent connections,
but not on word types. We optimize MT systems
using Adam (Kingma and Ba, 2014) with a learn-
ing rate of 0.0001 and use early-stopping to pre-
vent over-fitting. Translations are obtained using
beam search with a beam of size 12.

We create a medium scale translation ecosys-
tem with 6 different domain-specific Neural MT
systems for Spanish-English. Each MT system is
trained on a domain-specific dataset consisting of
250K sentence pairs, which is taken from OPUS.

The system is tuned on an in-domain devset with
3K sentence pairs. The domains are: Subtitles
(Domain 1), Wikipedia (Domain 2), Medicine (Do-
main 3), Legal (Domain 4), News (Domain 5),
and Speech (Domain 6). Each domain has an in-
domain test set with 3K sentence pairs as transla-
tion task.
French-English: The scale of our ecosystem is in-
creased to 10 instead of 6 for experiments with
French-English, Our MT systems are with SMT
instead of Neural MT systems. Each SMT sys-
tem is a standard phrase-based approach (Koehn et
al., 2003). The language model is a 4-gram model
with Kneser-Ney smoothing, estimated by KenLM
(Heafield et al., 2013) from in-domain monolin-
gual corpus. We use the k-best batch MIRA to
tune MT systems (Cherry and Foster, 2012). Fi-
nally, the decoder is MOSES (Koehn et al., 2007).

Each domain-specific SMT system is trained on
a domain-specific dataset consisting of 250K sen-
tence pairs, and tuned on an in-domain devset with
3K sentence pairs taken from OPUS. The domains
are: Book (Domain 1), Speech (Domain 2), IT
(Domain 3), Bank (Domain 4), News (Domain 5),
Medicine (Domain 6), Wikipedia (Domain 7), Le-
gal (Domain 8), European Parliament (Domain 9),
Subtitles (Domain 10). Similarly, each domain has
an in-domain test set with 3K sentence pairs as
translation task.
German-English: Domain-specific MT systems
are constructed differently for German-English.
We first train an SMT system on a dataset con-
sisting of 4.1M sentence pairs released for WMT
2015 Shared Task. We then optimize the system
over 7 different domain-specific devsets with dif-
ferent domains taken from TAUS. The domains
are: Consumer Electronics (Domain 1), Hardware
(Domain 2), Industrial Electronics (Domain 3),
Legal (Domain 4), Professional & Business (Do-
main 5), Software (Domain 6), Retail Distribution
(Domain 7).

The agreement degree between domain-specific
MT systems for our German-English translation
ecosystem for the pair is expected to be signifi-
cantly higher than for the other cases.

4.2 Translation Task

Given each translation ecosystem, we are given
one task out of the N translation tasks at test time.
We evaluate how do we obtain translation quality
from an ecosystem with range of remaining N − 1
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Spanish-English

Tasks Reference Avg. Rank 2 Rank 1 VOTE I VOTE II
MT1 MT2 MT3 MT4 MT5 MT6 REAL BIN.

Task 1 − 14.3 2.2 2.8 22.5 19.4 15.1 19.4 22.5 20.4 22.4 22.1
Task 2 7.0 − 6.2 13.6 31.0 20.3 14.1 20.3 31.0 26.6 29.9 29.5
Task 3 2.3 21.0 − 20.7 17.8 11.3 14.6 20.7 21.0 22.8 23.1 23.0
Task 4 2.7 25.6 8.0 − 22.1 15.1 14.7 22.1 25.6 23.9 24.7 24.4
Task 5 7.6 27.6 4.9 10.9 − 22.6 14.7 22.6 27.6 25.6 26.6 26.6
Task 6 16.1 24.8 4.8 7.2 29.0 − 16.4 24.8 29.0 26.8 26.7 28.2

Table 3: Results for Spanish-English experiments.

French-English

Tasks Reference Avg. Rank 3 Rank 2 Rank 1 VOTE I VOTE II
MT1 MT2 MT3 MT4 MT5 MT6 MT7 MT8 MT9 MT10 REAL BIN.

Task 1 − 9.6 6.3 9.8 12.2 8.7 11.5 11.7 13.9 5.7 9.9 11.7 12.2 13.9 12.7 13.0 12.5
Task 2 18.3 − 14.8 13.3 27.3 11.4 21.4 10.7 22.3 20.2 17.7 21.4 22.3 27.3 22.5 23.1 23.0
Task 3 16.9 22.9 − 15.6 19.6 14.1 19.9 12.5 17.5 16.1 17.2 19.6 19.9 22.9 19.2 19.2 20.5
Task 4 33.9 21.9 21.5 − 29.0 22.9 26.2 35.0 34.2 11.3 26.2 33.9 34.2 35.0 30.2 29.0 30.3
Task 5 16.0 20.7 11.2 13.2 − 10.7 18.4 12.0 17.9 12.9 14.8 17.9 18.4 20.7 17.5 17.8 16.9
Task 6 26.7 22.5 21.6 24.7 26.9 − 25.0 21.8 22.3 16.8 23.1 25.0 26.7 26.9 25.9 26.2 25.9
Task 7 15.8 18.8 14.1 15.6 20.8 14.9 − 14.8 17.8 14.9 16.4 17.8 18.8 20.8 18.6 19.4 18.1
Task 8 31.4 15.8 11.0 27.3 22.3 15.2 23.6 − 29.4 18.8 20.8 27.3 29.4 31.4 26.6 24.9 27.9
Task 9 21.4 15.1 7.6 15.7 19.5 8.4 16.4 14.8 − 8.6 14.2 16.4 19.5 21.4 19.3 18.9 19.5

Task 10 12.0 23.3 10.7 9.6 22.8 8.3 16.9 8.4 17.3 − 14.4 17.3 22.8 23.3 17.5 17.6 15.5

Table 4: Results for French-English experiments.

pre-trained domain-specific systems.

5 Results

5.1 Ecosystem Performance
We first investigate how well the ecosystems han-
dle unknown and out-of-domain translation tasks.
Tables 3, 4 and 5 present the results (in BLEU).
Note that:

• AVG: average of BLEU score of MT systems

• Rank 3, Rank 2, Rank 1: top 3 MT systems

• Vote I: VOTING I method

• Vote II Real: VOTING II method with real re-
ward

• Vote II Bin: VOTING II method with binary
reward

As expected, translation quality degrades sub-
stantially for most pre-trained MT systems given
such a translation task. The Subtitle-adapted MT
system for Spanish-English (MT 1 - Tables 3) is a
notable example to raise the issue: the translation
accuracy substantially drops for the other out-of-
domain translation tasks (i.e. Task 2 (Wikipedia):
7.0 BLEU score, Task 3 (Medicine): 2.3 BLEU
score, Task 4 (Legal): 2.7 BLEU score, Task 5
(News): 7.6 BLEU score, Task 6 (Speech): 16.1
BLEU score).

However, the degradation of each pre-trained
MT system is different from the others. For exam-
ple, the Speech-adapted MT system for Spanish-
English (MT 6 - Tables 3) drops their perfor-
mance significantly for only Task 3 (Medicine)
(11.3 BLEU score) and Task 4 (Legal) (15.1 BLEU
score). The Speech-adapted MT system is capable
of handling other out-of-domain translation tasks
(i.e. Task 1 (Subtitles): 19.4 BLEU score, Task
2 (Wikipedia): 20.3 BLEU score, Task 5 (News):
22.6 BLEU score).

For 23 out-of-domain translation tasks in total,
our results show that despite the translation quality
substantially drops for most pre-trained MT sys-
tems, a few pre-trained MT systems are still com-
petitive to handle the tasks. In 21/23 cases, top
MT systems with respect to a certain translation
task are still able to handle the task well.3

This supports our claim: Having a large-scale
ecosystem of pre-trained MT systems is very use-
ful for handling out-of-domain tasks in practice.
But is it possible to gain competitive performance
to top rank MT systems from ecosystem of pre-
trained domain-specific systems for unknown and
out-of-domain translation tasks? Our experiments
show that it is possible with our proposed frame-
works.

3For convenience, we set a BLEU threshold (20) to decide if
the MT quality is good or not. In practice, it should not be a
good idea to have such a fixed threshold for any domain.
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German-English

Tasks Reference Avg. Rank 2 Rank 1 VOTE I VOTE II
MT1 MT2 MT3 MT4 MT5 MT6 MT7 All REAL BIN.

Task 1 − 22.9 23.1 19.8 18.9 23.2 23.0 21.8 23.1 23.2 23.0 23.0 23.0
Task 2 20.2 − 20.5 19.7 19.0 20.8 20.7 20.2 20.7 20.8 20.7 20.7 20.7
Task 3 20.7 20.9 − 18.1 17.4 21.1 20.7 19.8 20.9 21.1 21.0 20.2 20.9
Task 4 28.5 29.0 28.9 − 28.5 29.5 29.4 29.0 29.4 29.5 29.4 29.4 29.3
Task 5 12.6 13.8 13.7 14.8 − 13.4 13.4 13.6 13.8 14.8 13.6 13.6 13.6
Task 6 21.8 23.3 23.2 20.8 20.8 − 22.8 22.1 23.2 23.3 23.0 23.1 23.0
Task 7 32.3 33.5 33.5 28.2 28.2 33.0 − 31.5 33.5 33.5 33.2 33.4 33.3

Table 5: Results for German-English experiments.

Spanish-English

Tasks MIN SC Avg. DC Avg. VOTE I VOTE II
All TRs REAL BIN.

Task 1 2.2 10.9 15.1 18.6 21.0 20.4 22.4 22.1
Task 2 6.2 15.2 14.1 15.7 25.7 26.6 29.9 29.5
Task 3 2.3 18.4 14.6 15.2 20.9 22.8 23.1 23.0
Task 4 2.7 13.9 14.7 13.5 23.9 23.9 24.7 24.4
Task 5 4.9 14.0 14.7 17.3 25, 1 25.6 26.6 26.6
Task 6 4.8 17.0 16.4 18.2 26, 9 26.8 26.7 28.2

Table 6: A detailed comparison for other baselines (SC:
System Combination, DC: Domain Classification, Avg. TR:
Average baseline between top rank MT systems (Rank 1 and
Rank 2) for Spanish-English.

5.2 Our Framework Performance
Tables 3, 4 and 5 present the results. Note that
our models are stochastic, and results for our ex-
periments are averaged among 20 runs. The main
findings are:

VOTING I substantially outperforms Rank 2 for
all cases for Spanish-English. It outperforms Rank
3 for 6/10 tasks for French-English. We would like
to emphasize that: (1) this performance is obtained
without any knowledge about translation task; and
(2) the gap between the best and the worst MT
systems for each task in ecosystems is huge (i.e.
usually around +20 BLEU score). This validates
the idea behind VOTING I: Good translations are
likely to be similar to the others.

We perform System Combination (SC) by en-
sembling all NMT systems for the tasks. SC rather
gives a poor performance in our setting (Table 6).
We should emphasize that the result is rather ex-
pected: SC degrades translation quality substan-
tially because most pre-trained MT systems in the
ecosystem are incapable of handling the task.4

We also create a simple domain classifier (DC)
for translation requests: We train different in-
domain language models from in-domain mono-
4We should also note that interpolating all SMT systems gives
a rather poor performance as well. This is because of the same
reason: most pre-trained MT systems in the ecosystem are
incapable of handling the task. We did not report the results
here due to space constraints.

lingual corpora, and perform a search to select
an MT system from the ecosystem based on their
language model probability of each translation re-
quest: m̂ = argmax

m=1,...,N
Pm(f). DC also rather gives

a poor performance in our setting (Table 6). It out-
performs the average baseline (Avg. All) in most
cases, but its performance is far behind the middle
of top rank MT systems (Avg. TRs). The result is
unsurprising: it is hard to expect a domain classi-
fier for translation requests provides robust perfor-
mance for target domain that is not only unknown
but also out-of-domain.

Interestingly, VOTING I gives the performance
at least in the middle between Rank 1 and Rank 2
in 5/6 tasks for Spanish-English, except only Task
1. Meanwhile, the performance is at least in the
middle between Rank 1, Rank 2 and Rank 3 in
3/10 tasks for French-English.

VOTING II - REAL and VOTING II - BINARY
perform better than VOTING I for 5/6 tasks for
Spanish-English. All these frameworks perform
substantially better (at least +1.0 BLEU score)
than VOTING I in 4 cases (Tasks 1, 2, 3 and 5). For
French-English, VOTING II - REAL and VOTING

II - BINARY perform at least compatible to VOT-
ING I for 6/10 tasks. Each of these frameworks
performs better than VOTING I for 4/10 tasks.

The results validate the idea behind VOTING II:
MT systems that are good in a domain tend to
agree with each other.

VOTING II - REAL usually performs better
than VOTING II - BINARY. This is reasonable as
in VOTING II - BINARY, model parameters are
updated based on simplified outcome of the agree-
ment scores instead of the agreement scores.

Despite having a different set up for construct-
ing domain-specific MT systems, all our observa-
tions are also confirmed for German-English as in
Table 5. VOTING I gives the performance in the
middle between Rank 1 and Rank 2 in 6/7 tasks,
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except only Task 5. VOTING II provides compat-
ible performance to VOTING I. This is reasonable
as when MT systems are close to the others regard-
ing their translation quality, the benefits of reduc-
ing the decoding cost is what VOTING II is ex-
pected to provide. It is worthy to emphasize that
our VOTING frameworks still outperform the aver-
age baseline significantly.

5.3 Disadvantage of our method
While the result from our method is impressive, we
should be clear about its disadvantage. We found
that:

• A generic system trained with all the training
data of the different domains normally pro-
duces significantly better performance than
what our framework provides.

• An indomain MT system trained on in-
domain training data normally produces sig-
nificantly better performance than what our
framework provides as well.

Improving our framework to make it work compat-
ible to those stronger baselines is a goal of future
research.

6 Conclusion

This work shows that having an ecosystem of pre-
trained domain-specific MT systems is not only ef-
ficient for in-domain translation tasks, but could
be also very useful for out-of-domain translation
tasks. More specifically, we show that an out-
of-domain translation task can be out-of-scope
of most pre-trained adapted MT systems in the
ecosystem, but a few others can be still very ca-
pable of handling the task. We conduct exten-
sive experiments with different scale (from 6 to
10) ecosystems of pre-trained MT systems to sup-
port our claim. We also contribute two frame-
works that gain competitive performance to top
rank MT systems from ecosystem of pre-trained
domain-specific systems for unknown and poten-
tially out-of-domain translation tasks. We hope our
study fills an important gap in the domain adapta-
tion literature: making translation ecosystems with
domain-adapted MT systems capable of handling
unknown and out-of-domain tasks.
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Ondřej Bojar, Alexandra Constantin, and Evan
Herbst. 2007. Moses: Open source toolkit for
statistical machine translation. In ACL.

[Koehn et al.2014] Koehn, Philipp, Chara Tsoukala,
and Herve Saint-Amand. 2014. Refinements to
interactive translation prediction based on search
graphs. In ACL (Short Papers).

[Kothur et al.2018] Kothur, Sachith Sri Ram, Rebecca
Knowles, and Philipp Koehn. 2018. Document-
level adaptation for neural machine translation. In
Proceedings of the 2nd Workshop on Neural Ma-
chine Translation and Generation, pages 64–73,
Melbourne, Australia, July. Association for Compu-
tational Linguistics.

[Lin and Och2004] Lin, Chin-Yew and Franz Josef Och.
2004. Orange: A method for evaluating automatic
evaluation metrics for machine translation. In COL-
ING.

[Macherey and Och2007] Macherey, Wolfgang and
Franz J. Och. 2007. An empirical study on comput-
ing consensus translations from multiple machine
translation systems. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 986–
995, Prague, Czech Republic, June. Association for
Computational Linguistics.

[Mansour and Ney2014] Mansour, Saab and Hermann
Ney. 2014. Unsupervised adaptation for statistical
machine translation. In WMT.

[Michel and Neubig2018] Michel, Paul and Graham
Neubig. 2018. Extreme adaptation for personalized
neural machine translation. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
312–318, Melbourne, Australia, July. Association
for Computational Linguistics.

[Nguyen et al.2017] Nguyen, Khanh, Hal Daumé III,
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Abstract 

This paper presents preliminary results of 

a study of Japanese native speakers 

working with the Microsoft Word 

application in two modalities: the released 

Japanese version and a machine translated 

(MT) version (the raw MT strings 

incorporated into the MS Word interface). 

To explore the effect of translation 

modality on task completion, time and 

satisfaction, an experiment using an eye-

tracker was set up with a group of 42 

users: 22 native Japanese and 20 native 

English speakers. The results suggest that 

Japanese-native speakers have higher 

completion scores and are more efficient 

when working with the released versions 

of the product than with the MT version, 

but these differences are not significant. 

Their self-reported satisfaction, however, 

is significantly higher when working with 

the released product as opposed to the raw 

MT version. 

1 Introduction 

In the commercial arena, the software and 

localization industries face long-term business 

challenges. There is an increase in the volume of 

software to localize, and this software needs to run 

on several platforms. Moreover, the software is 

delivered to the user in a rapid cycle, with daily, 

weekly, and quarterly updates and releases. In 

parallel, there are continuous advances in machine 

translation (MT) technology with the full 

implementation of statistical engines and rapid 

advances in neural MT solutions. Therefore, it is 

only logical to marry the use of new technology 

with localization of software products with the aid 
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of automation where possible, as long as this can 

be achieved without hindering the user experience 

and, hence, the commercial viability of that 

product. Large software corporations have, in fact, 

implemented MT and post-editing (PE) cycles as 

part of their localization processes for some time 

now. However, as MT technology advances, 

several questions come to mind: is it possible to 

apply raw (i.e. unedited) MT to certain 

components of the user interface without 

hindering the user experience? Where raw MT is 

employed, how does linguistic quality impact the 

user experience?  

Preliminary results are presented here from a 

usability experiment involving Japanese and 

English native speakers using an eye-tracker. The 

Japanese participants were presented with two 

Microsoft Word applications: one was the 

Japanese-released version (referred as HT 

hereafter), and the other one was a version 

translated from English into Japanese with MT 

specifically for this experiment (referred as MT 

hereafter). English speakers were presented with 

one Word application (to act as the control group). 

The different versions (HT, MT and English) are 

referred as scenarios. Both groups had to perform 

the same six tasks. 

2 Related work 

MT and PE have been implemented in some large 

organizations since the 1980s (the European 

Commission and the Pan American Health 

Organization, for example); however, it is only in 

the last ten years that major software development 

companies (such as Microsoft, Autodesk, or 

Google, to name but a few) have included MT in 

their standard localisation workflows, and 

subsequently, MTPE has been adopted in many 

localisation agencies worldwide (Lommel and 

DePalma, 2016).  
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Logically, there has been an increase in 

academic and commercial research to find out 

more about aspects related to MTPE activity with 

the translator as the central figure of studies (i.e., 

De Almeida and O’Brien, 2010; Guerberof, 2012; 

Moorkens et al., 2015; O’Brien, 2006; Plitt and 

Masselot, 2010). However, less attention has been 

paid to end user reception of products processed 

using MT. In many cases, translators’ evaluation 

of MT output has been considered equivalent to 

end users’ opinions of MT.  

Some research has tried to fill this gap by 

analysing the usability aspect of MT in different 

products. Experiments have been designed to 

ascertain whether users understood instructions 

translated using MT in comparison to those using 

either the original text or MTPE (Castilho et al., 

2014; Doherty and O’Brien, 2012, 2014; O’Brien 

and Castilho, 2016). The results show that 

usability is increased when users read either the 

original text or text that has been post-edited, even 

with minimal changes (light post-editing), when 

compared to raw MT output. However, users 

could complete most tasks by using the latter even 

if this activity took longer or if the experience was 

less satisfactory. Results, however, were not equal 

for all languages tested.  

Bowker (2015) studied the difference in user 

experience when reading text on websites and 

translatability rules were applied (a set of 

guidelines applied to the source to improve MT). 

She found that the user experience of source-

language readers decreases when these rules are 

applied, while that of the target-language readers 

(Spanish, in this case) increases. As a follow up to 

this research, Bowker and Buitrago Ciro (2018) 

replicated this experiment with more participants 

(Spanish, French Canadian and Italian) with 

similar findings. When the text was post-edited, 

however, readers preferred the texts that had been 

translated without translatability rules applied to 

the source.  

The most extensive research on measuring 

acceptability of machine translated enterprise 

content by users was carried out by Castilho as 

part of her doctoral study (2016). In this work, 

Castilho shows that the PE quality level has a 

significant effect on acceptability by German, 

Chinese and Japanese users of enterprise content. 

She also highlights, however, that the raw MT 

versions were usable, and participants were still 

able to perform the assigned tasks with these 

instructions. Because of its relevant content 

(Microsoft Excel) and design, this research draws 

heavily on Castilho’s work. 

Castilho and Guerberof (2018) explored 

reading comprehension for Spanish and Chinese 

users when using SMT and NMT engines to 

translate an IELTs (International English 

Language Testing System) test. The authors found 

that users from the target languages completed 

more tasks in less time with a higher level of 

satisfaction when using translations from the 

NMT system. 

Using a questionnaire, Van Edgom and 

Pluymaekers (2019) examined how different 

degrees of PE (minimal, light, moderate, and full) 

impact the user who read two different types of 

texts (informative and instructive texts) that had 

been post-edited. They concluded that different 

degrees of PE “make a difference” (idem., 168). 

However, the distinctions between, for example 

moderate and full PE, was not obvious to the 

users.  

Screen (2019) looked at the English and Welsh 

language pair. He used an eye-tracker to measure 

fixations while participants read a post-edited text 

and a translated text. After this task, the 

participants rated the texts according to 

readability and comprehensibility. He found no 

statistical differences between the two groups.  

Although this research feeds from the existing 

literature, it introduces some novel changes: 

participants are instructed to complete tasks in a 

software application in which raw MT is used for 

the user interface rather than testing the 

instructions to complete those tasks or the 

understanding of a “regular” text. Participants are 

not only queried about their satisfaction and eye-

tracked, a retrospective think aloud protocol is put 

in place after task completion to understand what 

the participants thought, felt, and did when 

working with the three scenarios (HT, MT and 

English).  

3 Methodology 

To explore the topic of usability and translation 

modality further, a within-subject experiment was 

designed to compare MS Word translated from 

English using raw Japanese MT (MT) and a 

released version of that same product (HT).  

Since the number of participants that were 

available to participate was limited due to the 

location and the time available, a within-subject 

experiment was the best option to have enough 

participants for a statistical analysis.  

3.1 Research questions 

This research poses the following questions: 
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RQ1: Will users perform the same number of 

successful tasks regardless of the scenario used 

(English original version, MT, or HT)?  

RQ2: Will there be differences in time when 

participants perform the tasks in the different 

scenarios (English, MT or HT)?  

RQ3: Will the participants be equally satisfied 

when using the English, MT or HT scenario? 

RQ4: Will participants expend different 

amounts of cognitive effort when performing the 

tasks in different scenarios? 

3.2 Measuring usability 

Following specific studies on usability mentioned 

in this paper (Castilho et al., 2014; Castilho, 2016; 

Doherty and O’Brien, 2012, 2014), usability was 

defined as per the ISO/TR 16982 guidelines: “the 

extent to which a product can be used by specified 

users to achieve specified goals with 

effectiveness, efficiency, and satisfaction in a 

specified content of use” (ISO 2002).2 

Effectiveness was measured through task 

completion. Users were presented with tasks to 

complete through interaction with different 

components of the user interfaces. The more tasks 

the user completed following specific 

instructions, the higher the effectiveness score 

was (from 0 to 100). The following formula was 

used to calculate the Effectiveness score: 

 

 
# 𝑡𝑎𝑠𝑘𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦

𝑡𝑜𝑡𝑎𝑙 # 𝑡𝑎𝑠𝑘𝑠
𝑥 100 = 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 

 

Efficiency was measured considering the tasks 

that were completed in relation to the time it took 

to complete those tasks. If less time was invested 

to complete a task, then the efficiency score was 

higher, and vice versa. The following formula was 

used to calculate the efficiency rate: 

 

∑
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑡𝑜𝑡𝑎𝑙 𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑠
× 100 

 

𝑤ℎ𝑒𝑟𝑒 
𝑡𝑎𝑠𝑘 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑎𝑠𝑘𝑠
 × 100 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

Efficiency was also measured in terms of 

cognitive effort using an eye-tracking device. 

Fixation duration (total length of fixation in an 

area of interest or AOI), fixation count (total 

number of fixations within an AOI) were 

measured. Eye-tracking has been established as an 

adequate tool to measure cognitive effort in MT 

                                                 
2 International Organization for Standardization. 2002. 

ISO/TR 16982: Ergonomics of human-system interaction – 

Usability methods supporting human centered design. 

studies (Doherty and O’Brien, 2009; Doherty et 

al., 2010).  

Satisfaction was measured through an IBM 

After-Scenario Questionnaire (Lewis, 1995) 

containing a series of statements that users rated. 

This questionnaire was chosen instead of other 

frequently used questionnaires such as SUS 

(Software Usability Scale) or Post-Study System 

Usability Questionnaire (PSSUQ) because, in this 

project, two set of tasks (1, 2, 3 and 4, 5, 6) were 

assessed while the other questionnaires are better 

suited to rate an entire system. The ASQ has three 

questions to rate on a 7-point Likert-type scale. 

This test was modified to address the language 

factor in two questions to differentiate between 

the quality in the instructions and in the Word as 

follows:  

1. Overall, I am satisfied with the ease of 

completing the tasks in this scenario. 

2. Overall, I am satisfied with the time it took to 

complete the tasks in this scenario. 

3. Overall, I am satisfied with the instructions 

given for completing the tasks.  

4. Overall, I am satisfied with the language used 

in the Word menus, dialog boxes and buttons. 

The participants could rate between 1 (Strongly 

agree) to 7 (Strongly disagree). Question 3 was 

added, even if it does not refer to MS Word 

specifically, because participants always worked 

with the Instruction windows visible. 

3.3 Content and Design 

In collaboration with Microsoft Ireland, the 

business partner for this research project, the 

different applications that form part of the Office 

suite were analyzed. Finally, Word was chosen as 

the optimal application for the experiment. This 

was firstly because the study sought to reach as 

many participants as possible and Word is the 

most popular application in the suite, and 

secondly, because it was important to measure the 

impact of translation modality as opposed to the 

users’ skills or knowledge when using an 

application, and Word is a relatively easy 

application to use.  

The set of languages analyzed here were 

English, and Japanese. English was chosen to be 

used as the control group and Japanese was 

chosen because it is a language traditionally 

considered to be difficult for MT. 

Available on-line 

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue

_detail.htm?csnumber=31176 (last accessed April 2nd 2019) 
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The software version used was Microsoft Word 

2016 MSO (16.0.9126.2315) 32-bit in English 

and in Japanese. The providers’ translation cycle 

involves MT and full PE. The final quality of the 

translation delivered by the service provider is 

equal to publishable quality as defined in the 

localization instructions and the quality 

evaluation channels the localization assets go 

through. It is relevant to note that the localization 

process might involve translating with no 

previous reference, but, in general, it includes MT 

and translation memories, among other reference 

material, as well as a review cycle. 

A specially-devised version of Word was used 

for the Japanese MT scenario, translated from 

English using the business partner’s highly-

customized Microsoft Translator SMT.3 At the 

time of implementing this experimental setup, 

customized Microsoft NMT was not available. 

A warm-up task and 6 subsequent tasks were 

selected. The criteria for selection were that they 

contained enough text so as to measure the 

translation modality, that they were coded for 

telemetry purposes (for a second phase of this 

experimental project), that they could be 

performed in all the languages tested (German, 

Spanish, Japanese and English), and that they 

were relatively new or non-standard so as to 

minimize the effect of previous experience.  

The warm-up task involved selecting a 

paragraph and changing the font. The six tasks 

were: 1) selecting a digital pen and drawing a 

circle using a defined thickness and color, 2) 

changing the indentation and spacing for the 

paragraph (presented to the users), 3) 

automatically reviewing the document, 4) 

selecting an option from the Word Options dialog 

box in the corresponding menu, 5) inserting a 

section break; and 6) finding the Learning Tools 

in the corresponding menu and changing the page 

appearance. 

The tasks were evaluated by an English native 

speaker to test the instructions and the 

environment. Since it was not possible to analyze 

the original and translated text with standard 

readability metrics, a Japanese native speaker 

evaluated the tasks in the Japanese-released 

version and in the raw MT environment. This 

evaluator commented on the high quality of the 

MT although she signaled the sentences and 

words that were not idiomatic, wrong, or different 

from the released version. The errors spotted in 

the MT scenario in the tasks selected was 

                                                 
3 https://hub.microsofttranslator.com/ 

comparable to the other languages that were going 

to be included in the project. 

The instructions for the experiment were 

translated using Microsoft’s localization services. 

They translated the texts following specific 

instructions to respect the fluency and accuracy of 

the text and the experimental design. 

3.4 Scenarios 

Three scenarios (i.e. conditions) were defined for 

the experiment: MT, HT and English.  

The Japanese participants in Group 1 

completed three tasks as A) HT, and three tasks as 

B) MT, while participants in Group 2 were 

presented the same tasks but in reverse order, that 

is, B) MT, A) HT. This served to counterbalance 

the within-subject effect. Between scenarios, there 

was a brief pause that allowed the researcher to 

change the Word configuration and recalibrate the 

eye-tracker. 

The English-speaking group were presented 

with a warm up task and 6 tasks. As with the 

Japanese group, they had a brief pause between 

the tasks, replicating the same environment. 

3.5 Pre-task questionnaire 

The participants were asked to fill in a 

questionnaire before the experiment. The 

questionnaire assessed the experience users had in 

using word-processing applications, Word, their 

native language and level of English, gender, age, 

education level, as well as their experience in 

doing the tasks that were part of the experiment. 

The questionnaire was provided by email using 

Google Forms. 

3.6 Participants 

The criteria for the inclusion of volunteer 

participants was that they were native speakers, 

that they were willing to participate in the research 

and sign a consent form, and that they were 

frequent users of word processing applications. 

The participants were recruited through 

advertisement in social media and email lists 

within Dublin City University, although the 

participants were not limited to students or people 

associated with the university. The participants 

were given a €20 voucher for their contribution. 

All participants received a Plain Language 

Statement and signed an Informed Consent form 

before the experiment (DCUREC/2017/200). 
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42 participants took part in the experiment: 20 

English-speakers, and 22 Japanese-speakers. 12 

Japanese participants were assigned to Group 1 

and 10 participants to Group 2.  

The reason for the difference in number of 

Japanese participants is that some eye-tracking 

data was discarded due to poor recording quality 

(see Section 3.7). Also, after examination, the data 

from two EN participants were discarded because 

of changes in the original set-up (Word version). 

75% of participants identified as women and 25% 

as men. Table 1 shows the age distribution per 

language. 
Age English Japanese 

18-24 55% 86% 

25-34 17% 9% 

35-44 28% 5% 

Total 18 22 

Table 1: Age distribution  

The age distribution is important as it might be 

an indicator of experience with the application. 

For example, although all of them reported 

experience using Microsoft Word, the EN group 

reported a higher level of experience.  

Also, when participants were asked about their 

experience in the 6 experimental tasks, the 

Japanese group (JP) reported an average 

experience of 2.1 tasks out of 6 (35.61 %) while 

the EN group reported an average of 3.8 tasks out 

of 6 (62.96 %). When they were asked to rate their 

level of proficiency (i.e. “How would you 

describe your level of proficiency when working 

with word-processing applications?”), the average 

value for the EN was 3.83 in a 5-point Likert scale 

(1 being Novice and 5 being Very proficient) 

while the JP selected a 2.14. A Mann-Whitney test 

for self-reported experience suggests that there is 

a significant difference in the level of perceived 

experience between the two groups (U=24 and 

p<0.05). JP participants reported significantly 

lower experience than EN participants.  

3.7 Experimental setup 

The data recording equipment consisted of a Tobii 

X60 XL, a wide screen eye-tracker with a 24-inch 

monitor and 60Hz sampling rate, and a laptop 

computer (Intel Core 1.7 vProtm, 2.00 GHz 2 Core, 

4 Logical processors, 8 GB RAM). The laptop 

was used for stimulus presentation and eye 

movement recording. The stimuli were presented 

with a 1600 x 900 resolution. The software used 

to record and analyze the data was Tobii Studio 

3.4.5 1309, Professional Edition. The fixation 

filter selected was an IV-T Filter provided by the 

manufacturer. The filter has a velocity threshold 

of 30 degrees, a maximum time between fixations 

of 75 ms and a maximum angle of 0.5 degrees. 

Fixations under 60 ms were discarded.  

The participants were calibrated using a nine-

point calibration screen (automatic). The 

participants were recalibrated if the Tobii system 

reported a poor calibration or if the calibration 

points were not clearly defined within the 

calibration grid. The optimal distance to the eye-

tracker was set as 67 cm. However, this varied as 

the participants were not tested using a chin rest 

to preserve ecological validity during the 

experiment.  

To estimate the cognitive effort using an eye-

tracker, two Areas of Interest (AOIs) were 

defined. One AOI comprised the Instructions 

windows (25.7%, 369516 px) and the Word 

application window (74%, 1065165 px). Two 

participants in the JP group moved the screens 

slightly, therefore the AOIs for these 2 participants 

were slightly different for the Instructions 

(22.81%, 328500px) and the Word application 

(76.9 %, 1107000px) windows.  

To test the quality of the sample, the gaze 

sample data in the Tobii system and the velocity 

charts were checked. Moreover, the segments of 

interest were exported (each segment represented 

a task timeline therefore six segments were 

exported per participant) to calculate the eye 

validity codes within these segments. A minimum 

80% gaze sample was required for a recording to 

be considered valid and to be included in the 

statistical analysis. This meant that each 

participant had at least one eye or both eyes on the 

segments 80 per cent of the time. 

3.8 Retrospective Think Aloud 

Once the participants had completed the tasks, 

their gaze data was replayed, and they were asked 

to comment on what they were doing, thinking or 

feeling during the experiment. The participants 

were recorded using Flashback Express 5. The 

interviews took approximately 15 minutes. 

The researcher asked certain questions to elicit 

responses from the participants, such as How did 

you find this task? What were you thinking at this 

point? How was the language in this menu? Had 

you done this task before? Did you notice any 

difference in Word when you came back from the 

pause? 

3.9 Statistical methods 

To analyze the results graphically and statistically, 

SAS v9.4 and IBM SPSS Statistics, v24 were 
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used. The statistics decisions were made with a 

significance value of 0.05. 

To determine the effect of the scenario (HT, MT 

and EN) for each response variable 

(Effectiveness, Efficiency and Satisfaction), a 

general linear mixed model (called hereafter a 

mixed model) was adjusted according to the 

scenario and task groups (1, 2, 3 vs. 4, 5, 6 ) and 

the interaction between the two (Type III Test). 

The tasks and scenarios are considered fixed 

factors and the repeated measures of each 

participant are included in the model (random 

effects). 

4 Results 

4.1 Effectiveness 

Table 1 shows that HT evinces higher 

effectiveness scores on average than the MT 

scenario in both groups of tasks. The EN group 

has the highest scores. Figure 1 illustrates these 

figures clearly.  
 

Tasks/Scenarios N Mean Std 

1, 2, 3 HT 12 82.64 9.70 

MT 10 74.17 27.06 

EN 18 93.98 12.06 

4, 5, 6 HT 10 46.67 26.99 

MT 12 40.28 29.05 

EN 18 62.96 34.09 

Table 1: Effectiveness  
 

 
Figure 1: Effectiveness according to scenarios and tasks 

 

A mixed model for effectiveness shows that 

there are statistically significant differences 

between scenarios (F(2, 37)=4.26; p=0.0216) and 

tasks (F(1, 37)=64.73; p<.0001). The estimated 

mean of effectiveness is 78.47 in EN, 64.65 in HT 

and 57.22 in MT scenarios. 

There are significant differences between 

scenarios when comparing the EN and MT 

groups, with 21.25 as the estimated difference. 

This means that the EN scenario is estimated as 

21.25% more effective than the JP MT scenario 

(in line with findings from Doherty and O’Brien, 

2014). The participants in the JP group show 

higher effectiveness scores in the HT than in the 

MT scenarios, but this difference is not 

significant. 

Regarding the tasks, the estimated mean is 83.6 

in tasks 1, 2, 3 and 49.97 for 4, 5, 6. There are 

statistically significant differences between tasks. 

The estimated difference of effectiveness between 

task 1, 2, 3 and tasks 4, 5, 6 is 33.63%, 

CI95%=[25.16, 42.09]. The mixed model confirms 

that tasks 1, 2, 3 were “easier” for participants 

than tasks 4, 5, 6. 

4.2 Efficiency 

As with effectiveness, the efficiency was 

calculated per scenario and task as shown in Table 

2 and Figure 2. 
 

Tasks/Scenario N Mean  Std 

1, 2, 3 HT 12 31.92 13.89 

MT 10 21.13 8.47 

EN 18 48.75 19.27 

4, 5, 6 HT 10 11.88 9.64 

MT 12 9.11 8.08 

EN 18 21.63 19.94 

Table 2: Efficiency  
 

 
Figure 2: Efficiency according to scenario and tasks 

 

HT shows higher efficiency on average than the 

MT scenario in both groups of tasks and the EN 

group shows the highest efficiency scores.  

A mixed model shows that there are statistically 

significant differences between scenarios 

(F(2,37)=9.9; p=0.0004) and tasks (F=65.25; 

p<0.0001). (F(1,37)=65.25; p<.0001). The JP 

group shows more efficiency in the HT than in the 

MT scenario, however this difference is not 

significant. The estimated mean of efficiency is 

35.19 in EN, 21.90 in HT and 15.12 in MT.  

The EN group has a 13.29 estimated difference 

with the HT scenario, and an estimated 20.07 

difference with the MT scenario. There are no 

significant differences between the HT and MT 

scenarios in the JP group. 
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Regarding the tasks, the estimated mean for 

efficiency is 33.93 for tasks 1, 2, 3 and 14.21 for 

tasks 4, 5 and 6. There are statistically significant 

differences between tasks. The estimated 

difference between 1, 2, 3 and 4, 5, 6 is 19.72, 

CI95%=[14.78, 24.67]. 

If efficiency is considered, the participants are 

statistically more efficient in the EN group than in 

the JP group (in line with Castilho, 2016 and 

Doherty and O’Brien, 2014). However, if time is 

analyzed without considering task completion, 

there are statistically significant differences only 

between tasks (F(1,37)=20.2; p<.0001) but not 

between scenarios. The JP group employs less 

time the HT than in the MT scenario, however this 

difference is not significant.  

The estimated mean of efficiency is 299.61 

seconds for tasks 1, 2, 3 and 485.31 seconds for 4, 

5, 6. The estimated difference is 185.7 CI95%=[-

269.4, -101.99], it took an average of 3 minutes 

longer to complete tasks 4, 5, 6. 

4.3 Satisfaction 

The satisfaction was calculated using the four 

questions from the post-scenario questionnaire 

that were ranked by the user on a 7-point Likert-

type scale where 1 indicated the most satisfaction 

and 7, the least. Table 3 shows Satisfaction 

according to scenarios and tasks. 
 

Tasks/Scenarios N Mean Std 

1, 2, 3 HT 12 3.42 1.42 

MT 10 3.37 1.14 

EN 18 2.13 1.08 

4, 5, 6 HT 10 3.40 1.22 

MT 12 4.56 1.36 

EN 18 3.11 1.22 

Table 3: Satisfaction* 

Table 3 shows that Japanese participants report 

being more satisfied in the MT in the first part of 

the experiment and more satisfied in the HT 

scenario in the second part of the experiment 

where the difference is higher. The EN group 

shows the best satisfaction scores. Figure 3 shows 

this data clearly. 

A mixed model shows that there are statistically 

significant differences between scenarios 

(F(2,37)=8.08; p=0.0012) and tasks 

(F(1,37)=21.94; p<0.0001. The estimated mean of 

satisfaction is 2.62 in EN, 3.41 in HT and 3.96 in 

MT scenarios.  
*Lower scores indicate higher satisfaction. 

 
Figure 3: Satisfaction according to scenarios and tasks 

 

There is an estimated difference of -1.34 

between EN and MT scenarios, and a -0.55 

between HT and MT Scenarios. There are 

differences between the EN group and the HT 

scenario (estimated difference=-0.79, 

stderr=0.38) but this is not significant.  

Regarding the tasks, the estimated mean for 

satisfaction is 2.97 for tasks 1, 2, 3 and 3.69 for 

tasks 4, 5, 6. There are statistically significant 

differences between tasks. The estimated 

difference between 1, 2, 3 and 4, 5, 6 is -0.72, 

CI95%=[-1.03, -0.41]. 

The question that specifically addressed the 

Word application was explored (“Overall, I am 

satisfied with the language used in the Word 

menus, dialog boxes and buttons?”). Participants 

were more satisfied in the HT (M=3.5) than in the 

MT scenarios (M=4.5). A Wilcoxon signed rank 

test shows that HT ranks significantly lower than 

the MT scenario (Z=-2.62, p=0.009). As explained 

before, a lower score indicates a higher 

satisfaction. The results show that 3 participants 

were more satisfied with MT, 12 participants with 

HT, and in 7 cases MT was ranked alongside HT. 

If compared to the EN group significant 

differences are only found with the MT scenario 

(U= -3.26 and p=0.001).  

The results regarding the participants’ 

satisfaction show they are more satisfied in the EN 

group than in the JP group (in line with Castilho, 

2016 and Doherty and O’Brien, 2014). This could 

be explained by several factors: the language, the 

experience (EN group was more experienced and 

the familiarity could explain a higher 

satisfaction), but also to the way each culture 

reports satisfaction. The participants in the JP 

group are significantly more satisfied in the HT 

than in the MT scenarios and this was particularly 

true for the most difficult tasks.  
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4.4 Cognitive Effort 

For these groups the fixation duration and count 

were calculated as indicators of cognitive load. 

Fixation duration measures the duration of each 

individual fixation within an AOI in seconds. 

Table 4 shows the Fixation duration mean for the 

Word AOI. 
 

Tasks/Scenario N Mean in 

seconds 

Std 

1, 2, 3 HT 10 0.22 0.04 

MT 8 0.23 0.03 

EN 18 0.21 0.05 

4, 5, 6 HT 8 0.21 0.03 

MT 10 0.20 0.03 

EN 18 0.18 0.04 

Table 4: Fixation duration mean in Word AOI 

 

The mean value for MT is higher than HT in the 

first tasks, and lower in the second set of tasks, 

and EN presents the lowest mean value as 

illustrated in Figure 4.  
 

 
Figure 4: Fixation duration mean in Word AOI 

 

A mixed model shows that there are statistically 

significant differences (F(2,33)=25.01; p<0.0001) 

between tasks, but not between scenarios or the 

interaction between scenarios and tasks. The 

estimated mean fixation duration is 0.22 for tasks 

1, 2, 3 and 0.20 for 4, 5, 6 tasks. There is an 

estimated difference of 0.023 seconds 

CI95%=[0.014, 0.032]. 

Fixation count measures the number of times 

the participant fixates on the Word AOI. Figure 5 

shows the average fixation count per participant 

and tasks. There is a lower number of fixations in 

HT than in MT for both groups of tasks and the 

EN group shows a lower number of fixations than 

the HT scenario in the first 3 tasks but not in the 

second 3 tasks. 
 

 
Figure 5: Fixation count in Word AOI 

 

Tasks/Scenario N Mean fixations Std 

1, 2, 3 HT 10 631.40 300.09 

MT 8 731.25 336.08 

EN 18 404.06 179.45 

4, 5, 6 HT 8 939.63 963.72 

MT 10 1175.60 439.54 

EN 18 1142.61 918.70 

Table 4: Fixation duration mean in Word AOI 

The estimated fixation count (at logarithmic 

scale) is 6.29 for tasks 1, 2 and 3 and 6.85 for tasks 

4, 5 and 6. There is an estimated of -0.56 fixations 

(less) in tasks 1, 2, 3 than in 4, 5, 6 CI95%=[-0.78, 

-.034]. If tasks and scenarios are considered, the 

estimated mean for the EN 1, 2, 3 tasks in 5.93 and 

6.86 for 4, 5 and 6. The estimated differences in 

the EN group is of -0.93 fixations (less) in the first 

group of tasks CI95%=[-1.38, -0.49]. 

Regarding the cognitive load, there are 

significant differences between the tasks, which 

indicates that the cognitive load varied depending 

on the difficulty of the task, but not necessarily 

due to the scenario (as in Castilho, 2016). This is 

clear in the EN group where participants had 

significantly more fixations in the second set of 

tasks than in the first ones, but the participants 

were always under the same scenario. The mean 

fixation duration is lower for tasks 4, 5, 6 and this 

is surprising since these tasks were more difficult 

for participants. It could be that participants did 

not spend more time fixating on an option but 

fixating on different keywords to try and find the 

solution. So, although the sum of all fixation 

durations in seconds was higher for tasks 4, 5 and 

6, the mean (when computing N=count of 

fixations) was lower because there were a lot more 

fixations in those tasks. 

4.5 Mouse clicks 

During the experiment, when the participants in 

the JP group did not understand a word in the MT 

scenario, they were observed clicking around to 

try and understand the context of that word.  
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Therefore, the number of mouse clicks were 

compared between the HT and MT scenario in the 

Japanese group. Although HT had a lower number 

of clicks than the MT scenario (HT=58.86; 

MT=62.68), there is no statistically significant 

difference between the two. On 10 occasions, the 

MT scenario ranks lower than HT, on 11 MT ranks 

higher than HT, and on 1 occasion they rank 

equally.  

4.6 Retrospective think aloud protocols  

At the time of writing this paper, a complete 

qualitative analysis of these interviews has not 

been completed, as all interviews are being 

transcribed for ease of analysis, therefore a 

summary of the observations during the 

experiment is provided instead.  

The participants from the JP and EN groups 

reported that they found the first three tasks easier 

than the second three tasks in general as has been 

observed in the quantitative analysis. As per the 

self-reported questionnaire and the results, the JP 

group reported having more difficulties with 

certain tasks than the EN group, and less 

experience with those tasks and Word in general.  

Possibly, the most surprising comment after 

talking to the participants was that when returning 

from the pause, the JP group did not notice that the 

Word application was different. The participants 

were concentrating on the completion of the tasks, 

and since they were not informed that there was a 

change in the application, they assumed it was the 

same one. Having said this, however, participants 

in the JP group did report that some words were 

wrong, incorrect or confusing, and that some 

technical terms posed difficulty in MT. As 

explained in Section 4.3, the JP group rated the 

MT scenario lower than the HT scenario, so they 

were less satisfied when working with MT, 

especially in tasks 4, 5 and 6.  

5 Conclusions and future work 

There are differences between the EN and JP 

group when it comes to effectiveness, efficiency, 

satisfaction and, to some extent, when it comes to 

cognitive effort. Translation modality appears to 

be a factor, especially when the MT scenario is 

considered for effectiveness and satisfaction.  

If the JP group is examined in isolation, there 

are differences between the MT and HT scenarios, 

but these are not significant if effectiveness and 

efficiency are considered. However, when it 

comes to satisfaction, the difference is significant. 

This is also in line with what the participants 

reported in the RTA protocol; overall, they did not 

notice a difference between the HT and the MT 

systems. However, they did notice words that 

were wrong, strange, confusing in the MT 

scenario and this is what they remembered when 

rating their satisfaction in both scenarios. The 

difference in satisfaction is also larger for more 

difficult tasks, and this might indicate that the less 

familiar we are with an application, the more we 

need the language to be of high quality to 

understand our way around that application.  

Another aspect to consider is that if users 

cannot complete a high percentage of tasks, their 

satisfaction score might be lower because they 

would feel that either they, the instructions, or the 

language was inadequate. For this reason, it is 

important to see how participants in different 

languages and with different experience and 

successful scores, rate satisfaction.  

Nevertheless, even if the number of tasks or the 

time it took to complete them was not 

significantly different in both scenarios, Japanese 

participants felt more satisfied in the HT scenario, 

and this perceived value is a key factor if customer 

experience and retention are considered when 

implementing MT solutions. 

Would this have been different if participants 

were using a system translated with NMT? As we 

can see from the literature when comparing both 

paradigms (Bentivogli et al., 2016, Castilho et al. 

2017, Castilho and Guerberof, 2018; Toral, 

Wieling and Way, 2018) improvements in quality 

have been observed when moving from SMT to 

NMT systems, but the effect this improvement has 

on translators/users, if any, is yet to be defined 

clearly. When reading within software (with a 

focus on completing a task), as in this experiment, 

the important factor appears to be key words, i.e. 

accuracy, not necessarily the fluency of the text, 

which is where NMT performs better. Therefore, 

if a raw NMT system is put in place (especially if 

compared to a highly customized SMT system), 

users might also notice or be confused by 

incorrect or unclear terms and report lower 

satisfaction scores. This remains to be tested. 

As mentioned in Section 1, these are 

preliminary results from a larger project. The next 

steps are to analyze the data for all the languages 

and tasks, as well as further exploration of the eye-

tracking and qualitative data gathered through the 

RTA, and the telemetry data collected per 

scenario. 
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Abstract

This paper presents MAGMATic (Multi-
domain Academic Gold Standard with
Manual Annotation of Terminology), a
novel Italian–English benchmark which al-
lows MT evaluation focused on terminol-
ogy translation. The data set comprises
2,056 parallel sentences extracted from in-
stitutional academic texts, namely course
unit and degree program descriptions. This
text type is particularly interesting since
it contains terminology from multiple do-
mains, e.g. education and different aca-
demic disciplines described in the texts.
All terms in the English target side of the
data set were manually identified and an-
notated with a domain label, for a total of
7,517 annotated terms. Due to their pe-
culiar features, institutional academic texts
represent an interesting test bed for MT. As
a further contribution of this paper, we in-
vestigate the feasibility of exploiting MT
for the translation of this type of docu-
ments. To this aim, we evaluate two state-
of-the-art Neural MT systems on MAG-
MATic, focusing on their ability to trans-
late domain-specific terminology.

1 Introduction

The availability of bilingual versions of course cat-
alogues has started to play a major role for Euro-
pean universities after the Bologna Process and the
resulting growth in students’ mobility. Course cat-
alogues fall into the category of institutional aca-

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

demic text collections and they usually include de-
gree program and course unit descriptions, where
information regarding degree courses and modules
are provided to students. Such texts have to be
produced and published every year in each coun-
try language and in English. Universities would
thus undoubtedly benefit from the use of machine
translation (MT).

Further proof of the need for an MT engine
able to translate course catalogues are two projects
funded by the European Commission, namely the
Bologna Translation Service1 (Depraetere et al.,
2011), aimed at developing an MT system to trans-
late course catalogues in 9 language combinations,
and TraMOOC,2 aimed at using MT for the trans-
lation of massive online open courses from English
into eleven European and BRIC languages.

Developing an engine in this field poses sev-
eral challenges. First, the fact that degree program
and course unit descriptions are usually trans-
lated by non-native speakers of the target language
(Fernandez Costales, 2012) reduces the number
of available high-quality and alignable bilingual
texts. Moreover, the lack of guidelines and best
practices to draft these texts results in substantial
unmotivated variation among course catalogues
from different universities. Finally, institutional
academic texts usually contain terminology from
different domains, with disciplinary terms, e.g.
Hydrosilylation, Fotoredox catalysis, for a course
on chemistry, appearing together with educational
ones - e.g. ECTS, module.

The potential and challenges mentioned so far
make course catalogues an interesting test bed for

1https://cordis.europa.eu/project/rcn/
191739/factsheet/en
2http://tramooc.eu/content/
scientific-publications
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neural MT (NMT) (Sutskever et al., 2014; Bah-
danau et al., 2014). Indeed, in the last few years
NMT has delivered considerable improvements
in output quality in many respects (Bentivogli et
al., 2016), yet not showing clear-cut progresses
when it comes to lexis-related issues, e.g. lexical
choices, omissions or mistranslations (Castilho et
al., 2018). These issues are especially critical for
texts rich in domain-specific terminology, or texts
containing terms belonging to different domains.
Testing an MT engine on course catalogues can
provide interesting information on domain-specific
terminology handling and on results achievable
with a relatively small amount of in-domain re-
sources used to perform domain-adaptation of a
neural model.

Whilst assessing systems’ ability to correctly
translate domain-specific terms is a crucial as-
pect in MT evaluation, research in the field has
to cope with a dearth of publicly available re-
sources specifically tailored to that task. The main
contribution of this paper is to provide the MT
community with MAGMATic (Multi-domain Aca-
demic Gold standard with Manual Annotation of
Terminology), a novel Italian–English benchmark
which allows MT evaluation focused on terminol-
ogy translation. The data set comprises 2,056 sen-
tences extracted from course unit and degree pro-
gram descriptions from four different Italian uni-
versities and manually aligned to their English
translations. All terms in the English target side
of the data set were manually identified and anno-
tated with a domain label, for a total of 7,517 anno-
tated terms, covering 20 different domains related
to different disciplines - excluding humanities and
with a focus on hard sciences - as well as education
and education equipment. These features make the
data set a valuable resource to evaluate and analyze
systems’ performance on terminology translation,
thus contributing to shed light on this crucial as-
pect for MT. MAGMATic is released under a Cre-
ative Commons Attribution – Non Commercial –
Share Alike 4.0 International license (CC BY-NC–
SA 4.0), and is freely downloadable at:

https://ict.fbk.eu/magmatic/

In the remainder of this paper we describe
MAGMATic and illustrate its potential by using
it to evaluate two state-of-the-art MT systems
(Google Translate and ModernMT), both in terms
of overall performance and focusing on their abil-
ity to translate domain-specific terminology. After

describing related work on term translation evalu-
ation (Section 2), we introduce the main character-
istics of MAGMATic (Section 3) and provide re-
sults from the evaluation study carried out on the
two state-of-the-art MT systems (Section 4).

2 Related work

A number of monolingual annotated data sets for
benchmarking terminology extraction and classi-
fication techniques have been created along the
years for different domains (Kim et al., 2003;
Bernier-Colborne and Drouin, 2014; Q. Zadeh and
Handschuh, 2014; Astrakhantsev et al., 2015). The
situation is much less favourable for terminology
translation evaluation. Indeed, the majority of
works addressing domain adaptation for MT eval-
uate systems only in terms of overall performance
on a domain-specific test set, while very few stud-
ies specifically focus on the engines’ ability to
translate domain-specific terminology, and thus re-
sort to test sets in which terms are annotated. To
the best of our knowledge, only the following man-
ually annotated resources are made available to
the community. The BitterCorpus3 (Arcan et al.,
2014a) is a collection of parallel English–Italian
documents in the information technology domain
in which technical terms in both the source and
target sides of the bi-texts are manually marked
and aligned. TermTraGS4 (Farajian et al., 2018)
is a sentence-aligned version of the BitterCorpus,
which also includes a large training set.

On a different aspect of MT quality evaluation,
most of the works comparing NMT with previous
paradigms treat correct or wrong lexical choices
as one of the main quality indicators (Bentivogli
et al., 2016; Bentivogli et al., 2018; Toral and
Sánchez-Cartagena, 2017; Castilho et al., 2018;
Van Brussel et al., 2018). However, all these
works focus on the broader concept of lexical is-
sues without specifically addressing terminology.
The MAGMATic data set offers a new opportu-
nity to compare different MT approaches directly
on terminology issues.

Finally, regarding the institutional academic
scenario, it is worthwhile to point out that neither
of the two EU-funded projects mentioned in Sect.
1 – Bologna Translation Service and TraMOOC –
led to the creation of data sets targeted to the eval-
uation of terminology translation.

3https://ict.fbk.eu/bittercorpus/
4https://gitlab.com/farajian/TermTraGS
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3 Data set description

3.1 Data selection
The text material used in this work was collected
from the websites of four Italian universities. All
the course unit and degree program descriptions
for which the corresponding English version was
available were extracted, automatically aligned at
sentence level and cleaned with TMop (Jalili Sabet
et al., 2016), an open-source software for Transla-
tion Memory cleaning.

As an attempt to narrow down the number of
domains – and thus the variability of terminology –
course catalogues belonging to the humanities and
social sciences were excluded, keeping only those
catalogues related to scientific disciplines.

Then, a subset of sentence pairs was randomly
selected and manually checked to ensure align-
ment correctness. This procedure resulted in 2,157
Italian–English parallel sentences. Statistics for
the data set are summarised in Table 1.

MAGMATic
It En

Sent.pairs 2,157
Tokens 36,162 34,589

Vocabulary 10,207 9,138

Table 1: Size of the MAGMATic data set: number of sen-
tences, number of tokens (i.e. running words) and vocabulary
(i.e. number of distinct word types).

3.2 Data annotation
Two expert linguists with a background in trans-
lation studies took part in the annotation: one of
them annotated the whole data set and the other an-
notated a portion of it so as to allow inter-annotator
agreement assessment (see details in Section 3.4).

Two main annotation tasks were performed on
the English target side of the data set, namely
(i) the identification of the terms and (ii) their
classification into domain categories. In order
to ensure annotation quality and comparability,
guidelines were created, tested in a pilot study and
then given to the annotators.

Term identification. Both single-word (SW)
terms – i.e. terms formed of one word – and multi-
word (MW) terms – i.e. terms formed of two or
more words – were annotated.

Furthermore, instances of language for general
and specific purposes often blur into each other,

making the decision as to what belongs to one
or the other prone to subjectivity bias. For this
reason, annotators were asked to report on their
level of confidence, distinguishing between sure
terms and possible terms, the latter accounting
for expressions whose terminological status and
specialisation were uncertain. For example, in a
description of a course on electronics, RC-circuit
was identified as a sure term and charge as a
possible term. Where contents of a course
on chemistry were outlined, analysis was catego-
rized as possible and pollutants formation as
sure. In sentences describing a course’s teaching
and evaluation methods, exam and lecture were
labelled as sure terms, while topics and notions
were labelled as possible. This additional
annotation level is particularly useful since it
supports more flexible evaluation designs.

Domain annotation. The identified terms were
assigned to one of the following categories:

• Disciplinary: the term belongs to a dis-
ciplinary domain - e.g. chemical reaction, lin-
ear equation, cholinesterase.

• Education: the term belongs to the educa-
tional domain - e.g. module, course, lecturer.

• Education equipment: the term refers
to educational equipment that could also be
used elsewhere - e.g. overhead projector,
desk.

While the education and education
equipment categories are univocal, the
disciplinary category encompasses multiple
domains, i.e. multiple scientific disciplines. To
assign each term to a specific discipline, we lever-
aged the names of the degree programs included
in the data set: each sentence in the data set was
automatically labelled with its corresponding
degree program name and all the terms annotated
as disciplinary in those sentences during the
annotation process inherited the sentence domain
label by default. Annotators were shown this
domain label during the annotation process and
asked to signal cases where a discrepancy between
the label assigned automatically and the actual
domain of one or more terms was observed. In
these cases, annotators were asked to manually
assign a different label to the term(s), selecting it
from the list of degree program names.
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Disciplinary Education Equipment TotalSure Poss. Sure Poss. Sure Poss.
SWs 2,298 295 868 323 111 21 3,916
MWs 2,464 359 491 186 85 16 3,601
Total 4,762 654 1,359 509 196 37

5,416 1,868 233 7,517
Vocabulary 4,316 686 130 5,132

Table 2: Statistics of the terms annotated in the MAGMATic data sets. Terms in the three domain categories - Disciplinary,
Education, Education-equipment (here Equip.) - are further split into the Sure and Possible (Poss.) subcategories. For either
of these subcategories, the number of SWs and MWs, and the total number of terms are provided. In the two bottom rows, the
total number of terms and the vocabulary (i.e. the number of distinct terms) are given for each category.

The annotation was carried out using the MT-
EQuAL annotation tool (Girardi et al., 2014). For
each English sentence, the MT-EQuAL interface
displays the source sentence and the disciplinary
domain retrieved from the name of the university
course catalogue. Furthermore, the tool allows the
annotators to perform the two annotation steps si-
multaneously: they mark each term and annotate
it (sure/possible distinction and domain cat-
egory) in a single go. This makes the annotation
task efficient and less demanding in terms of ef-
fort.

3.3 Annotation statistics

Details regarding the number of terms annotated
in the data set are provided in Table 2. In 101 sen-
tences out of 2,157 (see Table 1) no terms were
found. We therefore ended up with 2,056 sentence
pairs and a total of 7,517 term occurrences, which
correspond to 5,132 distinct terms.

The disciplinary category is the largest,
while the education equipment category is
the smallest. Looking at the proportion be-
tween sure and possible terms for each cat-
egory, it is interesting to note that possible
terms are much more frequent in the education
category (27.2% of the total terms) than in
the disciplinary (12%) or education
equipment (15.9%) categories. We can as-
sume that disciplinary or education
equipment terms are rarely encountered in ev-
eryday language, and are thus easier to identify
as terms. On the other hand, education-related
terms are also used outside of the domain, making
the decision as to their status more difficult.

Looking at SWs and MWs, their number in the
data set is approximately the same. However the
disciplinary category contains more MWs
than SWs, whereas for the two other categories

the opposite is the case. This is in line with what
was stated above, i.e. disciplinary terms are
highly domain-specific, and thus more likely to be
MWs than, for example, education ones. The
average length of MW terms is 2.44 words.

Comparing the number of term occurrences with
the corresponding vocabulary, we see that terms in
the education category show a much lower de-
gree of variation than disciplinary terms. In-
deed, the type-token ratio amounts to 0.80 for the
disciplinary category, 0.37 for education
and 0.56 for education equipment. This
is due to the fact that the disciplinary cate-
gory includes multiple domains, and thus a high
number of different terms, while education
and education equipment terms are stable
and repeated across most texts. Also, the 5
most frequent terms in the data set belong to the
education category (SWs: student, course, stu-
dents, knowledge, lectures; MWs: oral exam, end
of the course, written test, oral examination, writ-
ten exam).

As concerns the specific domains represented in
the disciplinary category, we saw in the pre-
vious section that the specific domain labels were
assigned to the terms by exploiting the names of
the degree programs of the universities from which
the data set was derived. These names refer to
domains with different granularity - e.g. biology,
which is more generic, and biotechnology, which
is more specific - and thus different size. To obtain
a more homogeneous set of domains, we merged
the most specific ones with the generic ones where
appropriate, e.g. biotechnology was grouped with
biology and biomedicine with medicine. This pro-
cedure resulted in 20 macro-domain labels with a
similar level of granularity.

Examples of the macro-domains are given in Ta-
ble 3, which shows the 5 most and 5 less populated
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ones. As we can see in the table, the number of
terms included in the most populated domains al-
low for an extremely thorough terminology evalu-
ation. Also, even if not all of them are displayed
here, 9 domains out of 20 include more than 300
annotated terms. Regarding the less populated do-
mains, they appear frequently in translation tasks
and only three of them contain less than 100 anno-
tated terms.

Domain SWs MWs Total
Chemistry 345 367 712
Informatics 256 224 480
Physics 184 283 467
Biology 245 212 457
Mechanical
engineering

200 210 410

... ... ... ...
Geosciences 62 47 109
Industrial engineering 48 59 107
Astronomy 21 61 82
Law 15 34 49
Institutions 14 11 25

Table 3: The 5 most populated and 5 least populated macro-
domains covered in the data set and number of terms in each
of them (SW, MW and total).

3.4 Inter-annotator agreement

In order to assess the reliability of the annotations,
220 sentences – corresponding to 10% of the data
set – were annotated by a second annotator.

Inter-Annotator Agreement (IAA) was calcu-
lated for the two types of manual annotation,
namely (i) the identification of the terms and (ii)
their assignment to a domain category.

Agreement was computed on all the iden-
tified terms, without taking into account the
sure/possible distinction.

Term identification. Two different types of agree-
ment were calculated, to account for complete as
well as partial agreement. Complete agreement
refers to perfect overlap of two terms annotated by
different annotators (i.e. exact match), whereas for
partial agreement overlap is calculated at the level
of the single words composing the term.

The agreement rates – computed using the Dice
coefficient5 (Dice, 1945) – are 0.69 for complete

5Note that Dice coefficient has the same value of the F1 mea-
sure computed considering either annotator as the reference.

agreement and 0.79 for partial agreement. Given
the high number of MW terms and the strict ap-
proach used for complete agreement, results may
be considered satisfactory in terms of reliability of
the annotations and suitability of the annotation
guidelines.

Domain annotation. For the subset of terms
for which complete agreement between the two
annotators was found (495 terms), we also cal-
culated the agreement on the assigned category
label (i.e. disciplinary, education,
education equipment).

To this end, we computed the standard kappa
coefficient κ (in Scott’s π formulation) (Scott,
1955; Artstein and Poesio, 2008), which measures
the agreement between two raters, each of whom
classifies N items into C mutually exclusive cat-
egories, taking into account the agreement occur-
ring by chance.

The resulting κ value is 0.95, which – accord-
ing to the standard interpretation of the κ values
(Landis and Koch, 1977) – corresponds to “almost
perfect” agreement.

4 MT evaluation on MAGMATic

4.1 MT and institutional academic texts

As a first application of our MAGMATic data set,
we evaluated translations of course catalogues pro-
duced by two state-of-the-art NMT systems, i.e.
Google Translate (GT)6 and ModernMT (MMT)7.

On the one hand, course catalogues are an ideal
test bed for MT, given the multi-domain nature of
these texts. On the other hand, being able to ap-
ply MT to course catalogues is particularly key
for universities, since the increasing students and
staff mobility has created the need of translating a
large quantity of institutional academic texts into
English (see Sect. 1).

Given the lack of in-house (customised) MT
systems and of high-quality in-domain parallel
data, using such technologies is a big challenge
for higher-education institutions. Two ready-to-
use state-of-the-art MT systems like MMT and GT
thus represent a viable solution for this real-world
multi-domain translation scenario. Both of them
are based on the state-of-the-art transformer archi-
tecture (Vaswani et al., 2017) and trained on a large

6translate.google.com
7www.modernmt.eu
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pool of parallel data. Furthermore, MMT imple-
ments an adaption mechanism which allows the
system to adapt to new data in real time (Bertoldi
et al., 2018). This feature represents a particularly
interesting option in our scenario, since it would
allow universities to leverage new translated data
as soon as they are produced. In our evaluation we
used the full-fledged commercial version of MMT
available through the MateCat tool8 and and we
compared it with the GT online system.9

To the best of our knowledge, this contribution
represents the first attempt at translating institu-
tional academic texts with NMT.

4.2 Evaluation scenarios

Given the novelty of the application of MT to the
translation of course catalogues, we are focusing
on two scenarios that we deem realistic for one or
more universities willing to use MT:

• First scenario (GT, MMT-I). One or more uni-
versities want to use MT for the translation of
their course catalogues for the first time, and
have no translation memories. At this point,
no in-domain bilingual texts are available.

• Second scenario (GT, MMT-II). A university
consortium agrees to coordinate their com-
munication strategies. They use CAT tools
for translating their course catalogues and
produce a reasonable amount of translations,
which can be leveraged as shared domain-
adaptation data.

In order to address the second scenario, we
needed an in-domain data set to be exploited for
MT adaptation. To this effect, the parallel data col-
lected from the 4 Italian universities but left out in
the creation of MAGMATic (see Sect. 3.1) were
used. Statistics for this data set are outlined in Ta-
ble 4.10

Since the online generic version of GT used in
this work is not adaptive, it can be tested in the
first evaluation scenario only. As a SOTA system,
GT provides an external validation of the quality
of MMT. Differently, MMT is evaluated in both
scenarios to analyse the impact of in-domain data
on translation quality.

8www.matecat.com
9Evaluations were carried out on February 5th, 2019.
10The statistics for MAGMATic, which was used as test set,
are shown in Table 1.

Domain-adaptation
It En

Sent.pairs 40,361
Tokens 632,223 601,236

Vocabulary 55,458 48,126

Table 4: Size of the domain-adaptation data set: number of
sentences, number of tokens (i.e. running words) and vocab-
ulary (i.e. number of distinct word types).

4.3 Evaluation metrics
The MT systems were evaluated both in terms of
overall performance and specifically targeting their
ability to translate domain terminology.

The bigger picture of the quality achieved with
the setup described so far is provided through an
automatic evaluation in terms of BLEU score (Pa-
pineni et al., 2002).

The evaluation focused on terminology transla-
tion is based on the Term Hit Rate (THR) metric
(Farajian et al., 2018). THR takes in a list of anno-
tated terms in each reference sentence and looks
for their occurrence in the MT output. Then it
computes the proportion of terms in the reference
that are correctly translated by the MT system. An
upper bound of 1 match for each reference term is
applied in order not to reward over-generated terms
in the MT output.

Similarly to the approach adopted for inter-
annotator agreement (see Sect. 3.4), two THR
types are computed: perfect THR – where a match
is scored only if the whole reference term appears
in the MT output – and partial THR, where the
overlap between the reference terms and the MT
output is calculated at the level of shared tokens.
In this case, function words are removed from the
MW terms in the reference, so as to avoid false
positives with other function words present in the
MT output.

BLEU (↑)
GT 36.90
MMT-I 35.45
MMT-II 43.16

Table 5: BLEU scores for GT and for MMT in both scenarios.

4.4 Evaluation results
A general overview on the quality achieved by GT,
MMT-I (first scenario) and MMT-II (second sce-
nario) is provided in Table 5.
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Perfect THR
GT MMT-I MMT-II

Overall SWs MWs Overall SWs MWs Overall SWs MWs
All 63.72 75.43 50.98 60.97 72.98 47.90 65.33 76.07 53.65

Disc 66.80 79.75 54.91 63.94 77.52 51.47 67.74 80.03 56.50
Edu 55.62 66.33 36.78 53.32 63.48 35.45 59.28 68.01 44.61

Equip 55.78 66.96 36.76 53.31 64.10 34.96 59.11 68.40 43.32
Sure 64.95 76.26 52.76 62.43 73.91 50.06 66.58 77.05 55.30
Poss 57.25 71.20 41.35 53.25 68.23 36.18 58.75 71.05 44.74

Table 6: Perfect THR for GT and the 2 MMT systems. In addition to the overall scores, figures for SWs and MWs are given
separately. Results are provided (i) for the whole data set (All), (ii) split according to the domain category (Disc, Edu, Equip)
and (iii) distinguishing between sure and possible terms.

The good results obtained by GT and MMT-I
show that NMT can be helpful already in the first
scenario, where only generic systems can be used.
The huge performance increase of MMT-II (+7.71
wrt MMT-I and +6.26 wrt GT) is even more en-
couraging in the long-term perspective.

Focusing on the evaluation of terminology trans-
lation, perfect and partial THR scores were com-
puted on MAGMATic for GT and the two MMT
systems.

Table 6 presents results for Perfect THR. Since
MAGMATic contains both SW and MW terms,
the table gives the scores for each set separately
in addition to the overall score. Also, to al-
low a more detailed analysis of the systems’ be-
haviour on MAGMATic terms, results are pro-
vided by domain category (disciplinary,
education, equipment) and in terms of the
sure/possible distinction.

Considering the strict parameters used to cal-
culate perfect THR, the results shown in Table
6 are quite satisfactory. Regarding domain cat-
egories, all systems in all scenarios perform far
better on disciplinary terms. As for term
length, SW terms are, as expected, easier to trans-
late than MWs. The most challenging terms for
all MT systems are MWs in the education and
equipment categories.

Focusing on the first scenario, we see that GT
and MMT have a similar behaviour, since the dif-
ferences between the two systems (ranging be-
tween 2 and 4 THR points) are constant across all
the different views of the data. Two exceptions are
represented by the education and education
equipmentMW terms, for which differences are
less marked (respectively 1.33 and 1.8 THR). This
seems to indicate that MMT has fewer problems

Partial THR

GT MMT-I MMT-II

All 76.68 74.91 77.23
Disc 80.40 78.83 80.64
Edu 65.33 63.13 67.49

Equip 65.63 63.30 67.13
Sure 77.74 75.94 78.07
Poss 71.27 69.68 72.96

Table 7: Partial THR for GT and the 2 MMT systems. Only
Overall scores are reported, since matches are computed at
the token level. Results are provided (i) for the whole data set
(All), (ii) by domain category (Disc, Edu, Equip) and (iii) for
sure and possible terms.

translating the most difficult terms in the data set.
At the same time, GT outperforms MMT-I by 5.17
THR in the possible MW category, showing
that MMT-I probably struggles more than GT for
words that might not be terms.

Comparing MMT results in the two scenarios
sheds light on the specific contributions that in-
domain data can bring to terminology translation.
First of all, in the second scenario there is an in-
crease of the overall performance on the whole
data set (+4.36 THR points). The difference with
respect to the first scenario is particularly evident
for MW terms (+5.75), suggesting that domain
adaptation did not only influence lexical choices,
but also helped the system to place terms in the
correct position. As a matter of fact, if we look
at the partial THR results shown in Table 7, we
see that the performance gap between the two sys-
tems is narrower. This means that the generic and
the adapted MMT systems perform similarly in
the generation of the SWs composing a MW, but
adapted MMT is better at generating them in the
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correct order. For example, in one of the segments
the annotated MW classification of living beings
was correctly generated in the second scenario,
while in the first one the system produced the MW
living classification, which is a match only in the
partial THR evaluation.

Finally, the biggest improvement can be found
for education and equipment MW terms,
which – as we have seen above – are the most chal-
lenging for the MT systems.

As a final observation holding for all systems in
both THR evaluations, there is a clear drop in per-
formance when progressing from the evaluation of
sure terms to that of possible terms. The re-
markably higher performance obtained on the most
reliable terms in the data set highlights the impor-
tance of having good quality, flexible gold stan-
dards to evaluate translation of terminology.

5 Conclusion and further work

In this contribution we have presented MAG-
MATic, a gold standard with manually annotated
multi-domain terminology. We have described and
analised the annotation process and the methods
used to check the annotation reliability, and ap-
plied the gold standard to the evaluation of NMT
in the institutional academic domain.

Given its large size, MAGMATic is able to
cover 20 disciplinary domains with a considerable
amount of terms each, as well as the education and
education equipment domains. Both single-word
and multi-word terms are included in this data set,
and further distinguished between sure and possi-
ble terms. Thanks to these peculiarities, MAG-
MATic can fill a gap in the field of MT evalua-
tion, providing a valuable test set for insightful and
sound quality assessments based on terminology
translation. Besides fitting the purpose of evaluat-
ing terminology in an MT output, MAGMATic can
also be applied to different use cases, e.g. bilingual
terminology extraction from word-aligned bilin-
gual corpora where one of the two languages is
English, or domain identification in multi-domain
English corpora.

The results obtained with adaptive MT on the
translation of course catalogues are encouraging,
especially taking into account that this is a first at-
tempt to apply NMT to this scenario, and consid-
ering the scarcity of available bilingual data. We
believe that further work in this field is therefore
warranted. From the point of view of MT evalua-

tion, a manual assessment in terms of fluency and
adequacy of the outputs produced by MMT and
GT could be carried out and its results compared
to those described here. This could provide inter-
esting insights into the relationship between cor-
rect/incorrect terminology translation and transla-
tion quality as perceived by humans. From the
point of view of the application scenario, further
analyses will be carried out within the second sce-
nario in order to better understand the specific con-
tribution of the in-domain data from each univer-
sity to the other universities. Finally, in the long-
term perspective, we will be able to collect more
in-domain data to evaluate the corresponding per-
formance trends of adaptive MT.
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Abstract

Although automatic classification of ma-
chine translation errors still cannot provide
the same detailed granularity as manual er-
ror classification, it is an important task
which enables estimation of translation er-
rors and better understanding of the ana-
lyzed MT system, in a short time and on
a large scale. State-of-the-art methods use
hard decisions to assign single error labels
to each word. This work presents first re-
sults of a new error classification method,
which assigns multiple error labels to each
word. We assign fractional counts for each
label, which can be interpreted as a con-
fidence for the label. Our method gener-
ates sensible multi-error suggestions, and
improves the correlation between manual
and automatic error distributions.

1 Introduction

Translations produced by machine transla-
tion (MT) systems have been evaluated mostly
in terms of overall performance scores, either
by manual evaluations (ALPAC, 1966; White
et al., 1994; Graham et al., 2017; Federmann,
2018) or by automatic metrics (Papineni et al.,
2002; Lavie and Denkowski, 2009; Snover et
al., 2006; Popović, 2015; Wang et al., 2016).
All these overall scores give an indication of
the general performance of a given system, but
they do not provide any additional information.
Translation error analysis, both manual (Vilar
et al., 2006; Farrús et al., 2010; Lommel et al.,

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

2014b) as well as automatic (Popović and Ney,
2011; Zeman et al., 2011), as a way to identify
weaknesses of the systems and define priorities
for their improvement, has received a fair amount
of attention in the MT community. Although
automatic error classification still cannot deal
with fine-grained error taxonomies, it represents
a valuable tool for fast and large scale translation
error analysis. With the emergence of neural
MT systems, first insights about the differences
between the neural approach and the then state-
of-the-art statistical phrase-based approach were
obtained by using automatic error classification.
Bentivogli et al. (2016) analyzed four MT systems
for English into German by comparing different
TER (Snover et al., 2006) scores and sub-scores,
and Toral and Sánchez-Cartagena (2017) applied
the WER-based approach proposed by Popović
and Ney (2011) for a multilingual and multi-
faceted evaluation of eighteen MT systems for
nine translation directions including six languages
from four different families.

So far, automatic error classification is based on
hard decisions about the error class for a given
word. Addicter (Zeman et al., 2011) uses a
first-order Markov model for aligning reference
words with hypothesis words, and Popović and
Ney (2011) use WER alignments; both meth-
ods assign only one single error label for each
word. However, the assumption that each word
can be tagged with only one error category can
be somewhat restrictive. Human annotators’ feed-
back (Popović and Burchardt, 2011; Lommel et
al., 2014a; Klubička et al., 2018) have pointed out
that sometimes it is not completely clear what er-
ror category should be assigned to a word (e.g. it
is difficult to differentiate a lexical error from a
missing or extra word, or to decide which word
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reference: in some places rents will even rise
hypothesis: in some places even grow rents

Possible ambiguties:

• which words should be tagged as reordering
errors, “rents” or “even”?

• “rise”/“grow” can be reordering errors too,
and lexical errors at the same time

• are “will”, “rise” and “grow” lexical errors,
or “will” and “rise” are missing words and
“grow” is an extra word?

Figure 1: Examples of potentially ambiguous error labels
both for human annotators as well as for automatic tools: the
decision about lexical errors vs missing and extra words, and
determining an exact span for reordering errors.

span should be tagged as a reordering issue), or it
may be the case that a generated word should be
assigned more than one error (e.g. a lexical and a
reordering error). Examples of such cases can be
seen in Figure 1.

In this work we propose to expand the auto-
matic error classification approach by suggesting
multiple error categories for each word. Addition-
ally, with each error category we are able to as-
sign a (fractional) count which intuitively can be
interpreted as a confidence for each error category.
Since, to the best of our knowledge, this represents
the first attempt of multi-label automatic classifi-
cation, we first explore what kind of multi-error
suggestions are generated by our method. We then
compare our results with manual error annotations
and with the method based on a single WER align-
ment. As translation corpora with manual error
analysis allowing multiple labels are not yet avail-
able, we evaluate our method by computing the
correlation of the global distribution of errors with
human assigned labels. We also try to gain insights
about the behaviour of the system and find out that
the system makes sensible multi-error suggestions.

2 Error classification method

As starting point for our method we take the
approach proposed by Popović and Ney (2011)
which is based on a combination of WER and
PER statistics on different forms of the words (sur-
face, base forms). WER is defined as (a nor-
malized version of) the edit distance (Levenshtein,

1966), whereas PER is Position-independent word
Error Rate which does not take the word order into
account. The described method identifies actual
words which contribute to WER as well as to two
types of PER called “Reference PER” (RPER) and
“Hypothesis PER” (HPER) corresponding to recall
and precision. The dynamic programming (DP) al-
gorithm for WER enables a simple and straight-
forward identification of each word which con-
tributes to the edit distance. The WER operations
are called “substitutions”, “deletions” and “inser-
tions”. The PER metric is based on reference
and hypothesis word counts without distinguish-
ing which words are deletions, which insertions,
and which are substitutions. Therefore two alter-
native PER-based measures which correspond to
the recall and precision are introduced, RPER and
HPER. The RPER errors are defined as the words
in the reference which do not appear in the hy-
pothesis, and the HPER errors are the words in
the hypothesis which do not appear in the refer-
ence. Once the WER, RPER and HPER erors have
been identified, the base forms for each word are
used in order to distinguish the following five error
classes:

• inflectional error (”infl”): a word which con-
tributes to WER and PER, but its base form
does not

• reordering error (”ord”): a word which con-
tributes to WER but not to PER

• missing word (”miss”): a WER deletion
which also contributes to RPER

• extra word (”ext”): a WER insertion which
also contributes to HPER

• lexical error (”lex”): a WER substitution
which also contributes to RPER/HPER

The edit distance is well defined as a value,
and the alignment between the two strings being
compared can be obtained as a by-product. How-
ever, there are several optimal alignments (or paths
in the dynamic programming trellis) that produce
the same distance, e.g. often a series of “inser-
tion” and “deletion” operations can be reordered
without affecting the resulting distance, or differ-
ent words can be chosen as “substitution” opera-
tions. An example can be seen in Figure 2. How to
choose among all the possible alternatives is nor-
mally implementation dependent (e.g. the first op-
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let us see an example
us see see an example

let us see an example
— us see +see+ an example

let us see an example
— us +see+ see an example

Figure 2: Three possible alignments with edit distance 2 be-
tween the reference “let us see an example” and the hypothe-
sis “us see see an example”. Insertions are marked as +inser-
tion+, deletions as — and substitutions are underlined.

Figure 3: Distribution of error categories using different cri-
teria for selecting the best WER alignments. The height of
the bars corresponds to the percentage of each error (words
classified as correct are not included), the different colors cor-
respond to different implementations.

eration checked in the code) and does not have any
linguistic motivation.

While this discussion may appear academic at
first sight, it does have an important effect when
these alignments are used for defining error cat-
egories. Figure 3 illustrates this effect, where we
show 6 different strategies for defining WER align-
ments (based on different precedence of checking
“insertion”, “deletion” and “substitution” opera-
tions).

On the other hand, the fact that a word can be
involved in different WER operations can give ad-
ditional information to be used for error classifica-
tion. In this work we take into account all optimal
WER alignments and collect statistics of all possi-
ble edit operations for each word. We collect the
alignment statistics (the counts of each operation
for each word) using dynamic programming with
memoization (using a Depth-First Search strat-
egy). Further combination with PER counts is ap-

plied in the same way as in (Popović and Ney,
2011), but instead of combining it with one single
WER operation, it is combined with each possible
WER operation on the given word thus providing
all possible error classes for this word.

All possible paths for minimal edit distance be-
tween the reference and the hypothesis from the
example from Figure 2 are presented in Table 1.
Minimal edit distance is 2, and it can be reached by
three paths. The standard version of the error clas-
sification method described in (Popović and Ney,
2011) takes only one path into account, therefore
each word in the reference and in the hypothesis
is labelled with only one edit operation and thus
with one error class. The method proposed in this
work collects the edit operations from all paths in
the following way:

• deletions are counted only for reference
words

• insertions are counted only for hypothesis
words

• for each reference word, label counts are col-
lected from each cell in its column in the DP
trellis

• for each hypothesis word, label counts are
collected for each cell in its row in the DP
trellis

In this way, in the example in Table 1 the hy-
pothesis word “see” at the second position has one
“substitution” label (from the cell aligned with the
reference word “us”) as well as one “x”1 and one
“insertion” (from the cell aligned with the refer-
ence word “see”). The reference word “see” has
two labels “x” (one from the first hypothesis word
“see” and one from the second one), however no
“insertion” operations.

For each word, each edit operation together with
associated PER counts defines an error category
as described above. Fractional counts for each er-
ror class are obtained by dividing the count of the
given error class with the total count of all encoun-
tered classes for this word. In our example, the first
hypothesis word “see” has three error labels “x”
(no edit operations, correct word), “sub” (substitu-
tion) and “ins” (insertion) and each of them is seen
once. Thus, the total count for this word is 3, and
probability for each class is 1

3 = 0.33.
1We denote with “x” the “match” operation, i.e. when the hy-
pothesis and reference words are the same.
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ref→
hyp↓ let us see an example

us 1 sub↘
2,3 del→ 2, 3 x↘

see 1 sub↘ 2 x↘
3 ins ↓

see 1,3 x↘ 2 ins ↓
an 1,2,3 x↘

example 1, 2,3 x↘

Table 1: Three possible paths in the dynamic programming trellis for minimal edit distance for the Example from Figure 2:
path1 = ”sub sub x x x”, path2 = ”del x x ins x x” and path3 = ”del x ins x x x”. Standard WER takes only one path (e.g. path1
in bold) into account.

When collecting statistics over a segment or a
full corpus, in order to compute the error distri-
butions these fractional counts are summed over
all words. Thus, the total amount of errors can
be a fractional number as well. Note that we can
still normalise it by the total number of words in
the segment/document to obtain a normalized er-
ror rate, as the fractional counts for each word sum
up to 1.

Table 2 presents single and multiple error labels
for the potentially ambiguous error categories from
Figure 1. It can be seen that the multi-label method
assigns multiple error cases to the words which can
be ambiguous even for a human annotator.

3 Evaluation setup

We applied the new method as well as the single
WER path method described in (Popović and Ney,
2011) to the publicly available test sets from the
TERRA corpus (Fishel et al., 2012) and PE2RR

corpus (Popović and Arčan, 2016) designed for
evaluating automatic error classification. In ad-
dition to translation hypotheses and post-edits
(PE2RR) or references (TERRA), manual error an-
notations are also available. The statistics of the
test corpora are shown in Table 3.

The main differences between the two data sets
are (i) post-edited MT hypotheses are available
in PE2RR (and standard reference translations in
TERRA), (ii) manual error annotation in PE2RR is
based on correcting automatically assigned labels
whereas in TERRA it is performed from scratch.
All results are reported separately for each of the
data sets.

4 Distribution of error labels

Our first experiment aims to explore the nature and
frequency of the error label suggestions generated
by the new method. The distributions of error la-
bels in the form of relative frequencies are shown
in Table 4 for both test sets.

Apart from some small variations, the main ten-
dencies are the same for the two test sets. The
majority of multiple labels are double labels, the
most frequent ones being “lex+miss”, “lex+ext”
and “x+reord”. They involve the single labels
which are, as mentioned in the introduction, re-
ported to be difficult to disambiguate, even for hu-
man annotators. Other types of double labels can
make sense in certain circumstances but are sig-
nificantly less frequent. Two types of triple labels
are found, too, “x+lex+ext” and “x+lex+miss”, but
their frequency is also low.

Further analysis of the three most frequent dou-
ble labels is shown in Table 5. The majority of
“lex+miss” labels has the same fractional counts,
namely 0.5. For the “lex+ext” label the equal
counts are the most frequent in the PE2RR cor-
pus, whereas in the TERRA corpus the majority of
instances has higher fractional count for the “lex”
category. For both multiple labels and in both cor-
pora, there are much more higher fractional counts
for the “lex” category than for “miss” or “ext”. As
for the “x+reord” label, almost two thirds have a
higher count for reordering, one third has equal
counts, whereas instances with higher counts for
correct word are very rare.
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reference rents will even rise
single labels reord lex reord lex
multiple labels reord lex+miss x+reord lex+miss
frac. counts 1.00 0.50+0.50 0.25+0.75 0.67+0.33
hypothesis even grow rents
single labels reord lex reord
multiple labels x+reord lex+ext reord
frac. counts 0.33+0.67 0.75+0.25 1.00

Table 2: Example from Figure 1 with single error labels and with multiple error labels together with their fractional counts.

corpus hyps sents words langs
PE2RR 11 2896 40138 8
TERRA 7 436 6293 2

Table 3: Statistics of the used error annotated corpora: num-
ber of different translation hypotheses, number of sentences
in all hypotheses, number of running words in all hypotheses,
and number of different language pairs.

5 Comparison with manual error
annotations

5.1 Pearson correlations
An automatic error classification method can be
used to detect weak and strong points of individual
translation systems, as well as to compare differ-
ent translation systems. In order to estimate and
compare the reliability of the error classification
methods we compute the Pearson correlation with
human annotations in two different ways:

• interClass
For each translated segment, correlation with
the manual annotation is calculated over all
error classes.

• interHyp
For each error class, correlation with man-
ual annotation is calculated over all transla-
tion segments.

We compare two methods: single error la-
bels (single) and our proposed multi-label
method (frac). For each of the methods, the ex-
tracted error counts are compared with the error
counts obtained by manual annotation. For com-
puting error counts on the segment level, we just
sum the (fractional) counts.

The correlation coefficients are presented in Ta-
ble 6. The interClass correlation coefficients are
very high for both methods on both corpora, with
our proposed frac method having better correla-
tion on the TERRA corpus. For the interHyp corre-

lations, there is no difference for inflectional errors
between both test sets. Reordering (reord) and lex-
ical (lex) errors as well as correct words (x) have
similar correlations on PE2RR and improved cor-
relations on TERRA, whereas the correlation for
missing words is improved on both corpora. Cor-
relation for extra words, however, increased on
PE2RR data but decreased on TERRA data. Pre-
vious work (Popović and Burchardt, 2011) defined
this error class as not reliable enough, so further
and deeper analysis focused on this class would be
a possible direction for future work.

It can be noted that the majority of improve-
ments are achieved on TERRA data, where only
standard reference translations are available, and
no post-edited MT hypotheses. This scenario rep-
resents a more difficult task for automatic classifi-
cation (as mentioned in Section 3), and it also rep-
resents a more realistic scenario – one reference
translation can be used for large-scale evaluations
involving many different MT systems, whereas
producing a post-edited version for each MT sys-
tem would be very time- and resource-consuming.

5.2 Analysis of differences

The most intuitive method for further analysis
of differences between the single and frac ap-
proaches would be to calculate precision and recall
for each error label. However standard precision
and recall are not convenient metrics for evaluat-
ing our method since the manual annotations con-
sist of only one label, so that adding multiple labels
would be penalised by this metric (specifically by
the precision term).

Thus, in order to better understand the differ-
ences between the single and frac methods, we
conducted an ad-hoc analysis. For each word that
was assigned more than one error category, we dis-
tinguish two cases:

Adding correct information The single label
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PE2RR TERRA

label(s) rel.freq. label(s) rel.freq.
single labels x 71.2 x 43.5

lex 7.7 lex 17.5
infl 7.3 reord 7.4
reord 3.1 infl 5.7
miss 1.2 miss 1.5
ext 0.6 ext 0.6

double labels lex + miss 3.6 lex + miss 11.8
lex + ext 2.9 lex + ext 6.5
x + reord 2.1 x + reord 3.9
x + lex 0.1 x + lex 0.8
x + infl 0.03 x + miss 0.08
x + miss 0.02 x + ext 0.08
x + ext 0.01

triple labels x + lex + ext 0.06 x + lex + miss 0.4
x + lex + miss 0.04 x + lex + ext 0.3

Table 4: Relative frequencies of multiple error labels for PE2RR and TERRA.

PE2RR TERRA

frac counts % %
lex + miss 0.50 + 0.50 62.4 52.3

lex > miss 28.8 40.4
lex < miss 8.8 7.3

lex + ext 0.50 +0.50 59.9 42.7
lex > ext 34.5 53.1
lex < ext 5.6 4.2

x + reord 0.50 + 0.50 38.1 31.6
x > reord 0.3 0.8
x < reord 61.6 67.6

Table 5: Most frequent multiple error labels and the relation between their fractional counts.

was incorrect and the expanded method is
able to add the correct label.

Adding noise The single label was already cor-
rect, therefore the additional labels generated
by our method do not improve the system.

Statistics about these two categories are shown in
Table 7. Improvements are dependent of the cor-
rect error category so no global conclusion can
be drawn. The single label method tends to in-
correctly label missing and extra words as lexi-
cal errors. In this case the additional error labels
are helpful, whereas for the true “lex” category
they are adding noise. In addition to that, the new
method helps identifying correct words which the
single method tags as reordering errors.

For both “lex+miss” and “lex+ext”, about 15-
40% instances are adding information, however

even more instances are adding noise (25-60%).
The most frequent case is when both manual and
single label are “lex” (in which case no additional
suggestions are needed), followed by the manual
“ext” or “miss” tagged as “lex” (where additional
“miss” or “ext” label can be helpful). The third
frequent case is when the correct label is “miss” or
“ext”, and the least frequent case is helping to iden-
tify “lex” when it is labelled as “ext” or “miss”.

The “x+reord” label mainly helps for correct
words labelled as reordering error, especially for
TERRA, where a number of superfluous errors are
assigned by the automatic system. For PE2RR, this
effect is much smaller, whereas introducing multi-
ple label for already correctly labelled reordering
errors is dominant.
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interClass interHyp correlations
corpus method correlations infl reord ext lex miss x
PE2RR single .869 .772 .856 .664 .782 .809 .982

frac .869 .772 .852 .676 .781 .813 .982
TERRA single .891 .820 .586 .533 .502 .537 .537

frac .936 .820 .602 .520 .521 .610 .544

Table 6: Pearson correlations comparison between error classes (interClass) and between translation hypotheses (interHyp)

multiple frac is PE2RR TERRA

labels single man adding % %
lex+miss miss lex inform. 11.4 7.5

lex miss inform. 26.0 12.3
lex lex noise 28.6 21.1

miss miss noise 25.3 9.8
lex+ext ext lex inform. 12.6 4.7

lex ext inform. 19.6 8.1
lex lex noise 39.2 21.1
ext ext noise 18.2 4.7

x+order reord x inform. 24.2 59.4
x reord inform. 1.5 2.3
x x noise 7.9 16.8

reord reord noise 66.1 19.9

Table 7: Percentage of multiple labels which adds information (if single label is incorrect but one in the double label is) and
those which do not.

6 Summary

In this paper we proposed an automatic error clas-
sification method for machine translation based on
edit distance which assigns multiple error labels to
each word and enables calculating error label prob-
abilities. The main findings of our experiments
are:

• The most frequent multiple error labels
are “lex+miss” and “lex+ext”, followed by
“x+reord”. These error categories have been
reported by human annotators to be difficult
to differentiate, thus our method seems to
generate sensible multi-error suggestions and
to model this effect correctly.

• The use of fractional counts increases the
correlation of error distribution with human
judgements, especially for the more difficult
and more realistic TERRA test set. We ex-
plain this as a useful confidence-like measure
for the labels, which correlates with the un-
certainty on human labels.

The described work offers several possibilities
for future work taking better advantage of the frac-

tional counts. One issue we encountered when
evaluating our method is that the available data sets
for the evaluation of error classification methods
have single labels. We tried to evaluate our ap-
proach assigning to each word the label with the
highest fractional count, but this did not lead to
an increase in accuracy (despite the better corre-
lation with error distribution judgements). Given
the fact that human annotators’ feedback indicates
a potential for assigning multiple labels, one in-
teresting direction would be to generate new data
sets supporting this labelling scheme and compute
standard measures like precision and recall on this
data.

Despite of not having ideal evaluation condi-
tions, preliminary manual inspection of the as-
signed labels gives us confidence that the method
will be useful and interesting for further research.
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gies de la traducció, pages 455–463, 12.
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Abstract

We propose an interactive-predictive neu-
ral machine translation framework for eas-
ier model personalization using reinforce-
ment and imitation learning. During the
interactive translation process, the user is
asked for feedback on uncertain locations
identified by the system. Responses are
weak feedback in the form of “keep” and
“delete” edits, and expert demonstrations
in the form of “substitute” edits. Condi-
tioning on the collected feedback, the sys-
tem creates alternative translations via con-
strained beam search. In simulation exper-
iments on two language pairs our systems
get close to the performance of supervised
training with much less human effort.

1 Introduction

Despite recent success reports on neural machine
translation (NMT) reaching human parity (Wu
et al., 2016; Hassan et al., 2018), professional
use cases of NMT require model personalization
where the NMT system is adapted to user feedback
provided for suggested NMT outputs (Wuebker et
al., 2018; Michel and Neubig, 2018). In this pa-
per, we will focus on the paradigm of interactive-
predictive machine translation (Foster et al., 1997;
Barrachina et al., 2008) which has been shown to
fit easily into the sequence-to-sequence model of
NMT (Knowles and Koehn, 2016; Wuebker et al.,
2016). The standard interactive-predictive proto-
col takes a human-corrected prefix as condition-
ing context in predicting a sentence completion,

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

which is again corrected or accepted by the human
user. Recent work showed in simulation experi-
ments that human effort can be reduced by asking
humans for reward signals or validations of partial
system outputs instead of for corrections (Lam et
al., 2018; Domingo et al., 2017).

Our goal is to combine both feedback modes
— corrections and rewards — by treating them as
expert demonstrations and reward values in an in-
teractive protocol that combines imitation learning
(IL) (Ross et al., 2011) and reinforcement learning
(RL) (Sutton and Barto, 2018), respectively, us-
ing only limited human edits. A further difference
of our framework to standard interactive-predictive
NMT is our use of an uncertainty criterion that re-
duces the amount of feedback requests to the to-
kens where the entropy of the policy distribution
is highest. This idea has been used successfully
before in Lam et al. (2018) and Peris and Casacu-
berta (2018) and connects our work to the area of
active learning (Settles and Craven, 2008). Lastly,
our framework differs from prior work by allowing
model updates based on partial translations.

Our experiments show that weak feedback in
form of keep/delete rewards on translation outputs
yields consistent improvements of between 2.6 and
4.3 BLEU points over the pre-trained baseline. On
one language pair, it even matches the improve-
ments gained by forcing word substitutions from
reference translations into the re-decoded output.
Furthermore, both feedback scenarios consider-
ably reduce human effort.

2 Related Work

Interactive-predictive translation goes back to
early approaches for IBM-type (Foster et al., 1997;
Foster et al., 2002) and phrase-based machine
translation (Barrachina et al., 2008; Green et al.,
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2014). Knowles and Koehn (2016) and Wuebker et
al. (2016) presented neural interactive translation
prediction — a translation scenario where transla-
tors interact with an NMT system by accepting or
correcting subsequent target tokens suggested by
the NMT system in an auto-complete style. How-
ever, in their work the system parameters are not
updated based on the prefix. This idea is imple-
mented in Turchi et al. (2017), Michel and Neu-
big (2018), Wuebker et al. (2018), Karimova et al.
(2018), or Peris et al. (2017). In contrast to our
work, these approaches use complete post-edited
sentences to update their system, while we update
our model based on partial translations. Further-
more, our approach employs techniques to reduce
the number of interactions.

Our work is also closely related to approaches
for interactive pre-post-editing (Marie and Max,
2015; Domingo et al., 2017). The core idea is to
ask the translator to mark good segments and use
these for a more informed re-decoding, while we
integrate constraints derived from diverse human
feedback to interactively improve decoding. Ad-
ditionally, we try to reduce human effort by min-
imizing the number of feedback requests and by
frequent model updates.

Several recent approaches to reinforcement
learning from human feedback implement the idea
of reinforcing/penalizing a targeted set of ac-
tions. Kreutzer et al. (2018) presented an approach
were ratings from human users on full transla-
tions are used successfully for NMT domain adap-
tation. Simulations of NMT systems interacting
with human feedback have been presented firstly
by Kreutzer et al. (2017), Nguyen et al. (2017), or
Bahdanau et al. (2017), who apply different pol-
icy gradient algorithms, William’s REINFORCE
(Williams, 1992) or advantage-actor-critic meth-
ods (Mnih et al., 2016), respectively. In this paper,
we use REINFORCE update strategies for simu-
lated bandit feedback on the sub-sentence level.

González-Rubio et al. (2011; 2012) apply active
learning for interactive machine translation, where
a user interactively finishes translations of a statis-
tical MT system. Their active learning component
decides which sentences to sample for translation
and receive supervision for, and the MT system is
updated on-line (Ortiz-Martı́nez et al., 2010). In
our algorithm, the active learning component de-
cides which prefixes to receive feedback for based
on the entropy of the policy distribution.

3 Learning Interactive-Predictive NMT
from Rewards and Demonstrations

As shown in Cheng et al. (2018), IL and RL can
be viewed as a single algorithm that only differs in
the choice of the oracle, based on objective func-
tions that are defined as the expected value func-
tion with respect to the current model’s policy πn
in case of RL, and as the expected value function
with respect to an expert policy π∗ in case of IL.
Applied to NMT, both IL and RL are based on
a Markov Decision Process where a deterministic
sequence of states consisting of the source input
and the history of the model’s predictions (possi-
bly incorporating expert’s demonstrations) serves
as conditioning context to predict the respective
word, or “action” (Bahdanau et al., 2017).

We instantiate rewards and demonstrations to
the feedback types in interactive-predictive trans-
lation as follows: In the first case, uncertain words
predicted by the system receive a positive or neg-
ative reward based on “keep” or “delete” feedback
respectively. In the second case, uncertain words
can additionally be corrected based on an expert
policy in the form of “substitute” feedback associ-
ated with a positive reward. This feedback is inte-
grated in context of the model’s own predictions by
adding rules to constrained beam search decoding
(Hokamp and Liu, 2017; Post and Vilar, 2018).1

3.1 Learning Objective

We formalize the objective of interactive-
predictive NMT as maximizing the value function
V of a parametrized policy πθ, i.e., we seek to
maximize the expected (future) reward obtainable
from interactions of the NMT system with a
human translator who, by editing translations,
implicitly assigns rewards R(ŷ) to system
predictions ŷ given source sentences x:

max
θ
Vπθ(ŷ;x) = max

θ
Eŷ∼πθ(·|x)[R(ŷ)] (1)

1We observe that the distinction between weak feedback and
expert feedback is difficult to make in the “keep” feedback
case: on the one hand, this type of feedback refers to an action
generated by the system, and on the other hand, it can be seen
as a form of expert demonstration. From this perspective, our
first system is closer to RL while our second system is closer
to IL. For brevity, we will refer to our models as “RL model”
and “IL model”, respectively.
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Figure 1: A graphical illustration of the
interactive-predictive workflow of our system.
Dotted arrows indicate interactions between hu-
man and system; solid arrows indicate procedures
within the system

Following the policy gradient theorem (Sutton et
al., 2000; Bahdanau et al., 2017), its derivative is

∇θVπθ = Eŷ∼πθ(·|x)

T∑

t=1

∑

y∈V
∇θπθ(y|x, ŷ<t)R(y)

(2)

where V is a vocabulary of target words. In our
application, we ask for feedback on a single tra-
jectory at each round of interactions. Similar to
Williams (1992), we consider a 1-sample estimate
to reduce the inner sum of actions at each time step
to the single action ŷt presented to the user.

Depending on the type of feedback, the instan-
taneous reward R(ŷt) for a system translation ŷt is
set to the following values:

R(ŷt) =

{
0.5 if SUBSTITUTE/KEEP,

−0.1 if DELETE.
(3)

In addition, we found that flooring rewards for
tokens that do not receive explicit feedback to a
small number2 stabilizes the training and improves
performance on the dev set.

4 Algorithms

In this section, we present the details of our
interactive-predictive workflow and describe the
system components of our implementation to re-
duce human effort while maintaining high qual-
ity model adaptation. In contrast to existing ap-
proaches where full sentences are corrected in each
2We apply Gaussian noise with mean 0.1 and standard devia-
tion of 0.05.

round, our system stops decoding when the gener-
ated segment meets several (un)certainty criteria.
Our system then identifies uncertain words within
the generated segment and asks the user to edit
these words. The idea is to direct the user to possi-
ble translation errors in the segment, and to collect
feedback on these highly informative locations, ef-
fectively implementing an active learning strategy.
The collected feedback is used twice: first, it is
used to perform an on-line update of the system’s
parameters, and secondly, it is integrated as rules
into constrained beam search. The full translation
is reached after several interactive rounds when the
translator finally accepts the translation. Figure 1
gives a graphical illustration of the workflow.

4.1 Measuring uncertainty

We define a measure of uncertainty based on the
entropy at a time step t given a set of actions V
(i.e., the target vocabulary) where

Ht = −
∑

y∈V
πθ(y|x, ŷ<t) log πθ(y|x, ŷ<t).

The idea is that learning from edits on high en-
tropy time steps is more helpful than learning from
edits on low entropy time steps, because updating
parameters based on uncertain regions better sta-
bilizes the model over time. Furthermore, entropy
is computationally simple and far less expensive
than external reward estimators such as a quality
estimation system, a critic, or a discriminator.

A single token at time step t is considered un-
certain if the entropy exceeds a defined threshold ε,
i.e., Ht > ε. We use this criterion to identify infor-
mative locations of a partial translation on which
the user is asked for feedback.

In case of partial translations, a sequence of
length t is considered uncertain if the token at time
t is uncertain as defined above, and there is an
abrupt change in entropy at t, formally Ht−Ht−1

Ht−1
>

δ. Both criteria are applied to determine the length
of a partial translation shown to the user.

4.2 Interactive-predictive workflow

Algorithm 1 describes the workflow in our
interactive-predictive machine translation sce-
nario. In the first round, the system starts with ini-
tial model parameters θ0, and an empty set of feed-
back rules ξ, and calls BEAM-SEARCH to first gen-
erate an unconstrained partial translation of length
t by evaluating the uncertainty criteria in function
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Algorithm 1: Interactive-predictive workflow
for a single sentence using constrained beam
search. Input: model parameters θ, source sen-
tence x, beam size k, learning rate α. Output:
updated θ∗.

1 tprefix ← 1, n← 1
2 θ0 ← θ, ξ ← ∅
3 SET-NMT-SOURCE(x)
4 repeat
5 ŷ1:t ← BEAM-SEARCH(k, tprefix, Tmax, ξ)
6 for i← 1 to t do
7 if UNCERTAIN-LOCATION(ŷ1:t, i) then

Collect feedback rules ξi
8 Get rewards for ξi ∈ {keep, delete, substitute}

according to Eq. 3
9 θn ← θn−1 + α∇θV (Eq. 2)

10 tprefix ← |ŷ1:t|, n← n+ 1
11 until ŷ1:t accepted

IS-UNCERTAIN. The algorithm then evaluates each
token within the partial translation and asks for
user feedback if the token is considered uncertain
w.r.t. the function UNCERTAIN-LOCATION.

Feedback is captured in form of rules that cor-
respond to edits on specific locations, e.g., KEEP

token at position i, DELETE token at position i,
or SUBSTITUTE token at position i with another
token. After collecting the rewards for feedback
rules ξi according to Equation 3, the model param-
eters are updated by taking a gradient step as de-
fined in Equation 2.

The updated system then proceeds to the next
round by calling BEAM-SEARCH again, this time
with a set of feedback rules ξ to generate a con-
strained partial translation exceeding the previous
length tprefix. The uncertainty criterion of tokens
is evaluated again and the user is asked for feed-
back on these tokens, extending the set of feed-
back rules ξ, which are used to update the system
parameters and generate the next partial translation
until the user is satisfied with the translation.

4.3 Constrained beam search

A central component is a modified beam search al-
gorithm that takes positional constraints into ac-
count (Algorithm 2). The user constraints force the
system to generate alternative translations and can
thus be interpreted as an exploration strategy. An
efficient alternative exploration strategy is multi-
nomial sampling. In our interactive-predictive sce-
nario, however, it is crucial that translations on
locations without explicit user feedback are pre-
served, and this cannot be modeled easily with

Algorithm 2: Constrained beam search for un-
certain partial translation. Input: beam size k,
prefix length p, maximum length N , feedback
rules ξ. Output: partial translation.

1 function BEAM-SEARCH(k, p, N , ξ)
2 beam← DECODER-INIT(k)
3 for t← 1 to N do
4 scores← DECODER-STEP(beam)
5 beam← KBEST(scores, k, ξ)
6 if LENGTH(beam[0])> p and

IS-UNCERTAIN(beam[0]) then break
7 return beam[0]
8 function KBEST(scores, k, ξ)
9 scoresc← APPLY-CONSTRAINTS(scores, ξ)

10 beam← ARGMAXk(scoresc)
11 return beam

multinomial sampling. Beam search on the other
hand ensures stable translations due to its deter-
ministic nature, and the idea of constrained beam
search provides the tools to improve the translation
interactively. As a side effect, higher quality trans-
lations can be obtained by increasing the beam size
at the cost of computational power.

After initializing k beams, the algorithms gen-
erates a partial translation by calling DECODER-
STEP to retrieve the next token and score all hy-
potheses. The constraints (provided in the form of
feedback rules) are applied in the function KBEST

by filtering out all hypotheses that do not satisfy
the constraints before the ARGMAXk operation se-
lects the k highest scoring remaining hypotheses.
The single best partial translation is shown to the
user only if two conditions are met: (1) the length
exceeds the length of the previous partial transla-
tion, and (2) the current partial translation is con-
sidered an uncertain sequence. In case one con-
dition is not met, the system iteratively extends
the partial translation up to a maximum hypothe-
sis length.

5 Experiments

To demonstrate the effectiveness of our reinforce-
ment and imitation strategies, we simulate the
interactive-predictive workflow described in Sec-
tion 4 in a domain adaptation setup. A human
translator is simulated by comparing partial trans-
lations with corresponding gold translation to ex-
tend the set of feedback rules in every round. In
the RL setting, the simulated human translator pro-
vides only weak feedback (KEEP and DELETE ed-
its) on tokens generated by the system, while in
the IL setting the simulated translator addition-
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Data Training train / dev / test ∅ en-length
fr

-e
n EP pre-training 1.3M / 2k / – 25.5

NC interactive 18.4k / 3k / 5k 22.8

de
-e

n EP pre-training 1.7M / 2.7k / – 24.0
NC interactive 18.9k / 1k / 2k 22.6

Table 1: Data used in pre- and interactive training
for French-English (fr-en) and German-English
(de-en).

ally injects expert feedback (SUBSTITUTE edit) by
demonstrating how the system should act at a spe-
cific time step. In our simulation experiments, we
focus on the uncertain tokens of the partial trans-
lation. An exact match between the uncertain to-
ken and the reference generates a KEEP edit, while
differing tokens generate either a DELETE or SUB-
STITUTE edit depending on the type of system. To-
kens exceeding the sentence length of the reference
always receive a DELETE feedback. We refer to the
first system as KEEP+DELETE, and the second sys-
tem as +SUBSTITUTE. While the system parame-
ters are updated online after every such simulated
interaction, system evaluation is done by a stan-
dard offline translation of an unseen test set.

5.1 Dataset

For pre-training, we use the Europarl (EP) corpus
version 5 for the French-English system, and ver-
sion 7 for German-English. For interactive train-
ing, we use the News Commentary (NC) 2006
corpus. Both corpora are publicly available on
the WMT13’s homepage.3 All experiments are
conducted on two language pairs, i.e., German-
English (de-en) and French-English (fr-en). Data
sets were tokenized and lowercased using MOSES

preprocessing scripts (Koehn et al., 2007). We ap-
plied compound splitting on the German source
sentences using CDEC’s tool (Dyer et al., 2010).
Our data sets for interactive training differ from the
original News Commentary data splits as follows:
(1) we sample a subset of the original training
set to reduce the number of parallel sentences to
18,432 for French-English and 18,927 for German-
English, and (2) we increase both validation and
test set for French-English to 3,001 and 5,014 par-
allel sentences by moving data from the original
training set excluding sentences that were sampled
for training. Note that a training set size of less
than 19,000 parallel sentences is very small even

3https://www.statmt.org/wmt13/

in a domain adaptation setup. Table 1 summarizes
the statistics of our datasets.

5.2 Model Architecture

We use a single uni-directional LSTM layer with
global attention mechanism between encoder and
decoder. The dimensionality of the LSTM hidden
states and the word embeddings are 500. We build
the vocabulary using the most frequent 50,000
words in each language.

The Adam optimizer (Kingma and Ba, 2014) is
used in all training scenarios. In supervised train-
ing, we use a mini-batch size of 64 and an initial
learning rate of 0.001. Starting from the 5th epoch,
the rate is reduced by half in each epoch if the val-
idation perplexity increases. In interactive train-
ing, we train for a single epoch and apply a con-
stant learning rate of 10−5 with a mini-batch size
of 1. In all experiments we set entropy parameters
to ε = 1, δ = 0.5, and use a beam size of 5 during
training. For testing, we apply greedy decoding.
PyTorch code of our models is publicly available.4

5.3 Results and Discussion

On both language pairs, the optimal pre-trained
NMT models are obtained in the 6th training
epoch, forming the out-of-domain baseline. We
also compare our RL/IL strategies with full post-
edits simulated by supervised training on the in-
domain News Commentary data, forming an in-
domain upper bound. We repeated each exper-
iment three times and report mean and standard
deviation for both Character-F5 (ChrF) (Popović,
2015) and corpus BLEU (Papineni et al., 2002).

In the French-English experiments, both our im-
itation and reinforcement strategies show improve-
ments of more than 3 points in BLEU and 1 point
in ChrF over the out-of-domain baseline. Both
strategies achieve lower BLEU score than training
on full post-edits, in particular, 0.94 points lower in
the KEEP+DELETE setting, and 0.58 points lower
in +SUBSTITUTE setting. However, both strategies
achieve higher ChrF scores, i.e., 0.76 points for
KEEP+DELETE and 0.28 points for +SUBSTITUTE.
See upper half of Table 2 for a summary.

In the German-English experiments, there
is a bigger performance gap between the
KEEP+DELETE and the full post-edits sys-
tem, concretely, 0.64 points in ChrF score and

4https://github.com/heidelkin/IPNMT_RL_IL
5Using parameters ngram = 6 and β = 2.
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Pair System ChrF (σ) ∆ChrF BLEU (σ) ∆BLEU ∅ rounds ∅ keep+delete / subst.
fr

-e
n

Pre-trained 61.08 – 24.70 – – –
Full Post Edits 61.96 (0.15) +0.88 29.10 (0.09) +4.40 – –
KEEP+DELETE 62.72 (0.11) +1.64 28.16 (0.14) +3.46 3.2 13.7 / –
+SUBSTITUTE 62.24 (0.08) +1.16 28.52 (0.10) +3.82 3.3 1.8 / 5.6

de
-e

n

Pre-trained 59.34 – 22.66 – – –
Full Post Edits 60.24 (0.25) +0.9 27.40 (0.22) +4.74 – –
KEEP+DELETE 59.57 (0.19) +0.23 25.28 (0.09) +2.62 3.3 13.1 / –
+SUBSTITUTE 60.73 (0.14) +1.39 26.91 (0.1) +4.25 3.3 1.8 / 5.9

Table 2: Character-F (ChrF), and BLEU test results on the French-English (fr-en) and German-English
(de-en) translation tasks. Highest scores on RL and IL systems are printed in bold. The ∆ columns
indicate the score differences to the pre-trained baseline system. All scores are averaged over three runs
with standard deviation σ in parentheses.

2.12 points in BLEU lower than full post-edits.
However, the improvement over the pre-trained
model amounts to 2.62 BLEU points and 0.25
points in ChrF score. Our +SUBSTITUTE system
is comparable in performance to the full post-edits
system, yielding a result that is 0.49 lower in
BLEU but 0.49 points higher in ChrF. See lower
half of Table 2 for the summary.

We also report average numbers of feedback
rounds and rules per sentence in Table 2. We opti-
mized the maximum number of allowed feedback
rules per round on the dev set and use 9 (fr-en)
and 7 (de-en) for the KEEP+DELETE and 3 for
the +SUBSTITUTE systems. Even for the simpler
model based on only weak feedback, the number
of user clicks is between 13.7 and 13.1, which is
well below the average target sentence length of
22.8 and 22.6. By allowing expert SUBSTITUTE

feedback that actively generates better tokens in
the next round the number of rules is reduced to 7.4
and 7.7. Our experiments indicate that focusing on
uncertain locations can reduce human translation
effort substantially.

Effect of on-line learning. We also examine
the effect of on-line learning on average cumu-
lative entropy of the model’s policy distribution
over time. Figure 2 visualizes the change of
entropy during interactive training. At the be-
ginning, the system is in regions of high en-
tropy but quickly learns from human edits and
the curves become smooth and monotonic. Af-
ter this initial phase, the overall better perform-
ing French-English task shows consistently lower
entropy than the German-English task, indicat-
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Figure 2: Average cumulative entropy of the
model’s policy distribution over time during sim-
ulated interactive learning. Plots are shown for the
French-English (fr-en) and the German-English
(de-en) task, and for the KEEP+DELETE and the
+SUBSTITUTE system, respectively.

ing a connection between model’s entropy and
translation quality. However, the comparison be-
tween the KEEP+DELETE and the better perform-
ing +SUBSTITUTE systems shows the opposite
trend and requires a different explanation. We
conjecture that the +SUBSTITUTE system’s ex-
pert demonstrations at uncertain locations help
the system to find better translations, but such
demonstrations also move the system to higher
entropy regions, effectively implementing a use-
ful exploration strategy. In contrast to this, the
KEEP+DELETE system always stays in more cer-
tain regions by selecting another high probability
token if the original token receives a DELETE feed-
back by the user.
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Effect of beam size. The observations on
model’s entropy over time in the previous para-
graph and the implementation details described in
Section 4.3 show that our constrained beam search
implements exploration in a user-controlled man-
ner. We conjecture that beam size also influences
the exploration and should have a different effect
on different feedback strategies. We thus conduct
additional experiments using beam sizes of 2, 5,
10 and 20 on all language pairs and the two sys-
tems. The results are summarized in Figure 3. In
both KEEP+DELETE and +SUBSTITUTE systems,
a beam size of 2 is sufficient to achieve substan-
tial gains over the baselines in both language pairs.
In case of the KEEP+DELETE system, increasing
beam sizes only marginally influence the transla-
tion performance. In case of the +SUBSTITUTE

system, there are considerable gains of almost 1
BLEU point and 1 Character-F point when increas-
ing the beam size from 2 to 5. Here, the larger
beam size enables the system to connect the expert
demonstrations with better prefixes which helps
the system to explore higher scoring trajectories.
Increasing the beam size to 10 or 20 further im-
proves performance but the gains are small.

Decoding Speed. The total runtime of each of
our simulated interactive experiments is roughly
6 hours when simulated on a Nvidia P40, while
training of the KEEP+DELETE system is slightly
slower than of the +SUBSTITUTE system due to the
higher number of feedback rules. Looking at the
sentence level this means the total decoding time
of our system for all partial translations of a sin-
gle sentence is 6 × 1h/(18, 432 × 3.3) = 0.361s
for the French-English task, and even less for the
German-English task. This estimate does not ac-
count for the time our system conducts validation
tests or constructs simulated feedback, thus the ac-
tual average processing time is lower. Knowles
and Koehn (2016) argue that beam search is usu-
ally too slow to be used for training in interac-
tive live systems, however, recent hardware devel-
opments together with our strategy of partial de-
coding makes constrained beam search applicable
even in training. As a side effect, corrections on
early time steps reduce the problem of error prop-
agation and thus improve both usability of the sys-
tem and satisfaction of the translator.

Leveraging BPE or character-level NMT. Our
current implementation of interactive-predictive
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Figure 3: The two figures show the effect of dif-
ferent beam sizes on Character-F score (top) and
BLEU score (bottom). We conduct experiments on
French-English (fr-en) and German-English (de-
en) and both systems (KEEP+DELETE and +SUB-
STITUTE). All scores are averaged over two runs.

NMT uses a word-based translation approach and
presents word units to users for feedback. An
adaptation of our algorithm to sub-word or char-
acter level NMT is possible and requires to re-
distribute the reward associated to the word level
to sub-word units or characters, and to maintain
their location information in the constrained beam
search. We leave this extension to future work.

5.4 Examples

Table 3 illustrates the translation workflow of our
interactive-predictive protocol by listing four ex-
amples: the upper half shows example translations
of the two systems for the German-English task,
the lower half shows two examples of the systems
for the French-English task.

The first example is taken from the
KEEP+DELETE system, where our simulated
user provides only KEEP and DELETE feedback
on suggested locations. In interactive round 1 on
the German-English task, the system stops after
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G
er

m
an

-E
ng

lis
h

Source der kern des problems ist nicht die gesamt^menge des öls , sondern seine lage .
Reference the heart of the problem is not the overall quantity of oil , but its location .

Round Partial translation→ FEEDBACK
1 the core2

→ DELETE(2)
2 the heart2 of the problem is not the total9

→ KEEP(2),→ DELETE(9)
3 the heart of the problem is not the overall amount10 of oil , but its15

→ DELETE(10),→ KEEP(15)
4 the heart of the problem is not the overall volume10 of oil , but its situation16 .

→ DELETE(10, 16)
5 the heart of the problem is not the overall supply of oil , but its position .

→ accepted.

G
er

m
an

-E
ng

lis
h

Source die süd^koreaner ihrerseits verlassen sich darauf , dass china mit der nuklearen krise in nord^korea fertig wird .
Reference as for the south koreans , they are counting on china to deal with the north korean nuclear crisis .

Round Partial translation→ FEEDBACK
1 the1 south koreans are4

→ SUBSTITUTE(1:as, 4:south)
2 as for the3 south koreans , china7

→ KEEP(3:the),→ SUBSTITUTE(7:they)
3 as for the south koreans , they are relying9 on china to be13

→ SUBSTITUTE(9:counting, 13:deal)
4 as for the south koreans , they are counting on china to deal with the nuclear crisis in north korea .

→ accepted.

Fr
en

ch
-E

ng
lis

h

Source il est dur d’ aimer ou de respecter un peuple et de haı̈r son état .
Reference it is hard to love or respect a people and hate their state .

Round Partial translation→ FEEDBACK
1 it is hard to love5

→ KEEP(5)
2 it is hard to love or to7

→ DELETE(7)
3 it is hard to love or comply7 with a people and to12 hate13 their14

→ DELETE(7, 12, 13, 14)
4 it is hard to love or respect7 a8 people and hatred11 .12

→ KEEP(7, 8),→ DELETE(11, 12).
5 it is hard to love or respect a people and to hate their state .

→ accepted.

Fr
en

ch
-E

ng
lis

h

Source un gouvernement qui n’ est pas en mesure d’ équilibrer ses propres finances ne peut pas apporter une stabilité macroéconomique .
Reference a government that cannot balance its own finances cannot be relied on to provide macroeconomic stability .

Round Partial translation→ FEEDBACK
1 a government that is4

→ SUBSTITUTE(4:cannot)
2 a government that cannot balance its own7

→ KEEP(7)
3 a government that cannot balance its own finances cannot bring10 about11 macro-economic12 stability .

→ SUBSTITUTE(10:be,11:relied,12:on)
4 a government that cannot balance its own finances cannot be relied on to bring about macro-economic stability .

→ accepted.

Table 3: Interaction protocol illustrating translation progress of the two learning systems on the German
English task (upper half) and French-English (lower half). For each language pair, the first example
illustrates interactions with the KEEP+DELETE system, while the second example shows interactions
with the +SUBSTITUTE system. In each round, the user is asked for feedback on uncertain locations of
the current partial translation. Tokens printed in blue with their position in subscript indicate uncertain
locations. At the end of each round, the system is updated given the user’s feedback (KEEP, DELETE,
SUBSTITUTE). In the next round, it generates a constrained (partial) translation with respect to this
feedback. Tokens generated based on feedback rules are printed in italics.

generating the uncertain partial translation “the
core” and asks the user for feedback specifically
on the term “core”. The simulated user returns
a DELETE feedback and the system is able to

generate the more appropriate translation “heart
of the problem” in round 2. In round 3, however,
a weakness of the simulated feedback becomes
apparent: our user gives a negative DELETE
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feedback on the token “amount” because the token
differs from the given reference word “quantity”,
even though it is an appropriate translation for
the German word “Menge” in this context. The
system then generates “volume” in round 4 and
“supply” in the final round 5, although both
translations are worse than the initially proposed
translation “amount”. One explanation for this
behavior is the way on-line updates are applied
to the NMT system: while the constrained beam
search implements feedback rules on token level,
the on-line updates of the NMT system take place
on the word embedding level. An update based
on negative feedback actually forces the NMT
system to avoid semantically similar words. In
the above example, the negative feedback for
“amount” downgrades the optimal translation
“quantity” because of the semantic similarity
of both words, and instead upgrades the more
diverse translations “volume” and “supply”. In our
example, this strategy has an immediate negative
impact on translation quality, but it also illustrates
the positive exploration effect which is helpful in
the long run.

The second example is taken from the +SUBSTI-
TUTE system, where the simulated user addition-
ally provides “substitute” feedback. In interactive
round 1, the system generates the uncertain par-
tial translation “the south koreans are” and iden-
tifies “the” and “are” as uncertain tokens. The
user suggests to change “the” to “as”, and “are”
to “south” by providing SUBSTITUTE feedback.
Again, a limitation of our simulation becomes ap-
parent: our simulated substitutions are based on
reference translations, but a real translator would
not change the given partial translation to “as south
korean south”. Still, based on the two feedback
rules and the on-line update, the NMT system is
able to follow a better trajectory in round 2. We ob-
serve that SUBSTITUTE feedback is a very strong
signal that supports the system to quickly get close
to the translation our simulated user has in mind
(which is the reference in our simulation).

The French-English task examples illustrate a
noteworthy property of our algorithm: In round 3
of the KEEP+DELETE system, the simulated user
provides DELETE feedback on the tokens “to hate
their” only because they occur at different posi-
tions compared to the reference. However, the sys-
tem is able to recover and re-generate the tokens at
the correct position in round 5. A similar behav-

ior can be observed for the +SUBSTITUTE system
in round 3, where the phrase “bring about macro-
economic” is first substituted and then generated
again in the final round 4.

6 Conclusion

In this work, we integrate interactive-predictive
NMT with imitation learning and reinforcement
learning. Our goal is to merge the human edit
process with effort reduction and model learning
into a single framework for easier model personal-
ization. Our results indicate that on-line learning
from edits on uncertain locations of partial trans-
lations can achieve performance comparable to us-
ing supervised learning on in-domain data but with
substantially less human effort. In the future, we
would like to investigate the limitations of entropy-
based uncertainty measures, work on the efficiency
of the training speed, and conduct field studies
with human users.
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Abstract

Earlier approaches indirectly studied the
information captured by the hidden states
of recurrent and non-recurrent neural ma-
chine translation models by feeding them
into different classifiers. In this paper, we
look at the encoder hidden states of both
transformer and recurrent machine trans-
lation models from the nearest neighbors
perspective. We investigate to what ex-
tent the nearest neighbors share informa-
tion with the underlying word embeddings
as well as related WordNet entries. Addi-
tionally, we study the underlying syntactic
structure of the nearest neighbors to shed
light on the role of syntactic similarities in
bringing the neighbors together. We com-
pare transformer and recurrent models in
a more intrinsic way in terms of capturing
lexical semantics and syntactic structures,
in contrast to extrinsic approaches used by
previous works. In agreement with the ex-
trinsic evaluations in the earlier works, our
experimental results show that transform-
ers are superior in capturing lexical seman-
tics, but not necessarily better in capturing
the underlying syntax. Additionally, we
show that the backward recurrent layer in a
recurrent model learns more about the se-
mantics of words, whereas the forward re-
current layer encodes more context.

1 Introduction

Neural machine translation (NMT) has achieved
state-of-the-art performance for many language

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

pairs (Bahdanau et al., 2015; Luong et al., 2015b;
Jean et al., 2015; Wu et al., 2016; Vaswani et
al., 2017). Additionally, it is straightforward to
train an NMT system in an end-to-end fashion.
This has been made possible with an encoder-
decoder architecture that encodes the source sen-
tence into a distributed representation and then de-
codes this representation into a sentence in the
target language. While earlier work has investi-
gated what information is captured by the atten-
tion mechanism of an NMT system (Ghader and
Monz, 2017), it is not exactly clear what linguistic
information from the source sentence is encoded in
the hidden distributed representation themselves.
Recently, some attempts have been made to shed
some light on the information that is being encoded
in the intermediate distributed representations (Shi
et al., 2016; Belinkov et al., 2017).

Feeding the hidden states of the encoder of dif-
ferent seq2seq systems, including multiple NMT
systems, as the input to different classifiers, Shi
et al. (2016) aim to show what syntactic informa-
tion is encoded in the hidden states. They pro-
vide evidence that syntactic information such as
the voice and tense of a sentence and the part-of-
speech (POS) tags of words are being learned with
reasonable accuracy. They also provide evidence
that more complex syntactic information such as
the parse tree of a sentence is also learned, but with
lower accuracy.

Belinkov et al. (2017) follow the same approach
as Shi et al. (2016) to conduct more analyses about
how syntactic and morphological information are
encoded in the hidden states of the encoder. They
carry out experiments for POS tagging and mor-
phological tagging. They study the effect of dif-
ferent word representations, different layers of the
encoder and target languages on the accuracy of
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their classifiers to reveal the impact of these vari-
ables on the amount of the syntactic information
captured in the hidden states.

Additionally, there are recent approaches that
compare different state-of-the-art encoder-decoder
architectures in terms of their capabilities to cap-
ture syntactic structures (Tran et al., 2018) and lex-
ical semantics (Tang et al., 2018). These works
also use some extrinsic tasks to do the compari-
son. Tran et al. (2018) use subject-verb agreement
and logical inference tasks to compare recurrent
models with transformers. On the other hand, Tang
et al. (2018) use subject-verb agreement and word
sense disambiguation for comparing those archi-
tectures in terms of capturing syntax and lexical
semantics respectively. In addition to these tasks,
Lakew et al. (2018) compare recurrent models with
transformers on a multilingual machine translation
task.

Despite the approaches discussed above, at-
tempts to study the hidden states more intrinsi-
cally are still missing. For example, to the best
of our knowledge, there is no work that studies
the encoder hidden states from a nearest neigh-
bor perspective to compare these distributed word
representations with the underlying word embed-
dings. It seems intuitive to assume that the hid-
den state of the encoder corresponding to an input
word conveys more contextual information com-
pared to the embedding of the input word itself.
But what type of information is captured and how
does it differ from the word embeddings? Further-
more, how different is the information captured by
different architectures, especially recurrent vs self-
attention architectures which use entirely different
approaches to capture context?

In this paper, we choose to investigate the hid-
den states from a nearest neighbors perspective
and try to show the similarities and differences be-
tween the hidden states and the word embeddings.
We collect statistics showing how much informa-
tion from embeddings of the input words is pre-
served by the corresponding hidden states. We also
try to shed some light on the information encoded
in the hidden states that goes beyond what is trans-
ferred from the word embeddings. To this end,
we analyze how much the nearest neighbors of
words based on their hidden state representations
are covered by direct relations in WordNet (Fell-
baum, 1998; Miller, 1995). For our German side
experiments, we use GermaNet (Hamp and Feld-

weg, 1997; Henrich and Hinrichs, 2010). From
now on, we use WordNet to refer to either Word-
Net or GermaNet.

This paper does not directly seek improvements
to neural translation models, but to further our un-
derstanding of the inside behaviour of these mod-
els. It explains what information is learned in ad-
dition to what is already captured by embeddings.
This paper makes the following contributions:

1. We provide interpretable representations of
hidden states in NMT systems highlighting
the differences between hidden state repre-
sentations and word embeddings.

2. We compare transformer and recurrent mod-
els in a more intrinsic way in terms of captur-
ing lexical semantics and syntactic structures.

3. We provide analyses of the behaviour of the
hidden states for each direction layer and the
concatenation of the states from the direction
layers.

2 Datasets and Models

We conduct our analysis using recurrent and trans-
former machine translation models. Our recur-
rent model is a two-layer bidirectional recurrent
model with Long Short-Term Memory (LSTM)
units (Hochreiter and Schmidhuber, 1997) and
global attention (Luong et al., 2015a). The encoder
consists of a two-layer unidirectional forward and
a two-layer unidirectional backward pass. The cor-
responding output representations from each direc-
tion are concatenated to form the encoder hidden
state representation for each word. A concatena-
tion and down-projection of the last states of the
encoder is used to initialize the first state of the de-
coder. The decoder uses a two-layer unidirectional
(forward) LSTM. We use no residual connection
in our recurrent model as they have been shown to
result in performance drop if used on the encoder
side of recurrent model (Britz et al., 2017). Our
transformer model is a 6-layer transformer with
multi-headed attention of 8 heads (Vaswani et al.,
2017). We choose these settings to obtain com-
petitive models with the relevant core components
from each architecture.

We train our models for two directions, namely
English-German and German-English, both of
which use the WMT15 parallel training data. We
exclude 100k randomly chosen sentence pairs
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English-German
Model test2014 test2015 test2016 test2017

Recurrent 24.65 26.75 30.53 25.51
Transformer 26.93 29.01 32.44 27.36

German-English
Model test2014 test2015 test2016 test2017

Recurrent 28.40 29.61 34.28 29.64
Transformer 30.15 30.92 35.99 31.80

Table 1: Performance of our experimental systems in BLEU on WMT (Bojar et al., 2017) German-English and English-German
standard test sets.

which are used as our held-out data. Our recurrent
system has hidden state dimensions of the size of
1,024 (512 for each direction) and is trained using
a batch size of 64 sentences. The learning rate is
set to 0.001 for the Adam optimizer (Kingma and
Ba, 2015) with a maximum gradient norm of 5. A
dropout rate of 0.3 has been used to avoid over-
fitting. Our transformer model has hidden state
dimensions of 512 and a batch size of 4096 to-
kens and uses layer normalization (Vaswani et al.,
2017). A learning rate of 2 changed under warm-
up strategy with 8000 warm-up steps is used for
Adam optimizer with β1 = 0.9, β2 = 0.998 and
ε = 10−9 (Vaswani et al., 2017). The dropout rate
is set to 0.1, and no gradient clipping is used. The
word embedding size of both models is 512. We
apply Byte-Pair Encoding (BPE) (Sennrich et al.,
2016) with 32K merge operation.

We train our models until convergence and then
use the trained models to translate 100K sentences
from a held-out dataset and log the hidden states
for later use in our analyses. The 100K held-out
data is randomly chosen from the WMT15 parallel
training data. The remaining of the WMT15 paral-
lel training data is used as our training data.

Table 1 summarizes the performance of our ex-
perimental models in BLEU (Papineni et al., 2002)
on different standard test sets. This is to make sure
that the models are trustable.

3 Nearest Neighbors Analysis

Following earlier work on word embeddings
(Mikolov et al., 2013; Pelevina et al., 2016), we
choose to look into the nearest neighbors of the
hidden state representations to learn more about
the information encoded in them. We treat each
hidden state as the representation of the corre-
sponding input token. This way, each occurrence
of a word has its own representation. Based on
this representation, we compute the list of n near-
est neighbors of each word occurrence. We set n

Figure 1: An example of 5 nearest neighbors of two differ-
ent occurrences of the word “deregulation”. Triangles are the
nearest neighbors of “deregulation” shown with the empty tri-
angle. Squares are the nearest neighbors of “deregulation”
shown with the empty square.

equal to 10 in our experiments. Cosine similarity
is used as the distance measure.

In the case of our recurrent neural model, we
use the concatenation of the corresponding output
representations of our two-layer forward and two-
layer backward passes as the hidden states of in-
terest for our main experiments. We also use the
output representations of the forward and the back-
ward passes for our direction-wise experiments. In
the case of our transformer model, we use the cor-
responding output of the top layer of the encoder
for each word as the hidden state representation of
the word.

Figure 1 shows an example of 5 nearest neigh-
bors for two different occurrences of the word
“deregulation”. Each item in this figure is a spe-
cific word occurrence, but we have removed oc-
currence information for the sake of simplicity.

3.1 Hidden States vs Embeddings
Here, we count how many of the words in the
nearest neighbors lists of hidden states are covered
by the nearest neighbors list based on the corre-
sponding word embeddings. Just like the hidden
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states, the word embeddings used for computing
the nearest neighbors are also from the same sys-
tem and the same trained model for each experi-
ment. The nearest neighbors of the word embed-
dings are also computed using cosine similarity. It
should be noted that we generate the nearest neigh-
bors lists for the embeddings and the hidden states
separately and never compute cosine similarity be-
tween word embeddings and the hidden state rep-
resentations.

Coverage is formally computed as follows:

cpH,E
wi,j

=

∣∣∣CH,E
wi,j

∣∣∣
∣∣∣NH

wi,j

∣∣∣
(1)

where
CH,E
wi,j

= NH
wi,j
∩NE

w (2)

and NH
wi,j

is the set of the n nearest neighbors
of word w based on hidden state representations.
Since there is a different hidden state for each oc-
currence of a word, we use i as the index of the
sentence of occurrence and j as the index of the
word in the sentence. Similarly, NE

w is the set of
the n nearest neighbors of word w, but based on
the embeddings.

Word embeddings tend to capture the dominant
sense of a word, even in the presence of signifi-
cant support for other senses in the training corpus
(Pelevina et al., 2016). Additionally, it is reason-
able to assume that a hidden state corresponding
to a word occurrence captures more of the current
sense of the word. Comparing the lists can pro-
vide useful insights as to which hidden state-based
neighbours are not strongly related to the corre-
sponding word embedding. Furthermore, it shows
in what cases the dominant information encoded
in the hidden states comes from the corresponding
word embedding and to what extent other informa-
tion has been encoded in the hidden state.

3.2 WordNet Coverage
In addition, we also compute the coverage of the
list of the nearest neighbors of hidden states with
the directly related words from WordNet. This can
shed further light on the capability of hidden states
in terms of learning the sense of the word in the
current context. Additionally, it could play the role
of an intrinsic measure to compare different archi-
tectures in their ability to learn lexical semantics.
To this end, we check how many words from the
nearest neighbors list of a word, based on hidden

states, are in the list of related words of the word
in WordNet. More formally, we define Rw to be
the union of the sets of synonyms, antonyms, hy-
ponyms and hypernyms of word w in WordNet:

cpH,W
wi,j

=

∣∣∣CH,W
wi,j

∣∣∣
∣∣∣NH

wi,j

∣∣∣
(3)

where
CH,W
wi,j

= NH
wi,j
∩Rw (4)

and NH
wi,j

is the set of the n nearest neighbors of
word w based on hidden state representations.
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Figure 2: The figure shows the corresponding word and con-
stituent subtree of query hidden state (v0) and the correspond-
ing word and subtree of the first (v1) and the second (v2) and
the last (v10) nearest neighbors of it.

3.3 Syntactic Similarity

Recent extrinsic comparisons of recurrent and non-
recurrent architectures on learning syntax (Tran et
al., 2018; Tang et al., 2018) also motivate a more
intrinsic comparison. To this end, we also study
the nearest neighbors of hidden states in terms of
syntactic similarities. For this purpose, we use the
subtree rooting in the smallest phrase constituent
above each word, following Shi et al. (2016). This
way, we will have a corresponding parse tree for
each word occurrence in our corpus. We parse our
corpus using the Stanford constituent parser (Zhu
et al., 2013). We POS tag and parse our corpus
prior to applying BPE segmentation. Then, after
applying BPE, we use the same POS tag and the
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Model POS English-German σ2 German-English σ2

Recurrent

All POS 18% 4 24% 7
VERB 29% 5 31% 5
NOUN 14% 3 19% 8

ADJ 19% 3 31% 7
ADV 36% 5 48% 2

Transformer

All POS 37% 14 33% 10
VERB 39% 8 36% 7
NOUN 38% 16 31% 14

ADJ 32% 11 36% 9
ADV 33% 12 38% 3

Table 2: Percentage of the nearest neighbors of hidden states covered by the list of the nearest neighbors of embeddings.

same subtree of a word for its BPE segments, fol-
lowing Sennrich and Haddow (2016).

To measure the syntactic similarity between a
hidden state and its nearest neighbors, we use
PARSEVAL standard metric (Sekine and Collins,
1997) as the similarity metric between the corre-
sponding trees. PARSEVAL computes precision
and recall by counting the correct constituents in a
parse tree with respect to a gold tree and divide the
count with the number of constituent in the candi-
date parse tree and the gold tree, respectively.

Figure 2a shows the corresponding word and
subtree of a hidden state of interest, and the rest in
Figure 2 shows the corresponding words and sub-
trees of its three neighbours. The leaves are substi-
tuted with dummy “*” labels to show that they do
not influence the computed tree similarities. We
compute the similarity score between the corre-
sponding tree of each word and the corresponding
trees of its nearest nighbors. For example, in Fig-
ure 2 we compute the similarity score between the
tree in Figure 2a and each of the other trees.

3.4 Concentration of Nearest Neighbors

Each hidden state with its nearest neighbors be-
haves like a cluster centered around the corre-
sponding word occurrence of the hidden state,
whereby the neighboring words give a clearer in-
dication of the captured information in the hidden
state. However, this evidence is more clearly ob-
served in some cases rather than others.

The stronger the similarities that bring the
neighbors close to a hidden state, the more focused
the neighbors around the hidden state are. Bearing
this in mind, we choose to study the relation be-
tween the concentration of the neighbors and the
information encoded in the hidden states.

To make it simple but effective, we estimate
the population variance of the neighbors’ distance
from a hidden state as the measure of the con-

centration of its neighbors. More formally, this is
computed as follows:

vwi,j =
1

n

n∑

k=1

(1− xk,wi,j
)2 (5)

Here n is the number of neighbors and xk,wi,j
is the

cosine similarity score of the kth neighbor of word
w occurring as the jth token of the ith sentence.

4 Empirical Analyses

We train our systems for English-German and
German-English and use our trained model to
translate a held-out data of 100K sentences. Dur-
ing translation, we log the hidden state represen-
tations together with the corresponding source to-
kens, their sentence and token indices.

We use the logged hidden states to compute the
nearest neighbors of the tokens with frequency of
10 to 2000 in our held-out data. We compute co-
sine similarity to find the nearest neighbors.

In addition to hidden states, we also log the
word embeddings from the same systems and the
same trained model. Similar to hidden states, we
also use embedding representations to compute the
nearest neighbors of words. We have to note that
in the case of embedding representations we have
one nearest neighbor list for each word whereas for
hidden states there is one list for each occurrence
of a word.

4.1 Embedding Nearest Neighbors Coverage

As a first experiment, we measure how many of
the nearest neighbors based on the embedding rep-
resentation would still remain the nearest neighbor
of the corresponding hidden state, as described in
Section 3.1, above.

Table 2 shows statistics of the coverage by the
nearest neighbors based on embeddings in general
and based on selected source POS tags for each
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Model POS English-German σ2 German-English σ2

Recurrent

All POS 24% 6 51% 12
VERB 49% 9 48% 10
NOUN 19% 3 28% 8

ADJ 15% 2 60% 12
ADV 24% 4 23% 1

Transformer

All POS 67% 16 74% 10
VERB 77% 9 70% 9
NOUN 65% 18 63% 13

ADJ 66% 14 81% 9
ADV 74% 10 35% 5

Table 3: Percentage of the nearest neighbors of hidden states covered by the list of the directly related words to the correspond-
ing word of the hidden states in WordNet.

of our models. To carry out an analysis based on
POS tags, we tagged our training data using the
Stanford POS tagger (Toutanova et al., 2003). We
convert the POS tags to the universal POS tags and
report only for POS tags available in WordNet. We
use the same POS tag of a word for its BPE seg-
ments, as described in the Section 3.3.

The first row of Table 2 shows that only 18%
and 24% of the information encoded in the hidden
states respectively for English and German is al-
ready captured by the word embeddings, in case of
our recurrent model. Interestingly, in all cases ex-
cept ADV, the similarity between the hidden states
and the embeddings for the transformer model are
much higher, and the increase for nouns is much
higher than for the rest. This may be a prod-
uct of the existence of no recurrence in case of
transformer which results in a simpler path from
each embedding to the corresponding hidden state.
We hypothesize that this means that the recurrent
model uses the capacity of its hidden states to en-
code some other information that is encoded to a
lesser extent in the hidden states of the transformer.

4.2 WordNet Coverage
Having observed that a large portion of nearest
neighbors of the hidden states are still not covered
by the nearest neighbors of the corresponding em-
beddings, we look for other sources of similarity
that causes the neighbors to appear in the list. As
the next step, we check to see how many of the
neighbors are covered by directly related words of
the corresponding word in WordNet.

This does not yield subsets of the nearest neigh-
bors that are fully disjoint with the subset cov-
ered by the nearest neighbors from the embedding
list. However, it still shows whether this source
of similarity is fully covered by the embeddings or
whether the hidden states capture information from
this source that the embeddings miss.

Figure 3: The mean coverage per position of the nearest
neighbors of hidden states of the recurrent model; (i) by
the nearest neighbors of the embedding of the correspond-
ing word (ii) by WordNet related words of the corresponding
word of the hidden state.

Figure 4: The mean coverage per position of the nearest
neighbors of hidden states of the transformer model; (i) by
the nearest neighbors of the embedding of the correspond-
ing word (ii) by WordNet related words of the corresponding
word of the hidden state.

Table 3 shows the general and the POS-based
coverage for our English-German and German-
English systems. The transformer model again has
the lead by a large margin. The jump for nouns is
again the highest, as can be seen in Table 2. This
basically means that more words from the Word-
Net relations of the word of interest are present
in the hidden state nearest neighbors of the word.
A simple reason for this could be that the hidden
states from transformer capture more word seman-
tic than hidden states of the recurrent model. Or
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(a) English-German, recurrent model (b) German-English, recurrent model

(c) English-German, transformer model (d) German-English, transformer model

Figure 5: The average variance of cosine distance scores of the nearest neighbors of words per positions.

in other words, the hidden states from the recur-
rent model capture some additional information
that brings different words than WordNet relations
of the word of interest to its neighborhood.

To investigate whether recurrency has any direct
effect on this, we compute the mean coverage by
direct relations in WordNet per position. Similarly,
we also compute the mean coverage by embedding
neighbors per position. More formally, we write:

acpH,W
j =

∑m
i=1(cp

H,W
wi,j )∣∣Sl(s)≥j

∣∣ (6)

and

acpH,E
j =

∑m
i=1(cp

H,E
wi,j )∣∣Sl(s)≥j

∣∣ (7)

respectively for the mean coverage by WordNet di-
rect relations per position and the mean coverage
by embedding neighbors per position.

Here cpH,W
wi,j and cpH,E

wi,j are the values computed
in Equation 3 and 1, respectively. The function
l(s) returns the length of sentence s and Sl(s)≥j is
the set of sentences that are longer than or equal to
j.

Figure 3 shows that the mean coverage in both
embedding and WordNet cases is first increasing
by getting farther from the left border of a sen-
tence, but it starts to decrease from position 5 on-

wards, in case of the recurrent model. This is sur-
prising to see the drop in the coverages, taking into
account that the model is a bidirectional recurrent
model. However, this may be a reflection of the
fact that the longer a sentence, the less the hidden
states from the recurrent model are encoding infor-
mation about the corresponding word.

Figure 4 shows the same mean coverage for the
case of hidden states from the transformer model.
No decrease in the coverage per position in the
case of transformer, confirms our hypothesis that
the lower coverage in case of recurrent models is
indeed directly in relation with the recurrency.

In order to refine the analysis of the positional
behaviour of the hidden states, we compute the av-
erage variance per position of the cosine distance
scores of the nearest neighbors based on hidden
states. To compute this value we use the follow-
ing definition:

Avj =

∑m
i=1 vwi,j∣∣Sl(s)≥j

∣∣ (8)

Here vwi,j is the variance estimate as defined in
Equation 5, l(s) is the function returning the length
of sentence s and Sl(s)≥j is the set of sentences that
are longer than or equal to j as mentioned earlier.

Figures 5a and 5b show the average variance
per position for the recurrent model. One can see
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English-German
Model Precision Recall Matched Brackets Cross Brackets Tag Accuracy

Recurrent 0.38 0.38 0.42 0.31 0.46
Transformer 0.31 0.31 0.35 0.28 0.40

German-English
Model Precision Recall Matched Brackets Cross Brackets Tag Accuracy

Recurrent 0.12 0.12 0.30 0.80 0.32
Transformer 0.11 0.11 0.28 0.77 0.31

Table 4: Average parse tree similarity (PARSEVAL scores) between word occurrences and their nearest neighbors. Note
that the apparent identity of precision and recall values is due to rounding and the very close number of constituents in the
corresponding parse tree of words (gold parse trees) and the corresponding parse trees of their nearest neighbors (candidate
parse trees).

that the average variance close to the borders is
lower than the variance in the middle. This means
that the nearest neighbors of the words close to
the borders of sentences are more concentrated in
terms of similarity score in general. This could
mean the information that captures the meaning of
those words plays less of a role compared to other
information encoded in the corresponding hidden
states, especially if we take the information of cov-
erage per position into account. Interestingly, this
does not happen in the case of the transformer
model (See Figures 5c and 5d ).

4.3 Syntactic Similarity
The difference in the patterns observed so far be-
tween recurrent and transformer models (with the
coverage of embeddings and the WordNet rela-
tions), along with the reported superiority of the
recurrent model in capturing structure in extrinsic
tasks (Tran et al., 2018), lead us to investigate the
syntactic similarity between the words of interest
and their nearest neighbors. To this end, we use
the approach introduced in the Section 3.3 to study
syntactic similarity.

Table 4 shows the average similarity between
corresponding constituent subtrees of hidden states
and corresponding subtrees of their nearest neigh-
bors, computed using PARSEVAL (Sekine and
Collins, 1997). Interestingly, the recurrent model
takes the lead in the average syntactic similarity.
This confirms our hypothesis that the recurrent
model dedicates more of the capacity of its hidden
states, compared to transformer, to capture syntac-
tic structures. It is also in agreement with the re-
sults reported on learning syntactic structures us-
ing extrinsic tasks (Tran et al., 2018). We should
add that our approach may not fully explain the
degree to which syntax in general is captured by
each model, but only to the extent to which this is
measurable by comparing syntactic structures us-

ing PARSEVAL.

Embedding WordNet
POS Forward Backward Forward Backward
All 12% 24% 18% 29%

VERB 19% 36% 38% 52%
NOUN 9% 21% 14% 25%

ADJ 13% 22% 12% 17%
ADV 28% 34% 20% 23%

Table 5: Percentage of the nearest neighbors of hidden states,
from the forward and backward layers, that are covered by the
list of the nearest neighbors of embeddings and the list of the
directly related words in WordNet.

4.4 Direction-Wise Analyses

To gain a better understanding of the behaviour of
the hidden states in the recurrent model, we repeat
our experiments with hidden states from different
directions. Note that so far the recurrent hidden
states in our experiments were the concatenation
of the hidden states from both directions of our en-
coder.

Table 5 shows the statistics of embedding cov-
erage and WordNet coverage from the forward and
the backward layers. As shown, the coverage of
the nearest neighbors of the hidden states from the
backward recurrent layer is higher than the nearest
neighbors based on those from the forward layer.

Furthermore, Figure 6 shows the mean cover-
age per position of the nearest neighbors of hid-
den states from the forward and the backward re-
current layers. Figure 6a shows the mean cover-
age by the nearest neighbors of the corresponding
word embedding of hidden states. As shown for
the forward layer the coverage degrades as it goes
forward to the end of sentences. However, the cov-
erage for the backward layer, except at the very be-
ginning, almost stays constant through sentences.
As shown, the coverage for the backward layer
is much higher than the coverage for the forward
layer showing that it keeps more information from
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(a) Covered by the nearest neighbors of the embedding of the
corresponding word of the hidden state.

(b) Covered by the directly related words of the corresponding
word of the hidden state in WordNet.

Figure 6: The mean coverage per position of the nearest
neighbors of hidden states from the forward and backward
recurrent layers.

the embeddings compared to the forward layer.
The decrease in the forward layer could mean that
it captures more context information when moving
forward in sentences and forgets more of the cor-
responding embeddings.

Figure 6b shows the mean coverage by the di-
rectly related words, in WordNet, of the corre-
sponding words of hidden states. The difference
between the coverage of the nearest neighbors
of hidden states from the backward layer com-
paring to those from the forward layer confirms
more strongly that the semantics of words are cap-
tured more in the backward layer. This is because
here we check the coverage by the directly re-
lated words, in the WordNet, of the corresponding
words of hidden states.

5 Conclusion

In this work, we introduce an intrinsic way of com-
paring neural machine translation architectures by
looking at the nearest neighbors of the encoder hid-
den states. Using the method, we compare recur-
rent and transformer models in terms of capturing
syntax and lexical semantics. We show that the
transformer model is superior in terms of capturing

lexical semantics, while the recurrent model better
captures syntactic similarity.

We show that the hidden state representations
capture quite different information than what is
captured by the corresponding embeddings. We
also show that the hidden states capture more of
WordNet relations of the corresponding word than
they capture from the nearest neighbors of the em-
beddings.

Additionally, we provide a detailed analysis of
the behaviour of the hidden states, both direction-
wise and for the concatenations. We investigate
various types of linguistic information captured by
the different directions of hidden states in a bidi-
rectional recurrent model. We show that the re-
verse recurrent layer captures more lexical and se-
mantic information, whereas the forward recurrent
layer captures more long-distance, contextual in-
formation.
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Abstract

Due to the scarcity of parallel training data
for many language pairs, quasi-parallel
or comparable training data provides an
important alternative resource for train-
ing machine translation systems for such
language pairs. Since comparable cor-
pora are not of as high quality as man-
ually annotated parallel data, using them
for training can have a negative effect on
the translation performance of an NMT
model. We propose distillation as a remedy
to effectively leverage comparable data
where the training of a student model
on combined clean and comparable data
is guided by a teacher model trained on
the high-quality, clean data only. Our
experiments for Arabic-English, Chinese-
English, and German-English translation
demonstrate that distillation yields signif-
icant improvements compared to off-the-
shelf use of comparable data and performs
comparable to state-of-the-art methods for
noise filtering.

1 Introduction

Traditional machine translation systems are trained
on parallel corpora consisting of sentences in the
source language aligned to their translations in the
target language. However, for many language pairs
substantial amounts of high-quality parallel cor-
pora are not available. On the other hand, for many
languages, another useful resource known as com-
parable corpora can be obtained relatively easily

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

in substantially larger amounts. Such comparable
corpora can be created by crawling large monolin-
gual data in the source and target languages from
multilingual news portals such as Agence France-
Presse (AFP), BBC news, Euronews etc. Source
and target sentences in these monolingual corpora
are then aligned by automatic document and sen-
tence alignment techniques (Munteanu and Marcu,
2005). Such a bitext extracted from comparable
data is usually not of the same quality as annotated
parallel corpora. Recent research has shown that
building models from low-quality data can have
a degrading effect on the performance of recur-
rent NMT models (Khayrallah and Koehn, 2018).
Therefore, there is a growing interest in filtering
and sampling techniques to extract high-quality
sentence pairs from such large noisy parallel texts.

Recently, the “Parallel corpus filtering” (Koehn
et al., 2018) shared task was held at WMT-2018.
This task aims at extracting high-quality sentence
pairs from Paracrawl1, which is a large noisy par-
allel corpus. Most of the participants in this
task, used rule-based pre-filtering followed by a
classifier-based scoring of sentence pairs (Barbu
and Barbu Mititelu, 2018; Junczys-Dowmunt,
2018; Hangya and Fraser, 2018). A subset sam-
pled with a fixed number of target tokens is then
used to train recurrent NMT systems in order to
evaluate the relative quality of the filtered bitexts.
Some of the submissions show good translation
performance for the German-English translation
task by training on the filtered bitext only. In this
paper, we propose a strategy to leverage additional
low-quality bitexts without any filtering when used
in conjunction with a high-quality parallel corpus.
Motivated by the “knowledge distillation” frame-

1https://paracrawl.eu/
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Arabic-English (ISI bitext)
Src: . �H@PY	m× I. K
Qî�E �éJ
 	��̄ PA£@ ú


	̄ éÒJ
Ê��� 	àXPB@ I. Ê£ Ñ 	«P èXAªK. @ �éK
Y 	JËñêË @ ÈYªË@ �èP@ 	Pð �HPQ�̄ð
Trg: The Dutch justice ministry decided to expel the Iraqi Kurd despite Amman’s demand

that he be handed over to Jordanian authorities.
Human: The Dutch Justice Ministry decided to deport him, despite Jordan’s request to hand

him over as part of a drug smuggling case.
Chinese-English (ISI bitext)

Src: 美国提出的报复清单是中国政府绝对不能接受的。

Trg: And the Chinese side would certainly not accept the unreasonable demands put for-
ward by the Americans concerning the protection of intellectual property rights.

Human: The revenge list proposed by America will definitely not be accepted by Chinese
government.

German-English (Paracrawl)
Src: Der Elektroden Schalter KARI EL22 dient zur Füllstandserfassung und -regelung

von elektrisch leitfähigen Flüssigkeiten .
Tgt: The KARI EL22 electrode switch is designed for the control of conductive liquids .
Human: The electrode switch KARI EL22 is used for level detection and control of electrically

conductive liquids.

Table 1: Noisy sentence pair example from ISI bitext (Arabic-English and Chinese-English) and Paracrawl (De-En). Fragments
in red in either source or target side has no corresponding equivalent fragment on the respective aligned side.

work of Hinton et al. (2014), we propose “distilla-
tion” as a strategy to exploit comparable training
data for training an NMT system. In our distilla-
tion strategy, we first train a teacher model on the
clean parallel data, which then guides the train-
ing of a final student model trained on the com-
bination of clean and noisy data. Our experimen-
tal results demonstrate that for Arabic-English and
Chinese-English translation, distillation not only
helps to successfully utilize noisy comparable cor-
pora without any performance degradation, but it
also outperforms one of the best performing fil-
tering techniques reported in Koehn et al. (2018).
In addition, we conduct similar experiments for
German-English translation and observe that while
simply adding noisy data to the training data pool
degrades performance, our distillation approach
still yields slight improvements over the baseline.

In Section 2, we discuss the relevant literature in
NMT as well as in other deep learning based tasks
which aim to utilize low quality training corpus. In
Section 3, we provide a brief discussion of the type
of noise in the comparable data, the architecture
of the NMT model used in our experiments, and
the knowledge distillation framework proposed by
Hinton et al. (2014). In Section 4, we describe our
strategy to use knowledge distillation for training
with noisy data. We discuss our experimental set-
tings including datasets and parameters in Section

5 and results in Section 6.

2 Related work

Khayrallah and Koehn (2018) reported that NMT
models can suffer substantial degradation from
adding noisy bitexts when compared to a baseline
model trained on high-quality parallel text only.
The “Parallel corpus filtering” (Koehn et al., 2018)
task evaluated submissions based on NMT systems
trained only on the bitext filtered from Paracrawl.
However, given that many language pairs have at
least some small amount of high-quality parallel
corpora (which is also used by many of the par-
ticipants to train a classifier for scoring the noisy
data), it is important to investigate whether a bitext
filtered using these proposed techniques results in
any additional improvements in conjunction with
the original high-quality data. Filtering techniques
involve discarding a sentence pair with low con-
fidence score. However, a sentence pair with a
low score may still have fragments in the source
and target sentences which can provide useful con-
texts. Our results show that for a recurrent NMT
model, filtering the noisy bitext below a specific
threshold using one of the best techniques submit-
ted to the filtering task (known as “Dual condi-
tional cross entropy filtering” (Junczys-Dowmunt,
2018)) yields only small improvements.
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In the machine learning literature, various meth-
ods have been proposed for efficient learning with
label noise. One of the recent methods is the boot-
strapping (Reed et al., 2014) approach where im-
proved labels for noisy or unlabeled data can be
obtained by predictions of another classifier. For
NMT, forward translations of the noisy bitext can
be used as a variant of bootstrapping where the
target side of the noisy bitext can be replaced by
translations of the source sentence obtained by
a model trained on the high-quality data. How-
ever, a better alternative for NMT would be to use
back-translations (Sennrich et al., 2016), i.e., to re-
place the source side of the noisy bitext by transla-
tions of the target side obtained by a model trained
in the reverse direction. Our experiments show
that although backward translations of noisy data
cause lower degradations than the original noisy
data, they provide only moderate improvements.
Moreover, cleansing the comparable data by back-
translation is expensive as it requires the genera-
tion of pseudo source sentences using beam search
decoding. Fine-tuning (Miceli Barone et al., 2017)
is a well-known technique for domain adaptation
for NMT but can also be used as a possible solu-
tion for training with noisy data where the idea is
to first pre-train on noisy data and then continue
training on high-quality data.

Our experiments show that when using noisy
data for training NMT models, fine-tuning fails
to provide any additional improvements. More-
over, bootstrapping based on filtering and back-
translation, as explained above, show only small
improvements over a model trained on high-
quality data only. In order to overcome the de-
pendence on filtering-based data selection or other
data cleaning approaches and to leverage all avail-
able noisy data, in this paper, we propose knowl-
edge distillation based training on combined clean
and noisy sentence pairs.

It is very important to note that, as has been
pointed out in Koehn et al. (2018), the aim of “Par-
allel corpus filtering” task proposed at WMT18
was not to select data relevant for a targeted do-
main, but to focus on the selection of high quality
data that is relevant to all domains. Similarly, in
this paper, we do not aim to propose a technique
for domain adaptation for NMT but to propose a
technique to leverage low quality or noisy training
data for training high performing NMT models.

Although knowledge distillation has been used

as a solution to other problems of NMT such as
model compression (Kim and Rush, 2016), do-
main adaptation (Dakwale and Monz, 2017) or
transfer learning for low-resource languages (Chen
et al., 2017) and for leveraging noisy data for im-
age recognition (Li et al., 2017), our approach is
the first attempt to exploit distillation for training
NMT systems with noisy data.

3 Background

3.1 Noise in the training corpora

Khayrallah and Koehn (2018) analyzed the
Paracrawal corpus, identifying various types of
noise in this corpus. They found that although
there are some instances of incorrect language, un-
translated sentences, and non-linguistic characters,
the majority of noisy samples (around 41%) are
misaligned sentences due to faulty document or
sentence alignment. This results in alignments of
incorrect source to target sentence fragments.

Similarly, a well-known noisy bitext commonly
used for training machine translation systems for
Arabic-English and Chinese-English is the ISI bi-
text created by automatically aligning sentences
from monolingual corpora extracted from AFP
and Xinhua, respectively (Munteanu and Marcu,
2005). This alignment method first searches for
articles representing similar stories in two sep-
arate monolingual corpora for source and target
languages using cross-lingual information retrieval
with the help of a dictionary. Then parallel sen-
tences are aligned by calculating word overlaps
between each candidate sentence pair followed by
a maximum entropy classifier. Since the bitexts
are extracted from monolingual corpora for source
and target languages, there is rarely any noise due
to misspelling, wrong re-ordering or non-linguistic
characters. The majority of noise in the resulting
aligned bitext is due to limitations of the sentence
alignment technique often resulting in sentence
pairs which are partial translations of each other
with additional fragments on either the source or
target side.

Table 1 shows some examples of noisy sentence
pairs for German-English (from the Paracrawl cor-
pus) and Arabic-English (from the ISI bitext). The
fragments marked red in the source sentence have
no correspondence on the target side. We refer
the reader to (Khayrallah and Koehn, 2018) and
(Munteanu and Marcu, 2005) for a more detailed
description of the types of noise in the respective
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corpora.

3.2 Neural Machine Translation
We employ an NMT system based on Bah-
danau et al. (2014). This is a simple encoder-
decoder network where both the encoder and
decoder are multilayer recurrent neural net-
works (we use LSTM’s). Given an input sen-
tence [(x1, x2, ...., xn)], the encoder converts it
into a sequence of hidden state representations
[(h1, h2, ...., hn)].

hi = fencoder(xi, hi−1) (1)

Here, fencoder is an LSTM unit. The decoder is
another multi-layer RNN which predicts a target
sequence y = (y1, y2, ....ym). The probability of
generation of a token yi at position ’i’ on the target
side is conditioned on the last target token yi−1, the
current hidden state of the decoder sj , and the con-
text vector cj which is a conditional representation
of the source sequence relevant to target position
’i’. The probability of the sentence is computed as
the product of the probabilities of all target tokens.

p(y) =
m∏

j

p(yj |y1, ...yj−1, x) =
m∏

j

g(yj−1, sj , cj)

(2)

g is a multi-layer feed-forward neural network with
a nonlinear transformation. A softmax layer is ap-
plied on the output of the feedforward network g,
which generates the probability of each word in the
target vocabulary. Here, sj is the hidden state rep-
resentation corresponding to each token in the tar-
get sequence generated by the decoder RNN.

sj = fdec(sj−1, yj−1, cj) (3)

The context vector cj is computed using an at-
tention mechanism (Luong et al., 2015) as the
weighted sum of the hidden states hi of the en-
coder.

cj =
n∑

i=1

αjihi (4)

where αji are attention weights corresponding to
each encoder hidden state output hi calculated as
follows :

αji =
exp(a(sj−1, hi))∑n
k=1 exp(a(sj−1, hk))

(5)

Activations a(s, h) are calculated by using a scor-
ing function such as dot product between the cur-
rent decoder state sj−1 and each of the hidden

states hi of the encoder. The end-to-end network is
trained by minimizing the negative log-likelihood
over the training data. The log-likelihood loss is
defined as

LNLL(θ) = −
n∑

j=1

|V |∑

k=1

(yj = k)∗log(p(yj = k|x; θ))

(6)
Where yj is the output distribution generated by
the network at each time-step and k is the true class
label, i.e., the reference target word at each time
step selected from a fixed vocabulary V. The outer
summation is the total loss computed as the sum
over the complete target sequence.

3.3 Knowledge Distillation

Knowledge Distillation is a framework proposed in
Hinton et al. (2014) for training compressed “stu-
dent” networks by using supervision from a large
teacher network. Assuming, we have a teacher
network with large dimension size trained on a
large amount of data, a smaller student network
with much smaller dimension size can be trained
to perform comparable or even better than the
teacher by learning to mimic the output distribu-
tions of the teacher network on the same data. This
is usually done by minimizing cross-entropy or
KL-divergence loss between the two distributions.
Formally, if we have a teacher network trained
on the same data and with a learned distribution
q(y|x; θT ), the student network (model parameters
represented by θ) can be trained by minimizing the
following loss:

LKD(θ, θT ) = −
|V |∑

k=1

KL
(
q(y|x; θT ) p(y|x; θ)

)

(7)
where θT is the parameter distribution of the
teacher network. Commonly, this loss is interpo-
lated with the log-likelihood loss which is calcu-
lated with regard to the target labels for the in-
domain data:

L(θ, θT ) = (1−λ)LNLL(θ)+λLKD(θ, θT ) (8)

In order to allow the student network to encode the
similarities among the output classes, Hinton et al.
(2014) suggests to generate a smoother distribu-
tion called ‘soft-targets’ by increasing the temper-
ature of the softmax of both teacher and student
network.
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Figure 1: Distillation for noisy data. Both the teacher and student network have same architecture. Teacher network is trained
only on the clean data, student network is trained for two losses : LNLL wrt target labels and LKL wrt to output distribution of
teacher network

4 Knowledge distillation for noisy data

We discuss the main intuition and idea behind us-
ing knowledge distillation for noisy labels. A de-
tailed analysis is given in Li et al. (2017). As
shown in Figure 1, the idea is to first train the
teacher model f on the clean data Dclean and then
transfer the knowledge from the teacher to a stu-
dent network which is trained on the entire dataset
D by optimising the following loss:

LD(yi, f(xi)) = λl(yi, f(xi))+(1−λ)l(si, f(xi))
(9)

where si = fDclean
(xi)/τ and τ is the temperature

of the softmax. In equation 9, the student model is
trained on the combination of two loss functions,
the first term is the cross-entropy loss l between
the prediction of the student model and the ground
truth yi, while the second term is the cross-entropy
or KL-divergence between the output distributions
of the student model and the teacher model. λ
is a parameter to balance the weight between the
two losses. Assuming the second loss to be cross-
entropy, Equation 9 can be re-written as:

LD(yi, f(xi)) = l(λ(yi) + (1− λ(si), f(xi)))
(10)

Li et al. (2017) define yλi = λyi + (1 −
λ)(si, f(xi)) as pseudo-label which is a combina-
tion of the given noisy label yi and the prediction
si from the teacher model. They provide an analy-
sis based on the comparison between the risks in-
volved in training directly on the noisy labels or
training on the boot-strapped labels as compared
to training on the pseudo label as defined above.
They show that training on the pseudo label, for
some values of λ defined through distillation, in-
volves lower risks than direct training or boot-
strapping. Therefore, a better model can be trained
by driving the pseudo labels closer to the ground
truth label. In case of comparable corpora training
for NMT, instead of learning only from uncertain
ground truth labels, the student model also bene-
fits from the predictions of the teacher model while
learning to imitate it.

5 Experiments

5.1 Comparisons

We compare our technique to standard scenarios of
training on clean and noisy data. Further, we com-
pare to the commonly used strategy of fine-tuning
as well as back-translation which is an adapta-
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Clean Noisy
Source Size Source Size

Arabic-English LDC 300k ISI bitext 1.1m
Chinese-English LDC 550k ISI bitext 550k
German-English WMT-17 5.1M Pararn 5.1M
German-English WMT-17 5.1M Filttoks=100M 4.6M

Table 2: Datasets and statistics. Pararn = Randomly sampled
subset of Paracrawl. Filttoks=100M = 100 million target token
subsample submitted by (Junczys-Dowmunt, 2018)

tion of self-learning or bootstrapping methods. We
carry out the following experimental comparisons:

• Training on parallel data only: The stan-
dard practice in NMT is to train on the high-
quality parallel data only. This experiment is
also the primary baseline for comparing the
proposed method.

• Training on comparable data only: We
conduct this experiment to demonstrate the
substantial difference between the perfor-
mance of the models trained on only noisy
data or only on clean data.

• Training on combined comparable and
parallel data: This experiment demon-
strates the effect of adding comparable data
to the baseline training data pool.

• Fine-tuning: The standard practice com-
monly used for domain adaptation. For noisy
data, the idea is to first train the model on
noisy data and then continue training on clean
data.

• Back-translation: Back-translation has been
proposed as a method to incorporate addi-
tional monolingual data for NMT (Sennrich
et al., 2016). This is done by training an NMT
system in reverse of the desired direction thus
obtaining pseudo-source sentences for the ad-
ditional monolingual target sentences. By ap-
plying back-translation, we discard the orig-
inal source sentence in the comparable data
and replace them with the pseudo-source sen-
tences. The back-translated comparable data
is then added to the clean parallel data.

• Dual cross entropy filtering: As discussed
in the introduction, (Junczys-Dowmunt,
2018)) reported the best results for the
Parallel Corpus Filtering task for WMT-18.
They used the dual cross-entropy method in

which sentence pairs in the noisy corpus are
ranked based on forward and backward losses
for each sentence pair with respect to NMT
models trained on clean data in forward and
reverse direction. We consider this filtering
method as a competitive baseline for our
approach.

Note that back-translation requires beam-search
based decoding which is quite expensive for large
amount of comparable data.

5.2 Datasets and Parameters
We conduct experiments for Arabic to English,
Chinese to English, and German-English NMT.
As a commonly used representative of compara-
ble data, we consider all AFP sources from the ISI
Arabic-English bitext (LDC2007T08) with a size
of 1.1M sentence pairs and Xinhua news sources
for the Chinese-English bitext (LDC2007T09)
with a size of 550K sentence pairs. Both corpora
are created by automatically aligning (Munteanu
and Marcu, 2005) sentences from monolingual
corpora. For Arabic-English, we compose the par-
allel data consisting of 325k sentence pairs from
various LDC catalogues 2

For Chinese-English, a parallel text of 550k par-
allel sentence pairs from LDC catalogues3 is used.
Note that for Arabic-English, the size of the com-
parable corpus is approximately 4 times that of the
parallel data while for Chinese-English, the com-
parable corpora size is the same as that of the par-
allel corpus4. A byte pair encoding of size 20k
is trained on the parallel data for the respective
languages. NIST MT05 is used as dev set for
both language pairs and MT08, MT09 as test set
for Arabic-English and MT-06, MT-08 as test set
for Chinese-English. Translation quality is mea-
sured in terms of case-sensitive 4-gram BLEU (Pa-
pineni et al., 2002). Approximate randomization
(Noreen., 1989; Riezler and Maxwell, 2005) is
used to detect statistically significant differences.

For German-English, we use high-quality data
from the training corpus provided for WMT-17
(Bojar et al., 2017). For the noisy data, we ran-
domly sample a bitext of equal size from the raw
2LDC2006E25, LDC2004T18, several Gale corpora,
LDC2004T17, LDC2005E46 and LDC2004E13.
3LDC2003E14, LDC2005T10 and LDC2002E18.
4We are aware of the fact that much larger high-quality train-
ing data are available for Chinese-English, which result in
a higher baseline. However, in order to simulate a scenario
where the amount of clean data equals that of the comparable
data, we downsample the size for our experiments.
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Arabic-English Chinese-English
MT05 MT08 MT09 MT05 MT06 MT08

Parallel only 57.7 46.1 49.9 28.8 27.5 20.3
Comparable only 48.9 (-8.8) 32.7 (-13.4) 36.0(-13.9) 11.3(-12.1) 10.2(-17.5) 5.2 (-15.1)

Combined (Parallel + Comparable) 55.2 (-2.5) 44.2 (-1.9) 47.9(-2) 27.7(-1.1) 26.7 (-0.8) 18.3 (-2)

Parallel +Comparablebck 60.4(+2.7) 47.5 (+1.4) 51.0(+1.1) 29.1(+0.3) 27.2(-0.3) 19.8 (-0.5)

Fine-tuning 56.1(-1.6) 46.6 (+0.5) 50.3(+0.4) 25.1 (-3.7) 23.5 (-4) 17.2 (-3.1)

Dual cross Entropy Filtering
Parallel +Comparablefilt−25% 59.9 (+2.2) 47.4 (+1.4) 51.1 (+1.2) 19.7(-9.1) 20.9 (-6.6) 16.8 (-3.5)

Parallel +Comparablefilt−50% 59.2 (+1.5) 46.8 (+0.7) 50.9(+1) 20.4 (-8.4) 21.8(-5.7) 17.0 (-3.3)

Parallel+Comparablefilt−75% 56.7 (-1) 44.9 (-1.2) 49.1(-0.8) 21.5 (-7.3) 22.3 (-5.2) 17.5(-2.8)

Knowledge Distillation
KD 62.3 (+4.6) 48.4 (+2.3) 52.3(+2.4) 29.4 (+0.6) 28.2 (+0.5) 21.1 (+0.8)

Table 3: Performance of various training strategies for Arabic/Chinese-English. Comparablebck = Back-translated comparable
corpora. KD =Knowledge distillation. Boldfaced = Significant differences at p < 0.01.

Paracrawl corpus (“very noisy” 1 billion English
tokens) similar to Khayrallah and Koehn (2018).
To be able to compare with the best filtering
method, we also use a bitext of 100M target tokens
submitted by Junczys-Dowmunt (2018) (available
from the shared task website using a score file)
which is filtered using their proposed “Dual cross
entropy” score. A BPE of 32k is trained on the
WMT-17 training data, newstest15 is used as dev
set and newstest16 and newstest17 are used as test
set. Table 2 summarizes clean and noisy training
data for all language pairs.

We train an LSTM-based encoder-decoder
model as described in Luong et al. (2015) us-
ing the Open-NMT-python toolkit (Klein et al.,
2017), with both embeddings and hidden layers of
size 1000. The maximum sentence length is re-
stricted to 80 tokens. Parameters are optimized us-
ing Adam with an initial learning rate of 0.001, a
decay rate of 0.5 (after every 10k steps), a dropout
probability of 0.2 and label smoothing of 0.1. A
fixed batch size of 64 is used. Model weights are
initialized uniformly within [-0.02, 0.02]. We train
for a maximum of 200k steps and select the model
with best BLEU score on the development set for
the final evaluation and decode with a beam size of
5.

6 Results

First, we compare the primary baseline with di-
rect off-the-shelf use of noisy data without any
filtering or noise reduction strategies. As can
be seen in Table 3, for both Arabic-English and
Chinese-English, the performance of an NMT sys-

tem trained on comparable data only is substan-
tially worse (up to −13.9 BLEU for Ar-En and
−17.5 BLEU for Zh-En) as compared to clean
data. Although for Arabic-English, the size of the
noisy data is 4 times that of the clean data, while
for Chinese-English, it is of equal size. Adding
this noisy data to the clean data degrades transla-
tion performance (−2 BLEU for both Ar-En and
Zh-En). The relative difference between the per-
formance drop between the two language pairs can
be attributed to the size of the comparable data.

Replacing the source side of the noisy data
with back-translations sightly improves the BLEU
score for Arabic-English (up to +1.4) but slightly
degrades translation quality for Chinese-English
(−0.3 BLEU compared to the baseline). Nev-
ertheless, this is still an improvement over di-
rect off-the-shelf addition of the original noisy bi-
text. This implies that back-translation replace-
ment does provide some degree of data cleaning.

Fine-tuning for noisy data shows only slight im-
provements for Ar-En (up to +0.5 BLEU) and
none for Zh-En (up to −4 BLEU drop). For both
language pairs, we apply the dual cross-entropy
filtering method of (Junczys-Dowmunt, 2018) by
ranking sentence pairs in the comparable data ac-
cording to the dual cross entropy and select sub-
samples from the top 50% and 75% of the full
comparable bitext. Filtering at 50% shows sig-
nificant (+1 BLEU) improvements for Arabic-
English, whereas for Chinese-English this filter-
ing results in performance even worse than adding
all data, implying that cross entropy based filter-
ing does not retain high-quality sentences from this
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Figure 2: Variation in BLEU score for different values of λ for Arabic-English and Chinese-English

comparable bitext.
On the other hand, the proposed distillation

strategy outperforms filtering as well as back-
translation replacement for both language pairs.
The improvements for Arabic-English are substan-
tially higher (+4.6 BLEU for the dev set and +2.4
for the test set), while only a small improvement
for Chinese-English is observed. Nevertheless,
distillation provides significant improvements as
compared to direct addition of the noisy data. The
improvement with knowledge distillation shown
in Table 3 correspond to the best improvements
with respect to different values of λ. In Figure
2, we show the effect of varying values for λ (be-
tween 0.1 and 0.9) on the translation performance
over the development set (MT05). For both the
language pairs λ = 0.5 yields the best perfor-
mance. As shown in Table 4, for German-English,
there is a substantial difference (−16.4 BLEU) be-
tween the performance of a model trained on clean
data only vs. one trained on randomly sampled
Paracrawl data. Khayrallah and Koehn (2018) re-
ported a degradation of up to−9 BLEU when com-
bining clean and noisy data. However, we observe
only a 1 BLEU drop for the same setting. Nev-
ertheless, directly adding noisy data seems to pro-
vide no additional improvements. Similarly, fine-
tuning on the clean data does not show any im-
provements. On the other hand, applying the pro-
posed distillation over this combined bitext shows
slight improvement of 0.3 BLEU over the clean
data baseline.

For a comparison with “Dual cross entropy fil-
tering”, we use the filtered bitext submitted by
Junczys-Dowmunt (2018) and add it to the training
data, which also degrades BLEU by −1. Again,

applying distillation over this filtered bitext com-
bined with the clean data set shows an improve-
ment of 0.9 BLEU over the clean-data baseline. As
shown in Figure 3, we evaluate the performance
variation for different values of λ using the ’Ran-
domly sampled (100M target tokens) paracrawl’
against the newstest’15 development set. Similar
to the other two language pairs, we observe that
the best BLEU score is achieved for λ = 0.5.

7 Conclusion

In this paper, we explored the effectiveness of us-
ing comparable training data for neural machine
translation. Our experiments show that depending
on the size of the noisy data, the performance of
an NMT model can suffer significant degradations.
Further, we show that noisy cleaning methods such
as filtering and back-translation of noisy data show
only slight improvements over the baseline. More-
over, fine-tuning fails to show any significant im-
provements when used for noisy data.

To overcome these problems, we proposed dis-
tillation as a remedy to efficiently leverage noisy
data for NMT where we train a primary NMT
model on the combined training data with knowl-
edge distillation from the teacher network trained
on the clean data only. Our experiments show that
distillation can help to successfully utilize low-
quality comparable data resulting in significant im-
provements as compared to training directly on the
noisy data.
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test15 test16 test17
WMT (Parallel only) 25.2 30.0 26.0

Randomly sampled Paracrawl
Pararn 14.6 (-10.6) 10.2 (-19.8) 9.6 (-16.4)

WMT (Parallel) + Pararn 24.1(-1.1) 29.0 (-1) 25.0 (-1)

Fine-tuning (Pararn) 21.8 (-3.4) 24.4 (-5.6) 21.1 (-4.9)

Knowledge distillation (WMT + Pararn) 25.6 (+0.4) 30.3 (+0.3) 26.3 (+0.3)

Parcrawl filtered with dual cross entropy
Filttoks=100M only 24.0 (-1.2) 28.8 (-1.2) 24.6 (-1.4)

WMT + Filttoks=100M 24.1 (-1.1) 28.7 (-0.3) 25.0 (-1)

Fine-tuning (Filttoks=100M ) 23.9 (-1.3) 29.1 (-0.9) 25.1(-0.9)

Knowledge distillation (WMT + Filttoks=100M ) 26.1(+1.1) 31.3 (+0.3) 26.9(+0.9)

Table 4: German-English results. WMT = Only clean Data, Pararn = Randomly sampled 5.1 million sentence pairs from
Paracrawl. Filttoks=100M = 100 million target tokens filtered (Junczys-Dowmunt, 2018)
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Figure 3: Variation in BLEU score for different values of
λ for German-English when trained with randomly sampled
paracrawl data
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Abstract

This paper proposes a novel multilin-
gual multistage fine-tuning approach for
low-resource neural machine translation
(NMT), taking a challenging Japanese–
Russian pair for benchmarking. Al-
though there are many solutions for low-
resource scenarios, such as multilingual
NMT and back-translation, we have em-
pirically confirmed their limited success
when restricted to in-domain data. We
therefore propose to exploit out-of-domain
data through transfer learning, by us-
ing it to first train a multilingual NMT
model followed by multistage fine-tuning
on in-domain parallel and back-translated
pseudo-parallel data. Our approach, which
combines domain adaptation, multilin-
gualism, and back-translation, helps im-
prove the translation quality by more than
3.7 BLEU points, over a strong baseline,
for this extremely low-resource scenario.

1 Introduction

Neural machine translation (NMT) (Cho et al.,
2014; Sutskever et al., 2014; Bahdanau et al.,
2015) has enabled end-to-end training of a trans-
lation system without needing to deal with word
alignments, translation rules, and complicated de-
coding algorithms, which are the characteristics of
phrase-based statistical machine translation (PB-
SMT) (Koehn et al., 2007). Although NMT can
be significantly better than PBSMT in resource-
rich scenarios, PBSMT performs better in low-
resource scenarios (Koehn and Knowles, 2017).
c© 2019 The authors. This article is licensed under a Creative

Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

Only by exploiting cross-lingual transfer learn-
ing techniques (Firat et al., 2016; Zoph et al.,
2016; Kocmi and Bojar, 2018), can the NMT per-
formance approach PBSMT performance in low-
resource scenarios.

However, such methods usually require an NMT
model trained on a resource-rich language pair
like French↔English (parent), which is to be
fine-tuned for a low-resource language pair like
Uzbek↔English (child). On the other hand, multi-
lingual approaches (Johnson et al., 2017) propose
to train a single model to translate multiple lan-
guage pairs. However, these approaches are effec-
tive only when the parent target or source language
is relatively resource-rich like English (En). Fur-
thermore, the parents and children models should
be trained on similar domains; otherwise, one has
to take into account an additional problem of do-
main adaptation (Chu et al., 2017).

In this paper, we work on a linguisti-
cally distant and thus challenging language pair
Japanese↔Russian (Ja↔Ru) which has only 12k
lines of news domain parallel corpus and hence is
extremely resource-poor. Furthermore, the amount
of indirect in-domain parallel corpora, i.e., Ja↔En
and Ru↔En, are also small. As we demonstrate in
Section 4, this severely limits the performance of
prominent low-resource techniques, such as mul-
tilingual modeling, back-translation, and pivot-
based PBSMT. To remedy this, we propose a novel
multistage fine-tuning method for NMT that com-
bines multilingual modeling (Johnson et al., 2017)
and domain adaptation (Chu et al., 2017).

We have addressed two important research ques-
tions (RQs) in the context of extremely low-
resource machine translation (MT) and our explo-
rations have derived rational contributions (CTs)
as follows:
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RQ1. What kind of translation quality can we ob-
tain in an extremely low-resource scenario?

CT1. We have made extensive comparisons with
multiple architectures and MT paradigms to
show how difficult the problem is. We have
also explored the utility of back-translation
and show that it is ineffective given the poor
performance of base MT systems used to gen-
erate pseudo-parallel data. Our systematic
exploration shows that multilingualism is ex-
tremely useful for in-domain translation with
very limited corpora (see Section 4). This
type of exhaustive exploration has been miss-
ing from most existing works.

RQ2. What are the effective ways to exploit out-
of-domain data for extremely low-resource
in-domain translation?

CT2. Our proposal is to first train a multilin-
gual NMT model on out-of-domain Ja↔En
and Ru↔En data, then fine-tune it on in-
domain Ja↔En and Ru↔En data, and fur-
ther fine-tune it on Ja↔Ru data (see Sec-
tion 5). We show that this stage-wise fine-
tuning is crucial for high-quality translation.
We then show that the improved NMT mod-
els lead to pseudo-parallel data of better qual-
ity. This data can then be used to improve the
performance even further thereby enabling
the generation of better pseudo-parallel data.
By iteratively generating pseudo-parallel data
and fine-tuning the model on said data,
we can achieve the best performance for
Japanese↔Russian translation.

To the best of our knowledge, we are the first
to perform such an extensive evaluation of ex-
tremely low-resource MT problem and propose a
novel multilingual multistage fine-tuning approach
involving multilingual modeling and domain adap-
tation to address it.

2 Our Japanese–Russian Setting

In this paper, we deal with Ja↔Ru news trans-
lation. This language pair is very challenging
because the languages involved have completely
different writing system, phonology, morphology,
grammar, and syntax. Among various domains,
we experimented with translations in the news do-
main, considering the importance of sharing news
between different language speakers. Moreover,
news domain is one of the most challenging tasks,

Ru Ja En #sent.
Usage

test development
X X X 913 600 313
X X 173 - 173

X X 276 - 276
X X 0 - -
X 4 - -

X 287 - -
X 1 - -

Total 1,654 - -

Table 1: Manually aligned News Commentary data.

due to large presence of out-of-vocabulary (OOV)
tokens and long sentences.1 To establish and eval-
uate existing methods, we also involved English as
the third language. As direct parallel corpora are
scarce, involving a language such as English for
pivoting is quite common (Utiyama and Isahara,
2007).

There has been no clean held-out parallel data
for Ja↔Ru and Ja↔En news translation. There-
fore, we manually compiled development and test
sets using News Commentary data2 as a source.
Since the given Ja↔Ru and Ja↔En data share
many lines in the Japanese side, we first compiled
tri-text data. Then, from each line, correspond-
ing parts across languages were manually identi-
fied, and unaligned parts were split off into a new
line. Note that we have never merged two or more
lines. As a result, we obtained 1,654 lines of data
comprising trilingual, bilingual, and monolingual
segments (mainly sentences) as summarized in Ta-
ble 1. Finally, for the sake of comparability, we
randomly chose 600 trilingual sentences to create
a test set, and concatenated the rest of them and
bilingual sentences to form development sets.

Our manually aligned development and test sets
are publicly available.3

3 Related Work

Koehn and Knowles (2017) showed that NMT is
unable to handle low-resource language pairs as
opposed to PBSMT. Transfer learning approaches
(Firat et al., 2016; Zoph et al., 2016; Kocmi and
Bojar, 2018) work well when a large helping par-
allel corpus is available. This restricts one of the
source or the target languages to be English which,
in our case, is not possible. Approaches involving
bi-directional NMT modeling is shown to drasti-

1News domain translation is also the most competitive tasks
in WMT indicating its importance.
2http://opus.nlpl.eu/News-Commentary-v11.
php
3https://github.com/aizhanti/JaRuNC
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cally improve low-resource translation (Niu et al.,
2018). However, like most other, this work focuses
on translation from and into English.

Remaining options include (a) unsupervised MT
(Artetxe et al., 2018; Lample et al., 2018; Marie
and Fujita, 2018), (b) parallel sentence mining
from non-parallel or comparable corpora (Utiyama
and Isahara, 2003; Tillmann and Xu, 2009), (c)
generating pseudo-parallel data (Sennrich et al.,
2016), and (d) MT based on pivot languages
(Utiyama and Isahara, 2007). The linguistic dis-
tance between Japanese and Russian makes it ex-
tremely difficult to learn bilingual knowledge, such
as bilingual lexicons and bilingual word embed-
dings. Unsupervised MT is thus not promising
yet, due to its heavy reliance on accurate bilingual
word embeddings. Neither does parallel sentence
mining, due to the difficulty of obtaining accu-
rate bilingual lexicons. Pseudo-parallel data can be
used to augment existing parallel corpora for train-
ing, and previous work has reported that such data
generated by so-called back-translation can sub-
stantially improve the quality of NMT. However,
this approach requires base MT systems that can
generate somewhat accurate translations. It is thus
infeasible in our scenario, because we can obtain
only a weak system which is the consequence of
an extremely low-resource situation. MT based on
pivot languages requires large in-domain parallel
corpora involving the pivot languages. This tech-
nique is thus infeasible, because the in-domain par-
allel corpora for Ja↔En and Ru↔En pairs are also
extremely limited, whereas there are large parallel
corpora in other domains. Section 4 empirically
confirms the limit of these existing approaches.

Fortunately, there are two useful transfer learn-
ing solutions using NMT: (e) multilingual model-
ing to incorporate multiple language pairs into a
single model (Johnson et al., 2017) and (f) domain
adaptation to incorporate out-of-domain data (Chu
et al., 2017). In this paper, we explore a novel
method involving step-wise fine-tuning to combine
these two methods. By improving the translation
quality in this way, we can also increase the like-
lihood of pseudo-parallel data being useful to fur-
ther improve translation quality.

4 Limit of Using only In-domain Data

This section answers our first research question,
[RQ1], about the translation quality that we can
achieve using existing methods and in-domain par-

Lang.pair Partition #sent. #tokens #types

Ja↔Ru
train 12,356 341k / 229k 22k / 42k

development 486 16k / 11k 2.9k / 4.3k
test 600 22k / 15k 3.5k / 5.6k

Ja↔En
train 47,082 1.27M / 1.01M 48k / 55k

development 589 21k / 16k 3.5k / 3.8k
test 600 22k / 17k 3.5k / 3.8k

Ru↔En
train 82,072 1.61M / 1.83M 144k / 74k

development 313 7.8k / 8.4k 3.2k / 2.3k
test 600 15k / 17k 5.6k / 3.8k

Table 2: Statistics on our in-domain parallel data.

allel and monolingual data. We then use the
strongest model to conduct experiments on gener-
ating and utilizing back-translated pseudo-parallel
data for augmenting NMT. Our intention is to em-
pirically identify the most effective practices as
well as recognize the limitations of relying only
on in-domain parallel corpora.

4.1 Data

To train MT systems among the three languages,
i.e., Japanese, Russian, and English, we used all
the parallel data provided by Global Voices,4 more
specifically those available at OPUS.5 Table 2
summarizes the size of train/development/test
splits used in our experiments. The number of par-
allel sentences for Ja↔Ru is 12k, for Ja↔En is
47k, and for Ru↔En is 82k. Note that the three
corpora are not mutually exclusive: 9k out of 12k
sentences in the Ja↔Ru corpus were also included
in the other two parallel corpora, associated with
identical English translations. This puts a limit on
the positive impact that the helping corpora can
have on the translation quality.

Even when one focuses on low-resource lan-
guage pairs, we often have access to larger quan-
tities of in-domain monolingual data of each lan-
guage. Such monolingual data are useful to im-
prove quality of MT, for example, as the source of
pseudo-parallel data for augmenting training data
for NMT (Sennrich et al., 2016) and as the train-
ing data for large and smoothed language mod-
els for PBSMT (Koehn and Knowles, 2017). Ta-
ble 3 summarizes the statistics on our monolingual
corpora for several domains including the news
domain. Note that we removed from the Global
Voices monolingual corpora those sentences that
are already present in the parallel corpus.

4https://globalvoices.org/
5http://opus.nlpl.eu/GlobalVoices-v2015.
php
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Corpus Ja Ru En
Global Voices5 26k 24k 842k
Wikinews6 37k 243k -
News Crawl7 - 72M 194M
Yomiuri (2007–2011)8 19M - -
IWSLT9 411k 64k 66k
Tatoeba10 5k 58k 208k

Table 3: Number of lines in our monolingual data. Whereas
the first four are from the news corpora (in-domain), the last
two, i.e., “IWSLT” and “Tatoeba,” are from other domains.

We tokenized English and Russian sentences us-
ing tokenizer.perl of Moses (Koehn et al., 2007).11

To tokenize Japanese sentences, we used MeCab12

with the IPA dictionary. After tokenization, we
eliminated duplicated sentence pairs and sentences
with more than 100 tokens for all the languages.

4.2 MT Methods Examined

We began with evaluating standard MT paradigms,
i.e., PBSMT (Koehn et al., 2007) and NMT
(Sutskever et al., 2014). As for PBSMT, we
also examined two advanced methods: pivot-based
translation relying on a helping language (Utiyama
and Isahara, 2007) and induction of phrase tables
from monolingual data (Marie and Fujita, 2018).

As for NMT, we compared two types of
encoder-decoder architectures: attentional RNN-
based model (RNMT) (Bahdanau et al., 2015) and
the Transformer model (Vaswani et al., 2017). In
addition to standard uni-directional modeling, to
cope with the low-resource problem, we examined
two multi-directional models: bi-directional model
(Niu et al., 2018) and multi-to-multi (M2M) model
(Johnson et al., 2017).

After identifying the best model, we also exam-
ined the usefulness of a data augmentation method
based on back-translation (Sennrich et al., 2016).

PBSMT Systems

First, we built a PBSMT system for each of
the six translation directions. We obtained phrase

6https://dumps.wikimedia.org/
backup-index.html (20180501)
7http://www.statmt.org/wmt18/
translation-task.html
8https://www.yomiuri.co.jp/database/
glossary/
9http://www.cs.jhu.edu/˜kevinduh/a/
multitarget-tedtalks/
10http://opus.nlpl.eu/Tatoeba-v2.php
11https://github.com/moses-smt/
mosesdecoder
12http://taku910.github.io/mecab, version
0.996.

tables from parallel corpus using SyMGIZA++13

with the grow-diag-final heuristics for word
alignment, and Moses for phrase pair extraction.
Then, we trained a bi-directional MSD (mono-
tone, swap, and discontinuous) lexicalized reorder-
ing model. We also trained three 5-gram language
models, using KenLM14 on the following monolin-
gual data: (1) the target side of the parallel data, (2)
the concatenation of (1) and the monolingual data
from Global Voices, and (3) the concatenation of
(1) and all monolingual data in the news domain in
Table 3.

Subsequently, using English as the pivot lan-
guage, we examined the following three types of
pivot-based PBSMT systems (Utiyama and Isa-
hara, 2007; Cohn and Lapata, 2007) for each of
Ja→Ru and Ru→Ja.

Cascade: 2-step decoding using the source-to-
English and English-to-target systems.

Synthesize: Obtain a new phrase table from syn-
thetic parallel data generated by translating
English side of the target–English training
parallel data to the source language with the
English-to-source system.

Triangulate: Compile a new phrase table com-
bining those for the source-to-English and
English-to-target systems.

Among these three, triangulation is the most com-
putationally expensive method. Although we had
filtered the component phrase tables using the sta-
tistical significance pruning method (Johnson et
al., 2007), triangulation can generate an enormous
number of phrase pairs. To reduce the computa-
tional cost during decoding and the negative ef-
fects of potentially noisy phrase pairs, we retained
for each source phrase s only the k-best transla-
tions t according to the forward translation proba-
bility φ(t|s) calculated from the conditional prob-
abilities in the component models as defined in
Utiyama and Isahara (2007). For each of the re-
tained phrase pairs, we also calculated the back-
ward translation probability, φ(s|t), and lexical
translation probabilities, φlex (t|s) and φlex (s|t), in
the same manner as φ(t|s).

We also investigated the utility of recent ad-
vances in unsupervised MT. Even though we be-
gan with a publicly available implementation of

13https://github.com/emjotde/symgiza-pp
14https://github.com/kpu/kenlm
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ID System
Parallel data Total size of Vocabulary

Ja↔Ru Ja↔En Ru↔En training data size

(a1), (b1)
Ja→Ru or Ru→Ja 12k - - 12k 16k
Ja→En or En→Ja - 47k - 47k 16k
Ru→En or En→Ru - - 82k 82k 16k

(a2), (b2)
Ja→Ru and Ru→Ja 12k - - 24k 16k
Ja→En and En→Ja - 47k - 94k 16k
Ru→En and En→Ru - - 82k 164k 16k

(a3), (b3) M2M systems 12k→82k 47k→82k 82k 492k 32k

Table 4: Configuration of uni-, bi-directional, and M2M NMT baseline systems. Arrows in “Parallel data” columns indicate
the over-sampling of the parallel data to match the size of the largest parallel data.

unsupervised PBSMT (Lample et al., 2018),15 it
crashed due to unknown reasons. We therefore fol-
lowed another method described in Marie and Fu-
jita (2018). Instead of short n-grams (Artetxe et
al., 2018; Lample et al., 2018), we collected a set
of phrases in Japanese and Russian from respec-
tive monolingual data using the word2phrase
algorithm (Mikolov et al., 2013),16 as in Marie
and Fujita (2018). To reduce the complexity, we
used randomly selected 10M monolingual sen-
tences, and 300k most frequent phrases made of
words among the 300k most frequent words. For
each source phrase s, we selected 300-best tar-
get phrases t according to the translation prob-
ability as in Lample et al. (2018): p(t|s) =

exp(β cos(emb(t),emb(s))∑
t′ exp(β cos(emb(t′),emb(s)) , where emb(·) stands

for a bilingual embedding of a given phrase, ob-
tained through averaging bilingual embeddings of
constituent words learned from the two mono-
lingual data using fastText17 and vecmap.18

For each of the retained phrase pair, p(s|t) was
computed analogously. We also computed lexical
translation probabilities relying on those learned
from the given small parallel corpus.

Up to four phrase tables were jointly ex-
ploited by the multiple decoding path ability of
Moses. Weights for the features were tuned us-
ing KB-MIRA (Cherry and Foster, 2012) on the
development set; we took the best weights after 15
iterations. Two hyper-parameters, namely, k for
the number of pivot-based phrase pairs per source
phrase and d for distortion limit, were determined
by a grid search on k ∈ {10, 20, 40, 60, 80, 100}
and d ∈ {8, 10, 12, 14, 16, 18, 20}. In contrast, we
used predetermined hyper-parameters for phrase
table induction from monolingual data, following

15https://github.com/facebookresearch/
UnsupervisedMT
16https://code.google.com/archive/p/
word2vec/
17https://fasttext.cc/
18https://github.com/artetxem/vecmap

the convention: 200 for the dimension of word and
phrase embeddings and β = 30.

NMT Systems

We used the open-source implementation of
the RNMT and the Transformer models in
tensor2tensor.19 A uni-directional model for
each of the six translation directions was trained on
the corresponding parallel corpus. Bi-directional
and M2M models were realized by adding an ar-
tificial token that specifies the target language to
the beginning of each source sentence and shuf-
fling the entire training data (Johnson et al., 2017).

Table 4 contains some specific hyper-
parameters20 for our baseline NMT models.
The hyper-parameters not mentioned in this table
used the default values in tensor2tensor.
For M2M systems, we over-sampled Ja→Ru and
Ja→En training data so that their sizes match the
largest Ru→En data. To reduce the number of
unknown words, we used tensor2tensor’s
internal sub-word segmentation mechanism.
Since we work in a low-resource setting, we used
shared sub-word vocabularies of size 16k for the
uni- and bi-directional models and 32k for the
M2M models. The number of training iterations
was determined by early-stopping: we evaluated
our models on the development set every 1,000
updates, and stopped training if BLEU score
for the development set was not improved for
10,000 updates (10 check-points). Note that the
development set was created by concatenating
those for the individual translation directions
without any over-sampling.

Having trained the models, we averaged the last
10 check-points and decoded the test sets with a
beam size of 4 and a length penalty which was

19https://github.com/tensorflow/
tensor2tensor, version 1.6.6.
20We compared two mini-batch sizes, 1024 and 6144 tokens,
and found that 6144 and 1024 worked better for RNMT and
Transformer, respectively.
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ID System Ja→Ru Ru→Ja Ja→En En→Ja Ru→En En→Ru
(a1) Uni-directional RNMT 0.58 1.86 2.41 7.83 18.42 13.64
(a2) Bi-directional RNMT 0.65 1.61 6.18 8.81 19.60 15.11
(a3) M2M RNMT 1.51 4.29 5.15 7.55 14.24 10.86
(b1) Uni-directional Transformer 0.70 1.96 4.36 7.97 20.70 16.24
(b2) Bi-directional Transformer 0.19 0.87 6.48 10.63 22.25 16.03
(b3) M2M Transformer 3.72 8.35 10.24 12.43 22.10 16.92
(c1) Uni-directional supervised PBSMT 2.02 4.45 8.19 10.27 22.37 16.52

Table 5: BLEU scores of baseline systems. Bold indicates the best BLEU score for each translation direction.

tuned by a linear search on the BLEU score for
the development set.

Similarly to PBSMT, we also evaluated “Cas-
cade” and “Synthesize” methods with uni-
directional NMT models.

4.3 Results

We evaluated MT models using case-sensitive and
tokenized BLEU (Papineni et al., 2002) on test
sets, using Moses’s multi-bleu.perl. Statistical
significance (p < 0.05) on the difference of
BLEU scores was tested by Moses’s bootstrap-
hypothesis-difference-significance.pl.

Tables 5 and 6 show BLEU scores of all the
models, except the NMT systems augmented with
back-translations. Whereas some models achieved
reasonable BLEU scores for Ja↔En and Ru↔En
translation, all the results for Ja↔Ru, which is our
main concern, were abysmal.

Among the NMT models, Transformer models
(b∗) were proven to be better than RNMT models
(a∗). RNMT models could not even outperform the
uni-directional PBSMT models (c1). M2M mod-
els (a3) and (b3) outperformed their corresponding
uni- and bi-directional models in most cases. It is
worth noting that in this extremely low-resource
scenario, BLEU scores of the M2M RNMT model
for the largest language pair, i.e., Ru↔En, were
lower than those of the uni- and bi-directional
RNMT models as in Johnson et al. (2017). In con-
trast, with the M2M Transformer model, Ru↔En
also benefited from multilingualism.

Standard PBSMT models (c1) achieved higher
BLEU scores than uni-directional NMT mod-
els (a1) and (b1), as reported by Koehn and
Knowles (2017), whereas they underperform the
M2M Transformer NMT model (b3). As shown
in Table 6, pivot-based PBSMT systems always
achieved higher BLEU scores than (c1). The
best model with three phrase tables, labeled “Syn-
thesize / Triangulate / Gold,” brought visible
BLEU gains with substantial reduction of OOV
tokens (3047→1180 for Ja→Ru, 4463→1812 for

System Ja→Ru Ru→Ja
PBSMT: Cascade 3.65 7.62
PBSMT: Synthesize 3.37 6.72
PBSMT: Synthesize / Gold 2.94 6.95
PBSMT: Synthesize + Gold 3.07 6.62
PBSMT: Triangulate 3.75 7.02
PBSMT: Triangulate / Gold 3.93 7.02
PBSMT: Synthesize / Triangulate / Gold 4.02 7.07
PBSMT: Induced 0.37 0.65
PBSMT: Induced / Synthesize / Triangulate / Gold 2.85 6.86
RNMT: Cascade 1.19 6.73
RNMT: Synthesize 1.82 3.02
RNMT: Synthesize + Gold 1.62 3.24
Transformer NMT: Cascade 2.41 6.84
Transformer NMT: Synthesize 1.78 5.43
Transformer NMT: Synthesize + Gold 2.13 5.06

Table 6: BLEU scores of pivot-based systems. “Gold” refers
to the phrase table trained on the parallel data. Bold indicates
the BLEU score higher than the best one in Table 5. “/” in-
dicates the use of separately trained multiple phrase tables,
whereas so does “+” training on the mixture of parallel data.

Ru→Ja). However, further extension with phrase
tables induced from monolingual data did not push
the limit, despite their high coverage; only 336 and
677 OOV tokens were left for the two translation
directions, respectively. This is due to the poor
quality of the bilingual word embeddings used to
extract the phrase table, as envisaged in Section 3.

None of pivot-based approaches with uni-
directional NMT models could even remotely rival
the M2M Transformer NMT model (b3).

4.4 Augmentation with Back-translation

Given that the M2M Transformer NMT model (b3)
achieved best results for most of the translation di-
rections and competitive results for the rest, we
further explored it through back-translation.

We examined the utility of pseudo-parallel data
for all the six translation directions, unlike the
work of Lakew et al. (2017) and Lakew et al.
(2018), which concentrate only on the zero-shot
language pair, and the work of Niu et al. (2018),
which compares only uni- or bi-directional mod-
els. We investigated whether each translation di-
rection in M2M models will benefit from pseudo-
parallel data and if so, what kind of improvement
takes place.
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ID System
Parallel data Total size of

Pseudo Ja↔Ru Ja↔En Ru↔En training data

#1–#10

Ja∗→Ru and/or Ru∗→Ja 12k→82k 12k→82k 47k→82k×2 82k×2 984k
Ja∗→En and/or En∗→Ja 47k→82k 12k→82k×2 47k→82k 82k×2 984k
Ru∗→En and/or En∗→Ru 82k 12k→82k×2 47k→82k×2 82k 984k
All All of the above 12k→82k 47k→82k 82k 984k

Table 7: Over-sampling criteria for pseudo-parallel data generated by back-translation.

ID
Pseudo-parallel data involved BLEU score

Ja∗→Ru Ru∗→Ja Ja∗→En En∗→Ja Ru∗→En En∗→Ru Ja→Ru Ru→Ja Ja→En En→Ja Ru→En En→Ru
(b3) - - - - - - 3.72 8.35 10.24 12.43 22.10 16.92
#1 X - - - - - •4.59 8.63 10.64 12.94 22.21 17.30
#2 - X - - - - 3.74 •8.85 10.13 13.05 22.48 17.20
#3 X X - - - - •4.56 •9.09 10.57 •13.23 22.48 •17.89
#4 - - X - - - 3.71 8.05 •11.00 12.66 22.17 16.76
#5 - - - X - - 3.62 8.10 9.92 •14.06 21.66 16.68
#6 - - X X - - 3.61 7.94 •11.51 •14.38 22.22 16.80
#7 - - - - X - 3.80 8.37 10.67 13.00 22.51 •17.73
#8 - - - - - X 3.77 8.04 10.52 12.43 •22.85 17.13
#9 - - - - X X 3.37 8.03 10.19 12.79 22.77 17.26
#10 X X X X X X •4.43 •9.38 •12.06 •14.43 •23.09 17.30

Table 8: BLEU scores of M2M Transformer NMT systems trained on the mixture of given parallel corpus and pseudo-parallel
data generated by back-translation using (b3). Six “X∗→Y” columns show whether the pseudo-parallel data for each translation
direction is involved. Bold indicates the scores higher than (b3) and “•” indicates statistical significance of the improvement.

First, we selected sentences to be back-
translated from in-domain monolingual data (Ta-
ble 3), relying on the score proposed by Moore and
Lewis (2010) via the following procedure.

1. For each language, train two 4-gram language
models, using KenLM: an in-domain one on
all the Global Voices data, i.e., both parallel
and monolingual data, and a general-domain
one on the concatenation of Global Voices,
IWSLT, and Tatoeba data.

2. For each language, discard sentences contain-
ing OOVs according to the in-domain lan-
guage model.

3. For each translation direction, select the T -
best monolingual sentences in the news do-
main, according to the difference between
cross-entropy scores given by the in-domain
and general-domain language models.

Whereas Niu et al. (2018) exploited monolin-
gual data much larger than parallel data, we main-
tained a 1:1 ratio between them (Johnson et al.,
2017), setting T to the number of lines of paral-
lel data of given language pair.

Selected monolingual sentences were then
translated using the M2M Transformer NMT
model (b3) to compose pseudo-parallel data. Then,
the pseudo-parallel data were enlarged by over-
sampling as summarized in Table 7. Finally, new
NMT models were trained on the concatenation of
the original parallel and pseudo-parallel data from

scratch in the same manner as the previous NMT
models with the same hyper-parameters.

Table 8 shows the BLEU scores achieved
by several reasonable combinations of six-way
pseudo-parallel data. We observed that the use of
all six-way pseudo-parallel data (#10) significantly
improved the base model for all the translation di-
rections, except En→Ru. A translation direction
often benefited when the pseudo-parallel data for
that specific direction was used.

4.5 Summary

We have evaluated an extensive variation of MT
models21 that rely only on in-domain parallel and
monolingual data. However, the resulting BLEU
scores for Ja→Ru and Ru→Ja tasks do not exceed
10 BLEU points, implying the inherent limitation
of the in-domain data as well as the difficulty of
these translation directions.

5 Exploiting Large Out-of-Domain Data
Involving a Helping Language

The limitation of relying only on in-domain data
demonstrated in Section 4 motivates us to explore

21Other conceivable options include transfer learning using
parallel data between English and one of Japanese and Rus-
sian as either source or target language, such as pre-training
an En→Ru model and fine-tuning it for Ja→Ru. Our M2M
models conceptually subsume them, even though they do not
explicitly divide the two steps during training. On the other
hand, our method proposed in Section 5 explicitly conducts
transfer learning for domain adaptation followed by addi-
tional transfer learning across different languages.
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Domain \ language pair Direct One-side shared
in-domain A, X B, X

out-of-domain C, × D, X

Table 9: Classification of parallel data.

other types of parallel data. As raised in our sec-
ond research question, [RQ2], we considered the
effective ways to exploit out-of-domain data.

According to language pair and domain, parallel
data can be classified into four categories in Ta-
ble 9. Among all the categories, out-of-domain
data for the language pair of interest have been ex-
ploited in the domain adaptation scenarios (C→A)
(Chu et al., 2017). However, for Ja↔Ru, no
out-of-domain data is available. To exploit out-
of-domain parallel data for Ja↔En and Ru↔En
pairs instead, we propose a multistage fine-tuning
method, which combines two types of transfer
learning, i.e., domain adaptation for Ja↔En and
Ru↔En (D→B) and multilingual transfer (B→A),
relying on the M2M model examined in Section 4.
We also examined the utility of fine-tuning for iter-
atively generating and using pseudo-parallel data.

5.1 Multistage Fine-tuning

Simply using NMT systems trained on out-of-
domain data for in-domain translation is known
to perform badly. In order to effectively use
large-scale out-of-domain data for our extremely
low-resource task, we propose to perform domain
adaptation through either (a) conventional fine-
tuning, where an NMT system trained on out-of-
domain data is fine-tuned only on in-domain data,
or (b) mixed fine-tuning (Chu et al., 2017), where
pre-trained out-of-domain NMT system is fine-
tuned using a mixture of in-domain and out-of-
domain data. The same options are available for
transferring from Ja↔En and Ru↔En to Ja↔Ru.

We inevitably involve two types of transfer
learning, i.e., domain adaptation for Ja↔En and
Ru↔En and multilingual transfer for Ja↔Ru pair.
Among several conceivable options for managing
these two problems, we examined the following
multistage fine-tuning.

Stage 0. Out-of-domain pre-training: Pre-train
a multilingual model only on the Ja↔En
and Ru↔En out-of-domain parallel data
(I), where the vocabulary of the model is
determined on the basis of the in-domain
parallel data in the same manner as the M2M
NMT models examined in Section 4.

Lang.pair Corpus #sent. #tokens #types
Ja↔En ASPEC 1,500,000 42.3M / 34.6M 234k / 1.02M

Ru↔En
UN 2,647,243 90.5M / 92.8M 757k / 593k

Yandex 320,325 8.51M / 9.26M 617k / 407k

Table 10: Statistics on our out-of-domain parallel data.

Stage 1. Fine-tuning for domain adaptation:
Fine-tune the pre-trained model (I) on the
in-domain Ja↔En and Ru↔En parallel
data (fine-tuning, II) or on the mixture of
in-domain and out-of-domain Ja↔En and
Ru↔En parallel data (mixed fine-tuning, III).

Stage 2. Fine-tuning for Ja↔Ru pair: Further
fine-tune the models (each of II and III) for
Ja↔Ru on in-domain parallel data for this
language pair only (fine-tuning, IV and VI)
or on all the in-domain parallel data (mixed
fine-tuning, V and VII).

We chose this way due to the following two rea-
sons. First, we need to take a balance between sev-
eral different parallel corpora sizes. The other rea-
son is division of labor; we assume that solving
each sub-problem one by one should enable grad-
ual shift of parameters.

5.2 Data Selection

As an additional large-scale out-of-domain paral-
lel data for Ja↔En, we used the cleanest 1.5M
sentences from the Asian Scientific Paper Excerpt
Corpus (ASPEC) (Nakazawa et al., 2016).22 As
for Ru↔En, we used the UN and Yandex cor-
pora released for the WMT 2018 News Transla-
tion Task.23 We retained Ru↔En sentence pairs
that contain at least one OOV token in both sides,
according to the in-domain language model trained
in Section 4.4. Table 10 summarizes the statistics
on the remaining out-of-domain parallel data.

5.3 Results

Table 11 shows the results of our multistage fine-
tuning, where the IDs of each row refer to those
described in Section 5.1. First of all, the final mod-
els of our multistage fine-tuning, i.e., V and VII,
achieved significantly higher BLEU scores than
(b3) in Table 5, a weak baseline without using any
monolingual data, and #10 in Table 8, a strong
baseline established with monolingual data.

22http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
23http://www.statmt.org/wmt18/
translation-task.html
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ID Initialized
Out-of-domain data In-domain data BLEU score
Ja↔En Ru↔En Ja↔Ru Ja↔En Ru↔En Ja→Ru Ru→Ja Ja→En En→Ja Ru→En En→Ru

(b3) - - - X X X 3.72 8.35 10.24 12.43 22.10 16.92
I - X X - - - 0.00 0.15 4.59 4.15 •25.22 •20.37
II I - - - X X 0.20 0.70 •14.10 •17.80 •28.23 •24.35
III I X X - X X 0.23 1.07 •13.31 •17.74 •28.73 •25.22
IV II - - X - - •5.44 •10.67 0.12 3.97 0.11 3.66
V II - - X X X •6.90 •11.99 •14.34 •16.93 •27.50 •23.17
VI III - - X - - •5.91 •10.83 0.26 2.18 0.18 1.10
VII III - - X X X •7.49 •12.10 •14.63 •17.51 •28.51 •24.60
I’ - X X X X X •5.31 •10.73 •14.41 •16.34 •27.46 •23.21
II’ I - - X X X •6.30 •11.64 •14.29 •16.83 •27.53 •23.00
III’ I X X X X X •7.53 •12.33 •14.19 •16.77 •27.94 •23.97

Table 11: BLEU scores obtained through multistage fine-tuning. “Initialized” column indicates the model used for initializing
parameters that are fine-tuned on the data indicated by X. Bold indicates the best BLEU score for each translation direction.
“•” indicates statistical significance of the improvement over (b3).

The performance of the initial model (I) depends
on the language pair. For Ja↔Ru pair, it can-
not achieve minimum level of quality since the
model has never seen parallel data for this pair.
The performance on Ja↔En pair was much lower
than the two baseline models, reflecting the cru-
cial mismatch between training and testing do-
mains. In contrast, Ru↔En pair benefited the most
and achieved surprisingly high BLEU scores. The
reason might be due to the proximity of out-of-
domain training data and in-domain test data.

The first fine-tuning stage significantly pushed
up the translation quality for Ja↔En and Ru↔En
pairs, in both cases with fine-tuning (II) and mixed
fine-tuning (III). At this stage, both models per-
formed only poorly for Ja↔Ru pair as they have
not yet seen Ja↔Ru parallel data. Either model
had a consistent advantage to the other.

When these models were further fine-tuned only
on the in-domain Ja↔Ru parallel data (IV and VI),
we obtained translations of better quality than the
two baselines for Ja↔Ru pair. However, as a re-
sult of complete ignorance of Ja↔En and Ru↔En
pairs, the models only produced translations of
poor quality for these language pairs. In contrast,
mixed fine-tuning for the second fine-tuning stage
(V and VII) resulted in consistently better mod-
els than conventional fine-tuning (IV and VI), ir-
respective of the choice at the first stage, thanks
to the gradual shift of parameters realized by in-
domain Ja↔En and Ru↔En parallel data. Un-
fortunately, the translation quality for Ja↔En and
Ru↔En pairs sometimes degraded from II and III.
Nevertheless, the BLEU scores still retain the large
margin against two baselines.

The last three rows in Table 11 present BLEU
scores obtained by the methods with fewer fine-
tuning steps. The most naive model I’, trained

on the balanced mixture of whole five types of
corpora from scratch, and the model II’, obtained
through a single-step conventional fine-tuning of
I on all the in-domain data, achieved only BLEU
scores consistently worse than VII. In contrast,
when we merged our two fine-tuning steps into a
single mixed fine-tuning on I, we obtained a model
III’ which is better for the Ja↔Ru pair than VII.
Nevertheless, they are still comparable to those of
VII and the BLEU scores for the other two lan-
guage pairs are much lower than VII. As such, we
conclude that our multistage fine-tuning leads to a
more robust in-domain multilingual model.

5.4 Further Augmentation with
Back-translation

Having obtained a better model, we examined
again the utility of back-translation. More pre-
cisely, we investigated (a) whether the pseudo-
parallel data generated by an improved NMT
model leads to a further improvement, and (b)
whether one more stage of fine-tuning on the mix-
ture of original parallel and pseudo-parallel data
will result in a model better than training a new
model from scratch as examined in Section 4.4.

Given an NMT model, we first generated six-
way pseudo-parallel data by translating monolin-
gual data. For the sake of comparability, we used
the identical monolingual sentences sampled in
Section 4.4. Then, we further fine-tuned the given
model on the mixture of the generated pseudo-
parallel data and the original parallel data, fol-
lowing the same over-sampling procedure in Sec-
tion 4.4. We repeated these steps five times.

Table 12 shows the results. “new #10” in the
second row indicates an M2M Transformer model
trained from scratch on the mixture of six-way
pseudo-parallel data generated by VII and the orig-
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No Initialized BT
BLEU score

Ja→Ru Ru→Ja Ja→En En→Ja Ru→En En→Ru
#10 - (b3) 4.43 9.38 12.06 14.43 23.09 17.30

new #10 - VII •6.55 •11.36 •13.77 •15.59 •24.91 •20.55
VIII VII VII •7.83 •12.21 •15.06 •17.19 •28.49 •23.96
IX VIII VIII •8.03 •12.55 •15.07 •17.80 •28.16 •24.27
X IX IX •7.76 •12.59 •15.08 •18.12 •28.18 •24.67
XI X X •7.85 •12.97 •15.26 •17.83 •28.49 •24.36
XII XI XI •8.16 •13.09 •14.96 •17.74 •28.45 •24.35

Table 12: BLEU scores achieved through fine-tuning on the mixture of the original parallel data and six-way pseudo-parallel
data. “Initialized” column indicates the model used for initializing parameters and so does “BT” column the model used to
generate pseudo-parallel data. “•” indicates statistical significance of the improvement over #10.

Investigation step Ja→Ru Ru→Ja
Uni-directional Transformer: (b1) in Table 5 0.70 1.96
M2M Transformer: (b3) in Table 5 3.72 8.35
+ six-way pseudo-parallel data: #10 in Table 8 4.43 9.38
M2M multistage fine-tuning: VII in Table 11 7.49 12.10
+ six-way pseudo-parallel data: XII in Table 12 8.16 13.09

Table 13: Summary of our investigation: BLEU scores of the
best NMT systems at each step.

inal parallel data. It achieved higher BLEU scores
than #10 in Table 8 thanks to the pseudo-parallel
data of better quality, but underperformed the base
NMT model VII. In contrast, our fine-tuned model
VIII successfully surpassed VII, and one more it-
eration (IX) further improved BLEU scores for all
translation directions, except Ru→En. Although
further iterations did not necessarily gain BLEU
scores, we came to a much higher plateau com-
pared to the results in Section 4.

6 Conclusion

In this paper, we challenged the difficult task of
Ja↔Ru news domain translation in an extremely
low-resource setting. We empirically confirmed
the limited success of well-established solutions
when restricted to in-domain data. Then, to incor-
porate out-of-domain data, we proposed a multilin-
gual multistage fine-tuning approach and observed
that it substantially improves Ja↔Ru translation
by over 3.7 BLEU points compared to a strong
baseline, as summarized in Table 13. This paper
contains an empirical comparison of several exist-
ing approaches and hence we hope that our paper
can act as a guideline to researchers attempting to
tackle extremely low-resource translation.

In the future, we plan to confirm further fine-
tuning for each of specific translation directions.
We will also explore the way to exploit out-
of-domain pseudo-parallel data, better domain-
adaptation approaches, and additional challenging
language pairs.
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Abstract

Modeling anaphora resolution is critical
for proper pronoun translation in neural
machine translation. Recently it has been
addressed by context-aware models with
varying success. In this work, we pro-
pose a carefully designed training curricu-
lum that facilitates better anaphora resolu-
tion in context-aware NMT. As a baseline,
we train context-aware models as was done
in previous work. We leverage oracle in-
formation specific to anaphora resolution
during training. Following the intuition be-
hind curriculum learning, we are able to
train context-aware models which are im-
proved with respect to coreference resolu-
tion, even though both the baseline and the
improved system have access to exactly the
same information at test time. We test our
approach using two pronoun-specific eval-
uation metrics for MT.

1 Introduction

Modeling gender-pronoun agreement and
anaphora resolution in machine translation is
difficult because most models work on individual
sentences. In many cases the antecedent noun is
not present in the sentence being translated, but is
rather in a preceding sentence. Sentence-external
anaphora are a problem in many domains (e.g.,
consider conversational texts). NMT models can
be extended to receive the previous sentences
of a document as input. Previous context-aware
NMT models include (Jean et al., 2017; Wang

© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

et al., 2017; Tu et al., 2018; Voita et al., 2018;
Stojanovski and Fraser, 2018; Zhang et al.,
2018a; Miculicich et al., 2018). Previous work
on evaluation has shown that context-aware NMT
improves over sentence-level baselines, both in
terms of BLEU and in terms of metrics tailored
for pronoun evaluation (Bawden et al., 2018; Voita
et al., 2018; Müller et al., 2018).

In this work, we propose a technique for im-
proving the ability of context-aware models to han-
dle anaphora resolution. The technique is based
on curriculum learning (Bengio et al., 2009) which
proposes to train neural networks in a similar fash-
ion to how humans learn. Curriculum learning is a
method that proposes training neural networks by
gradually feeding increasingly more complex data
instead of training models by randomly showing
data samples.

We borrow on the intuition behind curriculum
learning by initially training models with a form
of “training wheels”, where the anaphora relation-
ships are made explicit. We take the key idea
from previous work, which is to use gold-standard
reference pronouns as oracles (Stojanovski and
Fraser, 2018). We then gradually remove the or-
acles in consecutive fine-tuning steps, until we
have a model working without oracle informa-
tion. We expect that explicitly showing the ref-
erence pronouns in the context will make it easier
to model the gender of antecedent nouns and bias
the model to do more aggressive anaphora reso-
lution when encountering ambiguous pronouns in
the source language (the translation of ambiguous
pronouns depends on the antecedent). We experi-
mentally show the importance of the learning rate
when training context-aware models with regards
to our curriculum learning approach on both pro-
noun and overall translation performance. For this
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reason we present experiments training context-
aware models with low and high initial learning
rates. Note that our approach could be extended
to other discourse-level phenomena, provided that
useful oracles are easily obtainable. Our main
contributions are: 1) We propose a curriculum
learning method that supplies oracle information in
training (but not testing) to improve anaphora reso-
lution in NMT. 2) We show that our method works
when training models with a low learning rate ac-
cording to different metrics (measuring both MT
quality overall and pronoun correctness). 3) We
outline best practices for training and fine-tuning
context-aware models.

2 Related Work

Several works have proposed methods and mod-
els of including contextual information (Wang et
al., 2017; Jean et al., 2017; Bawden et al., 2018;
Tiedemann and Scherrer, 2017; Maruf and Haffari,
2018; Voita et al., 2018; Stojanovski and Fraser,
2018; Miculicich et al., 2018; Zhang et al., 2018a;
Kuang and Xiong, 2018; Kuang et al., 2018). In
general, these models make use of extra-sentential
attention conditioned on the main sentence being
translated and use gates to control the flow of con-
textual information. The model we use is based on
these general concepts as well.

Improvements in BLEU cannot be conclusively
attributed to improved anaphora resolution and
therefore additional metrics are required. Sev-
eral works have proposed methods of evalua-
tion and have shown that context-aware NMT
achieves improvements. Müller et al. (2018) pro-
pose an automatically created challenge set where
a model scores German translations of an English
source sentence. The source sentences contain an
anaphoric third person singular pronoun and the
possible translations differ only in the choice of
the pronoun in German. Bawden et al. (2018) is
an earlier work proposing a manually created chal-
lenge set for English and French. Miculicich et al.
(2018) evaluate their model’s effectiveness on pro-
noun translation by computing pronoun accuracy
based on alignment of hypothesized translations
with the reference. Voita et al. (2018) used atten-
tion scores which show a tendency of Transformer-
based context-aware models to do anaphora reso-
lution. However, Müller et al. (2018) report mod-
erate improvements of the model on their pronoun
test set. In order to provide a comprehensive eval-

uation of our approach, we use BLEU, the pro-
noun challenge set from Müller et al. (2018), and
F1 score for the ambiguous English pronoun “it”
based on alignment.

Previous work on curriculum learning for MT
(Kocmi and Bojar, 2017; Zhang et al., 2018b;
Wang et al., 2018) proposed methods which feed
easier samples to the model first and later show
more complex sentences. However, their focus is
on improving convergence time while providing
limited success on improving translation quality.
In contrast with their work, we train models to bet-
ter handle discourse-level phenomena.

3 Model

We use the Transformer (Vaswani et al., 2017) as
a baseline and implement a context-aware model
on top of it using Sockeye1 (Hieber et al., 2018).
The main and context sentence encoders are shared
up until the penultimate layer, while the last en-
coder layers are separate. Since the initial layers
are shared, the context sentence is marked with a
special token so that the encoder knows when a
context sentence is being encoded.
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Figure 1: Context-aware model

The decoder layer is based on the standard
Transformer decoder. It contains sublayers for

1https://github.com/awslabs/sockeye
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self-attention over the target and multi-head atten-
tion (MHA) over the encoded main sentence rep-
resentation. We further introduce a MHA sublayer
over the context representation. The output of the
main sentence MHA is used as a query for the
MHA over the context which represents the keys
and the values. The MHA maps the queries and the
keys in order to produce attention weights to score
the values. In this way, the context MHA is condi-
tioned on what has been generated until the given
time step and on the main sentence. This helps the
model to decide where to pay attention to in the
context. The outputs of the MHA over the main
and context sentences are merged using a gated
sum which enables the model to control the flow
of information between the main and context sen-
tence. Finally, we apply a feed-forward network.
All embeddings in the model including the context
embeddings are shared. For further details on the
Transformer, we refer to (Vaswani et al., 2017).

4 Curriculum Learning Method

The proposed approach leverages discourse-
specific oracles (Stojanovski and Fraser, 2018) in
a curriculum learning setting to improve the per-
formance of context-aware models in terms of
anaphora resolution on English→German transla-
tion. Antecedents to anaphoric pronouns are of-
ten in previous sentences. We therefore bias the
model to pay more attention to the context when
translating pronouns, thus enabling it to do bet-
ter anaphora resolution. This is facilitated by pro-
viding oracle information in the context. Subse-
quently, oracles are gradually removed with the fi-
nal result that we finish with a model which is not
dependent on oracle information, but which knows
that anaphoric pronouns are likely to be resolved
by looking at previous sentence context.

4.1 Obtaining oracles

We modify the dataset with oracle information by
extracting all pronouns from a reference target sen-
tence and adding them to the corresponding source
context sentence. In this work, we only use the
previous source sentence. To some extent this is
sufficient as in many cases antecedents are rela-
tively close to the corresponding anaphoric pro-
nouns. Distance-based statistics of antecedents
in the challenge set (Müller et al., 2018) support
this. Previous work (Miculicich et al., 2018; Zhang
et al., 2018a) has shown that larger context does

context sentence

The woman told a joke[masculine].

source sentence

It was really funny.

oracle sentence

The woman told a joke. er[masculine] [SEP]
<PRON> It was really funny.

target sentence

Er war wirklich lustig.

Table 1: Oracle example. [SEP] - context separator;
<PRON> - pronoun mark token. Glosses for presentation
purposes only.

not provide for significant improvements, but these
works have not conducted a tailored evaluation of
anaphora resolution with regards to machine trans-
lation. We leave consideration of further context
sentences for future work.

The method of obtaining oracles works as fol-
lows. For a given source sentence and reference
target sentence we mark all source side pronouns,
and extract all target side pronouns and insert them
in the context sentence. We mark the pronouns
by adding a special token <PRON> before the
pronoun. Note that we always mark source side
pronouns in the main sentence only (the sentence
being translated). In a pure oracle setting, there
is no need to mark all source side pronouns. In
some sentence pairs, there are no pronouns on the
target side and therefore there is no need to mark
source pronouns since they don’t need to be explic-
itly translated. However, our goal is through cur-
riculum learning to end up with a non-oracle model
and any oracle knowledge is undesirable. The ex-
tracted target side pronouns (taken from the main
target sentence) are simply inserted at the end of
the context sentence.

Consider the example in Table 1. [SEP] is a to-
ken marking the end of the context and beginning
of the main sentence. The glosses in the exam-
ples are not in the actual data samples and are just
used for presentation purposes in the paper. In the
example in Table 1 we can see that the source sen-
tence contains a pronoun “it” and the target sen-
tence contains a pronoun “er”. From the example,
it is obvious that “er” is a translation of “it” and
“it” is a anaphoric pronoun whose antecedent is
present in the previous sentence, namely, “joke”.
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Given the main sentence alone, it is impossible to
determine the appropriate gender of the third per-
son singular pronoun in German. A baseline model
will fall back to the data driven prior which tends
to be the neuter form “es”. However, the transla-
tions of “joke” in German, which commonly are
“Witz” or “Scherz” are both masculine.

By inserting the correct information to resolve
the gender in the context, we bias the model to
pay more attention to the context when translat-
ing pronouns. This will not be of importance for
some English pronouns which are gender indepen-
dent (e.g., “I”), but it should be helpful for gender-
ambiguous pronoun translations such as the En-
glish “it” (which must be translated consistently
with the antecedent).

4.2 Training curriculum
The training curriculum is designed in order to
make use of the oracle information. Previous work
has focused on gradually increasing the complex-
ity of the data being fed into a given model. Our
approach is conceptually similar in the sense that
initially the information for proper anaphora reso-
lution is made explicit. Oracle reference pronouns
in the context enable this. It does not necessarily
mean that the data examples are less complex, but
the model does not need to learn complex pronoun-
antecedent relationships at the beginning.

An overview of the general curriculum training
steps are:

• train a non-context-aware baseline Trans-
former model

• use the parameters of the baseline model to
initialize the non-context parameters of the
context-aware Transformer model

• train the context-aware model with an oracle
dataset (gold-standard pronouns in the con-
text)

• fine-tune the model with a dataset where
the percentage of oracle samples is gradually
lowered

• fine-tune the last model with a non-oracle
dataset

We first train a baseline model without giving
access to contextual information. The trained pa-
rameters are used to initialize the context-aware
models (sublayers of the network dealing with

context are randomly initialized). The following
step is obtaining oracles for each sample in the
dataset and training a model on that data. Resolv-
ing the gender of anaphoric pronouns in such a set-
ting is easy. When the model encounters the spe-
cial token marking a source side pronoun it will
learn to look at the context since the gold standard
information is there. We specifically put the oracle
reference pronouns in the context in order to bias
the model to pay attention to the context.

However, applying this model straightforwardly
in a realistic setting is not possible because it is bi-
ased to rely on the gold standard pronouns. As
a result, the next step is fine-tuning this model
with context which does not contain the gold stan-
dard pronouns, but still has marked source side
pronouns. In this way, we still bias the model
to look at the context when translating pronouns.
However, it is possible it will be difficult for the
model to handle the significant change between
fine-tuning steps.

As a result, we studied extending the training
curriculum with intermediate steps. The initial or-
acle model is fine-tuned with a dataset where 75%
of the samples have oracles. For the remaining
samples, we keep the previous sentence and re-
move the oracle signals. In consecutive steps, we
propose to fine-tune the model with a 50% and
25% oracle dataset. We hoped that this would ease
the transition and encourage the model to combine
the oracle information with the previous sentence.
In the final step, we train a model with the previous
sentence as context. This step is necessary as the
model is still biased to look for the gold standard
pronouns. However, we experimentally show that
better results are obtained with fewer steps using a
low percentage of oracles.

5 Experimental Setup

Following Müller et al. (2018), we conduct experi-
ments on English→German WMT17 data and use
newstest2017 and newstest2018 as test sets in ad-
dition to the pronoun challenge set. In terms of
preprocessing, we tokenize and truecase the data
and apply BPE splitting (Sennrich et al., 2016)
with 32000 merge operations. We remove all sam-
ples where the source, target or context sentence
has length over 50. We train small Transformer
models as outlined in Vaswani et al. (2017) with 6
encoder and decoder layers. The source code for
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our models is publicly available 2.
We report mean scores across ten consecutive

checkpoints with the lowest average perplexity on
the development set (Chen et al., 2018). BLEU
scores are computed on detokenized text. Evalua-
tion of pronoun translation is done using two sep-
arate metrics. First, we use the challenge set pro-
vided by Müller et al. (2018) and report the overall
pronoun accuracy. We refer to this metric as chal-
lenge set accuracy. The other metric is an F1 score
for “it”, which we refer to as reference F1. We pre-
dict translations and then compute micro-average
F1 for “it”, using an alignment of the test set in-
put to the reference. We compute alignments us-
ing fastalign (Dyer et al., 2013). We use all of the
training, development and test data for the compu-
tation of the alignments. The evaluation was done
using the script from Liu et al. (2018).

6 Results

6.1 Baseline

We train a strong Transformer-based baseline
which obtains different results than the baseline
in Müller et al. (2018). We achieve higher BLEU
scores and also observe different challenge set ac-
curacy for the different pronouns, even though the
overall score of 47% is similar. All context-aware
models are initialized from this strong baseline.
We create two setups, i) an initial setup where we
train context-aware models with a high learning
rate and ii) an improved setup where we train mod-
els with a low learning rate.

6.2 Initial setup

As a context-aware baseline (ctx-base), we train
a model using the previous source sentence with-
out access to gold standard pronouns. We assumed
that a low learning rate could prevent the context-
aware models to significantly change the baseline
prior pronoun distribution. As a result, we use a
high learning rate (10-4) in the fine-tuning step.
Training the context-aware baseline for 200K up-
dates provides a small increase in BLEU on new-
stest, as shown in Table 2. However, large im-
provements are obtained on the subtitles challenge
set. We attribute this to the higher dependency on
the context in subtitles which benefits from the in-
creased capability of the context-aware model to
diverge from the baseline.
2https://www.cis.uni-muenchen.de/˜dario/
projects/curriculum-oracles

nt17 nt18 challenge
baseline 26.9 40.0 21.7
ctx-base* 27.0† 40.2‡ 22.6†
ctx-base** 27.2† 40.4† 22.0†
pron-25→pron-0* 26.9 39.9 22.6†
pron-25→pron-0** 27.4† 40.2 22.2†

Table 2: BLEU scores. * - initial learning rate is 10-4, ** -
lr=10-5. ctx-base: context-aware baseline, pron-{0,25,50,75}:
percentage of samples with oracles. Each pron-{0,25} model
fine-tuned for 140K updates. †- improvements statistically
significant based on paired bootstrap resampling with p-value
< 0.01; ‡- p-value < 0.05

nt17 challenge
baseline 65.8 36.0
ctx-base* 67.1 45.3
ctx-base** 65.1 38.1
pron-25→pron-0* 65.2 45.1
pron-25→pron-0** 65.5 40.2

Table 3: Reference F1 for “it” on newstest2017 and the pro-
noun challenge set. Notation as in Table 2

However, our curriculum learning approach
does not affect performance in this setting. Figure
2 shows that the context-aware baseline achieves
57% challenge set accuracy and the curriculum
learning approach only manages to match the
score. Figure 2 further depicts that using a high
number of oracle pronouns in the dataset decreases
performance and that fine-tuning these models
with a lower percentage of oracles is not useful.
For example, fine-tuning a 25% oracle (pron-25)
from the baseline is better than fine-tuning from a
50% oracle considering equal training time. The
other oracle settings perform similarly. As a re-
sult, the full training curriculum from 100% grad-
ually to 0% oracles is not justified both in terms
of computation time or performance. Fine-tuning
pron-25→pron-0 for a longer amount of time im-
proved to 58%, but we omit it from the figure since
we did not train ctx-base for a comparable amount
of time. In terms of reference F1, shown in Table 3,
the context-aware baseline achieves large improve-
ments in comparison to the baseline, both on new-
stest2017 and the challenge set, but our proposed
method fails to increase performance.

6.3 Improved setup

Training context-aware models with a high learn-
ing rate improves overall translation quality on
subtitles, but not on newstest. The high learning
rate allows the model to diverge from the well-
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Figure 2: Challenge set accuracy. Full lines show fine-tuning
from the baseline and dashed lines from a previous oracle
model. Fine-tuning with a lr=10-4.
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Figure 3: Challenge set accuracy. lr=10-5.

optimized baseline and this affects performance.
We therefore decided to train models with a low
learning rate of 10-5. In this setup, the ctx-base
improves on newstest and subtitles by 0.3 or 0.4
BLEU. The gains in BLEU are smaller than the
ones reported by Müller et al. (2018), but we com-
pare against a stronger baseline.

Unfortunately, performance on pronoun trans-
lation is lower. Figure 3 shows that ctx-base im-
proves challenge set accuracy only to 49%. How-
ever, in this experimental setup, our curriculum
learning approach proved to be effective if we
start-off the training curriculum with a lower per-
centage of oracles. If we train a context-aware
baseline (ctx-base) for 200K updates, we get lower
performance (49%) than training a 25% oracle
(pron-25) for 140K updates and then fine-tuning
with a 0% oracle (pron-25→pron-0) for 60K up-
dates (50%). Fine-tuning this model for 140K up-
dates further improves to 52%. Table 3 shows
that it is also helpful on reference F1, providing

a 2.1 improvement over the 38.1 F1 the ctx-base
achieved on the challenge set.

All experiments show that fine-tuning with a
high learning rate helps with pronoun translation,
but does not benefit from the curriculum learning
and lags behind training with a low learning rate in
terms of BLEU. Therefore, we conclude that the
curriculum learning is useful when improvements
on anaphora resolution are desirable at no detri-
mental cost to overall translation quality.

6.4 Anaphora resolution analysis

We use the challenge set (Müller et al., 2018) to
do a more detailed analysis of the models. We pre-
viously gave a high-level overview of the models’
performance on the challenge set by only report-
ing the total score. The total score represents the
overall accuracy, meaning the percentage of cor-
rectly scored examples. However, the challenge set
is more comprehensive and offers a more detailed
look at different aspects of anaphora resolution. As
with the previous results, we report mean scores
across ten consecutive checkpoints. We also report
the standard deviation since we observed some de-
gree of variance in the results depending on the ex-
perimental setup. Each fine-tuning step from the
curriculum learning is ran for 140K updates.

6.4.1 Reference pronoun accuracy
Table 4 shows the overall and per-pronoun ac-

curacy. Comparing our Transformer baseline to
the one from Müller et al. (2018) showed that our
baseline is stronger in terms of translation quality
as measured by BLEU. However, in terms of pro-
noun accuracy as measured by the challenge set,
the performance is the same with differences on
the per-pronoun accuracy.

Table 4 also shows the detail scores for the
context-aware baselines and the curriculum setup
where we first train with a 25% oracle and fine-
tune with a 0% oracle. Scores are provided for
both fine-tuning with a low and high learning rate.
The high learning rate context-aware baseline ob-
tains 0.37 on “er”, 0.44 on “sie” and a high 0.92 on
“es”. The curriculum experiment pron-25→pron-0
has similar scores with a lower accuracy on “sie”.

The detailed scores also show how the low
learning rate models perform. Both, the context-
aware baseline and pron-25→pron-0 improve over
the baseline. Another aspect that speaks for using
fine-tuning with low learning is stability of results.
Although the high learning rate models improve
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total er sie es
baseline 0.47 ± 0.003 0.20 ± 0.005 0.32 ± 0.011 0.89 ± 0.005
ctx-base* 0.57 ± 0.007 0.37 ± 0.014 0.44 ± 0.019 0.92 ± 0.005
ctx-base** 0.49 ± 0.003 0.23 ± 0.006 0.35 ± 0.010 0.90 ± 0.004
pron-25→pron-0* 0.57 ± 0.013 0.37 ± 0.027 0.42 ± 0.032 0.92 ± 0.009
pron-25→pron-0** 0.52 ± 0.005 0.26 ± 0.010 0.38 ± 0.010 0.91 ± 0.001

Table 4: Challenge set accuracy for each pronoun. Notation as in Table 2

intrasegmental external
baseline 0.73 ± 0.005 0.41 ± 0.004
ctx-base* 0.74 ± 0.011 0.53 ± 0.009
ctx-base** 0.73 ± 0.006 0.43 ± 0.004
pron-25→pron-0* 0.74 ± 0.016 0.53 ± 0.014
pron-25→pron-0** 0.74 ± 0.004 0.46 ± 0.005

Table 5: Challenge set accuracy based on location of antecedent. Notation as in Table 2

fast on anaphora resolution, they are relatively un-
stable and exhibit fair amount of variance on the
challenge set evaluation. This was to some extent
observed on BLEU scores as well, but it is less
pronounced. A difference in results across differ-
ent checkpoints is especially observed on “er” and
“sie”. The experiments with a low learning rate ex-
hibit variance on par with the baseline. This shows
that reporting results on the challenge set needs to
be carefully executed.

6.4.2 Antecedent location
The challenge set also provides a way of evalua-

tion based on the location of the antecedent. There
are two categories, intrasegmental and interseg-
mental or external. The intrasegmental means that
the antecedent is within the main sentence. Ex-
ternal refers to examples where the antecedent is
in a previous sentence. It is unsurprising to ob-
serve that all models, including non-context and
context-aware models perform similarly on the in-
trasegmental score and most of the improvements
come from looking at the context, which is what
the external score in Table 5 shows.

6.4.3 Antecedent distance
Table 6 shows scores based on the distance of

the antecedent. The distance can be 0 (in the
main sentence), 1 (in the first previous sentence)
or larger. In this work, we only use the first previ-
ous sentence, so the results for a distance of 2, 3 or
larger are for comparison with previous work. It is
again unsurprising that performance does not sub-
stantially differ for 2, 3 or >3 since our models do
not have direct access to those sentences. Any dif-

ference in results most likely comes from changing
the data driven prior of the baseline. All improve-
ments of the context-aware models come from ex-
amples where the antecedent is in the first previous
sentence. We see that pron-25→pron-0 with a low
learning rate obtains high improvements of 0.07 in
comparison to the baseline.

6.5 Attention analysis

The model proposed in this work incorporates the
contextual representation in each layer in the de-
coder. This raises the question what layers are re-
sponsible for finding the appropriate information
for anaphora resolution. Unlike previous RNN-
based encoder-decoder architectures which have a
single attention mechanism, the Transformer is im-
plemented using multi-head attention. As a result,
we first average the attention scores across all at-
tention heads and then visualize the scores.

We do a detailed analysis for separate decoder
layers. Figure 4, Figure 5, Figure 6 and Figure
7 show the attention scores from the first, second,
third and last layer. The attention scores are from
pron-25→pron-0 with a low learning rate.

All context sentences are preceded by the
<ctx> token. An interesting phenomena which
was also observed in Voita et al. (2018) is that this
special token is paid a substantial amount of atten-
tion. They interpret this as a way for the model to
ignore the context when not needed.

The visualizations show that this is not the case
for our model. We observe that the model takes
advantage of the fact that the context is used in
multiple layers. In the first 3 layers, the models
generally pay the highest attention to the appropri-
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0 1 2 3 >3
baseline 0.73 ± 0.005 0.37 ± 0.005 0.47 ± 0.003 0.50 ± 0.004 0.69 ± 0.010
ctx-base* 0.74 ± 0.011 0.54 ± 0.011 0.47 ± 0.005 0.51 ± 0.008 0.72 ± 0.009
ctx-base** 0.73 ± 0.006 0.40 ± 0.005 0.47 ± 0.002 0.50 ± 0.004 0.69 ± 0.008
pron-25→pron-0* 0.74 ± 0.016 0.53 ± 0.017 0.46 ± 0.005 0.50 ± 0.010 0.71 ± 0.008
pron-25→pron-0** 0.74 ± 0.004 0.44 ± 0.007 0.46 ± 0.003 0.50 ± 0.004 0.69 ± 0.004

Table 6: Challenge set accuracy based on distance of antecedent. Notation as in Table 2
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Figure 4: Context attention layer 1
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Figure 5: Context attention layer 2
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Figure 6: Context attention layer 3

ate noun, but a lot of attention is paid to irrelevant
parts of the previous sentence. However, we see
that the attention sharpens in the last layer and the
attention over the context mostly focuses on the
appropriate tokens. The example we show here is
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Figure 7: Context attention layer 6

a negative example as the correct German pronoun
is “er” while the model generated “es”3.

In contrast, we didn’t observe the same behavior
from pron-25→pron-0 with a high learning rate.
This model indeed seemed to consistently put at-
tention on the context special token and at the end
of the sentence. Attention was paid to the an-
tecedent in the decoder layers by target pronouns,
but also by other words in some cases, leading us
to assume that the gender information was passed
through the decoder. We also assumed that the
context special token to some extent represents a
summarized representation of the context sentence
and contains some gender information. Masking
this token when feeding the context encoder repre-
sentation to the decoder leads to lower results on
the challenge set. We leave a more detailed exam-
ination of this assumption for future work.

6.5.1 Commonly attended words
We further investigate what words are most

commonly attended to by the reference pronouns
“er”, “sie”, “es”. We simply compute the total at-
tention score paid to a given context source token
by one of the pronouns. We then normalize the
scores based on the frequency of the given word.
3The translation of engine room in German is a compound
word (Maschinenraum or Motorraum) and the gender is in-
ferred from the second part, namely, “Raum”. “Raum” is
masculine in German, but a more common translation of
“room” is “Zimmer” whose gender is neuter.
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er SU@@, Cube, Var@@, Max, ulf, tunnel, text, mur@@, schedule, passport, Jean, painting, bug,
President, enemy, Ring, 400@@, temple, spell, state, Frank@@, Key, Cra@@, container, Doctor,
Tony, recognized

sie covers, Body, marble, painting, Machine, church, obviously, Lin@@, gar@@, decision, chamber,
party, grie@@, Ara@@, hat@@, humanity, Enterprise, identity, Box, eventually, force, teeth,
technology, Anne, tro@@, milk, policy

es palace, fantastic, Ver@@, Jack@@, Board, article, museum, meeting, seed, So@@, gold, sample,
technique, beef, satellite, Dal@@, virus, promise, piano, Jesus, Mac@@, motion, adventure,
sounds, Cav@@, match, Ford

Table 7: Frequency based attention analysis

Since we are working on the BPE level, it is some-
times difficult to determine whether the attention
score is meaningful, but it gives some indication
whether the models are working correctly.

We show the most attended words from the
pron-25→pron-0 with a low learning rate. Context
words which appeared in a sentence containing a
pronoun less than 5 times were removed in order
to reduce the probability that some words are at-
tended by chance. We only use the lowercase ver-
sions of the pronouns since “Sie” in German can
also refer to the polite version of “you” and it can-
not easily be disambiguated. We show the source
tokens in Table 7. A detailed automatic analysis is
problematic because English words can have mul-
tiple translations in German and sometimes those
translations have different genders. We manually
looked at common German translations of the to-
kens in Table 7. We noticed that in many cases the
gender of the translation corresponds to the gender
of the pronoun. We also looked at the non-BPE-
split tokens and mapped them to German words
using the MUSE English-German bilingual dictio-
nary (Lample et al., 2018). We then looked at the
gender of the German translations and how often
it corresponds to the pronoun gender. The pron-
25→pron-0 model performed better compared to
the context-aware baseline, meaning a higher per-
centage of the German translations had gender cor-
responding to the gender of the pronoun. We leave
a more detailed manual evaluation for future work.

7 Conclusion

We devised a curriculum learning approach mak-
ing use of oracle information to improve anaphora
resolution in NMT. Tailoring the data and train-
ing curriculum to anaphora resolution is benefi-
cial and can achieve gains against a context-aware
baseline. We observed that fine-tuning with low

learning rates when applying our curriculum learn-
ing method provides a good compromise between
overall translation quality and pronoun accuracy.
Our method works best with a small number of
fine-tuning steps employing smaller percentages of
oracles. Our work is a focused contribution show-
ing that curriculum training can be used to im-
prove translation accuracy beyond a starting base-
line given oracle information. Our experiments
show that using a small learning rate during train-
ing is important to obtain improvements.

One aspect of our work that we do not explore
is different ways of generating the oracle datasets.
We always randomly sampled the sentences that
are to be modified with the reference target side
pronouns. Future work can investigate more in-
formed ways of creating the oracle datasets. The
benefit of this direction is that creating several dif-
ferent random samples of the oracle datasets could
provide for more diverse models. This can be
very useful for ensembling where larger variety be-
tween models is desirable. One could imagine that
the variety in the models introduced by this ap-
proach is going to be more useful than if we simply
train different baselines, context-aware or not.

It is also promising to try our method with other
discourse-level phenomena that have easily obtain-
able oracles. Coherence and cohesion are impor-
tant aspects of machine translation and improving
on those discourse-level phenomena is still chal-
lenging for sentence-level models.
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Abstract

There is a need for real-time communica-
tion between the deaf and hearing with-
out the aid of an interpreter. Develop-
ing a machine translation (MT) system be-
tween sign and spoken languages is a mul-
timodal task since sign language is a vi-
sual language, which involves the auto-
matic recognition and translation of video
images. In this paper, we present the re-
search we have been carrying out to build
an automated sign language recognizer
(ASLR), which is the core component of a
machine translation (MT) system between
American Sign Language (ASL) and En-
glish. Developing an ASLR is a challeng-
ing task due to the lack of sufficient quan-
tities of annotated ASL-English parallel
corpora for training, testing and develop-
ing an ASLR. This paper describes the re-
search we have been conducting to explore
a range of different techniques for auto-
matically generating synthetic data from
existing datasets to improve the accuracy
of ASLR. This work involved experimen-
tation with several algorithms with varying
amounts of synthetic data and evaluations
of their effectiveness. It was demonstrated
that automatically creating valid synthetic
training data through simple image manip-
ulation of ASL video recordings improves
the performance of the ASLR task.

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

1 Introduction

In everyday life, there are situations in which there
is the need for deaf and hearing individuals to com-
municate with one another without the aid of an
interpreter. To address this need, we are develop-
ing ASL-English MT that enables signers and non-
signers to communicate with one another using
mobile devices such as smartphones and tablets.
The concept is that the signer of ASL signs into
the device and the video images are captured, auto-
matically recognized, translated and rendered into
both speech and text for the speaker of English.
Conversely, using this application, the speaker’s
speech is automatically recognized and an avatar
signing the machine translation in ASL is dis-
played, which appears along with the English text.
This paper outlines our work on the first critical
aspect of the problem, which is the development
of an automatic sign language recognizer (ASLR).
Specifically, we address our research in the area
of generating valid synthetic data, a requirement
dictated by the lack of sufficient amounts of large-
scale annotated data for ASL to English for testing,
training and developing ASLR algorithms.

ASL is a visually perceived language based on a
naturally evolved system of articulated hand ges-
tures and their placement relative to the body,
along with non-manual markers such as facial
expressions, head movements, shoulder raises,
mouth morphemes, and movements of the body
(ASL: A brief description - Lifeprint.com). This
language is structured like Japanese: it is a topic-
comment language and does not have articles
(Nakamura, 2008). See Speers (2002) for an ex-
cellent detailed linguistic description of ASL. The
challenges involved with the recognition of sign
language are akin to those of automatic speech
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recognition (ASR) (Dreuw et al., 2007). As with
speech, for sign language, allophonic variation
must be taken into account, since each time a per-
son makes a particular sign, they make tiny vari-
ations in how they position their arms and hands.
In addition, hand and arm sizes and shapes vary
between signers. An effective recognizer must be
able to handle these variances as well as the dif-
ferences in background colors and lighting. To ac-
count for these variations, similar to an acoustic
range for each type of sound such as each spe-
cific vowel, we have developed the concept of a
‘bounding box’ within which each sign needs to
be made for it to be considered that sign as judged
by native signers and interpreters. Our plan is to
automatically discover the bounding box for each
sign through training on images of different sign-
ers signing each sign. However, since the datasets
available for training algorithms to automatically
recognize sign language do not contain a sufficient
quantity of signer variation, this research focuses
on the automatic creation of valid synthetic data to
accurately capture those variations.

In this paper, we discuss our research into the
area of automatically generating synthetic data for
the ASLR component of an ASL-English MT sys-
tem. Synthetic data generation has proven to be
effective in solving problems such as image clas-
sification (Krizhevsky et al., 2012), ASR (Ko et
al., 2017), and MT (Sennrich et al., 2016). The
approach of using synthetic data to train and test
machine learning algorithms is a newly emerging
topic of interest and an area of active research in
the field of Artificial Intelligence (AI). A popu-
lar approach in the attempt to solve this problem
is to utilize the generative model in the Genera-
tive Adversarial Network (GAN) architecture (An-
toniou et al., 2017; Gurumurthy et al., 2017; Bous-
malis et al., 2017). However, we experimented
with GANs and we found that they generated valid
as well as non-valid signs and we were unable
to constrain them to automatically generate only
valid signs. Therefore, we looked for alternative
approaches. This paper discusses our work on de-
veloping and testing different techniques for auto-
matically generating valid synthetic data and deter-
mining whether synthetic data increases classifica-
tion accuracy. In particular, we address two key re-
search questions: a) given a very small amount of
annotated data for training, how much synthesized
data can we utilize for augmenting the training data

without hurting classification performance, and b)
would different synthetic data generation methods
produce different outcomes for the model perfor-
mance and if so, what techniques are most suitable
and why.

2 Previous Work

A review of the literature reveals different ap-
proaches to the development of ASLR. Starner
et al. (1998) implemented two Hidden Markov
Model based real-time systems for ASLR where
one system utilized a desk-mounted camera and
the other utilized a hat-mounted camera. Lang et
al. (2012) made use of Microsoft’s Kinect for rec-
ognizing German signs. Chuan et al. (2014) used
the palm sized Leap motion sensor for American
finger spelling recognition. Dong et al. (2015) de-
signed a color glove-based technique on the Kinect
depth sensor for hand segmentation. Tharwat et
al. (2015) developed the Arabic Sign Language
recognition system where the scale invariant fea-
ture transform is used to perform the sign recogni-
tion using Neural Network, K-Nearest Neighbors,
and Support Vector Machine. Wu et al. (2016)
utilized an inertial measurement unit and surface
electromyography devices for the recognition of
80 ASL signs. Dai et al. (2017) used gyroscope
and accelerometer sensors running on a smart-
watch for the recognition of 103 ASL signs. Ma et
al. (2018) utilized WiFi packets to estimate hand
and finger movements for ASL sign recognition.

There was the approach of developing a sign
language recognition system through the training
of very large data sets of video clips recorded by
multiple signers using a large vocabulary (Koller
et al., 2015). Koller’s DeepHands model took an
unsupervised approach to training a Convolutional
Neural Network (CNN) model with 1 million un-
labeled hand-shape images and successfully used
it to classify Danish, New Zealand, and German
signs (Koller et al., 2016). Since it modeled the
hands, it could recognize all signs made using the
hands and not just those that are finger-spelled, so
we leveraged this work to develop a baseline pro-
totype ASLR.

Anantha Rao et al. (2018) implemented Indian
Sign Language recognition running in real-time on
a mobile phone using hand image segmentation
and a feedforward neural net-work. Huang et al.
(2018) developed a CNN-based Hierarchical At-
tention Network with Latent Space in a sequence-
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to-sequence fashion. In particular, the following
studies are similar to our work on the aspect of
augmenting training data to improve the perfor-
mance of CNN models. Molchanov et al. (2015)
experimented with the deformation of input data
by augmenting reversed ordering and mirroring
in the off-line and by augmenting rotating, scal-
ing, shifting, and random dropout in the online
for the hand gesture recognition using 3D CNN.
Bheda and Radpour (2017) developed CNN-based
ASL recognition with data augmentation (rotat-
ing and horizontal flipping). These projects ap-
plied data augmentation techniques developed for
CNN model training; however, they did not eval-
uate the effectiveness of the techniques nor pro-
vide in-depth analyses of their methods. Tao et
al. (2018) implemented an ASL alphabet recog-
nition system with a CNN, equipped with a multi-
view augmentation and inference scheme. This ap-
proach differs from our work in that they exploited
a 3D motion capture device and the 3D modeling
capability to virtually generate views from differ-
ent angles, while we opted to utilize a generic in-
put device and 2D techniques. Our approach is to
develop the solution so that it is not reliant on spe-
cial equipment and can run on any tablet, laptop or
smartphone.

3 Approach

3.1 Overview of the Baseline System

For this work, we began with a baseline proto-
type1 ASLR that we used for developing and test-
ing the hypothesis of data augmentation based on
DeepHands using the Kinect Sensor and a graph-
ical user interface to capture the video recordings
of people signing in ASL. The Kinect uses multi-
ple cameras in order to capture motions in three di-
mensions, and utilizes the Kinect 2.0 SDK library,
to outputs 25 body joints and their 3D coordinates
(Microsoft, 2014). The demo system managed the
recording of ASL sign videos of registered users
with true labels which were annotated by signers.
The demo system was developed by training the
system to recognize 50 different signs using these
datasets. The recognizer was trained to recognize
a single-sign video clip as one of the 50 signs it
was trained on. The baseline ASL recognizer con-
sists of the following components: Kinect 2.0 as a

1The baseline prototype and demo systems were developed
by the Massachusetts Institute of Technology Lincoln Labo-
ratories (MITLL) under a government contract.

video input device, Kinect SDK for feature extrac-
tion, and Kmeans clustering for classification.

For this work, we modified the original base-
line system so as to remove the dependency on the
Kinect input device to enable the system to train
and classify on any 2D video feed or recordings.
This enabled us to carry out experiments on a set of
ASL video recordings of native ASL signers along
with annotations that are made publicly available
(Neidle et al., 2012). Being able to do away with
specialized recording hardware also opened up the
possibility of easily adding or creating more anno-
tated data for training and evaluating the system.
As shown in Figure 1, in place of the Kinect de-
vice, we utilized OpenPose (Cao et al., 2018) as
the input video analysis module of the baseline
system. OpenPose2 is open source software that
implements the state-of-the-art multi-person key-
point detection approaches for body, face, hands,
and feet. In our preliminary experiments, it was
verified that system performance was not degraded
when using the features prepared from OpenPose
output instead of Kinect output.3

3.2 Feature Extraction

OpenPose provides pretrained pose, face, and hand
detection models trained on publicly available
datasets. We used the pretrained 25-point body
pose and 20-point hands detection models. Open-
Pose models produce the body and hands key-
points for each successfully analyzed frame of an
input video clip. Two types of features are ex-
tracted for all frames: a) hands 2D coordinate
feature and b) DeepHand hand-shape feature. A
simple python script was written to automate the
feature extraction process from a video clip and
its OpenPose output with a tensor flow version
of the DeepHand model. This code is available
at https://github.com/ Dragonfly-ASL to make our
work easily reproducible.

Hands 2Dtracking feature: In the OpenPose
analysis output for each video frame, two coor-
dinates (index 4 and 7) out of 25 body keypoints
correspond to the right and the left wrists. The two
coordinates were normalized with regard to the co-
ordinate of the neck as the origin and the distance
between neck and nose as the unit vector. The

2https://github.com/CMU-Perceptual-Computing-
Lab/openpose
3Top 1 accuracies of the recognizer with Kinect and Open-
Pose were 61.8% and 61.5%, respectively.
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Figure 1: Feature extraction using OpenPose and DeepHand
(Example shown from (dataset: ASLLRP-ASLLVD, signer:
Brady, sign: CHEM-ISTRY+)4)

normalized left and right hand coordinates of all
frames combined consist of the half of the hands
2D tracking feature. The other half of the hands
2D tracking feature is calculated as the derivative
of the normalized 2D coordinates across the time
dimension with window size 5. The total dimen-
sion of the hands 2D tracking feature is then Num-
Frames 8, where each hand in a frame is described
with a normalized 2D point and its derivative.

DeepHand hand-shape feature: To create
handshape features, our baseline system uti-
lizes DeepHand models (Koller et al., 2016), a
CNN-based sign language recognizer trained on
1 million hand images. The model was trained
to classify input images into 60 fine-grained
hand-shape classes. The model performed with
62.8% accuracy on a manually labelled dataset
with 3361 images that cover 45 hand-shape
classes. The DeepHand takes its architecture after
GoogLeNet (Szegedy et al., 2015). The model
contains 22 layers, mixed with convolutional,
pooling, fully-connected layers. The baseline
system utilizes the activation output of one of the
internal fully-connected layers, as the compact
and abstract representation of the input image.

The activation is of 1,024 dimensions for each
hand, resulting in NumFrames × 2048 in total.

3.3 Classification with K-means Clustering
The baseline ASL classifier was developed us-
ing K-means clustering. There were two types of
feature representations used for the training data:
hands 2D tracking and DeepHand handshape. The
K-means clustering algorithm was applied to each
of the feature types for all of the video frames
in the training data. K-means requires a distance
measure between the clustered elements. A simple
Euclidean distance was employed: dist(p, q) =√∑n

i=1(qi − pi)2 where p and q are feature rep-
resentations and n is the feature dimension. Once
the clustering was finished, all clusters were calcu-
lated for the label probabilities using the distance
between all elements in the training data with their
annotated labels.

To classify an input video clip, two label prob-
abilities were calculated for each feature type us-
ing the K-means clusters. For each feature type, a)
the cluster memberships of the input video frames
were determined using the same Euclidean dis-
tance, b) these distances were multiplied by the
cluster’s label probabilities, and c) the label proba-
bilities were accumulated and averaged. The final
label probabilities for the input video clip were av-
eraged from the label probabilities for each frame.
The two label probabilities were then combined as:

Pcombined = e(ln(PHandTracking)+ln(PHandShape))

Pcombined is in effect a product of PHandTracking

and PHandShape but the calculation avoids the risk
of underflow. Intuitively speaking, the probabili-
ties for both the 2D hand tracking feature as well as
the hand shape feature should be high for the com-
bined probability to be high. Otherwise, if either
one of the probabilities is low, then the combined
probability stays low.

3.4 Data Augmentation
There is only a very small number of video clips
each with a single ASL sign and its sign manu-
ally assigned. Therefore, our goal was to augment
this data with a large amount of new videos synthe-
sized from the original dataset, so we developed a
tool that applies a set of image manipulation oper-
ations to all of the frames in a provided video clip.
We categorized these 2D image manipulation oper-
ations according to their influence in the synthesis
process as follows:
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• Recording environment anticipation

• Sign and Signer variance anticipation

Depending on the actual usage of the proposed
system, we took into account that the recording
hardware and environment may vary. For exam-
ple, ASL signers may use our software on different
hardware devices such as their PCs, smartphones,
or tablets with different cameras with varying field
of view and resolutions, and different recording
conditions such as varying levels of lighting and
camera zoom and angle settings. These kinds of
variances in recording environments may be ad-
dressed by training the recognition model with ad-
ditional data generated with such effects applied to
the existing training data. We anticipate that the
following image manipulation operations account
for such occasions: noise addition or removal, im-
age enhancement, brightness changes, vertical and
horizontal skews, etc.

The role of other image manipulation categories
is to account for the different ways ASL signs are
made by each ASLsigner and the different appear-
ances between the signers in the training data and
at the test or use time. There are many image ma-
nipulation operations that can potentially address
such discrepancy in the training and test condi-
tions. We limited the scope of this work to testing
the usefulness of data synthesis within ASL sign
recognition and focused on the following two im-
age manipulation operations: Rotate and Zoom.

Each manipulation comes with its own set of pa-
rameter ranges and the generation space becomes
quite big. For the scope of this experiment, we fo-
cused on these two broad sets of synthetic types:
a) Random manipulations and parameters selec-
tion, and b) Controlled parameter selection (Ro-
tate, Zoom).

Our training and test data were recorded in the
identical environment and with identical camera
settings. Therefore, we will not be able to verify
the effectiveness of the corresponding manipula-
tion operations within the scope of current work.
However, we can still demonstrate that training an
ASL recognizer with additional synthetically gen-
erated data, many times larger in quantity than that
of the original data, can still yield a valid model.
For this purpose, we have a type of synthetic data
whose image manipulation operations and its pa-
rameters are chosen and configured with random-
ness (Figure 2).

Figure 2: Manipulation operations and their parameters were
randomly selected for each input video.

For the controlled parameter selections of Ro-
tate and Zoom, three sets of varying ranges and
increment steps are selected as below:

• Rotate (degrees angle)

– Rotate1: −15◦ ∼ 15◦ (step size 3)
– Rotate2: −30◦ ∼ 30◦ (step size 6)
– Rotate3: −45◦ ∼ 45◦ (step size 9)

• Zoom (%)

– Zoom1: 95% ∼ 105% (step size 1)
– Zoom2: 90% ∼ 110% (step size 2)
– Zoom3: 85% ∼ 115% (step size 3)

With these varying ranges but with the same
amount of generated synthetic data, we did work
to gather preliminary evidence to support hypothe-
sis that certain types of image manipulations have
greater impact and benefit by helping the synthetic
data generation process better address the lack of
variability in the limited amount of training data.
Through experimentation, we learned that there
are certain parameters that are more important than
others to ensure that the signs generated are valid.

The complete python script that can produce a
synthesized video given an input video clip with a
set of various image manipulation options is avail-
able at https://github.com/Dragonfly-ASL to make
our work easily reproducible

4 Experiments

4.1 Experimental Settings
We trained our ASL recognition models using
a publicly available annotated dataset American
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Sign Language Lexicon Video Dataset (ASLLVD)
(Neidle et al., 2012). ASLLVD consists of almost
10,000 ASL signs signed by 6 native ASL signers.
The dataset also comes with human-annotated lin-
guistic information such as gloss labels and hand-
shape labels. Using the entire dataset, we selected
videos with glosses that belong to our hand-picked
50 ASL signs, each signed by 6 different signers,
making the total dataset size 300. ASLLVD pro-
vides videos shot from different angles (front view,
side view, close-up), but we only used videos with
the front view (Figure 3).

To carry out experiments with varying amount
of synthetic data, we trained our ASL recognition
model with varying amount (0 or 0%, 1 or 100%,
3 or 300%, 5 or 500%, and 10, 1000%) of syn-
thetic data generated with Random operations and
parameter selection method. Another set of experi-
ments was performed to demonstrate the effective-
ness of two image manipulation operations (Ro-
tate and Zoom), each with three sets of parameter
ranges as described in Section 3.4. For each of
the parameter selection strategies (Random, Ro-
tate1 . . . 3, and Zoom1...3), each video clip in
the ASLLVD dataset was augmented with up to ten
additional synthesized data variants (SYN1...10).

In the preliminary experimentations with the
baseline system, it was noted that the hyperparam-
eter K, the number of clusters in the Kmeans algo-
rithm, has a significant impact on the classification
performance. For the baseline experiments with
300 ˜ 500 annotated data, K was tested with 1,000
˜ 3,000 with increments of 1,000. To account for
the increased size in data (300 ˜ 3,300), we exper-
imented with K with values 1,000, 2,000, 3,000,
and 5,000.

To compare the performance of models, we em-
ploy accuracy as our main evaluation measure.
Each accuracy is averaged over the scores of 6
signers, each tested with 50 signs evaluated in a
cross-validation fashion. For example, we pick one
signer at a time whose videos are set as a test input,
and evaluate against a model trained with videos of
the rest of the signers. Synthetically generated data
of the test signer are not included in either the test
or the training dataset. To eliminate the impact of
random initialization in K-means clustering, each
signer’s score is averaged over three runs with dif-
ferent K-means initial cluster randomization. This
is repeated six times for all signers and the perfor-
mance is then averaged. Therefore, one accuracy

score is an average of 18 independent runs.

4.2 Experimental Results and Analysis

We present the performance evaluation results of
all the experiments carried out in this work in Fig-
ure 4.

Scores with statistically significant improve-
ments over the Baseline system, measured with the
Wilcoxon signed-rank test (N = 50), are marked
with † (p < 0.15) and ‡ (p < 0.05). Model con-
figuration with 1,000% synthetic data with the K-
means cluster size 3,000 performed the best among
all configurations we tried for the current work,
and it is shown to have improved most statistically
significantly (p = 0.006). To confirm that the per-
formance improvement did not occur by chance
from having a good randomly initialized K-means
cluster, we carried out additional experiments with
the same configuration (K=3,000, SYN10, Ro-
tate1) but with different random seeds two more
times. The outcomes of the additional experiments
show similar improvements (71.2% and 69.0%).

Figure 5 shows that, with regard to the vary-
ing amount of synthetic data in the train (Random-
SYN1, 3, 5, 10, equivalent to 0, 100, 300, 500,
and 1,000% synthetic data), the performance im-
provement is not in a linear relationship to the in-
creasing amount of synthetic data in the train set.
Rather, the performance first sharply decreases un-
til 300%, then bounces back at 500% and finally
outperforms the baseline at 1,000%. Though con-
firmed for all sizes of K-means cluster, this behav-
ior is rather counter-intuitive. Due to the limited
computing resource capacity (256G of RAM) and
the way the baseline system was implemented, we
could not utilize more than 1,000% synthetic data.

For runs with 1,000% of synthetic data
(SYN10), many configurations of Random, Rotate
and Zoom present statistically significant improve-
ments over the Baseline. We also observe that cer-
tain configurations of Rotate and Zoom also per-
form better than Random, though none of the Ro-
tate and Zoom configurations outperform Random
with statistical significance. Some Rotate runs are
worse than Random or even Baseline, indicating
that parameter range for the data manipulation op-
erations should be carefully chosen to ensure that
the synthesized data still present valid signs. An-
other observation is that Random configurations
performed reasonably well, and it would make a
good go-to strategy in general.
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Figure 3: Sample images with minimum and maximum values of Rotate1... 3 and Zoom1... 3 annotated with body and hand
keypoints (ASLLVD, Signer: Lana, Sign: FOUR, Frame 67)

Figure 4: Top 1 Classification accuracies (%) of the baseline ASL Sign recognizer and recognizers trained with additional
synthetic data. Statistically significant improvements over the baseline system with the same cluster size (within the same row)
are marked with † (p < 0.15) and ‡ (p < 0.05). We used the Wilcoxon signed-rank test with N = 50. For experiments using the
1,000% of synthetic dataset (SY N10), none of the Rotate and Zoom runs out-performed Random with statistical significance.

Figure 5: Change in recognition performance with different
percentages of synthetic data generated with Random options.
† = statistically significant improvement over Baseline (0%).

Though more sensitive to parameter range
choices, between Rotate and Zoom, Rotate seems
to be more effective in synthetic data generation.
We conjecture that this is due to the fact that the
2D coordinates normalization of the hands track-
ing feature accounts in part for the effect of Zoom.
We also speculate that Zoom together with image
resizing to make thinner or wider signers should
help account for the variances among differently
sized and shaped bodies of signers.

We are currently working to further investigate

the effectiveness of utilizing greater amounts of
synthetic data and combinations of synthetic data
generation techniques to identify the most optimal
approaches.

In Figure 6, we see the per-sign rank compari-
son of Baseline and Rotate1 at their best configu-
rations.

Signs with the most positive rank improvement
are FOUR, EARTH, and ANY. Signs DEPRESS,
CHAT++, and ANSWER were most negatively af-
fected. Figure 7 shows the per-user top 5-ranked
signs with their probabilities for input sign FOUR
from Baseline (K=5000) and Rotate1 (K=3000).
The most-frequently misclassified signs in top 5
rank for input sign 5(a) FOUR from Baseline were
5(b) BEAUTIFUL, 5(c) BLUE, and 5(d) FRI-
DAY+. Though not shown due to space con-
straints, the most-frequently misclassified signs in
top 5 rank for input sign 6(a) DEPRESS from
Baseline (K=5000) and Rotate1 (K=3000) were
6(b) CONFLICT-INTERSECTION, 6(c) DRESS-
CLOTHES, and 6(d)EXCITED+. As these figures
show, these signs look very similar to each other.

In Figure 8, we observe that the types of mo-
tion used by the signers are distinctively different
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Figure 6: Average ranks of 50 signs for Baseline and Rotate1 (marked with × and marked +, respectively). Lower is better,
24 signs improved in rank (average 0.81), 19 signs degraded (average 0.54), and the ranks for 7 signs did not change.

Figure 7: Per-user top 5-ranked signs with their probabilities for test input sign FOUR from Baseline (K=5000) and Rotate1
(K=3000) (Trial 1 result only). For each of the 6 signers, correct rank changed 38→8, 6→1, 1→1, 5→7, 2→4, 1→1.

Figure 8: Most-frequently misclassified signs in top 5 rank for input sign (a) FOUR from Baseline (K=5000) were (b) BEAU-
TIFUL, (c) BLUE, and (d) FRIDAY+. (ASLLVD, Signer: Liz)
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Figure 9: Most-frequently misclassified signs in top 5 rank for input sign (a) DEPRESS from Baseline (K=5000) and Rotate1
(K=3000) were (b) CONFLICT-INTERSECTION, (c) DRESS-CLOTHES, and (d) EXCITED+. (ASLLVD, Signers: Brady,
Naomi, Tyler, Liz)

from those of FOUR. However, three out of four
signs in Figure 9 move two hands in straight lines
parallel to the body. We conjecture that this differ-
ence in the variations of hand motion affected the
usefulness of adding synthetic data created by ro-
tating videos in the plane parallel to the signer. In
other words, for the case of FOUR, added synthetic
data helped distinguish similarly looking signs be-
cause of the different hand motions for these signs,
but in the case of DEPRESS, synthetic data created
from signs such as CONFLICT-INTERSECTION
and DRESS-CLOTHES did not help because the
corresponding hand motions, with rotation, did not
help and in some cases hurt differentiating those
signs from DEPRESS.

5 Conclusions and Ongoing Work

In this work, we explored different strategies for
generating synthetic data with the goal of improv-
ing ASLR performance, and we experimented with
several techniques for the automatic generation of
synthetic data in varying amounts. We demon-
strated that creating synthetic training data through
the simple image manipulation of each frame in
ASL video clips helped improve ASLR perfor-
mance. We anticipate more benefits from utiliz-
ing synthetic data for improving the performance
of ASL recognizers.

In addition, we are working to extend our au-
tomatic generation of synthetic data strategies to
the challenge of moving from the lexical level to
machine translating videos of ASL sentences and
paragraphs into English. In the course of our ex-
perimentation and analyses, we discovered a num-
ber of issues requiring further investigation. Next,
we will experiment with synthetic data of more
than 1,000% to the original data to see at what per-
centage the performance gains begin to diminish.
We will also create a better method for generating

valid synthetic data. We plan to do this by defin-
ing boundaries of spatial regions that include hand
and body motions that constitute a valid sign and
developing a synthetic data generation technique
from this. Lastly, we will explore adding noise and
background variations to the synthetic data gener-
ated and verify that these techniques help make
ASL systems robust against noisy and poorly lit
recording environments.
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Abstract

As one of the contributions of this paper,
this paper first explores the upper bound
of context-based neural machine transla-
tion and attempt to utilize previously un-
used context information. We found that, if
we could appropriately select the most in-
formative context sentence for a given in-
put source sentence, we could boost trans-
lation accuracy as much as approximately
10 BLEU points. This paper next explores
a criterion to select the most informa-
tive context sentences that give the high-
est BLEU score. Applying the proposed
criterion, context sentences that yield the
highest forced back-translation probability
when back-translating into the source sen-
tence are selected. Experimental results
with Japanese and English parallel sen-
tences from the OpenSubtitles2018 corpus
demonstrate that, when the context length
of five preceding and five subsequent sen-
tences are examined, the proposed ap-
proach achieved significant improvements
of 0.74 (Japanese to English) and 1.14 (En-
glish to Japanese) BLEU scores compared
to the baseline 2-to-2 model, where the or-
acle translation achieved upper bounds im-
provements of 5.88 (Japanese to English)
and 9.10 (English to Japanese) BLEU
scores.

1 Introduction

Recently, neural machine translation (NMT) mod-
els (Sutskever et al., 2014; Luong et al., 2015;
c© 2019 The authors. This article is licensed under a Creative

Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

Vaswani et al., 2017) have made remarkable
progress. Most NMT models are designed to
translate a single sentence and do not accept in-
put greater than one sentence, i.e., input sentences
that include additional context information. How-
ever, recently, several approaches that attempt to
translate inputs with more than one sentence have
been proposed (Tiedemann and Scherrer, 2017; Li-
bovický and Helcl, 2017; Maruf and Haffari, 2018;
Miculicich et al., 2018; Bawden et al., 2018; Voita
et al., 2018; Tu et al., 2018). These approaches to
context-based NMT models can be roughly cate-
gorized according to the width of the context con-
sidered in those models. A typical approach is
to consider the sentence immediately preceding
the source sentence to be translated as the con-
text (Tiedemann and Scherrer, 2017; Libovický
and Helcl, 2017; Bawden et al., 2018; Voita et al.,
2018). Context-based NMT models can be fur-
ther categorized according to whether the source
and context sentences are encoded using a sin-
gle (Tiedemann and Scherrer, 2017) or multiple
encoders (Libovický and Helcl, 2017; Bawden et
al., 2018; Voita et al., 2018). Another approach
considers a much wider context than the imme-
diately preceding sentence, e.g., three preceding
sentences (Miculicich et al., 2018), preceding sen-
tences within the document (Tu et al., 2018), and
all preceding and subsequent sentences within the
document (Maruf and Haffari, 2018).

Such approaches to context-based NMT models
possibly outperform existing models that only ac-
cept a single sentence to be translated. Note that
we refer to the model that only accepts a single
sentence as a “1-to-1” model. Among these exist-
ing models, the 2+2 or 2-to-2 model (Tiedemann
and Scherrer, 2017) uses the sentence immediately
preceding the source sentence to be translated as
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BLEU
Oracle
BLEU

Ja-En En-Ja Ja-En En-Ja
1-to-1 (baseline) 15.52 11.48 — —
2-to-2 (baseline) 16.52 12.36 — —

selection from 20-best of 2-to-2 (baseline)
by 2-to-2 back-translation

16.69 / — 12.61 / — — —

1-to-1 + 2-to-2
(immediately preceding sent.)

17.04∗∗ / 16.51 13.24∗∗ / 12.47 18.15 15.61

1-to-1 + 2-to-2 (1st ∼ 5th preceding sents.) 17.25∗∗ / 16.67 13.50∗∗ / 13.14∗∗ 21.09 19.55
1-to-1 + 2-to-2 (1st ∼ 5th subsequent sents.) 17.04∗∗ / 16.52 13.46∗∗ / 13.13∗∗ 20.84 19.51

1-to-1 + 2-to-2
(1st ∼ 5th preceding + subsequent sents.)

17.26∗∗ / 16.68 13.02∗∗ / 12.81∗∗ 22.40 21.46

Table 1: Evaluation results (maximizing forced back-translation probability / maximizing back-translation sentence-BLEU)
(∗∗ represents significant difference (p < 0.01) against baseline 2-to-2 model)

an extended context. Here the context sentence
is concatenated to the source sentence using the
〈CONCAT〉 token. The 2-to-2 model is easy to
implement into existing 1-to-1 models: however,
it only considers the immediately preceding sen-
tence as context. Thus, it is necessary to consider
much wider contexts such as the second through
fifth preceding sentences and the first through fifth
subsequent sentences. We conducted an empirical
study that revealed that, in some cases, among the
first through fifth sentences preceding and subse-
quent to the source sentence, the most informative
sentence, i.e, the sentence that returns the high-
est BLEU score, may not be the sentence imme-
diately preceding the source sentence. We mea-
sured oracle BLEU scores by selecting context
sentences that give the maximum sentence-BLEU
scores among the five preceding and subsequent
sentences, as shown in Table 1 and Figure 1. Then,
we found that, if we could select the most infor-
mative context sentence for a given input source
sentence, we can improve translation accuracy by
as much as approximately 10 BLEU points, as in-
dicated by the oracle BLEU scores in Table 1 and
Figure 1. More specifically, compared to the base-
line 2-to-2 model, the oracle translation achieved
upper bound improvements of 5.88 (Japanese to
English) and 9.10 (English to Japanese) BLEU
scores.

Considering this result, within the framework
of the 2-to-2 context based NMT model, this
study explored how to select the most informa-
tive context sentences that give the highest BLEU
score among the first five preceding and subse-

quent sentences1. Here, we used the Transformer
model (Vaswani et al., 2017) as the base 1-to-1
model. To select the translation with the highest
BLEU score among the 11 translations (i.e., those
translated by the 1-to-1 and 10 2-to-2 models),
we propose an approach that selects the transla-
tion that yields the highest forced back-translation
probability when back-translating into the source
sentence. The evaluation results shown in Table 1
demonstrate that the proposed approach achieves
significant BLEU score improvements over the
baseline 2-to-2 and 1-to-1 models. More specif-
ically, over the baseline 2-to-2 model, the pro-
posed approach achieved significant improvements
of 0.74 (Japanese to English) and 1.14 (English to
Japanese) BLEU scores.

2 Selective Extended Context Decoding

Tiedemann and Scherrer (2017) proposed the 2-
to-2 model, which uses the sentence immediately
preceding the source sentence to be translated as
the extended context. We extend the 2-to-2 model
by considering the first five preceding and first
five subsequent sentences. In our extended 2-to-2
context-based NMT model, the immediately pre-
ceding sentence, the second through fifth preced-
ing sentences, and the first through fifth subse-
1An obvious alternative to this approach is to simply em-
ploy 3-to-3 (or more) models using an approach similar to
the 2-to-2 model that concatenates context sentences using
the 〈CONCAT〉 token. However, due to the upper bound re-
striction of GPU memory, it is impractical to employ such
3-to-3 (or more) models. Furthermore, our preliminary evalu-
ation result also indicates that the 3-to-3 model underperforms
compared to the proposed approach.
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Figure 1: Oracle BLEU and BLEU scores of baseline 2-to-2 (y22
0 (x−1, x0)) and 1-to-1 (y11

0 (x0)) models

quent sentences are considered candidates for con-
catenation to the source sentence. Then, among the
first through fifth preceding and first through fifth
subsequent sentences, we select the most informa-
tive context sentences in the 2-to-2 context-based
NMT model.

In this framework, this paper employs the
notation described below. xi and yi (i =
0,±1, . . . ,±5) denote the source and target sen-
tences, respectively. x0 denotes the source sen-
tence to be translated, while y0 denotes its trans-
lation in the target language. x−1 denotes the
context sentence in the source language immedi-
ately preceding x0, xi (i = −2, . . . ,−5) the
second through fifth preceding sentences, and xi

(i = +1, . . . ,+5) the first through fifth subse-
quent sentences. In order to represent the direc-
tion of translation as the target language l (x or y
in this paper) of the translation, the model m (1-
to-1 or 2-to-2) used for the translation, the index
i (i = 0,±1, . . . ,±5) of the translated sentence,
and the source sentence s and the context sentence
c in the source language, this paper employs a gen-
eral notation to represent the translated sentence in
the target language as below:

lmi (c, s).

Translation by 1-to-1 Model
For example, the target sentence translated from
x0 by the base 1-to-1 Transformer model is de-
noted as

y11
0 (x0).

In this case, the source sentence s is x0, and is
translated without a context sentence. Table 2
shows a typical Japanese subject zero pronoun
case improved by the proposed informative con-
text sentence selection approach by forced back-
translation, where the bottom line represents the
translation by the base 1-to-1 model. In Table 2,
y11
0 (x0), i.e., the translation of x0 by the base 1-

to-1 model is:

If we leave now , we’ll never get back .

Here, the base 1-to-1 model fails in the translation
of the Japanese zero pronoun subject in x0, i.e., it
is not translated as “you”, but translated as “we”.

Translation by Baseline 2-to-2 Model
The target sentence translated from x0 by the base-
line 2-to-2 Transformer model which uses the sen-
tence x−1 immediately preceding x0 as the ex-
tended context is denoted as

y22
0 (x−1, x0).
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Source sentences Target sentences
Forced

back-translation
probability
/ sentence-

BLEU

—
Reference
translation:

Walk out now and
you may never re-
turn .

—

4th preceding
sentence x−4:

私に逆らうならお前は何

もなくなるぞ。(If you defy

me , you will have nothing
.)

Translation
y22
0 (x−4, x0)

by 2-to-2 model:
If you leave , you’ll
never get back .

5.8×10−8

/ 14.99

Immediately
preceding
sentence x−1:

それが望みなのか ? (Is that

what you want ?)

Translation
y22
0 (x−1, x0)

by baseline
2-to-2 model:

If we leave now
, we’ll never get
back .

2.8×10−10

/ 13.55

Source
sentence x0:

出て行けば、戻れなくなる

ぞ。

Translation
y11
0 (x0)

by baseline
1-to-1 model:

If we leave now
, we’ll never get
back .

1.3×10−8

/ 10.57

Table 2: Example improvements over baseline 2-to-2 y22
0 (x−1, x0) (Ja-En) (a) pronoun translation

In this case, x0 is concatenated with the im-
mediately preceding sentence x−1 as “ x−1

〈CONCAT〉 x0”, and the concatenated sentences
are translated by the baseline 2-to-2 Transformer
model. We denote the translated (concatenated)
sentences as follows:

y22
−1(x−1, x0) 〈CONCAT〉 y22

0 (x−1, x0)

where y22
−1(x−1, x0) and y22

0 (x−1, x0) are the
translations of x−1 and x0, respectively. In the
case of Table 2, the immediately preceding sen-
tence x−1 and the source sentence x0 are:

x−1: それが望みなのか ?
(Is that what you want ?)

x0: 出て行けば、戻れなくなるぞ。
(Walk out now and you may never return .)

Then, y22
0 (x−1, x0), i.e., the translation of x0 is:

If we leave now , we’ll never get back .

Again, the baseline 2-to-2 model fails in the trans-
lation of the Japanese zero pronoun subject in x0,
i.e., it is not translated as “you”, but translated as
“we”.

Translation by 2-to-2 Model with a Context
Sentence x−4

Similarly, the first line of Table 2 also shows the
target sentence translated from x0 by the 2-to-2
Transformer model which uses the fourth sentence
x−4 preceding x0 as the extended context. In this
case, the translated sentence is denoted as

y22
0 (x−4, x0).

As shown in Table 2, the fourth preceding sentence
x−4 and the source sentence x0 are:

x−4: 私に逆らうならお前は何もなくなるぞ。
(If you defy me , you will have nothing .)

x0: 出て行けば、戻れなくなるぞ。
(Walk out now and you may never return .)

Then, the concatenated sentences “x−4

〈CONCAT〉 x0” are translated into:

y22
−4(x−4, x0) 〈CONCAT〉 y22

0 (x−4, x0).

Here, y22
0 (x−4, x0), i.e., the translation of x0 is:

If you leave , you’ll never get back .

This time, the fourth preceding source sen-
tence x−4 includes the Japanese pronoun “お前”
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(mostly translated as “you” in English in the train-
ing corpus): thus, the translation y22

0 (x−4, x0) by
the 2-to-2 model successfully includes the transla-
tion of the Japanese zero pronoun subject in x0 as
“you”. This then contributes to having the highest
forced back-translation probability and sentence-
BLEU score with the reference translation com-
pared to y11

0 (x0) (translated by the base 1-to-1
model) and y22

0 (x−1, x0) (translated by the base-
line 2-to-2 model), in which the Japanese zero pro-
noun subject is translated as “we” in both cases.
This analysis clearly indicates that the baseline
2-to-2 model is insufficient relative to correctly
translating Japanese zero pronouns into English.

Translation by 2-to-2 Model with a Context
Sentence xi (i = ±1, . . . ,±5)
More generally, in addition to translation
y11
0 (x0) obtained by the base 1-to-1 Trans-

former model, we prepare 10 translated sen-
tences y22

0 (x−1, x0), . . . ,y
22
0 (x−5, x0) and

y22
0 (x+1, x0), . . . ,y

22
0 (x+5, x0) as candidate

translations, each of which is generated using the
2-to-2 model based on the standard Transformer
model. Each y22

0 (xi, x0) (i = ±1, . . . ,±5)
of these 10 translated sentences is generated by
the 2-to-2 model, where one of the first through
fifth preceding and subsequent sentences xi

(i = ±1, . . . ,±5) is used as the context sentence
of the 2-to-2 model2. In the 2-to-2 model, only
one of the five preceding and subsequent sentences
xi (i = ±1, . . . ,±5) is concatenated to the source
sentence x0 using the 〈CONCAT〉 token as:

xi 〈CONCAT〉 x0.

Then, the concatenated sentences are translated
by the 2-to-2 Transformer model. We denote the
translated (concatenated) sentences as follows:

y22
i (xi, x0) 〈CONCAT〉 y22

0 (xi, x0)

where y22
i (xi, x0) and y22

0 (xi, x0) are the trans-
lations of xi and x0, respectively.

3 Selecting Informative Context
Sentences with Maximum Forced
Back-translation Probability

In the proposed method of selecting a transla-
tion among the 11 candidate translations y11

0 (x0),
2We examined how many of the 10 translations
y22
0 (x±1, x0), . . . ,y

22
0 (x±5, x0) are exactly the same

as y11
0 (x0). The rates of cases where none of the 10

translations was exactly the same as y11
0 (x0). were 54% for

Japanese to English and 63% for English to Japanese.

y22
0 (x±1, x0), . . . ,y

22
0 (x±5, x0), we select the

translation that yields the highest forced back-
translation probability when back-translating into
the source sentence. In this context, forced back-
translation is defined as forced decoding from a
translated target sentence to its source sentence.

Here, assume the source sentence x0 of word
length n with a context sentence xi is given. For
the back-translation translation model, we used the
2-to-1 Transformer model with the setup described
in Section 5, rather than the 1-to-1 Transformer
model. This is simply because, in forced back-
translation into x0, the 2-to-1 model considers
both y22

i (xi, x0) and y22
0 (xi, x0), while the 1-

to-1 model considers y22
0 (xi, x0) (translation of

the source sentence x0) only, but not y22
i (xi, x0)

(translation of the context sentence xi). We
assume that considering both y22

i (xi, x0) and
y22
0 (xi, x0) in forced back-translation will yield

forced back-translation probabilities that are sig-
nificantly informative3.

The forced back-translation probability score of
the source sentence word xj (1 ≤ j ≤ n) of x0 is
expressed as follows.

bj = − log p
(
xj|x<j , y

22
i (xi, x0),

y22
0 (xi, x0)

)

From y22
i (xi, x0) and y22

0 (xi, x0), the forced
back-translation probability score of the entire
source sentence x0 is obtained as the sum of each
bj .

B
(
x0, y

22
i (xi, x0), y

22
0 (xi, x0)

)
=

∑

j

bj

Similarly, the forced back-translation probability
score of the entire source sentence x0 for the base
1-to-1 model is obtained as below:

bj = − log p
(
xj|x<j , y

11
0 (x0)

)

B
(
x0, y

11
0 (x0)

)
=

∑

j

bj

Finally, among the 11 candidate translations
y11
0 (x0), y

22
0 (x±1, x0), . . . ,y

22
0 (x±5, x0), we

select the translation that yields the highest

3In the evaluation discussed in Section 7.1, forced back-
translation using the 1-to-1 model achieved merely the same
BLEU scores as that of the 2-to-1 model.
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forced back-translation probability B when back-
translating into the source sentence x0 as below:

argmax
i=0,±1,...,±5

{ B
(
x0, y

11
0 (x0)

)
(i = 0)

B
(
x0, y

22
i (xi, x0), (i �= 0)

y22
0 (xi, x0)

)

Employing the forced back-translation prob-
ability differs from existing approaches (Rapp,
2009; Li and Jurafsky, 2016; Goto and Tanaka,
2017; Kimura et al., 2017) that incorporate back-
translation from the translated target sentence to
the source sentence. Rapp (2009) employed the
BLEU score between the source sentence and
source language sentence back-translated from the
target translated sentence in an automatic MT eval-
uation context. Li and Jurafsky (Li and Juraf-
sky, 2016) proposed to re-rank decoded transla-
tions based on mutual information between source
and target sentences x and y i.e., the probabilities
p(y | x) and p(x | y). Goto and Tanaka (2017)
and Kimura et al. (2017) also employed the ra-
tio of forced back-translation probabilities in the
context of detecting untranslated content in NMT.
These approaches differ from the proposed use of
the forced back-translation probability4 .

4 Selecting Informative Context
Sentences with Maximum
Back-translation Sentence-BLEU

Rapp (2009) proposed an approach of using BLEU
score between the source sentence and source
language sentence back-translated from the tar-
get translated sentence in an automatic MT eval-
uation context. Based on Rapp (2009), we
employ another approach to selecting informa-
tive context sentences, where back-translation
sentence-BLEU is maximized. As in the case
of selecting informative context sentences with
maximum forced back-translation probability pre-
sented in the previous section, candidate trans-
lations are the same as those 11 candidates
y11
0 (x0), y

22
0 (x±1, x0), . . . ,y

22
0 (x±5, x0). For

each of those 11 candidate translations, its back-
translation back-tran

(
i
)5 into the source language

4The proposed approach is included among those that con-
sider a much wider context than the immediately preced-
ing sentence, e.g., the approaches proposed by Miculicich et
al. (2018), Tu et al. (2018), and Maruf and Haffari (2018).
5For the back-translation translation model, we used the 1-
to-1 Transformer model (denoted as back-tran11) when back-

is given as below:

back-tran
(
i
)
=

{ back-tran11
(
y11
0 (x0)

) )
(i = 0)

back-tran21
(
y22
i (xi, x0), (i �= 0)

y22
0 (xi, x0)

)

Then, we measure the sentence-BLEU score be-
tween the source sentence x0 and each back-
translation. We then select the one that gives the
highest sentence-BLEU score.

argmax
i=0,±1,...,±5

sent-BLEU
(
x0, back-tran

(
i
) )

5 Dataset and Experimental Setup

The dataset used for the oracle translation statis-
tics and the BLEU evaluation comprised 2,083,576
English and Japanese parallel sentence pairs from
Opensubtitles 2018 (Lison et al., 2018). Note that
we followed Tiedemann and Scherrer (2017) to
create the extended context dataset. Here, 90%
of the dataset (1,876,624 sentence pairs) was used
for training, 5% (104,379 sentence pairs) for de-
velopment, and 5% (102,573 sentence pairs) for
oracle statistics and evaluation. Here, of these
102,573 sentence pairs, only 10,000 pairs were
actually used for oracle statistics and evaluation6

7. Throughout the paper, we approximate that all
the 2-to-2 models are trained with the immediately
preceding sentence as the context.

6 Oracle Translation of Context-based
NMT

When measuring the oracle sentence-BLEU score,
for each source sentence x0, we select the sentence
translating y11

0 (x0) (i = 0), while we used the 2-to-1
Transformer model (denoted as back-tran21) with the setup
described in section 5 when back-translating y22

0 (xi, x0)
(i �= 0, i.e., translated from x0 with a context sentence by
the 2-to-2 model ).
6In training and development, the encoder rejects input sen-
tences (source sentence concatenated with the context sen-
tence for the 2-to-2 models) with greater than 50 tokens. Av-
erage token length of the 10,000 pairs for oracle statistics and
evaluation is 7.9 (English) and 6.9 (Japanese).
7Experimental setup is as follows: Tokenizers are Moses
tokenizer (Koehn et al., 2007) for English and MeCab (
http://taku910.github.io/mecab/ ) for Japanese
tokenization. OpenNMT-py (Klein et al., 2017) is used for
training and testing NMT models. 50,000 vocabulary sizes
are employed for both English and Japanese. Embedding
sizes are 512. Encoder and decoder are with six layers with
batch size as 4,096 and dropout rate as 0.3 and 100,000 steps
for training. Adam optimizer (Kingma and Ba, 2015) is used.
One NVIDIA Tesla P100 16GB GPU is used. MTEval Toolkit
( https://github.com/odashi/mteval ) is used to
measure BLEU, and Moses decoder’s sentence-bleu.cpp is
used to measure sentence-BLEU.
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with the maximum sentence-BLEU score among
the candidate translations after obtaining 11 candi-
dates ( y11

0 (x0) translated by the 1-to-1 model and
y22
0 (xi, x0) (i=±1, . . . ,±5) translated by the 2-

to-2 models). Figure 1 shows the oracle BLEU
scores for the following seven cases:

(i) among y22
0 (xi, x0) (i = ±1, . . . ,±5) with

and without y11
0 (x0)

(ii) among y22
0 (xi, x0) (i = −1, . . . ,−5) with

and without y11
0 (x0)

(iii) among y22
0 (xi, x0) (i = +1, . . . ,+5) with

and without y11
0 (x0)

(iv) between y11
0 (x0) and y22

0 (x−1, x0)

and the BLEU scores of the baseline 1-to-1 (
y11
0 (x0) ) and 2-to-2 models with the immediately

preceding sentence as the context ( y22
0 (x−1, x0)

). For all three 2-to-2 model cases with the can-
didate translation obtained by the 1-to-1 model,
the oracle BLEU increased by including y11

0 (x0).
Furthermore, the oracle BLEU score increases
as more candidates are considered. Table 1
shows that, by considering y22

0 (xi, x0) (i =
−5, . . . ,−2,+1, . . . ,+5) in addition to y11

0 (x0)
and y22

0 (x−1, x0), the oracle BLEU score im-
proves by approximately four points for Japanese
to English and six points for English to Japanese.
These results indicate that longer contexts yield
obvious benefit for the 2-to-2 context-based NMT
model, which is the primary motivation for select-
ing informative context sentences in that model.

7 Evaluation

7.1 Evaluation Results

For both English to Japanese and Japanese to
English directions, Table 1 shows the BLEU
scores obtained by selecting the translation can-
didate that maximizes the forced back-translation
and the back-translation sentence-BLEU score.
For the proposed method, we compare the fol-
lowing translation candidate cases:8 (i) between
y11
0 (x0) and y22

0 (x−1, x0), (ii) among y11
0 (x0)

and y22
0 (xi, x0) (i = −1, . . . ,−5), (iii) among

y11
0 (x0) and y22

0 (xi, x0) (i = +1, . . . ,+5),
(iv) among y11

0 (x0) and y22
0 (xi, x0) (i =

±1, . . . ,±5). Compared to the BLEU scores of
8Throughout the evaluation results of this paper, when obtain-
ing the forced back-translation probability for y11, we used
the 1-to-1 Transformer model as the back-translation transla-
tion model.

y11
0 (x0) and y22

0 (x−1, x0), all BLEU scores ob-
tained by the proposed method demonstrate sig-
nificant improvement (p < 0.01), except for the
Japanese to English translation obtained by maxi-
mizing the back-translation sentence-BLEU score.

By comparing the BLEU scores of y11
0 (x0),

y22
0 (x−1, x0), the oracle among them, and

the selection between them by maximizing the
forced back-translation, the selection between
y11
0 (x0) and y22

0 (x−1, x0) by maximizing
forced back-translation achieves BLEU scores that
are comparable to the oracle BLEU scores. Thus,
we conclude that the proposed method contributes
to selecting better translation between those
candidates. However, the proposed method can-
not select informative context sentences among
y22
0 (xi, x0) (i = −5, . . . ,−2,+1, . . . ,+5),

because the results obtained by adding
y22
0 (xi, x0) (i = −5, . . . ,−2,+1, . . . ,+5),

to translation candidates y11
0 (x0) and

y22
0 (x−1, x0) yields little or no gain in BLEU

score. Note that this does not coincide with im-
proving the oracle BLEU score by approximately
four points for Japanese to English and six points
for English to Japanese with the overall 11 trans-
lation candidates. Thus, it can be concluded that
further study is required to appropriately select
the informative context sentences among the 11
candidates such that the BLEU score becomes
much closer to the oracle BLEU score.

Another important comparison with a baseline
is also shown as “selection from 20-best of 2-
to-2 (baseline) by 2-to-2 back-translation” in Ta-
ble 1. With this baseline, it is intended to exam-
ine whether the five preceding and subsequent sen-
tences introduced in the proposed method are suf-
ficiently informative compared to other well stud-
ied translation candidates such as n-best transla-
tions. Specifically, the baseline 2-to-2 model with
the immediately preceding sentence as the context
is employed to generate 20-best translations, and
then, out of those generated 20-best translations,
the one with the maximum forced back-translation
into the source sentence is selected9. As shown
in Table 1, this baseline performed worse than the
proposed approach. From this result, it is obvious
that the proposed approach of introducing five pre-
ceding and subsequent sentences as the context is

9We compare the 2-to-2 and 2-to-1 models in the step of
forced back-translation here, where the 2-to-2 model outper-
formed the 2-to-1 model. In Table 1, we show the results
obtained by the 2-to-2 model.
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Ja-En En-Ja
category of phe-
nomena

succ-

eed

fail succ-

eed

fail

synonymous
expression

14 12 17 10

pronoun 7 2 2 0
untranslated by
baseline

5 0 10 0

article 0 1 0 0
other 11 2 7 3
manually judged

(comparable) 10 18 13 27
(baseline wins) 3 0 1 0
(baseline loses) 0 15 0 10

total 50 50 50 50

Table 3: Distribution of oracle translation phenomena
(through manual analysis of 50 examples) (proposed method
succeeds / fails in identifying those oracle translations)

much more informative than 20-best translations
with just the preceding sentence as the context.

7.2 Analysis of Improvements and Errors
To analyze typical cases relative to the improve-
ments and errors of the proposed approach, we ran-
domly select 50 success cases and 50 failure cases
when identifying oracle translations using the pro-
posed method. Specifically, we first collect cases
where oracle translation is selected from y11

0 (x0)
or y22

0 (xi, x0) (i = −5, . . . ,−2,+1, . . . ,+5),
rather than from y22

0 (x−1, x0). Then, from these
cases, we randomly select 50 examples for each of
the following cases.

(a) Proposed approach (maximizing forced back-
translation) successfully identifies collected
oracle translations.

(b) Proposed approach (maximizing forced back-
translation) fails to identify collected oracle
translations.

Then, we manually categorize the 50 examples (for
each case) according to the phenomena in Table 3.

For both Japanese to English and English to
Japanese, nearly 30∼40% are categorized as “syn-
onymous expression”, where the proposed ap-
proach of maximizing forced back-translation suc-
cessfully selects the oracle translation that includes
the synonymous expression rather than exactly the
same expression (as in the reference translation).
Due to this synonymous expression, the sentence

Ja-En En-Ja
category of phe-
nomena

2-to-2

wins

1-to-1

wins

2-to-2

wins

1-to-1

wins

synonymous ex-
pression

16 20 14 22

pronoun 2 2 1 2
untranslated by
1-to-1

8 0 12 2

article 1 0 0 0
other 7 8 3 4
manually judged

(comparable) 15 15 18 16
(1-to-1 wins) 1 0 2 0
(2-to-2 wins) 0 5 0 4

total 50 50 50 50

Table 4: Distribution of phenomena where baseline 2-to-2
y22
0 (x−1, x0) wins v.s. 1-to-1 y11

0 (x0) wins (through man-
ual analysis of 50 examples)

has the highest sentence-BLEU score and is se-
lected as the oracle translation. Although this phe-
nomenon is top ranked among others, it is also top
ranked among the failure cases. Thus, it is nec-
essary to incorporate other criteria to reduce the
failure cases.

For comparison, we also categorize the phenom-
ena of randomly selected 50 cases when the base-
line 2-to-2 model outperforms the 1-to-1 model,
i.e., translation y22

0 (x−1, x0) by the baseline 2-
to-2 model achieves a sentence-BLEU score that
is greater than that of translation y11

0 (x0) by the
1-to-1 model. We also categorize the phenomena
of randomly selected 50 cases of its opposite, i.e.,
when the 1-to-1 model outperforms the baseline 2-
to-2 model. These results are shown in Table 4. As
can be seen, even in the comparison of the base-
line 2-to-2 and 1-to-1 models, the “synonymous
expression” category is top ranked.

It is interesting to compare the second and third
ranked categories, i.e., “pronoun translation” and
“untranslated by baseline,” among Japanese to En-
glish and English to Japanese in Tables 3 and 4.
The “pronoun translation” category is ranked high
only in the Japanese to English case with the pro-
posed approach (Table 3). Table 2 shows a typi-
cal Japanese subject zero pronoun case and its de-
tail is described in section 2. With the “untrans-
lated by baseline / 1-to-1” categories, it is obvi-
ous from Table 3 and Table 4 that the proposed ap-
proach outperforms the baseline 2-to-2 model for
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Source sentences Target sentences
Forced

back-translation
probability
/ sentence-

BLEU

—
Reference
translation:

Every pain you suf-
fered was punish-
ment for your sins .

—

Immediately
preceding
sentence x−1:

お前の一挙一動がここに

お前を導いた。(Every step

you took led you to here .)

Translation
y22
0 (x−1, x0)

by baseline
2-to-2 model:

Every suffering
you suffered was
your punishment .

3.4×10−19

/ 27.64

Source
sentence x0:

お前の受けた全ての苦しみ

はお前の罪に対する罰だ

った。

Translation
y11
0 (x0)

by baseline
1-to-1 model:

All the suffering
you’ve had was
your punishment .

5.3×10−19

/ 16.62

2nd
subsequent
sentence x+2:

お前の命を奪うために

悪魔が送ったものを見よ!

(See what the devil has sent

to claim you .)

Translation
y22
0 (x+2, x0)

by 2-to-2
model:

All your suffering
was punishment for
your sins .

5.9×10−14

/ 57.18

Table 5: Example improvements over baseline 2-to-2 y22
0 (x−1, x0) (Ja-En) (b) untranslated by baseline

both Japanese to English and English to Japanese
directions. In addition, the baseline 2-to-2 model
outperforms the 1-to-1 model. Thus, it can be con-
cluded that the matter of untranslated content in
context-based NMT can be handled consistently
by appropriately extending the range of the context
considered within a certain framework of context-
based NMT models such as the 2-to-2 model. For
example, as shown in Table 5, the baseline 2-to-2
model fails to produce the word “sins” in its trans-
lation. In contrast, the translation y22

0 (x+2, x0)
obtained by the 2-to-2 model with the second sub-
sequent source sentence x+2 as the context sen-
tence successfully includes the word “sins,” proba-
bly because the second subsequent source sentence
x+2 includes “悪魔” (“devil”).

By examining the cases of improvements over
the baseline 2-to-2 model, we observe that the es-
sential advantage of the proposed approach is that
the measure of forced back-translation probability
can distinguish translation errors from relatively
acceptable translations, with which the sentence-
BLEU score with the reference translation is typi-
cally higher than that of the baseline 2-to-2 model.
As a result, we conclude that it is unnecessary to
consider a context with a much greater number of
sentences, such as 3-to-3 (or higher) models.

8 Conclusion

Within the framework of the 2-to-2 context-based
NMT model, this paper has explored how to se-
lect the most informative context sentences that
provide the highest BLEU score among the five
preceding and five subsequent sentences. In fu-
ture, we plan to compare the proposed method to
an existing approach (Li and Jurafsky, 2016) that
incorporates back-translation into the MT frame-
work. In addition, we plan to incorporate mono-
lingual techniques such as BERT (Devlin et al.,
2018) and neural coreference resolution (Lee et
al., 2017), to evaluate whether context sentences
(i.e., the second through fifth sentences preceding
the source sentence and the first through fifth sen-
tences subsequent to the source sentence) are in
fact informative. Also, in the context of translation
quality estimation techniques (Specia et al., 2015),
the proposed approach of estimating the quality of
translation by maximizing forced back-translation
is novel and has never been studied so far in the
task of translation quality estimation.
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Abstract

Memory-augmented neural networks
(MANNs) have been shown to outper-
form other recurrent neural network
architectures on a series of artificial
sequence learning tasks, yet they have
had limited application to real-world
tasks. We evaluate direct application
of Neural Turing Machines (NTM) and
Differentiable Neural Computers (DNC)
to machine translation. We further propose
and evaluate two models which extend the
attentional encoder-decoder with capabili-
ties inspired by memory augmented neural
networks. We evaluate our proposed
models on IWSLT Vietnamese→English
and ACL Romanian→English datasets.
Our proposed models and the memory
augmented neural networks perform sim-
ilarly to the attentional encoder-decoder
on the Vietnamese→English translation
task while have a 0.3-1.9 lower BLEU
score for the Romanian→English task.
Interestingly, our analysis shows that
despite being equipped with additional
flexibility and being randomly initialized
memory augmented neural networks
learn an algorithm for machine transla-
tion almost identical to the attentional
encoder-decoder.

1 Introduction

Memory-Augmented Neural Networks (MANN)
are a new class of recurrent neural network (RNN)

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

that separate computation from memory. The
key distinction between MANNs and other RNNs
such as Long Short-Term Memory cells (LSTM)
(Hochreiter and Schmidhuber, 1997) is the exis-
tence of an external memory unit. A controller net-
work in the MANN receives input, interacts with
the external memory unit via read and write heads
and produces output. MANNs have been shown to
learn faster and generalize better than LSTMs on a
range of artificial sequential learning tasks (Graves
et al., 2014; Graves et al., 2016; Sukhbaatar et
al., 2015). Despite their success on artificial tasks,
LSTM based models remain the preferred choice
for many commercially important sequence learn-
ing tasks such as handwriting recognition (Graves
et al., 2009), machine translation (Wu et al., 2016)
and speech recognition (Graves and Jaitly, 2014).

Attentional encoder-decoders (Bahdanau et al.,
2014; Luong et al., 2015), where the encoder and
decoder are often LSTMs or other gated RNNs
such as the Gated Recurrent Unit (Cho et al.,
2014b), are a class of neural network models
that have achieved state-of-the-art performance on
many language pairs for machine translation (Lu-
ong and Manning, 2015; Sennrich et al., 2016a).
An encoder RNN reads the source sentence one to-
ken at a time. The encoder both maintains an inter-
nal vector representing the full source sentence and
it encodes each token in the source sentence into a
vector often assumed to represent the meaning of
that token in its surrounding context. The decoder
receives the internal vector from the encoder and
can read from the encoded source sentence when
producing the target sentence.

Attentional encoder-decoders can be seen as a
basic form of MANN. The collection of vectors
representing the encoded source sentence can be
viewed as external memory which is written to
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by the encoder and read from by the decoder.
But attentional encoder-decoders do not have the
same range of capabilities as MANNs such as
the Neural Turing Machine (NTM) (Graves et al.,
2014) or Differentiable Neural Computer (DNC)
(Graves et al., 2016). The encoder RNN in at-
tentional encoder-decoders must write a vector at
each timestep and this write must be to a single
memory location. The encoder is not able to up-
date previously written vectors and has only one
write head. The decoder has read only access to the
encoded source sentence and typically just a sin-
gle read head. Widely used attention mechanisms
(Bahdanau et al., 2014; Luong et al., 2015) do not
have the ability to iterate through the source sen-
tence from a previously attended location. All of
these capabilities are present in NTMs and DNCs.

In this paper we propose two extensions to the
attentional encoder-decoder which add several ca-
pabilities present in other MANNs. We are also
the first that we are aware of to evaluate the per-
formance of MANNs applied directly to machine
translation.

2 Background

We briefly review how attention weights are com-
puted for Luong attention (Luong et al., 2015) and
how addresses are computed for the NTM. Alter-
native attention mechanisms have similar compu-
tations (Bahdanau et al., 2014) and likewise for
alternative MANNs such as DNCs (Graves et al.,
2016).

2.1 Luong Attention

At each timestep t during the decoding of an at-
tentional encoder-decoder a weighting wt over
the encoded source sentence is computed, where∑

swt(s) = 1 and ∀s wt(s) ≥ 0. The predicted
token at that timestep during decoding is then a
function of the decoder RNN hidden state ht and
the weighted sum of the encoder hidden states i.e.∑

swt(s) ∗ ĥs.
The difference between various attention mech-

anisms is how to compute the weighting wt. In
Luong attention (Luong et al., 2015) the weighting
is computed as the softmax over scaled scores for
each source sentence token, eq. 2. The scores for
each source sentence token are computed as the dot
product of decoder RNN hidden state ht and en-
coder RNN hidden state ĥs which is first linearly
transformed by a matrix Wa.

score(ht, ĥs)← h>t Waĥs (1)

wt(s)←
exp(βt ∗ score(ht, ĥs))∑
s′ exp(βt ∗ score(ht, ĥs′))

(2)

2.2 NTM Addressing
Rather than computing weightings over an en-
coded source sentence, NTMs have a fixed sized
external memory unit which is a N ∗W memory
matrix. N represents the number of memory loca-
tions and W the dimension of each memory cell.
A controller neural network has read and write
heads into the memory matrix. Addresses for read
and write heads in a NTM are computed some-
what similarly to attention mechanisms. However
in addition to being able to address memory us-
ing the similarity between a lookup key and mem-
ory contents, so called content based addressing,
NTMs also have the ability to iterate from cur-
rent or past addresses. This enables NTMs to
learn a broader class of algorithms than attentional
encoder-decoders (Graves et al., 2014; Graves et
al., 2016).

At each timestep (t), for each read and write
head the controller network outputs a set of param-
eters; a lookup key kt, a scaling factor βt ≥ 0, an
interpolation gate gt ∈ [0, 1], a shift kernel st (s.t.∑

k st(k) = 1 and ∀k st(k) ≥ 0) and a sharpening
parameter γt ≥ 1 which are used to compute the
weighting wt over the N memory locations in the
memory matrix Mt as follows:

wct (i)←
exp(βt ∗K[kt,Mt(i)])∑N−1
j=0 exp(βt ∗K[kt,Mt(j)])

(3)

We can see that wc
t is computed similarly to Lu-

ong attention and allows for content based address-
ing. kt represents a lookup key into memory and
K is some similarity measure such as cosine simi-
larity:

K[u,v] =
u · v
‖u‖ · ‖v‖ (4)

NTMs enable iteration from current or previ-
ously computed memory weights as follows:

wg
t ← gtw

c
t + (1− gt)wt−1 (5)

w̃t(i)←
N−1∑

j=0

wgt (j)st(i− j) (6)
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wt(i)←
w̃t(i)

γt

∑N−1
j=0 w̃t(j)γt

(7)

where (5) enables the network to choose whether
to use the current content based weights or the pre-
vious weight vector, (6) enables iteration through
memory by convolving the current weighting by a
1-D convolutional shift kernel and (7) corrects for
any blurring occurring as a result of the convolu-
tion operation.

The vector rt read by a particular read head at
timestep t is computed as a weighted sum over
memory locations similarly to Luong attention:

rt ←
N−1∑

i=0

wt(i) ∗Mt(i) (8)

An attentional encoder-decoder has no write
mechanism. Another way to view this, is that
an attentional encoder-decoder has a memory ma-
trix with N equal to the source sentence length
and the encoder must always write its hidden state
to the memory location corresponding to its posi-
tion in the source sentence. A NTM does have a
write operation, with write addresses determining
a weighting over memory locations for the write.
Each write head modifies the memory matrix by
outputting erase (et) and add (at) vectors which
are then used to softly zero out existing memory
contents and write new memory contents through
addition:

M̃t(i)←Mt−1(i)[1− wt(i)et] (9)

Mt(i)← M̃t(i) + wt(i)at (10)

3 Proposed Models

We propose two models which bridge the
gap between the attentional encoder-decoder
and MANNs, extending the attentional encoder-
decoder with additional mechanisms inspired by
MANNs. We also propose the application of
MANNs directly to machine translation.

3.1 Neural Turing Machine Style Attention
The reads from a decoder in an attentional
encoder-decoder for machine translation often ex-
hibit monotonic iteration through the encoded
source sentence (Bahdanau et al., 2014; Raffel et
al., 2017). However widely used attention mech-
anisms have no way to explicitly encode such a

strategy. NTMs combine content based address-
ing similar to attention mechanisms with the abil-
ity to iterate through memory. We propose a new
attention mechanism which combines the content
based addressing of Luong attention (Luong et al.,
2015) with the ability to iterate through memory
from NTMs. For our proposed attention mech-
anism at each timestep (t) the decoder outputs a
set of parameters for each of its read heads: ht,
βt ≥ 0, gt ∈ [0, 1], st (s.t.

∑
k st(k) = 1 and

∀k st(k) ≥ 0) and γt ≥ 1 which are used to com-
pute the weighting wt over encoded source sen-
tence ĥs for s = 1, 2, ...

score(ht, ĥs)← h>t Waĥs (11)

wct (s)←
exp(βt ∗ score(ht, ĥs))∑
s′ exp(βt ∗ score(ht, ĥs′))

(12)

wg
t ← gtw

c
t + (1− gt)wt−1 (13)

w̃t(s)←
N−1∑

j=0

wgt (j)st(s− j) (14)

wt(s)←
w̃t(s)

γt

∑N−1
j=0 w̃t(j)γt

(15)

Equations (11) and (12) represent the standard
content based addressing of Luong style attention.
Equations (13-15) replicate equations (5-7) of the
NTM to enable iteration from the currently at-
tended source sentence token wc

t or the previously
attended token wt−1. As with the NTM equation
(14) represents a 1D convolution on the weighting
wg
t with a convolutional shift kernel which is out-

putted by the decoder to enable iteration. Equation
(15) corrects for any blurring resulting from the
1D convolution. We can see that such an attention
mechanism has the content based addressing capa-
bility of Luong attention and the same capability
to iterate from previously computed addresses as
NTMs.

3.2 Memory-Augmented Decoder (M.A.D)
The introduction of attention mechanisms has
proved highly successful for neural machine trans-
lation. Attention extends the writable memory ca-
pacity of the encoder in an encoder-decoder model
linearly with the length of the source sentence.
This avoids the bottleneck of having to encode the
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Figure 1: Memory augmented decoder

whole source sentence meaning into the fixed size
vector passed from the encoder to decoder (Bah-
danau et al., 2014; Cho et al., 2014a). But the de-
coder in an attentional encoder-decoder must still
maintain a history of its past actions in a fixed
size vector. We are motivated by the success of
attention which extended the memory capacity of
the encoder to propose the addition of an exter-
nal memory unit to the decoder of an attentional
encoder-decoder, hence extending the decoder’s
memory capacity, fig. 1. We still maintain a read-
only attention mechanism into the encoded source
sentence, however the decoder now has the ability
to read and write to an external memory unit. We
can set the external memory unit to have a number
of memory locations greater than the maximum
target sentence length in the corpus, thus scaling
the decoder’s memory capacity with the target sen-
tence length in a similar vain as to how attention
scaled the encoder’s memory capacity with source
sentence length.

We note that a similar model has been proposed
before (Wang et al., 2016), but that in order to train
their model the authors propose a pre-training ap-
proach based on first training without the external
memory unit attached to decoder and then adding

it on. This approach restricts the form of possi-
ble memory interactions as it must be possible to
add the external memory unit while maintaining
the pre-trained weights of the attentional encoder-
decoder. We simply make the decoder a NTM with
the standard read and write heads into an external
memory and an additional read head into the en-
coded source sentence with the addresses on this
read head computed in Luong attention style, but
other choices for the addressing mechanism are
possible, including DNC style addressing. Fol-
lowing a recent stable NTM implementation (Col-
lier and Beel, 2018) we do not have any problems
training our proposed model.

3.3 Pure Memory-Augmented Neural
Network

We propose a pure MANN model for machine
translation, fig. 2. Under our proposed model a
MANN receives the embedded source sentence as
input one token at a time and then receives an
end of sequence token. The MANN must then
output the target sentence. We are motivated by
the enhanced performance of MANNs compared
to LSTMs on artificial sequence learning tasks
(Graves et al., 2014; Graves et al., 2016; Rae et
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Figure 2: Pure memory augmented neural network for machine translation

al., 2016).
We note that our proposed model has the rep-

resentational capability to learn a solution similar
to an attentional encoder-decoder by simply writ-
ing an encoding of each source sentence token to a
single memory location and reading the encodings
back using content based addressing after the end
of sequence token.

We also highlight the differences to the atten-
tional encoder-decoder model. The pure MANN
model may have multiple read and write heads
each of which uses more powerful addressing
mechanisms than popular attention mechanisms.
The proposed model may also update previously
written locations in light of new information or
reuse memory locations if the previous contents
have already served their purpose. There is no sep-
aration between encoding and decoding and thus
only a single RNN is used as the MANN’s con-
troller rather than different RNN cells for the en-
coder and decoder in an encoder-decoder, halv-
ing the number of network parameters dedicated
to this part of the network.

In this paper for the pure MANN model we
use and compare NTMs and DNCs as the choice
MANN, however any other MANN with differen-
tiable read and write mechanisms into an external
memory unit would be permissible. In both cases
we use a LSTM controller. We also compare the
use of multiple read and write heads for the NTM
model.

4 Methodology

We evaluate our models on two machine transla-
tion tasks. As a low resource spoken language task

we use the 2015 International Workshop on Spo-
ken Language’s dataset of English to Vietnamese
translated TED talks. We follow (Luong and Man-
ning, 2015) in their preprocessing and setup and
use their results as a baseline. For training we use
TED tst2013, a dataset of 133K sentence pairs. As
the validation set we use TED tst2012 and test set
results are reported on the TED tst2015 dataset.
We use a fixed vocabulary of 17.5K words and
7.7K words for English and Vietnamese respec-
tively. Any words outside the source or target vo-
cabulary are mapped to an unknown token (UNK).

As a medium resource written language task we
follow (Sennrich et al., 2016a) in their general
setup for the Romanian to English task from the
ACL’s 2016 First Conference on Machine Trans-
lation’s, Machine Translation of News Task. We
use their results as a baseline. We train our models
on the Europarl English Romanian dataset which
consists of 600k sentence pairs. We use the news-
dev2016 and newstest2016 datasets as the valida-
tion and test sets respectively. We Byte Pair En-
code (Sennrich et al., 2016b) the source and tar-
get languages with 89,500 merge operations. After
Byte Pair Encoding, the English vocabulary size
is 48,824 sub-words and 65,699 sub-words for the
Romanian vocabulary.

For all models we use the Adam optimizer
(Kingma and Ba, 2014) with an initial learning
rate of 0.001. We train for a fixed number of
steps but after each epoch we measure the BLEU
score on the validation set and measure the test set
performance from the version of the model with
the highest validation set BLEU score. For the
Vietnamese→English models we train for 14,000
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Model Dev Test
(Luong and Manning, 2015) - 23.3
NTM Style Attention 21.5 23.6
M.A.D. (1 R/W head) 21.1 23.1
M.A.D. (2 R/W heads) 21.2 23.8
Pure MANN (NTM - 1 R/W head) 20.9 23.5
Pure MANN (NTM - 2 R/W heads) 21.3 23.5
Pure MANN (DNC - 1 R/W head) 20.6 23.6

Table 1: Vietnamese→English translation results
(BLEU) on dev (TED tst2012) and test (TED
tst2013) sets. M.A.D↔Memory-Augmented De-
coder. 1 R/W head means the MANN had 1 read
and 1 write head into external memory.

steps and for the Romanian→English models we
train for 120,000 steps.

For all models we use beam search with a beam
width of 10. We set the dropout rate to 0.3
with no other regularization applied. For both
the Vietnamese→English and Romanian→English
tasks we follow (Luong and Manning, 2015; Sen-
nrich et al., 2016a) in using a stack of 2 x 512 unit
LSTMs as the encoder and decoder for all relevant
models and the controller network for the MANNs.
For the memory-augmented decoder the number of
memory locations is set to 64 and each memory
location is a 512 dimensional vector. Whereas for
the pure MANN model the number of memory lo-
cations is set to 128 with the memory cell size also
set to 512.

We implement our model in Tensorflow, extend-
ing Google’s NMT implementation (Luong et al.,
2017), and make it available publicly1.

5 Results

The test set BLEU scores for the
Vietnamese→English translation task are all
very similar, with each model’s score within the
range of 23.1-23.8 BLEU (table 1). Interestingly,
despite the pure MANN models seeing the source
sentence in a uni-directional fashion (with all
other models using bi-directional encoders) the
pure MANN models perform on par with the other
models.

The attentional encoder-decoder (Sennrich et
al., 2016a) has the highest test set BLEU score of
all the models for the Romanian→English transla-

1https://github.com/MarkPKCollier/
MANNs4NMT

Model Dev Test
(Sennrich et al., 2016a) 30.0 29.2
NTM Style Attention 30.0 28.7
M.A.D. (1 R/W head) 29.8 28.9
M.A.D. (2 R/W heads) 29.7 28.3
Pure MANN (NTM - 1 R/W head) 28.9 27.7
Pure MANN (NTM - 2 R/W heads) 28.0 27.3
Pure MANN (DNC - 1 R/W head) 27.8 27.5

Table 2: Romanian→English translation results
(BLEU) on dev (newsdev2016) and test (new-
stest2016) sets. M.A.D ↔ Memory-Augmented
Decoder. 1 R/W head means the MANN had 1
read and 1 write head into external memory.

tion task (table 2). The proposed extensions to the
attentional encoder-decoder result in 0.3-0.9 lower
test set BLEU score. For the Romanian→English
translation task, the pure MANN model has 1.5-
1.9 lower test set BLEU score.

5.1 Analysis

We now examine the attention weights for an at-
tentional encoder-decoder and address computa-
tion for the 1 R/W head NTM on a particular
Romanian→English translation. The sentence was
chosen as it was the first sentence in our test set
which had the same translation from both models.
We note that the pattern of addresses are typical
of the addresses computed on other sentences for
both language pairs, but that a single typical exam-
ple is presented for brevity.

Figure 3: Example attention weights for atten-
tional encoder-decoder
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We see that we replicate the monotonic iteration
through the source sentence often observed in at-
tention mechanisms (Bahdanau et al., 2014; Raffel
et al., 2017) in fig. 3. We note that this pattern
of addressing must be computed solely using the
content based addressing of the attention mecha-
nism as no iteration capability is available to the
attention weight computation.

We now examine how the NTM has computed
the addresses for its read and write head in order
to arrive at the same resulting translation. Look-
ing first at the write head, fig. 4, we see that as the
NTM is shown the source sentence it has learned
a very similar strategy to the encoder of an atten-
tional encoder-decoder. In particular we can see
that the write head writes an encoded version of
the source sentence tokens to successive memory
locations, fig. 4a. Interestingly we see that the
successive memory locations are computed using
the iteration cabability of the NTM as the content
based addresses are not significant, fig. 4b and the
shift kernel is iterating forward through memory,
fig. 4d from the address at the previous timestep
as can be seen from the interpolation gate, fig.
4c. If we interpret the encoded source sentence
for an attentional encoder-decoder as being writ-
ten to memory, then this is precisely the form of
addresses we would see - except that in the case of
a NTM the addressing strategy is learned not hard-
coded. This suggests that this particular inductive
bias built into the attentional encoder-decoder is a
sensible one.

The attentional encoder-decoder leaves the en-
coded source sentence unchanged during decoding
as it has no write mechanism. However we observe
that the write head is active during decoding for
the NTM, fig. 4a. We see that the NTM uses con-
tent based addressing, fig. 4b to write to the mem-
ory locations that are previously read from by the
read head , fig. 5. This suggests that perhaps the
NTM has developed a strategy of marking partic-
ular source sentence tokens as completed so as not
to retranslate them later during decoding. Interest-
ingly such a mechanism is built directly into the
DNC (Graves et al., 2016) and in fact monotonic
attention mechanisms have been developed which
prevent retranslation of previously translated to-
kens or preceeding tokens in the source sentence
(Raffel et al., 2017). But here of course this strat-
egy is learned from random initialization by the
NTM.

(a) Full address

(b) Content based addressing

(c) Interpolation gate

(d) Shift kernel

Figure 4: Example write head address computation
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(a) Full address

(b) Content based addressing

(c) Interpolation gate

(d) Shift kernel

Figure 5: Example read head address computation

Having seen that the NTM learns to write the en-
coded source sentence to successive memory loca-
tions we are not surprised that as the predicted sen-
tence is produced the NTM reads the from mem-
ory locations similarly to the attentional encoder-
decoder. We see that the previously written to
memory locations are then read back from, fig. 5a.
Interestingly, we see the read head addresses of
the NTM as it produces the predicted sentence are

heavily determined by its content based address-
ing, fig. 5b. Thus the NTM does not make sig-
nificant use of its iteration capability, despite ex-
hibiting the type of monotonic iteration through
the source sentence as has been observed with at-
tention mechanisms.

We also note that the read head of the NTM
is not particularly focused as the NTM sees the
source sentence, fig. 5a. This is somewhat surpris-
ing as the results of the read operation are avail-
able to the controller at the next timestep and thus
could be used to retrieve the encoding of a pre-
vious source sentence token or a summary of a
section of the source sentence rather than rely-
ing on the LSTM controller memory solely for
this. We suspect that this behaviour is the result of
the read head operation not being available to the
write head at the current timestep and thus cannot
be used to disambiguate the current token as has
been the motivation for the successful Transformer
NMT model (Vaswani et al., 2017). Thus, we sug-
gest that extending the NTM and other MANNs
depth-wise to have successive rather than parallel
operations on the memory matrix at each timestep
may be a fruitful avenue of future research.

6 Conclusion

We have proposed a series of MANN in-
spired models for machine translation. Two
of these models; NTM Style Attention and the
Memory-Augmented Decoder extend the atten-
tional encoder-decoder which has achieved state-
of-the-art results on many language pairs. These
extensions perform 0.2-0.5 BLEU better than the
attentional encoder-decoder alone on the low re-
source Vietnamese→English translation task and
0.3-0.9 lower BLEU on the Romanian→English
translation task. We conclude that a content based
addressing mechanism is sufficient to encode a
strategy of monotonic iteration through source sen-
tences and that enabling the network to express this
strategy directly does not significantly improve
translation quality. From the Memory-Augmented
Decoder results it appears as though extending the
memory capacity of the decoder in an attentional
encoder-decoder does not offer an advantage, con-
trary to previous results (Wang et al., 2016).

Our third proposed model is to just use MANNs
directly for machine translation. As far as we
are aware we are the first to publish results on
MANNs used directly for machine translation.
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The pure MANN model performs marginally bet-
ter, +0.2-0.3 BLEU, than the attentional encoder-
decoder for the Vietnamese→English translation
task. Performance is 0.3-1.9 BLEU worse for the
Romanian→English translation task. We conclude
that MANNs in their current form do not improve
over the attentional encoder-decoder for machine
translation. Our analysis of the algorithm learned
by the pure MANN shows that despite being ran-
domly initialized the pure MANN learns a very
similar solution to the attentional encoder-decoder.

We note that the performance gap between the
pure MANN and attentional encoder-decoder is
not very large and that the pure MANN model
is very general and does not incorporate any do-
main specific knowledge. MANNs are a relatively
new architecture that have received less attention
than encoder-decoder approaches. We expect that
with the development of improved MANN archi-
tectures, MANNs could achieve state-of-the-art re-
sults for machine translation.
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Abstract

Phrase-based machine translation provides
the system developer with controls that
enable fine-grained control over machine
translation output. One approach to provide
similar control in neural machine transla-
tion is placeholding (herein called mask-
ing), which replaces input tokens with
masks which are replaced with the origi-
nal input text in post-processing. But is
this a good idea? We undertake an explo-
ration of masking in French–English and
Japanese–English using Transformer archi-
tectures. We attempt to quantify whether
(and where) masking is necessary with anal-
ysis of a baseline system, and then explore
numerous parameterization of masking, in-
cluding post-processing techniques for re-
placing the masks. Our analysis shows this
to be a thorny matter; masks solve some
problems but are not perfectly translated
themselves.

1 Introduction

Neural machine translation generally produces
higher quality output than phrase-based machine
translation, especially in high-resource training set-
tings and on in-domain data. However, this im-
provement has come at the expense of a certain
loss of control over how words get translated, since
there is no longer a direct link between source
words, their translation options, and the ordered
decoder output. While nearly everyone has con-
sidered this trade to be worthwhile, there lingers

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

src En 2017 Bernard Arnault a gagné...
mask En NUM NAME NAME a gagné...

out In NUM NAME NAME a gagné...
align In NUM1 NAME1 NAME2 a gagné...
detok In 2017 Bernard Arnault won...

Figure 1: A translation pipeline with masking (placeholding).
The indexes denote a permutation of each mask type, and may
or may not be an explicit part of the tag.

a concern about the stability and dependency of
NMT performance. Input words are not all equally
important, and there are many settings where one
would be willing to sacrifice translation quality for
a translation guarantee that certain input tokens
be translated with perfect recall. Common exam-
ples include prices on a product page, names and
places in a news article, or contact and location
information, and other data types, such as URLs.

One attempt to providing these guarantees is the
use of placeholders (or masks, the term we will use
in this paper), where input tokens in a category are
replaced by a masked label token (Figure 1). These
are then passed through to the output and replaced
with the correct translation in post-processing. This
ostensibly guarantees that the input term (or its
preferred translation) will correctly appear in the
output, while at the same time restoring a capability
that was easily handled in the old phrase-based
paradigm. At the same time, doing so reflects a
lack of confidence in the decoder to get this right.
This approach has not received much attention in
the research literature.

In this paper, we look at this topic in more detail.
We focus our attention on copy or pass-through
tokens, which is to say, input tokens that are not
translated, but which are simply copied to the out-
put sentence. This includes many different token
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types that can be recognized by regular expressions
(numbers, URLs, email addresses, and Emojis), as
well as types for which we can provide a dictionary.

We ask the following questions:

• Are translation guarantees necessary for these
types?

• How effective is masking at producing these
guarantees?

We experiment in both high resource (FR→EN)
and low-resource (JA→EN) language settings.

2 Related Work

The first application of hard masking in neural ma-
chine translation was in Luong et al. (2015) and
Long et al. (2016), which address the translation of
rare words and technical items, but the approach
was largely abandoned when sub-word methods
(Sennrich et al., 2016) obviated the need. Most sim-
ilar to this work in spirit is Crego et al. (2016), who
mentioned that masking could be used to translate
many “pass-through items” but did not conduct any
further analysis towards the problem or the solution.

Another solution for handling pass-through items
is to add them as constraints during beam search. A
number of approaches introduced modifications to
beam search that ensured that desired words would
be included in the output (Hokamp and Liu, 2017;
Chatterjee et al., 2017; Anderson et al., 2017). One
problem with these solutions is that decoding time
generally grows very quickly with the number of
constraints added. Hasler et al. (2018) showed that
even two constraints cause decoding speed to in-
crease by as much as five times. Post and Vilar
(2018) introduced a fixed-beam-size variant which
is constant in the number of constraints, but the
constant overhead is still quite high.

In terms of specific token types, Li et al. (2018),
Ugawa et al. (2018) and Grundkiewicz and Heafield
(2018) studied NMT models with better handling
of named entities, either by adding named entity
tags or employing transliteration models. Gotti et
al. (2014) analyzed how hashtags are translated in
the Canadian government tweet corpus and used
insights from the analysis to improve their tweet-
oriented machine translation system. Radford et al.
(2016) conducted corpus analysis on the alignment
between natural language text with Emojis.

match type examples

template
(regex)

numbers, emoji, URLs, email
addresses

direct (dict) names, cities, states, locations

Table 1: Pass-through candidates can be identified at the class
level (via regular expressions) or type level (via direct match
against a provided dictionary).

3 Masking

Masking is the context-free replacement of a class
of input tokens with a single mask token. The idea
is to collapse collections of distributionally similar
tokens into a single token that the decoder can then
be trained to reliably translate.

Because there has been little formal study of
these items, there is no consensus on what should
be masked (i.e., what the set of pass-through items
is). For this work, the set of items to be masked
comes from two different sources (Table 1):

• Template matches. This refers to sets of items
that can be identified by regular expression.
We work with numbers, URLs, email ad-
dresses, and emoji (a term we use in a gen-
eral sense to denote extended non-alphabetic
character sets).

• Dictionary matches. Tokens or sequences of
tokens that are always translated the same way.
A canonical example is named entities. These
are often identified via dictionary lookup.

Dictionary matches typically contain items that
are in fact translated, but we focus on the subset of
word tokens that are instead passed through.

3.1 Demasking

At inference time, the masked tokens in the decoder
output must be replaced with the corresponding
source tokens. This demasking requires aligning
the masks in the decoder output to the masks in the
decoder input. Once this is done, recovering the
original token identities for replacement is trivial.
However, computing the mask alignment is not nec-
essarily easy. We therefore explore two solutions to
it: indexing and bipartite matching. Each of these
solutions has its own benefits and problems.

Indexing The indexing approach (Crego et al.,
2016) incorporates an index in each mask token:
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EMAIL becomes EMAIL1, EMAIL2, and so on. Ide-
ally, the decoder learns to output indexed mask
tokens as a bijective permutation of the input mask
tokens. The source tokens for each output mask
are easily recovered in this scenario, but the down-
side is that there are now an unbounded number of
masks which are all different to the decoder.

Bipartite matching Without indexes, we must
produce our own alignment. We propose a gen-
eral solution based on weighted bipartite matching.
This approach takes as input a matrix of weights
that assigns a score to each (source token, target
token) pair. These weights can be obtained in differ-
ent ways; for example, from the decoder attention
weights, or from an external alignment model.

The task is to convert these weights into a set
of hard alignments between the input and decoder
output masks. We do this by formulating the prob-
lem as a bipartite graph problem (Algorithm 1. For
each subset of masks with the same label, we use
alignment scores as the edge weights, and execute
the bipartite graph matching algorithm to find the
best hard alignment scheme. These alignments can
then be used to demask the output tokens.

Our approach guarantees an alignment for each
target mask. If there are fewer target than source
masks, an input token will be erroneously used
multiple times.

Obtaining weights Obtaining weights to use
with bipartite matching is not straightforward. We
experiment with two approaches:

• Averaged attention scores. We average source
attention scores across all decoder heads and
layers in our model.

• External aligner. We run a version of fast-
align (Dyer et al., 2013).

Both have problems. We use Transformers
(Vaswani et al., 2017) in our experiments, but multi-
head Transformer attention is not the same thing
as alignment (Jain and Wallace, 2019). Fast-align
is fast and easy to use at inference time, but it is
a variant of IBM Model 2 (Brown et al., 1993)
and the HMM model (Vogel et al., 1996). There-
fore, its translation model cannot distinguish among
mask permutations, and its impoverished distortion
model is not well-suited to the task of recovering
permutations of identical masks. However, we con-
sider both approaches worth testing on this coarser
alignment task, where we are only concerned with

Algorithm 1: Bipartite Matching Demasking
Input: source sentence S = {s0, . . . , sI−1},

target sentence T = {t0, . . . , tJ−1},
soft alignment matrix A of size I × J

Output: demasked target sentence T ′
T ′ = T ;
for each unique mask label m in T do
C = ∅; // competing masks
for (si, tj) in S × T do

if si, tj are both masks and both
belong to category m then
C = C ∪ {(si, tj)};

end
end
extract bipartite graph G corresponding to
C using the weights from A;

conduct bipartite matchingM on G;
for match (si, tj) inM do

substitute tj in T ′ with the unmasked
source token corresponding to si;

end
end
return T ′;

alignment of a handful of well-attested types, and
not all the words in the sentence pair.

4 Experiment Setup

4.1 Data

Our evaluation follows the WMT 2019 Robustness
Task,1 except that we use MTNT data (Michel and
Neubig, 2018) for evaluation only. This includes
MTNT/train, which we excluded from training in
part because many of the masked items we would
like to evaluate occur most frequently in this dataset.
Table 2 contains information about all data sets.

For French–English training data, we use Eu-
roparl (Koehn, 2005, v7) and News Commentary
(v10), and a portion of the UN Corpus. Due to its
large size, we do not add all of the UN data, but add
only lines that have a mask other than NUMBER,
which includes about 1.1 million lines. This is cru-
cial for the experiments since there is not enough
masked data without this addition. We also include
the WMT 2015 newstest test set for evaluation.

We also conduct limited experiments on
Japanese–English. We follow Michel & Neubig in
combining KFTT (Neubig, 2011), JESC (Pryzant

1www.statmt.org/wmt19/robustness.html
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Dataset French–English Japanese–English
sents words sents words

Europarl v.7 2.0m 50.2m - -
News commentary v.10 200k 4.4m - -
UN (complete) 12.8m 316.2m - -
→ UN (dict masks) 1.1m 33.8m - -
KFTT - - 440k 9.7m
JESC - - 3.2m 21m
TED Talks - - 241k 4.0m

newstest2014 3,003 69k - -
MTNT1.1/valid 886 34k 965 19k

newstest2015 1,500 25k - -
MTNT1.1/train 19k 660k 6,506 128k
MTNT1.1/test 1,022 16k 1,001 11k

Table 2: Pre-tokenization data sizes in sentence and English words for FR–EN and JA–EN training (top), validation (middle),
and testing (bottom).

et al., 2017), and TED Talks (Cettolo et al., 2012)
data.

4.2 Masks

We obtain our set of mask types from two sources:
a set of regular expressions, and a dictionary ex-
tracted from the training data.

Regular expressions We built a set of regular
expressions to identify the following mask types:
NUMBER, EMOJI, EMAIL, and URL.

A difficulty with developing these regular ex-
pressions is their interaction with other steps in the
pipeline. One first has to choose whether to apply
masking before or after tokenization. A natural
place is afterwards, but this requires that the tok-
enizer not split up the items we wish to mask, which
in turn requires one to apply a set of regular expres-
sions to exempt portions of the input segment.2 As
a result, we apply all masks to the raw data and
modify tokenization and subword splitting code to
not split up masks.

Dictionary We also want to test how well the
system translates named entities. We identify these
items by running the Stanford NER tagger on the
English side of all the training data (including the
complete UN corpus). We then construct a dictio-
nary from all entries satisfying the following con-
straints, which simplify the masking and demasking

2The Moses tokenizer, which is applied with default settings
in many scenarios, segments URLs into many pieces, due to a
weak and buggy “protected patterns” file.

process. Each entity:

• should be labeled as one of the following cate-
gory: PERSON, LOCATION, ORGANIZATION,
CITY, COUNTRY;

• must be found verbatim in the non-English
side of the parallel sentence;3 and

• must contain at least one word not among the
most frequent 10k words in the training data.

Table 3 shows the statistics of pass-through items in
MTNT dataset captured by our regular expression
and named entity dictionary.

4.3 Synthetic Data
A problem apparent from Table 3 is that there sim-
ply aren’t many instances for many of the mask
types, which impedes investigation. MTNT/train
has the most examples for many types, but for
EMAIL, URL, COUNTRY, and even CITY, there
are fewer than 1k, and often barely any at all.

To address this problem, we synthesize larger
tests that allow us to see how often various types
are translated correctly in the baseline system. For
each mask, m, we identify all sentence pairs (s, t)
in the training data for which one of the words
was masked as m, ensuring the mask is in both the
source and reference. Call this set Dm. Next, we
build a set Vm of all tokens that get masked as m:

Vm = {p | mask(p) = m}
3This requirement limits our ability to identify Japanese enti-
ties, but it prevents errors from transliteration and/or alignment
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Mask French–English Japanese–English
train WMT15 MTNTtest MTNTtrain train MTNTtest MTNTtrain

NUMBER 1,926,726 210 238 16,562 64,635 121 1,014
EMOJI 5,434 1 5 131 2,057 11 352
EMAIL 20,751 0 0 0 1 0 0
URL 38,655 0 0 26 175 0 5

CITY 186,902 39 16 824 13 0 0
COUNTRY 34,205 1 0 7 12 0 0
LOCATION 409,109 41 24 1,598 155 0 2
ORG. 369,297 73 46 1,896 507 0 40
PERSON 845,116 131 60 3,395 179 0 3

Table 3: Entity counts across all data. For training data, the counts are “true” counts, that is, they are only counted for tokens
that appeared on both the source and target sides of the data. For test sets, the counts are produced by matching only against the
source. For most entity types, data is quite sparse.

We then produce a new test set by repeating the
following procedure 5,000 times:

1. Sample a sentence pair d ∈ Dm;

2. Twenty separate times, do

(a) Sample one of the positions with mask
m in d (there may be only one);

(b) Sample a term s ∈ Vm;
(c) Create a new sentence pair by inserting s

into d.

This yields synthetic datasets of 100k sentences.
Table 7 contains examples.

4.4 Models

Our baseline NMT system is a 4-layer transformer
trained with Sockeye (Hieber et al., 2017). We
use the following settings for training both French–
English and Japanese–English models: eight atten-
tion heads, model size of 512, feed-forward layer
size 2048, three-way tied embeddings, layer nor-
malization applied before attention, dropout and a
residual connection added afterwards, a batch size
of 4096 words, and the learning rate initialized to
0.0002. We compute checkpoints every 5000 up-
dates, and train until validation likelihood does not
increase for ten consecutive checkpoints.

For preprocessing, we first apply the Moses
scripts that normalize punctuation, remove non-
printing characters, and tokenize.4 We learn a sub-
word model using byte-pair encoding (Sennrich et

4With the options -no-escape and using a version of the
Moses basic-protected-patterns file modified to
protect masks.

al., 2016) with 32k merge operations. No recasing
is applied to either source- or target-language text.

For alignment-based demasking, we trained two
fast-align models, one in each language direction,
using default parameters. We then combine them
with the grow-diag-final-and heuristic.

Source Factors We also experiment with source
factors (Sennrich and Haddow, 2016) applied to the
baseline (unmasked) system. Source factors are sep-
arate embeddings that are learned from annotations
applied to the input tokens. For each of the types
NUMBER, EMAIL, and URL, instead of masking,
we added a distinct binary source factor. We also
experimented with two ways of combining factors:
concatenation and summing. Concatenation was
described in Sennrich et al.; we learn an embedding
of size 4 for each factor, and concatenate with the
subword embeddings. For summing, we instead
embed each factor to size 512, and sum together all
factors for each input token.

5 Results

We compute BLEU on detokenized, cased outputs
using the standardized BLEU scoring script, sacre-
BLEU (Post, 2018).5 The results on all test sets
can be found in Table 4. We provide the same-data
baseline score from Michel and Neubig (2018) as
an anchor point for evaluating the models.

In no masking situation is there any improvement
in BLEU score over the baseline system. In fact,
adding masks seems to uniformly cost the models in

5Shared portion of signature: BLEU +case.mixed
+numrefs.1 +smooth.exp +tok.13a
+version.1.2.20.
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System French–English JA–EN
WMT15 MTNTtest MTNTtrain MTNTtest MTNTtrain

Michel & Neubig (Base) - 23.2 - 6.6 -

baseline 32.0 28.1 28.7 8.2 6.5
indexed masking 31.8 27.4 27.0 8.0 6.6
masking (fast-align) 31.9 27.9 * 8.1 *
masking (attention) 31.9 28.0 27.5 8.1 5.4

source factors (concat) 32.0 28.1 28.3 8.2 6.0
source factors (summed) 32.4 28.4 29.1 8.2 6.7

Table 4: BLEU scores on test sets. The score take from Michel & Neubig is the system not trained on MTNT/train, since we did
not train on that in this paper, instead reserving it for analysis.

type WMT MTNT synth
/test /train

NUMBER 91.1 95.2 94.8 -
EMOJI 0 0 5.2 -
EMAIL - - - 96.9
URL - - 91.7 91.3

CITY 100 92.3 95.1 98.4
COUNTRY 100 - 50.0 90.2
LOCATION 100 100 87.9 -
ORG. 98.4 100 93.6 -
PERSON 99.2 100 94.9 -

Table 5: FR–EN baseline recall scores (against the reference)
for each data type when decoding with the baseline system.
Hyphens (-) indicate no data being available, and italics in-
dicate counts for which there were fewer than 50 instances
(Table 3). The synthetic dataset is discussed in Section 6.3.

terms of BLEU score, from small drops of a tenth
of a point or so (for WMT15 and Japanese), to
large drops of about half a BLEU point on FR-EN
MTNT. We do, however, see BLEU score increases
of about a third of a point when using summed
source factors.6

BLEU is important, but is too coarse of a metric
to draw conclusions from in this situation that deals
with relatively rare phenomena. We turn now to a
more fine-grained analysis.

6 Baseline Analysis

We begin with an analysis of the performance of
the baseline system on all the mask types in our
study. Table 5 reports, for each type, the percentage

6Recall that these are applied only to numbers, email addresses,
and URLs, and that these terms are not masked, but instead
have the standard tokenization and subword-splitting regime
applied to them.

of time that the baseline system correctly translated
tokens that were in both the source and reference.

6.1 NUMBER

Numbers are by far the most frequent category type,
and additionally for many scenarios numbers are
considered to be one of the data types that are impor-
tant to correctly translate. How well are numbers
translated?

On WMT15, there are 210 instances of numbers
that are matched by our regular expression and exist
in both the French input and the English reference.
On these numbers, the baseline system achieves
an accuracy of 91.2%, leaving only 18 instances
of missed masks. Of these, the vast majority are
fine: 12 are found in written form in the system
output (e.g., twelve instead of 12), and four are
localization effects of time (e.g., 14:30 → 2:30
PM). Accounting for these, the accuracy is 99.0%.

Turning to MTNT/test, we find an accuracy of
92.2% on 219 masked instances, with 17 of them
translated incorrectly. Of these, 11 are fine (written
substitutions), and many are the result of the de-
coder entering a “language modeling mode”, where
it generates output that has little to do with the input
(Koehn and Knowles, 2017). A few are actually
wrongly translated: 15 jours gets translated as fort-
night, and 1h de sommeil (“one hour of sleep”) is
mistranslated.

Finally, we look at MTNT/train, where there
are many more masks, especially numbers.
MTNT/train is an unusual dataset. There are many
input segments with hundreds or over a thousand
words, often containing multiple sentences, due to
the way the data was collected (Michel and Neu-
big, 2018, penultimate paragraph of §3.4) There
is also a lot of repetition: some input sentences

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 187



type # of digits
1 2 3 4 *

correct 203 9 0 1 2
missing 6 8 1 6 0
wrong 1 5 0 0 2
total 210 23 1 87 4

Table 6: Counts of error types made by the baseline system
on FR–EN MTNT/train on 1-, 2-, 3-, and 4-digit integers,
and other numbers (*), looking only at system outputs with
50 or fewer words. missing and wrong denote errors where
the number is either dropped or mistranslated by the baseline
system. correct sentences were fine but not identical (e.g.,
“1,000” and “1000” or “1” and “one”).

are repeated three or four times, leading to skewed
statistics. It is also quite informal, and since we had
no such data in our training data, we often observed
the NMT model again entering “language model
mode”. The accuracy is 95.7% on 10,040 instances
with system outputs with 50 or fewer words.

We analyze the 325 instances where our method
reports an error (Table 6).7 The error counts are
produced by counting all instances where a number
matching our pattern is found in both the French
source and English reference, but not in our system
output. We break down the analysis by number
type: integers with one to four digits, and all others.

It is clear that the analysis from above holds: the
majority of items marked incorrect by automatic
matching are actually fine (65%). The six missing
4-digit numbers seem to be a quirk of the data: six
of the source sentences have X Edition at the start
of the input and reference (for some year X), with
no punctuation, and it gets dropped. The handful of
other errors are similar to those described above. If
we remove the bad lines, and count as correct the
sentences we identify, the new recall for numbers
on MTNT/train is 98.8%.

The baseline JA-EN system does not perform
nearly as well as the FR-EN system. The accu-
racy for numbers is only 49.3% on MTNT/test and
61.2% on MTNT/train. However, we see the same
pattern of mismatches that are not errors (e.g., num-
bers spelled out or formatted slightly differently).
Accounting for these, the recall on MTNT/test
jumps to 67.1%. This is still much lower than we
see for French, but not unexpected given the drastic
difference in BLEU score.

7This is after throwing out 103 instances where the input was
multiline or the NMT output was garbage, perhaps due to
out-of-domain effects.

The bottom line on these test sets is that numbers
appear to be correctly passed-through or translated
the majority of the time in the high resource setting.
They are also often correctly translated in context-
sensitive ways. However, they are not perfect.

6.2 EMOJI

We use the term emoji broadly to indicate special
characters that are outside the phonetic alphabet.
Emoji are a unique type of data, because they are
typically single Unicode codepoints. If these code-
points were not in the training data, they will be
untranslatable. This is precisely what happens in
WMT15, where the single instance

L’introduction mi-septembre par
AppleTM d’écrans plus grand pour...

is mistranslated. Emoji are therefore a unique can-
didate for masking.

6.3 EMAIL, URL, CITY, and COUNTRY

These four categories have almost no data in the
test sets, so we instead analyze the synthetic data
(§4.1). The synthetic data provides us with 5,000
sentence contexts with 20 different instances, to-
talling nearly 100k samples (Table 7). We translate
each of these sentences with the baseline system,
and check whether the entity type is in the system
output. The results can be found above in the last
column of Table 5.

We focus here on EMAIL and URL. Note that
these are types which should almost always be
passed through, and not translated. Yet the baseline
system mistranslates 3.1% of email addresses and
8.7% of URLs. The reason likely has to do with
the MT preprocessing pipeline: both tokenization
and subword processing mangle these types into
long sequences of tokens. On average, URLs are
transformed into 14.1 subword tokens (the longest
is 125 tokens), versus 3.9 subword tokens for the
average vocabulary item.

Looking at the outputs, we see that URLs are usu-
ally translated nearly perfectly, except for a small
mistranslated or dropped piece (Table 8). But for
these types, a single character mis-translation ren-
ders the entire item useless.

6.4 LOCATION, ORG., and PERSON

These three categories are a bit unusual, since we
are restricting our attention to instances that have
the same surface form in both French and English
(instead of using a translation dictionary). All of
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Présidence de l’Union européenne : http://europa-eu-un.org
Présidence de l’Union européenne : http://www.fao.org/figis/servlet/static?
xml=CCRF_prog.xml&dom=org&xp_nav=2,3
Présidence de l’Union européenne : www.all4syria.org
Présidence de l’Union européenne : http://www.njcl.fi/1_2006/commentary1.pdf

Prière de prendre contact avec le Groupe du Journal, à l’adresse journal@un.org.
Prière de prendre contact avec le Groupe du Journal, à l’adresse frank.X@univie.ac.at.
Prière de prendre contact avec le Groupe du Journal, à l’adresse jferex@eclac.cl.
Prière de prendre contact avec le Groupe du Journal, à l’adresse chungrx@un.org.

Table 7: Substitutions for URL (top) and EMAIL (bottom). The original is in bold. Personal email addresses have been slightly
modified.

sys: http://www.cbs.nl/NR/rdonlyres/D1716A60-0D13-4281-BED6-3607514888AD/
ref: http://www.cbs.nl/NR/rdonlyres/D1716A60-0D13-4281-BED6-360751488AD/

sys: www.fao.org/forestry/fo/fra/index.jsp
ref: www.fao.org/forestry/fo/fra/index.jp

sys: qualityws.ht
ref: qualitativeyws.ht

sys: http://www.tebtebba.org/tebtebba_files/ipr/racism.htm
ref: http://www.tebba.org/tebtebba_files/ipr/racism.htm

Table 8: Mistranslated URLs.

them display similar patterns: extremely high ac-
curacies in all three test sets (WMT15, MTNT/test,
and MTNT/train). We took the most prevalent cat-
egory, PERSON, and manually examined the error
cases. Of the 131 tokens tagged as PERSON in
MTNT/test, seven did not appear in the reference,
leaving 123 instances, on which the baseline sys-
tem achieved 99.2% accuracy, missing only one.
The single missed instance translated Jean-Pierre
Bernajuzan as Mr Bernajuzan.

No mistakes were made on MTNT/test.
MTNT/train is more difficult to analyze, but many
of the missing instances were caused by multiline
inputs where the NMT system stopped translating
after the first sentence of the input.

In summary, for these categories, the baseline
system does very well. But again, it’s not perfect.

6.5 Source Factors

We applied source factors to types NUMBER,
EMAIL, and URL in the baseline system. From
Table 4, this seems to have had no effect on BLEU
scores when using the embedding concatenation
described in (Sennrich and Haddow, 2016), except
for a minor drop on MTNT/train. When summing
the factors, however, we see a small improvement
in BLEU score on all three test sets. However, there

type
indexed unindexed

1 2+ 1 2+ 3+

NUMBER 98.5 95.9 98.5 97.7 97.7
EMOJI 91.4 74.0 98.8 92.0 100
EMAIL - - - - -
URL 100 - 100 - -

CITY 98.9 97.6 97.6 97.1 96.4
COUNTRY 100 100 100 100.0 -
LOCATION 98.6 92.0 99.0 93.6 90.7
ORG. 98.9 90.7 98.2 93.8 91.7
PERSON 98.3 82.1 98.5 97.3 96.7

Table 9: FR–EN recall scores (against the reference) for
masking on MTNT/train, broken down between indexing and
(attention-based) not-indexing, and between sentences that
have only a single (1) or multiple (2+) instances of a mask.

was no improvement in entity-based recall scores
over the baseline analysis in Table 5.

7 Masking

Masking has the potential to achieve 100% accuracy
on masked entities. However, its success depends
on a number of pieces: (1) the masks need to be
translated correctly (i.e., one-for-one with the input
masks), and (2) for unindexed masking, they need
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to be correctly aligned.
Table 9 looks into (1). It displays masks recall

scores on the MTNT/train test set, broken down
between indexed and unindexed masking, and be-
tween sentences with exactly one instance of each
mask, or more than one (2+). For unindexed mask-
ing, we also display recall for masks appearing 3+
times in a single sentence. We see that masks are
not perfectly translated, but that unindexed masking
does a slightly better job of it. And the numbers are
somewhat better than those of the baseline system
in Table 5, though for some labels they are not that
different. Performance degrades with more masks
of the same type, in all instances except EMOJI

(where there are only 18 3+ instances).

reference reference
mono not mono not

system
mono 61 18 67 20

not 7 2 1 0

Table 10: Demasked permutations for the attention-based
(left) and alignment-based (right) approaches. Mono/not de-
notes whether the text of the decoder output (rows) and refer-
ence (columns) was monotonic with respect to the input.

Demasking Section 3.1 described two ap-
proaches to aligning masks: decoder attention and
post-alignment via fast-align. This use case proves
similarly difficult to analyze for a number of rea-
sons. On WMT15 (where we expect the neat text
to present the simplest case), there are 88 instances
where a single mask type appears more than once
in a sentence. We break down the analysis into
whether or not the permutations of the text in the
(a) system output and (b) reference were monotonic
(with respect to the input text). (Note that in the
case of non-monotonic permutations, we are not
guaranteed that the system and reference line up.)
The results are in Table 10, and are largely inconclu-
sive. There is not a lot of data to determine whether
permutations are correctly restored, and there does
not appear to be much difference between the two
approaches.

8 Conclusions

We began this paper wondering whether “transla-
tion guarantees” for certain word types were nec-
essary, and whether masking was an appropriate
tool for guaranteeing them. The answer is not as
clear-cut as we would have liked. Masking (or

placeholding) is sometimes viewed as a way of en-
suring or increasing the chances that a particular
entity type is correctly translated. Our experiments
on different test sets with a modern Transformer
architecture on French–English and (to a lesser ex-
tent) Japanese–English show that this is often not
the case. Masked systems do not reliably translate
masks, which is likely why Crego et al. mention
the use of constraints to ensure masks are output.
And in any case, the baseline system does a decent
job of translating many of these types already. The
recall numbers between the baseline and masked
systems (Tables 5 and 9) all range in the mid-90s
across multiple test sets.

Another issue is that the set of items that should
be masked cannot be perfectly predicted. As
we saw with types like NUMBER, many numbers
should not in fact be passed through, but require
translation, in ways that are often mediated by con-
text. Using masks for such types is akin to a vote
of “no confidence” in the decoder, which seems not
to be justified. This also seems to be the case for
other entity-based types, which are handled well by
the baseline system.

However, we have seen that unindexed masking
can do a good job of passing items through, com-
pared to Crego et al. (2016)’s indexed system. In
situations where it is better to drop the identified
term than to mistranslate it, unindexed masking
may be preferable. This includes terms like emojis
and extended character sets, and email addresses
and URLs. The former are important to mask be-
cause otherwise the characters will be outside the
decoder character set; one could alternately aug-
ment the training data with all emoji types, but
this could be difficult and error-prone, especially as
new characters are introduced all the time. Email
addresses and URLs cause complications with to-
kenization, can get broken up into many subword
pieces, and can also be hard to reliably detokenize.
It makes sense to translate these items as a single
entity, making masking the clear option for this.

There are many avenues we have not explored in
this paper. For example, adding a source factor to
masked tokens might help increase the reliability of
mask translation. An even better approach may be
to use special loss functions to further encourage
the decoder to get marked tokens right. One could
also use constrained decoding (Hokamp and Liu,
2017; Post and Vilar, 2018) to ensure that desired
items (or masks) are placed in the output.
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Abstract

Today’s machine translation systems out-
put the same translation for a given in-
put, despite important differences between
users. In practice, translations should be
customized for each reader, for instance
when translating for children versus in a
business setting. In this paper, we in-
troduce the task of reading level control
to machine translation, and provide the
first results. Our methods can be used to
raise or lower the reading level of output
translations. In our first approach, source-
side sentences in the training corpus are
tagged based on the reading level (read-
ability) of the matching target sentences.
Our second approach alters the traditional
encoder-decoder architecture by specify-
ing a joint encoder and separate decoders
for simple and complex decoding modes,
with training data partitioned by reading
level. We demonstrate control over output
readability score on three test sets in the
Spanish–English language direction.

1 Introduction

Though the goal of machine translation is to
generate semantically accurate translations from
one language to another, there are other fac-
tors which affect whether a translation is “good”.
One often-neglected factor is the reading level of
the translation—different contexts require differ-
ent reading levels. When translating for less-
skilled readers, one may desire a translation with
∗ Equal contribution
∗c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

common vocabulary and simple sentence struc-
tures. In a professional setting, however, one often
requires concise language with advanced vocabu-
lary and syntactic structure.

For instance, when translating a Spanish web
page about machine translation to an English-
speaking 7-year-old, one might output, “machine
translation is a way to take a sentence from one
language and turn it into a sentence in another lan-
guage”. When advertising new machine transla-
tion software to a potential investor, one might ex-
plain, “machine translation is the automated pro-
cess by which a sentence in a source language
can be converted into a sentence in another lan-
guage”. Both sentences carry the same meaning
and do not require specialist technical knowledge,
but decreasing the complexity in the first makes it
easier for a child to understand, and increasing the
complexity in the second makes it sound more pro-
fessional and sophisticated. Furthermore, for na-
tive speakers of low-resource languages where ma-
chine translation quality may currently be poor but
who can read basic phrases in a second language
where translation quality is high, they may prefer
to read a lower complexity but semantically accu-
rate translation in their second language over an
inaccurate, garbled message in their native tongue.

In this paper, we introduce the task of reading
level control (readability control) to machine trans-
lation. We develop two methodologies that con-
trol the reading level of a translation in the Span-
ish–English language direction, focusing on lexi-
cal complexity as a first step. For professional set-
tings, we aim to produce advanced vocabulary. For
less-skilled readers, the translation should use sim-
ple words while maintaining the meaning of the
source sentence. Accordingly, we build a system
where a user can specify the reading level (“sim-
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ple” or “complex”) of the translation they wish to
be output. Future work should examine controlling
other factors that affect the readability of a sen-
tence, such as syntactic structure.

2 Background: Readability Tests

To quantitatively evaluate the reading level of En-
glish sentences, we use three commonly-used au-
tomated readability1 tests.

2.1 Dale-Chall Readability
The Dale-Chall (DC) readability score utilizes a
list of 3000 common English words, which cap-
tures lexical information of text (Chall and Dale,
1995). Words not in the list are considered “diffi-
cult”. The metric is computed using the percentage
of difficult words and the average number of words
per sentence, as below:

0.1579(
#difficult words

#words
×100)+0.0496(

#words
#sentences

)

2.2 Flesch-Kincaid Grade Level
One of the most widely-used readability metrics,
Flesch-Kincaid Grade Level (FKG) approximately
corresponds to grade level in the US schooling
system (Kincaid et al., 1975). The score consid-
ers only two basic features of the text—the aver-
age number of words per sentence and the average
number of syllables per word. It is computed as
below:

0.39(
#words

#sentences
) + 11.8(

#syllables
#words

)− 15.59

2.3 Flesch Reading Ease
We also evaluate translations with Flesch Reading
Ease (FRE) (Flesch, 1948), where higher scores
indicate “easier” text. FRE was the basis for FKG,
and is computed as:

206.835− 1.015(
#words

#sentences
)− 84.6(

#syllables
#words

)

2.4 Readability Tests for Other Languages
Apart from the three tests above for English, there
are many readability tests available for other lan-
guages, such as Amstad readability index for Ger-
man (Amstad, 1978), GulpEase index for Italian
(Lucisano and Piemontese, 1988), and LIX for a
wide range of languages (Björnsson, 1968). There
1Throughout this paper, we use the terms “readability”, “read-
ing level”, and “text complexity” interchangeably.

are also various approaches to reading level scor-
ing based on machine learning and natural lan-
guage processing techniques (François and Milt-
sakaki, 2012).

In this work, we focus on the three traditional
English readability tests mentioned above as a first
step for the Spanish–English language direction.
Though the readability tests aren’t perfect, they
achieve good results in our work and are easy to
implement. We anticipate that our general frame-
works will work with various target languages
and readability scorers, provided the correspond-
ing readability tests effectively estimate reading
level.

3 Factors Affecting the Reading Level of
the Output Translation

At test time, it is reasonable to anticipate that ad-
vanced vocabulary and phrases in a source sen-
tence will be translated into advanced vocabulary
and phrases in a target sentence, and simple lexi-
cal features of a source to simple lexical features
in a target. This leads to a problem in the typical
setting where there is a single source document at
test time. Since the source has fixed complexity,
users do not have control over the reading level of
the output. As a result, we must find other ways
of controlling output reading level besides altering
the source.

In this section, we demonstrate that the reading
level of output translations is also affected by the
overall reading level of target-side sentences dur-
ing training. We train four OpenNMT (Klein et al.,
2017) default RNN models on four separate train-
ing corpora in the Spanish–English language di-
rection. The corpora have different overall target-
side readability (Table 1). We then test the read-
ability of each model’s translation of WMT new-
stest20132 (Table 2). Please see Section 5 for im-
plementation details and description of datasets.

Corpus DC FKG FRE
OpenSubtitles 3.43 2.28 89.39

OpenSubtitles+Europarl 6.08 7.27 69.43
ParaCrawl 7.92 11.17 56.43
Europarl 8.80 12.41 48.94

Table 1: Overall readability scores of the target-side sen-
tences in different training corpora. Lower DC score, lower
FKG score, and higher FRE score indicate simpler sentences.

2http://www.statmt.org/wmt13/translation-task.html
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DC FKG FRE
gold 8.11 9.49 59.83

OpenSubtitles 7.09 8.25 67.52
OpenSubtitles+Europarl 7.61 9.15 63.40

Europarl 7.75 9.48 61.84
ParaCrawl 7.92 9.36 61.11

Table 2: Effect of the training corpus on translation readabil-
ity for newstest2013. Lower DC score, lower FKG score, and
higher FRE score indicate simpler sentences.

Examining Tables 1 and 2, we observe that the
readability of the translation tends to mimic the
readability of the target sentences in the training
corpus. This effect inspired us to partition the
training data into “simple” and “complex” subsets
so the model can learn how sentences of lower and
higher reading level should look.

4 Proposed Approaches

In this paper, we develop two training methods
which allow some control over the reading level
of machine translation output.

4.1 Data Tagging

Inspired by Sennrich et al. (2016)’s work control-
ling politeness, our first approach utilizes a short
text token added to the end of each source-side
training sentence, which corresponds to the match-
ing target-side sentence’s readability. The intuition
behind this method is that the attention mechanism
will learn to pay attention to the complexity token
when decoding in the simple or complex setting.

A token indicating whether each training sen-
tence pair is of low or high reading level is used
if the target sentence meets a preset readability
threshold. A third token indicating intermediate
reading level is added to sentences that do not meet
the chosen thresholds, so that the model can learn
other knowledge—such as a better language model
and alignment—from these examples.

The data tagging approach requires no cus-
tomization of model architecture or training proce-
dure. At test time, we append a “simple” or “com-
plex” token to the test source sentences to specify
the desired reading level of the output. We choose
tokens that are unlikely to appear in the target lan-
guage to avoid overloading the symbols with mul-
tiple meanings.

4.2 Double-Decoder

The second approach is an encoder-decoder model
with a shared encoder and two decoders—one for
“complex” decoding, and the other for “simple”
decoding as shown in Figure 1. When training a
complex sentence, the joint encoder is paired with
the “complex” decoder and loss is calculated based
on that encoder-decoder pair. For a simple sen-
tence, the encoder is paired with the “simple” de-
coder. In this way, the encoder learns a shared rep-
resentation for all source sentences, while separate
decoders tune themselves to sentences that have
the desired reading level. At inference time, we
pass a flag indicating whether we want the output
to be “simple” or “complex”. The corresponding
decoder then translates the test set.

Figure 1: Encoder-decoder model with separate decoders for
simple vs. complex output settings.

4.3 Data Selection

4.3.1 Partitioning by Readability Level
We use a method of data selection to partition

our data into “simple” and “complex” training sets.
We first score the readability of each target-side
sentence in the corpus. Next, we select which sen-
tences to include in the training sets based on their
percentile rank for readability. For instance, in the
30-30 setting for the double-decoder architecture,
we include the bottom 30% of available training
sentences as the simple set, the top 30% as the
complex set, and discard the remaining sentences.
In the data tagging approach, we equivalently tag
the bottom and top 30% as simple/complex, and
the remaining as neutral. We experiment with mul-
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tiple thresholds.

4.3.2 Oversampling
Though more extreme data partitioning endows

more effective control over output readability, it
also brings potential problems; the data tagging ap-
proach has limited “simple” and “complex” exam-
ples from which to gain knowledge about reading
level, and the double-decoder approach discards
so much data that it could suffer translation qual-
ity degradation. We therefore use oversampling
to reinforce the effect of data with extreme read-
ability. For the data tagging approach, we use an
extreme data partition (e.g., 15-15) and oversam-
ple all examples tagged as “simple” or “complex”;
for the double-decoder approach, we use the 50-
50 data partition but oversample the extreme parts
(top 15% and bottom 15%).

5 Technical Implementation

5.1 Datasets

We use three Spanish–English training sets:
the European Parliament Proceedings (Europarl)
(Koehn, 2005), OpenSubtitles2018 (OS) corpus
(Lison and Tiedemann, 2016), and ParaCrawl3.
Europarl contains transcripts of European Parlia-
mentary proceedings, OpenSubtitles2018 is a cor-
pus of movie subtitles, and ParaCrawl consists of
data scraped from the web.

For training each model and for the prelimi-
nary experiments in Table 2, we use either: ∼2
million randomly-selected lines from OpenSubti-
tles2018, the∼2 million line Europarl training set,
a concatentaion of the aforementioned two corpora
(OS+Europarl), or 14.7 million randomly-selected
lines from ParaCrawl.

Development sets are: 10,000 held-out lines
from OpenSubtitles2018 for the OpenSubtitles
baseline, newstest2012 for the Europarl baseline,
the concatenation of newstest2012 and the Open-
Subtitles development set for the OS+Europarl
baseline, and 3,000 held-out lines from ParaCrawl
for the ParaCrawl baseline. Double-decoder mod-
els are validated by assessing the performance of
each decoder separately on the development set.

The test sets are newstest2013 (3,000 lines),
a combined test set of newstest2013 plus 10,000
held-out lines from OpenSubtitles2018, and 3,000
held-out lines from ParaCrawl.

3https://ParaCrawl.eu/releases.html, version 1

5.2 Data Preprocessing

All data were punctuation-normalized, tokenized,
truecased, and cleaned to a maximum sentence
length of 100 words using the standard Moses
scripts (Koehn et al., 2007). We applied BPE (Sen-
nrich et al., 2015) to all data using 32,000 merge
operations. Training and development data were
again cleaned with clean-corpus-n.perl
using default parameters and a maximum length
of 100 BPE tokens.

To select “simple” and “complex” data for
the two approaches, we apply the data selection
method of Section 4.3 using the Dale-Chall read-
ability score. All readability scores in this work
were calculated after removing BPE, detruecasing,
and detokenizing the data.

5.3 Models & Training

The basic model architecture is the default RNN-
based encoder-decoder model with attention (Lu-
ong et al., 2015) from OpenNMT. The encoder
and decoder are two-layer LSTMs (Hochreiter and
Schmidhuber, 1997) with a 500-dimension hid-
den size and 500-dimension word embeddings.
The models were trained with batch size 64 using
stochastic gradient descent with the default initial
learning rate of 1.0. We decay the learning rate by
a factor of 0.5 starting at 50,000 steps, and further
decay every subsequent 10,000 steps.

Each model was trained until performance on
the validation set ceased to improve. For testing,
we chose the model with lowest validation per-
plexity. For double-decoder models, lowest per-
plexity did not typically occur at the same timestep
for simple and complex decoders. In that case, we
chose a model that had good performance on both
validation sets.

Readability was scored using the textstat4 im-
plementations of the Dale-Chall, Flesch-Kincaid
(Grade Level), and Flesch Reading Ease formulas.
BLEU was scored using multi-bleu-detok.
perl from the Moses toolkit (Koehn et al., 2007).
Statistical significance was assessed using SciPy
(Jones et al., 2001 ).

6 Results

6.1 Quantitative Results

Tables 3 and 4 show the readability performance
of data tagging and double-decoder approaches on

4https://github.com/shivam5992/textstat
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newstest2013 at different levels of data partition-
ing. (For example, a 30-30 partition corresponds
to the case where the bottom/top 30% of data are
labeled as simple/complex.) “Baseline” hereafter
refers to the single encoder-decoder model trained
on the original, unpartitioned dataset. These ta-
bles demonstrate effective control over average
output readability for both approaches. We also
conducted two-tailed paired samples t-tests5 which
demonstrated that DC, FKG, and FRE results in
both decoding modes are significantly different
from the baseline (p<0.001).

Partition Mode DC FKG FRE BLEU

- gold 8.11 9.49 59.83 -
- baseline 7.92 9.36 61.11 27.38

50-50
simple 7.72 9.15 62.87 27.32
complex 8.21 9.53 59.72 27.27

30-30
simple 7.45 8.98 64.41 27.14
complex 8.58 9.79 57.57 27.09

15-15
simple 7.26 8.80 65.60 26.74
complex 8.72 9.83 56.57 26.62

15-15*
simple 6.96 8.45 67.78 25.91
complex 8.96 9.93 55.42 25.47

13-13
simple 7.23 8.82 65.69 26.71
complex 8.69 9.82 56.68 26.74

Table 3: Performance on newstest2013 of data tagging ap-
proach trained on ParaCrawl. DC, FKG, and FRE are read-
ability measures (lower indicates simpler for DC/FKG, and
higher for FRE). e.g., 7.72 is the average DC score of the
output in simple mode using a 50-50 partition. 15-15*
means oversampling the top/bottom 15% of data (3x). All
DC/FKG/FRE results are significant (p<0.001).

For all models, translations in complex mode
are slightly shorter than in simple mode, and have
slightly more bytes per word. In the data-tagging
15-15 mode, complex mode translations averaged
18.4 words per line, versus 19.3 in simple mode.
The bytes-per-word were 6.0 and 5.7 for com-
plex and simple mode, respectively. As data splits
became less aggressive, the difference decreased.
This suggests that in complex mode, the mod-
els attempt to be more concise while using longer
words.

Figure 2 demonstrates that as the constraints for
categorizing a sentence as “simple” or “complex”
become more strict, the gap widens between the
mean readability score in simple mode and com-
5https://docs.scipy.org/doc/scipy-1.1.0/
reference/generated/scipy.stats.ttest_
rel.html

Partition Mode DC FKG FRE BLEU

- gold 8.11 9.49 59.83 -
- baseline 7.92 9.36 61.11 27.38

50-50
simple 7.57 9.00 63.71 26.41
complex 8.30 9.59 59.16 26.71

50-50*
simple 7.41 8.87 64.59 25.71
complex 8.43 9.66 58.46 26.01

30-30
simple 7.22 8.60 66.18 25.56
complex 8.72 9.84 56.79 25.89

20-20
simple 6.69 7.97 69.75 23.51
complex 9.05 9.99 54.99 24.08

15-15
simple 5.93 7.30 74.24 20.85
complex 9.36 10.16 53.19 22.04

Table 4: Performance on newstest2013 of double-decoder
models trained on ParaCrawl data. In the 50-50* setting, 50%
of data is designated “simple”, 50% “complex”, and the most
extreme 15% of simple/complex data are oversampled (3x).
All DC/FKG/FRE results are significant (p<0.001).

Figure 2: Readability results of newstest2013 translation in
simple and complex mode for data tagging (T) and double-
decoder (D) models trained on ParaCrawl.

plex mode. This holds for all three readability met-
rics, on all three test sets and the two training cor-
pora that with which we experimented.

In Table 3, we see little negative effect on BLEU
(Papineni et al., 2002) for the data tagging ap-
proach. In Table 4, however, we see that BLEU
suffers as the double-decoder model receives less
data. In the 13-13 partition, BLEU drops to 18.52
in simple mode, when the simple decoder receives
only ∼1.9 million sentences, many of which are
very short.

Table 5 compares the two approaches with dif-
ferent training and test sets, reporting the differ-
ence between the baseline Dale-Chall score and
the readability of translated test sets in simple and
complex modes. We observe that both methods
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Training Corpus Approach Test Set
ParaCrawl OpenSubtitles+Europarl Newstest2013

ParaCrawl
T-15/15 -0.84 / +0.73 -0.74 / +2.79 -0.67 / +0.79
D-15/15 -2.41 / +1.53 -1.74 / +4.36 -1.99 / +1.44

OpenSubtitles+Europarl
T-40/40 -0.90 / +0.61 -0.64 / +2.67 -0.80 / +0.70
D-40/40 -1.99 / +0.66 -1.11 /+2.53 -1.69 / +0.67

Table 5: Performance of high-performing models with double-decoder (D) and data tagging (T) approaches on three test sets.
The left/right number is the difference in Dale-Chall score between the baseline and the simple/complex translation. Model
with the larger difference is bolded.

System BLEU Human Eval
Baseline 27.38 6.54
Weaker Baseline 24.34 5.64
Complex 24.08 5.75
Simple 23.51 5.84

Table 6: Average model score in human evaluation for mod-
els trained on Paracrawl. Complex and Simple represent com-
plex and simple modes for the double-decoder approach with
a 20-20 data partition.

work well for all six train-test pairs, and that the
double-decoder method generally makes the sim-
ple translations simpler and the complex trans-
lations more complex, than the data tagging ap-
proach.

6.2 Qualitative Results

The qualitative examples in Tables 7 were pro-
duced when translating newstest2013 using the
data tagging and double-decoder approaches.

We observe from the examples that both ap-
proaches successfully control the complexity of
output sentences. Furthermore, the baseline ap-
pears an appropriate intermediary between the two
complexity levels; For the baseline translation
“This attitude is a deplorable vision of future.”,
the data tagging approach changes “deplorable vi-
sion” to “terrible view” in simple mode to de-
crease complexity. In complex mode, however, the
model changes “is” to “implies” to make the sen-
tence even more complex, keeping “deplorable vi-
sion”. We also see change in sentence structure.
For example, in simple mode the data tagging ap-
proach produces, “there is...”, while in complex
mode it produces, “...occurred” or “...existed”.

In the double-decoder approach we observe
some loss in meaning for certain sentences as the
threshold for training sentences to be qualified as
simple or complex becomes more restrictive.

6.3 Human Evaluation

We performed human evaluation to determine
whether the lower BLEU score observed in more
extreme data-partitioning conditions in the double-
decoder approach was the result of true loss in
translation quality, or desirable swapping of sim-
ple/complex words. We randomly sampled 50
translations from newstest2013 and obtained the
translations from the double-decoder 20-20 par-
tition setting, along with the baseline model and
a weaker baseline trained to achieve comparable
BLEU to that of the double-decoder approach.
Nine English-speaking adults each scored approx-
imately one-third of the sampled translations on
a 10-point scale so that each translation received
three scores. Reviewers were instructed to score
how well each translation matched the meaning of
the reference, along with the fluency of the transla-
tion. Examples were presented in blocks with the
reference translation followed by the four system
translations in a random order for each block. Par-
ticipants each scored 15 or 20 blocks.

In Table 6, we show the average score that trans-
lations from each system received. We observe
that while the drop in BLEU in Table 4 reflects
some lowered translation quality as judged by hu-
man reviewers, the loss in quality is smaller than
the BLEU depreciation makes it seem. When com-
pared to a baseline model with comparable BLEU
to that of the “simple” and “complex” modes
(the “weaker” baseline), the double-decoder ap-
proaches fair better in human evaluation despite
having lower BLEU scores. This indicates that
BLEU over-penalizes models trained to control
readability level, and that readability-controlled
translations are better than they appear based on
BLEU alone.

Note that in this section we only performed
human evaluation on outputs from the double-
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Src Por este motivo, no creo que se haya producido una ruptura tan drástica como en el caso
de Libia.

Ref Therefore I do not think that this was as dramatic a fracture as was the case in the matters
regarding Libya.

Baseline For this reason, I don’t believe that there was such a drastic rupture as in the case of Libya.
Simple For this reason, I don’t believe that there is a drastic break as in Libya.
Complex For this reason, I don’t believe that a drastic rupture occurred as in Libya’s case.
Src Esta actitud supone una deplorable visión de futuro.
Ref This is woefully short-sighted.
Baseline This attitude is a deplorable vision of future.
Simple This attitude is a terrible view of the future.
Complex This attitude implies a deplorable vision of future.
Src Pero mis provocaciones están dirigidas a que se inicie una conversación.
Ref But my provocations are aimed at starting conversation.
Baseline But my provocations are directed to start a conversation.
Simple But my provocations are meant to start a conversation.
Complex But my provocations are directed to initiate a conversation.
Src No todos se sienten contentos con el hecho de que...
Ref Not everyone is happy that...
Baseline Not everyone feels happy with the fact that...
Simple Not everyone feels happy with the fact that...
Complex Not all are satisfied with the fact that...

Table 7: Example translations of newstest2013 in simple/complex mode from models trained on ParaCrawl (15-15). The
first two examples come from the data tagging approach (15-15), and the second two come from the double-decoder approach
(15-15).

decoder 20-20 model (which had a ∼3–4 BLEU
drop compared to the baseline) whereby we do
observe some loss in translation quality from the
baseline. However, for the models which achieve
very similar BLEU scores to the baseline, such
as the data-tagging 50-50 and 30-30 model, there
may be no loss in translation quality. Human eval-
uation could verify this notion.

6.4 Attention Visualization

In Figure 3, we see a heatmap of attention when the
data tagging approach translated the same sentence
in simple and complex modes. When choosing the
word “adversely” in complex mode versus “neg-
atively” in simple mode, we see attention placed
on the complexity indicator tags “czxc” and “szxc”.
This suggests that the model attended to the com-
plexity tag when deciding which word to use.

In many cases, however, the difference in word
choice is not reflected by attention to the complex-
ity tag. This could be because the difference in at-
tention values is too small for humans to detect the
color difference in the heatmap. A more plausible
explanation is that information about the reading

level has been passed to the hidden states at all po-
sitions by the bi-LSTM, so that the decoder doesn’t
need to pay attention to the complexity token (the
last hidden state) to make different word choices.

6.5 Adaption to Multiple Reading Level
Setting

Our approaches can be adapted to the multiple
reading level setting. We experimented using
the data tagging approach with the data equally-
partitioned into five reading levels (Reading Level
A-E), with A being the lowest and E the highest.
The results are given in Table 8. We observe ef-
fective control over reading level at this finer level
of granularity. Similar BLEU scores to that of
the baseline indicate that different modes maintain
translation quality.

6.6 Analysis and Discussion

We have demonstrated success both raising and
lowering the reading level of test sets using two
different methods. The results on multiple test
sets and training corpora suggest that our meth-
ods are general and applicable beyond the scope
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Figure 3: Attention visualization in simple vs. complex mode of data tagging approach (40-40 partition, trained on ParaCrawl).

Specified Readability FKG DC BLEU

Baseline 9.36 7.92 27.38

Reading Level A 8.66 7.22 26.81
Reading Level B 9.01 7.67 27.14
Reading Level C 9.34 8.10 27.29
Reading Level D 9.61 8.49 27.12
Reading Level E 10.03 9.06 26.17

Table 8: Readability performance of the data tagging method
at five levels of readability, trained on ParaCrawl and tested
on newstest2013.

of the datasets we chose. Our qualitative examples
demonstrate that though BLEU score depreciates,
some of the decrease reflects correct changes to-
wards our goal of adjusting reading level.

Translations in “simple” mode sometimes end
early or are too short (in the double-decoder
ParaCrawl 15-15 model, specifically). Simple
training sentences tend to be shorter than complex
training sentences, which may teach the simple de-
coder to produce short sentences.

We observe that the double-decoder is generally
able to pull the mean readability of sentences trans-
lated in simple vs. complex mode farther apart
than the data tagging approach. The separated de-
coders become more specialized towards creating
sentences of particular relative readability levels,
which may explain this observation.

We also observed the data tagging approach re-
taining higher BLEU than the double-decoder. We
suspect this is because in the data tagging ap-
proach, we retain sentences of an intermediate

complexity level during training, and this extra
data helps maintain high BLEU. On the other hand,
the double-decoder model with a 15-15 data par-
tition receives ∼2.2 million simple sentences and
∼2.2 million complex sentences. This means that
the encoder is trained on less than 30% of the data
as the baseline, and each decoder is trained on ap-
proximately 15% of the data. This lower-data con-
dition likely contributes to the lower BLEU score
for double-decoder models, and explains why the
data tagging approach does not suffer the same
loss in BLEU. This also suggests that the data tag-
ging approach may be preferable in low-resource
settings. That said, human evaluators rated trans-
lations from the double-decoder approach higher
than a baseline with similar BLEU performance.

7 Related Work

Our work is similar to style transfer and work con-
trolling style during natural language generation
(e.g., (Carlson et al., 2017; Fu et al., 2017; John
et al., 2018; Ficler and Goldberg, 2017)), and to
the text simplification literature (e.g., (Napoles and
Dredze, 2010; Nisioi et al., 2017)). In style trans-
fer, NMT methods using double-decoder architec-
tures have been used, for instance, to output formal
vs. informal or positive vs. negative versions of a
source sentence (e.g., (Fu et al., 2017; Prabhumoye
et al., 2018)). Sennrich et al. (2016) use tokens
similar to our complexity tags in NMT to specify
politeness in their English-German output. Van-
massenhove et al. (2018) and Kobus et al. (2016)
retain gender information and domain information,
respectively, in NMT through a tag to improve the
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translation quality.
As far as we are aware, we are the first authors

to use NMT to both reduce and increase the com-
plexity of translations. Unlike most of the text
simplification literature, we simplify output cross-
linguistically and also increase text complexity.
In statistical machine translation, Stymne et al.
(2013) translate and simplify output, while Niu
et al. (2017) control formality in French–English
translation. Štajner and Popović (2016) investigate
how simplifying source-side sentences affects ad-
equacy and fluency in English–Serbian translation.
Interestingly, we notice qualitative similarities be-
tween our “complex” translations and the formal
output of Niu et al. (2017), though the authors did
not frame these qualitative differences as increases
in complexity.

Prior work in machine translation and NLP has
focused on readability assessment and text simpli-
fication. For readability assessment, a data-driven
method is proposed in Le et al. (2018) for as-
sessing the readability of document text, whereas
Ciobanu et al. (2015) investigated the readability
of the MT system output with standard metrics.
Jones et al. (2005) also investigated the readabil-
ity of MT and ASR system output but with human
evaluation. As for text simplification, Hardmeier
et al. (2013) proposes a document-level decoder
for SMT and mentioned a case study that utilizes
document-wide features to improve the readability
of text. Contrary to Stymne et al. (2013), Xu et al.
(2016) designed a new training objective for SMT
text simplification. Similar to Le et al. (2018),
Ciobanu et al. (2015), and Jones et al. (2005),
we adopted evaluation metrics for assessing the
MT output. However, the readability constraint
is taken into account during training in our pro-
posed approaches. Stymne et al. (2013) introduces
document-level features such as type/token ratios
and lexical consistency as input to the MT system.
On the other hand, our approaches at most require
an additional simplicity/complexity tag. Different
from Xu et al. (2016) in which new training objec-
tive is proposed for text simplification, our NMT
training objective remains the same.

8 Conclusion

In this work, we are the first authors to address the
important task of controlling the reading level of
machine translation output, and provide the first re-
sults. This work is important for practitioners who

wish to control the simplicity or complexity of text
that their machine translation system produces.

We develop two methods for controlling the
reading level of output translations in NMT. Both
of our proposed models successfully increase or
decrease the reading level of multiple test sets
when trained on different corpora, and have good
qualitative results. Furthermore, our human evalu-
ation indicates that the readability-level controlled
translations are better than a baseline which had
higher BLEU.

Notably, our data tagging approach can be de-
ployed immediately on existing NMT systems
with no architectural changes. We demonstrate a
trade-off between more effective control of read-
ing level and BLEU score, particularly with the
double-decoder approach. As the data partition be-
comes more aggressive, the difference in reading
level between the two modes increases, but BLEU
score drops. We show that this effect can be miti-
gated by oversampling.

In the future, we plan to experiment with dif-
ferent language pairs and readability scorers. We
also plan to discard sentences with very low read-
ability scores and filter training corpora to exclude
low-quality examples, which Junczys-Dowmunt
(2018) demonstrated can severely degrade model
performance. We expect these methods will help
us retain better BLEU. Furthermore, we will use
the state-of-the-art transformer model which we
expect to provide improved BLEU and greater
control over reading level in the data tagging
method, because the complexity tag will contribute
to each word’s representation via self-attention
(Vaswani et al., 2017).

Finally, we observed exciting effects related to
formality which are outside the scope of this paper.
Particularly when training on Europarl and Open-
Subtitles2018 data, we observed that sentences
trained in “complex” mode appeared more formal
than those trained in “simple” mode; most contrac-
tions were removed, and words appeared more for-
mal. We plan to repeat these experiments, and have
observed promising first results.
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3(31):110–124.

Luong, Minh-Thang, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Napoles, Courtney and Mark Dredze. 2010. Learn-
ing simple wikipedia: A cogitation in ascertaining
abecedarian language. In Proceedings of the NAACL
HLT 2010 Workshop on Computational Linguistics
and Writing: Writing Processes and Authoring Aids,
pages 42–50. Association for Computational Lin-
guistics.

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 202
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Abstract

Most neural machine translation systems
are built upon subword units extracted by
methods such as Byte-Pair Encoding (BPE)
or wordpiece. However, the choice of num-
ber of merge operations is generally made
by following existing recipes. In this pa-
per, we conduct a systematic exploration
on different numbers of BPE merge oper-
ations to understand how it interacts with
the model architecture, the strategy to build
vocabularies and the language pair. Our
exploration could provide guidance for se-
lecting proper BPE configurations in the
future. Most prominently: we show that
for LSTM-based architectures, it is neces-
sary to experiment with a wide range of
different BPE operations as there is no typ-
ical optimal BPE configuration, whereas
for Transformer architectures, smaller BPE
size tends to be a typically optimal choice.
We urge the community to make prudent
choices with subword merge operations, as
our experiments indicate that a sub-optimal
BPE configuration alone could easily re-
duce the system performance by 3–4 BLEU
points.

1 Introduction

While achieving state-of-the-art results, it is a com-
mon constraint that Neural Machine Translation
(NMT) (Sutskever et al., 2014; Bahdanau et al.,
2015; Luong et al., 2015; Vaswani et al., 2017) sys-
tems are only capable of generating a closed set of

© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

symbols. Systems with large vocabulary sizes are
too hard to fit onto GPU for training, as the word
embedding is generally the most parameter-dense
component in the NMT architecture. For that rea-
son, subword methods, such as Byte-Pair Encoding
(BPE) (Sennrich et al., 2016), are very widely used
for building NMT systems. The general idea of
these methods is to exploit the pre-defined vocab-
ulary space optimally by performing a minimum
amount of word segmentations in the training set.

However, very few existing literature carefully
examines what is the best practice regarding appli-
cation of subword methods. As hyper-parameter
search is expensive, there is a tendency to simply
use existing recipes. This is especially true for
the number of merge operations when people are
using BPE, although this configuration is closely
correlated with the granularity of the segmentation
on the training corpus, thus having direct influ-
ence on the final system performance. Prior to
this work, Denkowski and Neubig (2017) recom-
mended 32k BPE merge operation in their work
on trustable baselines for NMT, while Cherry et
al. (2018) contradicted their study by showing that
character-based models outperform 32k BPE. Both
of these studies are based on the LSTM-based ar-
chitectures (Sutskever et al., 2014; Bahdanau et
al., 2015; Luong et al., 2015). To the best of our
knowledge, there is no work that looks into the
same problem for the Transformer architecture ex-
tensively.1

In this paper, we aim to provide guidance for
this hyper-parameter choice by examining the in-
teraction between MT system performance with
the choice of BPE merge operations under the low-

1For reference, the original Transformer paper by Vaswani et
al. (2017) used BPE merge operations that resulted in 37k joint
vocabulary size.
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Figure 1: Histogram of BPE merge operations used for in
WMT papers from 2017-2018.

resource setting. We conjecture that lower resource
systems will be more prone to the performance
variance introduced by this choice, and the effect
might vary with the choice of model architectures
and languages. To verify this, we conduct ex-
periments with 5 different architecture setup on
4 language pairs of IWSLT 2016 dataset. In gen-
eral, we discover that there is no typical optimal
choice of merge operations for LSTM-based ar-
chitectures, but for Transformer architectures, the
optimal choice lays between 0–4k, and systems us-
ing the traditional 32k merge operations could lose
as much as 4 points in BLEU score compared to
the optimal choice.

2 Related Work

Currently, the most common subword methods are
BPE (Sennrich et al., 2016), wordpiece (Wu et al.,
2016) and subword regularization (Kudo, 2018).
Subword regularization introduces Bayesian sam-
pling method to incorporate more segmentation va-
riety into the training corpus, thus improving the
systems’ ability to handle segmentation ambigu-
ity. Yet, the effect of such method is not very thor-
oughly tested. In this work we will focus on the
BPE/wordpiece method. Because the two methods
are very similar, throughout the rest of the paper,
we will refer to the BPE/wordpiece method as BPE
method unless otherwise specified.

To the best of our knowledge, no prior work
systematically reports findings for a wide range of
systems that cover different architectures and both
directions of translation for multiple language pairs.
While some work has conducted experiments with
different BPE settings, they are generally very lim-

ited in the range of configurations explored. For
example, Sennrich et al. (2016), the original pa-
per that proposed the BPE method, compared the
system performance when using 60k separate BPE
and 90k joint BPE. They found 90k to work better
and used that for their subsequent winning WMT
2017 new translation shared task submission (Sen-
nrich et al., 2017). Wu et al. (2016), on the other
hand, found 8k–32k merge operations achieving op-
timal BLEU score performance for the wordpiece
method. Denkowski and Neubig (2017) explored
several hyperparameter settings, including number
of BPE merge operations, to establish strong base-
line for NMT on LSTM-based architectures. While
Denkowski and Neubig (2017) showed that BPE
models are clearly better than word-level models,
their experiments on 16k and 32k BPE configura-
tion did not show much difference. They therefore
recommended “32K as a generally effective vocab-
ulary size and 16K as a contrastive condition when
building systems on less than 1 million parallel sen-
tences”. However, while studying deep character-
based LSTM-based translation models, Cherry et al.
(2018) also ran experiments for BPE configurations
between 0–32k, and found that the system perfor-
mance deteriorates with the increasing number of
BPE merge operations. Recently, Renduchintala et
al. (2018) also showed that it is important to tune
the number of BPE merge operations and found no
typical optimal BPE configuration for their LSTM-
based architecture while sweeping over several lan-
guage pairs in the low-resource setting. It should
be noticed that the results from the above studies
actually contradict with each other, and there is still
no clear consensus as to what is the best practice for
BPE application. Moreover, all the work surveyed
above was done with LSTM-based architectures.
To this day, we are not aware of any work that ex-
plored the interaction of BPE with the Transformer
architecture.

To give the readers a better landscape of the cur-
rent practice, we gather all 44 papers that have
been accepted by the research track of Conference
of Machine Translation (WMT) through 2017 and
2018. We count different configurations used in
a single paper as separate data points. Hence, af-
ter removing 8 papers for which BPE is irrelevant,
we still manage to obtain 42 data points, shown
in Figure 1. It first comes to our attention that
30k–40k is the most popular range for the number
of BPE merge operations. This is mostly driven
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by the popularity of two configurations: 30k and
32k. 80k–100k is also pretty popular, which is
largely due to configurations 89.5k and 90k. Upon
closer examination, we realized that most papers
that used 90k were following the configuration in
Sennrich et al. (2017), the winning NMT system
in the WMT 2017 news translation shared task, but
this setup somehow became less popular in 2018.
On the other hand, although we are unable to con-
firm a clear trend-setter, 30k–50k always seems to
be a common choice. Moreover, although smaller
BPE size got more popular among configurations in
2018, none of the work published in WMT has ever
explored BPE size lower than 6k. All of the above
observations support our initial claim that we as a
community have not yet systematically investigated
the entire range of BPE merge operations used in
our experiments.

3 Analysis Setup

Our goal is to compare the impact of different num-
bers of BPE merge operations on multiple language
pairs and multiple NMT architectures. We exper-
iment with the following BPE merge operation
setup: 0 (character-level), 0.5k, 1k, 2k, 4k, 8k, 16k,
and 32k, on both translation directions of 4 lan-
guage pairs and 5 architectures. Additionally, we
include 6 more language pairs (with 2 architectures)
to study the interaction between linguistic attributes
and BPE merge operations.

3.1 Dataset
Our experiments are conducted with the all the data
from IWSLT 2016 shared task, covering translation
of English (en) from and into Arabic (ar), Czech
(cs), French (fr) and German (de). As this dataset
contains multiple dev and test sets, we concatenate
all the dev sets into a single dev set and do the same
for the test set as well. To increase language cov-
erage, we also conduct extra experiments with 6
more language pairs from the TED corpus (Qi et
al., 2018). We use Brazilian Portuguese (pt), He-
brew (he), Russian (ru), Turkish (tr), Polish (pl)
and Hungarian (hu) as our extra languages, paired
with English. All the data are tokenized and true-
cased using the accompanying script from Moses
decoder (Koehn et al., 2007) before training and
applying BPE models.2

We use subword-nmt3 to train and apply BPE
2Data processing scripts available at https://github
.com/shuoyangd/prudent-bpe.
3
https://pypi.org/project/subword-nmt/0.3.5/

to our data. Unless otherwise specified, all of our
BPE models are trained on the concatenation of
the source and target training corpus, i.e. the joint
BPE scheme in Sennrich et al. (2016). We use
SacreBLEU (Post, 2018) to compute BLEU score.4

3.2 Architecture

We build our NMT system with fairseq (Ott
et al., 2019). We use two pre-configured
architectures in fairseq for our study,
namely lstm-wiseman-iwslt-de-en
(referred to as tiny-lstm) and trans-
former-iwslt-de-en (referred to as deep-
transformer), which are the model architec-
ture tuned for their benchmark system trained on
IWSLT 2014 German-English data. However, we
find (as can be seen from Table 1) that the number
of parameters in lstm-tiny is a magnitude
lower than deep-transformer mainly due
to the fact that the former has a single-layer
uni-directional encoder and a single-layer decoder,
while the later has 6 encoder and decoder layers.
For a fairer comparison we include a deep-lstm
architecture with 6 encoder and decoder layers
which roughly matches the number of parameters
in deep-transformer. To study the effect
of BPE on relatively smaller architectures, we
also include shallow-transformer and
shallow-lstm architectures, both with 2
encoder and decoder layers. The shallow-lstm
also use bidirectional LSTM layers in the encoder.
These two architectures also roughly match each
other in terms of number of parameters. With these
5 architectures, we believe we have covered a wide
range of common choices in NMT architectures,
especially in low-resource settings. We use Adam
optimizer (Kingma and Ba, 2014) for all the
experiments we run. For Transformer experiments,
we use the learning rate scheduling settings in
Vaswani et al. (2017), including the inverse square
root learning rate scheduler, 4000 warmup updates
and initial warmup learning rate of 1× 10−7. For
most LSTM experiments, we just use learning
rate 0.001 from the start and reduce the learning
rate by half every time the loss function fails to
improve on the development set. However, we find
that for deep-lstm architecture, such learning
rate schedule tends to be unstable, which is very
similar to training Transformer without the warmup

4SacreBLEU signature:BLEU+case.mixed+numrefs.1+
smooth.exp+tok.13a+version.1.2.12.
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bi-dir denc ddec demb l Nh Np

shallow-transformer N/A 512 512 512 2 4 18.8M
deep-transformer N/A 512 512 512 6 4 39.8M
tiny-lstm no 256 256 256 1 1 5.6M
shallow-lstm yes 384 384 384 2 1 16.4M
deep-lstm yes 384 384 384 6 1 35.3M

Table 1: Information of the 5 architectures used for analysis. bi-dir is a boolean representing whether the encoder is bi-
directional. denc, ddec and demb are dimension of encoder, decoder and source/target word embedding, respectively. l is the
number of encoder/decoder layers. Nh is the number of attention heads, while Np is the number of parameters of the model at
8k BPE merge operations.

learning rate schedule. Applying the same warmup
schedule as Transformer experiments works for
most deep-lstm architecture except for de-en
experiments as BPE size 16k and 32k, for which
we have to apply 8000 warmup updates. Per the
experiment setting in Vaswani et al. (2017), we
also apply label smoothing with εls = 0.1 for all of
our Transformer experiments.

4 Analysis

4.1 Analysis 1: Architectures
Table 2 shows the BLEU score for Transformer
systems with BPE merge operations ranging from
0 to 32k. The Transformer experiments show a
clear trend; large BPE settings of 16k-32k are not
optimal for low-resource settings. We see that re-
gardless of the direction of translation, the best
BLEU score for Transformer-based architectures
are somewhere in the 0-1k range. Although there is
not much drop for 2k-4k, there is generally a dras-
tic performance drop as the number of BPE merge
operation is increased beyond 8k. It should also
be noted that the difference between the best and
the worst performance is around 3 BLEU points
(refer to the δ column in Table 2), larger than the
improvements claimed in many machine translation
papers.

Table 3 shows the BLEU score for LSTM-based
architectures trained with BPE merge operations
ranging from 0 to 32k. Among the three ta-
bles, the shallow-lstm architecture has the
minimal variation with regard to different merge
operation choices. For tiny-lstm, we ob-
serve a drastic performance drop between BPE
merge operations 0/500 or 500/1k. But aside
from these two settings, the variation is of simi-
lar scale to shallow-lstm. For deep-lstm,
the variation is even larger than the Transformer
architectures, and compared to tiny-lstm and
shallow-lstm, the optimal BPE configuration

shifts to BPE sizes on the smaller end. How-
ever, we have also noticed that the overall abso-
lute BLEU score of deep-lstm is lower than
shallow-lstm despite more parameter is being
used. We conjecture that the larger variation and
lower BLEU score from the deep-lstm exper-
iments is largely due to the overfitting effect on
the small training data. Despite this effect, mov-
ing from tiny to deep model, we observe a trend
that deeper models tends to make use of smaller
BPE size better. In general, we conclude that un-
like Transformer architecture, there is no typical
optimal BPE configuration setting for the LSTM
architecture. Because of this noisiness, we urge that
future work using LSTM-based baselines tune their
BPE configuration in a wider range on a develop-
ment set to the extent possible, in order to ensure
reasonable comparison.

4.2 Analysis 2: Joint vs Separate BPE

Another question that is not extensively explored
in the existing literature is whether joint BPE is
the definitive better approach to apply BPE. The
alternative way, referred to here as separate BPE,
is to build separate models for source and target
side of the parallel corpus. Sennrich et al. (2016)
conducted experiments with both joint and sepa-
rate BPE, but these experiments were conducted
with different BPE size, and not much analysis was
conducted on the separate BPE model. Huck et al.
(2017) is the only other work we are aware of that
used with separate BPE models for their study. It
was mentioned that their joint BPE vocabulary of
59500 yielded a German vocabulary twice as large
as English, which is an undesirable characteristic
for their study.

Before comparing the system performance, we
would like to systematically understand how the
resulting vocabulary is different when jointly and
separately applying BPE. Table 4 shows the two
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0 0.5k 1k 2k 4k 8k 16k 32k δ

deep-
transformer

ar-en 30.3 30.8 30.6 30.5 30.4 29.8 28 27.5 3.3
cs-en 24.6 23.3 23.0 22.7 21.2 22.6 20.6 21.0 4.0
de-en 28.1 28.6 28.0 28.4 27.7 27.5 26.7 25.2 3.4
fr-en 28.8 29.8 29.6 29.3 28.7 28.5 27.5 26.6 3.2

en-ar 12.6 13.0 12.1 12.3 11.8 11.3 10.7 10.6 2.4
en-cs 17.3 17.1 16.7 16.4 16.1 15.6 14.7 13.8 3.5
en-de 26.1 27.4 27.4 26.1 26.3 26.1 25.8 23.9 3.5
en-fr 25.2 25.6 25.3 25.5 25.3 24.7 24.1 22.8 2.8

shallow-
transformer

ar-en 26.4 27.9 28.7 28.5 28.6 27.7 26.2 25.5 3.2
cs-en 22.4 22.6 22.3 21.8 21.7 21.1 21.1 20.1 2.5
de-en 25.5 27.4 27.1 27.3 27.1 25.9 24.6 23.7 3.7
fr-en 26.3 28.0 28.9 28.0 28.0 27.4 26.1 26.1 2.7

en-ar 11.7 11.2 11.5 11.0 11.3 10.5 9.5 9.0 2.7
en-cs 16.4 16.7 16.0 16.2 14.4 14.2 13.9 13.9 2.8
en-de 23.8 25.7 25.4 25.3 25.2 24.3 24.1 22.1 3.6
en-fr 23.5 24.7 25.1 24.6 24.5 23.8 22.7 22.1 3.0

Table 2: BLEU score for Transformer architectures with multiple BPE configurations. Each score is color-coded by its rank
among scores from different BPE configurations in the same row. δ is the difference between the best and worst BLEU score of
each row.

0 0.5k 1k 2k 4k 8k 16k 32k δ

tiny-
lstm

ar-en 20.6 22.1 22.4 23.0 24.1 24.2 24.2 24.0 3.6
cs-en 17.8 19.1 18.8 19.0 19.2 19.5 20.7 19.1 2.9
de-en 21.1 22.5 23.2 23.1 23.1 23.1 23.6 23.0 2.5
fr-en 21.8 25.3 25.3 25.4 25.1 25.3 25.1 24.7 3.6

en-ar 8.5 8.7 9.3 8.8 8.8 8.6 8.8 8.8 0.8
en-cs 11.5 12.3 13.7 13.2 13.0 14.1 14.4 13.2 2.9
en-de 18.2 20.8 21.4 21.1 21.9 21.6 21.0 21.6 3.7
en-fr 19.9 20.4 20.7 21.8 21.3 21.0 21.3 21.3 1.7

shallow-
lstm

ar-en 27.5 27.2 27.1 27.6 27.4 26.7 27.5 26.3 1.3
cs-en 22.2 22.2 22.2 22.9 22.7 23.0 22.8 21.6 1.4
de-en 25.7 25.9 26.0 25.9 26.4 26.3 26.1 26.5 0.8
fr-en 27.6 26.7 27.7 28.4 27.9 27.7 28.5 27.5 1.8

en-ar 11.0 11.0 10.7 10.4 10.6 10.6 10.4 10.1 0.9
en-cs 16.1 15.7 15.8 15.3 15.8 15.5 15.8 15.6 0.8
en-de 24.9 25.1 23.9 24.2 25.4 25.2 25.5 25.0 1.6
en-fr 24.3 23.8 23.7 24.2 23.5 24.1 23.9 23.0 1.3

deep-
lstm

ar-en 21.2 25.7 27.2 27.1 25.6 24.8 25.1 22.9 4.3
cs-en 19.8 22.0 18.5 21.1 20.9 21.2 20.3 15.8 6.2
de-en 25.7 25.2 24.9 24.1 24.5 23.5 23.5 23.1 2.6
fr-en 25.6 26.8 27.1 26.0 26.9 25.6 17.9 22.8 9.2

en-ar 10.9 10.2 10.3 7.5 9.5 9.4 7.2 8.0 3.7
en-cs 13.7 14.6 15.3 14.6 12.2 12.6 11.9 12.6 3.4
en-de 22.4 24.9 23.6 23.9 22.4 24.0 24.3 23.4 2.5
en-fr 23.1 22.9 23.5 23.1 22.2 22.0 18.0 20.0 5.5

Table 3: BLEU score for LSTM architectures with multiple BPE configurations. Each score is color-coded by its rank among
scores from different BPE configurations in the same row. δ is the difference between the best and worst BLEU score of each
row.
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Char Separate BPE Joint BPE

2k 8k 32k 2k 8k 32k

ar-en src 0.49k 2.48k 8.47k 32.36k 2.46k 7.98k 26.11k
tgt 0.24k 2.23k 8.17k 30.45k 1.27k 4.06k 13.45k

fr-en src 0.30k 2.30k 8.26k 31.23k 2.18k 7.14k 24.48k
tgt 0.23k 2.22k 8.16k 30.40k 1.94k 6.10k 20.45k

Table 4: Vocabulary size after applying separate and joint BPE for ar-en and fr-en language pair.

Best
Sep.

Best
Joint

Worst
Sep.

Worst
Joint

tiny-
lstm

ar-en 24.3 24.2 20.6 20.6
cs-en 20.2 20.7 17.8 17.8
de-en 23.3 23.6 21.1 21.1
fr-en 25.0 25.4 21.8 21.8

en-ar 9.1 9.3 8.3 8.5
en-cs 15.2 14.4 11.5 11.5
en-de 21.8 21.9 18.2 18.2
en-fr 21.1 21.8 19.9 19.9

deep-
transformer

ar-en 31.0 30.8 26.8 27.5
cs-en 24.6 24.6 19.0 20.6
de-en 28.1 28.6 24.8 25.2
fr-en 28.8 29.8 27.3 26.6

en-ar 12.0 13.0 9.6 10.6
en-cs 17.3 17.3 13.0 13.8
en-de 27.3 27.4 23.8 23.9
en-fr 24.0 25.6 22.5 22.8

Table 5: Best and worst BLEU score with tiny-lstm and
deep-transformer for joint and separate BPE models.

most typical cases for this comparison, namely
the Arabic-English language pair and the French-
English language pair. The reason these two lan-
guage pairs are typical is that for Arabic-English,
the scripts of the two languages are completely dif-
ferent, while the French and English scripts only
have minor difference. It could be seen that for
Arabic-English language pair, the Arabic vocabu-
lary size is always roughly twice the size of the
English vocabulary. Upon closer examination, we
see that roughly half of the Arabic vocabulary is
consisted of English words and subwords, scatter-
ing over around 2% of the lines in the Arabic side
of the training corpus.5 Hence, for most sentence
pairs in the training data, the effective Arabic and
English vocabulary under joint BPE model is still
roughly the same size. On the other hand, because
of extensive subword vocabulary sharing, at lower

5These English tokens are generally English names, URLs or
other untranslated concepts or acronyms.

BPE size, the vocabulary size for French and En-
glish is always roughly the same as the number
of BPE merge operations regardless of separate or
joint BPE. However, this equality starts to diverge
as more BPE merge operations are conducted, be-
cause the vocabulary difference between French
and English starts to play out in this scenario. Un-
like Arabic-English, it is hard to predict what is
the resulting BPE size from the number of merge
operations used, because it is hard to know how
many resulting subwords will be shared between
the two languages.

Table 5 shows our experimental results with sepa-
rate/joint BPE and our base architectures.6 With the
configurations we explore, the difference between
the best separate/joint BPE performance seems min-
imal. On the other hand, while the worst BPE
configuration remains the same for separate BPE
models, we see even worse performance for Trans-
former at 32k separate BPE most of the time. We
think this is a continuation of the trend observed in
our main results, as the vocabulary size tends to be
even larger than joint BPE when applying separate
BPE models.

Given the negligible difference in model perfor-
mance, we think it is not necessary to sweep BPE
merge operations for both joint and separate set-
tings. It is sufficient to focus on the setting that
makes the most sense for the task at hand, and fo-
cus on hyper parameter search within that setting.

4.3 Analysis 3: Languages
We are interested in what properties of the lan-
guage have the most impact on the variance of
BLEU score with regard to different BPE con-
figurations. For our main experiments, we can
already see a pretty consistent trend that for
deep-transformer architecture, 0.5k and 32k
merge operations always roughly correspond to the
best and worst BPE configurations, respectively.
6We only run experiments on 2k, 8k and 32k to save computa-
tion time.
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0.5k 32k δ 0.5k 32k δ

pt-en 36.3 34.7 1.6 en-pt 38.5 35.6 2.9
he-en 31.1 28.6 2.5 en-he 26.2 22.9 3.3
tr-en 20.9 17.8 3.1 en-tr 13.0 9.8 3.2
ru-en 19.9 18.0 1.9 en-ru 19.1 16.6 2.5
pl-en 19.3 16.7 2.6 en-pl 16.7 13.4 3.3
hu-en 20.8 16.8 4.0 en-hu 16.0 12.6 3.4

Table 6: BLEU score for the 6 extra language pairs in
multilingual-TED dataset with deep-transformer archi-
tecture.

coef. std. error p-value

f1 0.575 1.345 0.677
f2 -0.460 1.345 0.738
f3 -1.998 1.983 0.333
f4 0.304 0.360 0.415
f5 1.060 0.639 0.123
f6 1.169 0.516 0.043
f7 0.913 0.314 0.013
f8 0.340 0.367 0.373
f9 1.280 0.755 0.116

Table 7: Coefficient from regression analysis and their corre-
sponding standard error and p-values. f1 and f2 are source
and target type/token ratio, respectively. f3 is alignment ratio.
f4–f6 are binary features for source-side morphological type
(fusional, introflexive and agglutinative) and f7–f9 are the
same for target.

To add more data points, we assume 0.5k and 32k
are always the best and the worst configurations
and build systems with these two configurations
with both translation directions of 6 more languages
pairs, namely, translating of English into and out
of Brazilian Portuguese (pt), Hebrew (he), Russian
(ru), Turkish (tr), Polish (pl) and Hungarian (hu).
Table 6 shows the result with these 6 language pairs.
We note that our observation for the 4 language
pairs generalize well for the extra 6 language pairs,
and we observe a similar magnitude of performance
drop as the other language pairs moving from 0.5k
to 32k.

To acquire insights for the aforementioned prob-
lem, we conduct a linear regression analysis using
the linguistic features of the the 10 language pairs as
independent variables and BLEU score difference
between 0.5k and 32k merge operation settings as
the dependent variable.7 The linguistic features of
our interest are described as follows:

• Type/Token Ratio: Taken from Bentz et al.
7Note that for language pairs in our main results, these may
not necessarily the best or the worst system. But the readers
shall see that the difference is pretty minimal.

(2016) this is the ratio between number of to-
ken types and the number of tokens in the train-
ing corpus, ranging [0, 1]. These are computed
separately for source and target language and
denoted as f1 and f2 respectively.

• Alignment Ratio: Also taken from Bentz et
al. (2016), this is the relative difference be-
tween the number of many-to-one alignments
and one-to-many alignments in the training
corpus, ranging [−1, 1]. We follow the same
alignment setting as in Renduchintala et al.
(2018). This is computed together for each
parallel training corpus and denoted as f3.

• Morphological Type: We then use a set of
binary features to indicate if a language ex-
hibits a certain morphological patterns. We
take morphological features from Gerz et al.
(2018), where for each language a morpholog-
ical type from the following categories was
assigned: Isolating, Fusional, Introflexive and
Agglutinative. None of the languages we use
exhibit Isolating morphology which leaves us
with 6 binary features. The features f4, f5
and f6 indicates the presence (or absence) of
fusional, introflexive and agglutinative mor-
phological patterns respectively for the source
language and f7, f8, f9 indicate the same for
the target side.

The 9 features are re-normalized to the [0, 1] re-
gion with the min-max normalization. Our linear re-
gression analysis is conducted with Ordinary Least
Squares (OLS) model in the Python statsmodels8

package.
Table 7 shows the regression result. Surprisingly,

we don’t see any strong correlation between the
type/token ratio, alignment ratio and the variance in
BPE. On the other hand, the regression points out
that having agglutinative language on the source
side and fusional language on the target side in-
creases such variance. While we have seen signif-
icant BPE variances for all the experiments with
Transformer, we think future work should be espe-
cially cautious with systems that translate out of
agglutinative language and into fusional language
(note that English is classified as fusional language
in this regime).

4.4 Analysis 4: Variance with Random Seeds
Since our experiments are under low-resource set-
tings, it is important to examine whether the trends
8
https://pypi.org/project/statsmodels/0.9.0/
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Figure 2: Scatter plots for the variance analysis of deep-transformer system. Each dot in the plot represents the BLEU
score for one random restart, while the color code follows the result ranking of its corresponding system configuration in Table 2.

we observe above are due to different system con-
figurations or mostly variance of random seeds.
As it is expensive to re-run all the systems mul-
tiple times, we only conduct such analysis on the
deep-transformer architecture and ar-en and
en-ar language pairs. We choose to focus on Trans-
former architecture because we observe more con-
sistent trend for Transformer than LSTM. Hence, it
is more interesting to see how well it holds against
the randomness in training. To conduct such anal-
ysis, we run each system configuration for three
more times with different random seeds resulting
in four points for each system configuration.

Figure 2 shows the scatter plots of BLEU scores
for each random restart under each system config-
uration. Ideally, the BLEU scores from multiple
random restarts of the system configurations should
preserve the same ranking as the results in Table 2.
It can be seen that, the results from the top-3 BPE
configurations are often clustered together (indi-
cating low variance) and the rankings of the other
configurations are preserved pretty well. Specifi-
cally, even best instances among multiple random
restarts with 16k and 32k BPE merge operations
fall pretty far from those with top configurations,
further verifying our previous observations on the
Transformer architecture.

4.5 Analysis 5: High-Resource Setting

While this paper focuses on low-resource settings,
we conduct one set of experiments with a high-
resource language pair to see if our results gener-
alize to high-resource settings. This experiment
is conducted with all WMT 2017 Russian-English

(ru-en) data except the UN dataset, which includes
2.61M sentence pairs in total. We use the test sets
from news translation shared task of WMT 2012-
2016 as the development data and test on WMT
2017 test set. Due to computation constraints, we
only experiment with deep-transformer ar-
chitecture. All the other configurations are exactly
the same as the low-resource experiments.

Table 8 summarizes the results. First, notice that
the overall variance of results under different BPE
configurations is relatively smaller than the low-
resource experiments, verifying our intuition that it
is especially important to tune BPE size under low-
resource settings. Besides, the trend in this setting
is also very different from what is shown in Table 2.
Specifically, the best results are often obtained with
larger BPE sizes, which explains why these con-
figurations were preferred by previous analysis. It
could hence be concluded that the analysis results in
this paper should not be generalized to high-source
settings. We leave comprehensive analysis with
high-resource language pairs for future work.

5 Conclusion

We conduct a systematic exploration over various
numbers of BPE merge operations to understand its
interaction with system performance. We conduct
this investigation over 5 different NMT architec-
tures including encoder-decoder and Transformer,
and 4 language pairs in both translation directions.
We leave systematic study on the effect of BPE on
high-resource settings and more language pairs, es-
pecially morphologically isolating languages, for
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0 0.5k 1k 2k 4k 8k 16k 32k δ

ru-en 29.3 30.4 30.0 30.3 30.6 30.9 31.0 30.9 1.7
en-ru 28.0 29.1 29.1 29.5 29.5 29.8 30.0 30.0 2.0

Table 8: BLEU score for deep-transformer architecture under high-resource setting, with multiple BPE configurations.
Each score is color-coded by its rank among scores from different BPE configurations in the same row. δ is the difference
between the best and worst BLEU score of each row.

future work. Subword regularization could also be
studied in this manner.

Based on the findings, we make the following
recommendations for selecting BPE merge opera-
tions in the future:

• For Transformer-based architectures, we rec-
ommend the sweep be concentrated in the
0− 4k range.

• For Shallow LSTM architectures, we find no
typically optimal BPE merge operation and
therefore urge future work to sweep over 0−
32k to the extent possible.

• We find no significant performance differ-
ences between joint BPE and seperate BPE
and therefore recommend BPE sweep be con-
ducted with either of these settings.

Furthermore, we strongly urge that the aforemen-
tioned checks be conducted when translating into
fusional languages (such as English or French)
or when translating from agglutinative languages
(such as Turkish).

Our hope is that future work could take the ex-
periments presented here to guide their choices re-
garding BPE and wordpiece configurations, and
that readers of low-resource NMT papers call for
appropriate skepticism when the BPE configuration
for the experiments appears to be sub-optimal.
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Abstract

Neural networks have become the state-
of-the-art approach for machine transla-
tion (MT) in many languages. While
linguistically-motivated tokenization tech-
niques were shown to have significant ef-
fects on the performance of statistical MT,
it remains unclear if those techniques are
well suited for neural MT. In this pa-
per, we systematically compare neural and
statistical MT models for Arabic-English
translation on data preprecossed by vari-
ous prominent tokenization schemes. Fur-
thermore, we consider a range of data and
vocabulary sizes and compare their effect
on both approaches. Our empirical re-
sults show that the best choice of tokeniza-
tion scheme is largely based on the type of
model and the size of data. We also show
that we can gain significant improvements
using a system selection that combines the
output from neural and statistical MT.

1 Introduction

Neural machine translation (NMT) has been
rapidly attracting the attention of the research com-
munity for its promising results (Cho et al., 2014b;
Bahdanau et al., 2014; Wu et al., 2016; Vaswani et
al., 2017). NMT is composed of two neural net-
works, an encoder and a decoder, where the en-
coder is fed a sentence from the source language
and the decoder generates its translation, word
by word, in the target language. Recently, NMT

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

has been shown to outperform other MT systems
in many language pairs, e.g. German-English,
French-English and Basque-English (Escolano et
al., 2017; Dahlmann et al., 2017; Unanue et al.,
2018). While Arabic MT has been mostly devel-
oped under statistical MT (SMT), NMT has also
been applied and studied recently (Habash and Sa-
dat, 2006; Almahairi et al., 2016; Durrani et al.,
2017).

Linguistically-motivated tokenization has
shown to have a significant effect on SMT,
particularly in the case of morphologically rich
languages like Arabic (Habash and Sadat, 2006).
However, it remains unclear if such techniques
are well suited for NMT, where language-agnostic
tokenizations, e.g. byte-pair encoding (BPE)
(Sennrich et al., 2016), are widely used. Almahairi
et al. (2016) has looked into Arabic SMT and
NMT, achieving the highest accuracy using the
Penn Arabic Treebank (ATB) tokenization, with
51.2 and 49.7 BLEU points for SMT and NMT,
respectively.

In this paper, we study the impact of differ-
ent preprocessing techniques in Arabic-English
MT on both SMT and NMT, by examining vari-
ous prominent tokenization schemes. We conduct
learning curve experiments to study the interac-
tion between data size and the choice of tokeniza-
tion scheme. We study the performance under
morphology-based and frequency-based tokeniza-
tion schemes, provided by MADAMIRA (Pasha
et al., 2014) and BPE, respectively, on in-domain
data. In addition, we evaluate the best performing
models on out-of-domain data. Our results show
that the utilization of BPE for SMT can be effec-
tive and allows achieving a good performance even
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with a small vocabulary size of 20K. Moreover, the
results show that the performance of NMT is es-
pecially sensitive to the size of data. We notice
that NMT suffers with long sentences, and thus,
we utilize system selection, which yields signifi-
cant improvements over both approaches. Our best
system significantly outperforms previous results
reported on the same in-domain test data by +4
BLEU points (Almahairi et al., 2016).

The rest of the paper is organized as follows.
The related work is presented in Section 2. Sec-
tion 3 describes our proposed approach. Section 4
illustrates the experimental settings. The results
are reported in Section 5. In Section 6, we discuss
our findings. Finally, we conclude the paper and
mention the future work in Section 7.

2 Related Work

Many studies have compared the performance of
different MT models on translation tasks (Unanue
et al., 2018; Almahairi et al., 2016; Durrani et al.,
2017). However, the data preprocessing was not
unified across those models. For example, BPE
is only applied to the training data utilized by the
NMT system, but not SMT (Almahairi et al., 2016;
Durrani et al., 2017).

Habash and Sadat (2006) investigated and com-
pared across some preprocessing schemes for Ara-
bic, describing and evaluating different methods
for combining them. The main preprocessing
schemes were Simple Tokenization, Decliticiza-
tion (degrees 1 to 3), and Arabic Treebank To-
kenization. Decliticization of degree 2 outper-
formed the rest when applied individually. They
reported improvement in MT performance when
combining different schemes together.

Almahairi et al. (2016) compared NMT and
SMT on Arabic translation, and showed that NMT
performs comparably to SMT. The best perfor-
mance is achieved when Penn Arabic Treebank
(ATB) tokenization is used with 51.19 and 49.70
BLEU points for SMT and NMT, respectively.

The idea of system selection for MT exists in the
literature, but mostly for model selection under the
same approach (SMT or NMT) (Devlin and Mat-
soukas, 2012; Salloum et al., 2014).

3 Approach

In our study, we systematically compare SMT and
NMT on the following dimensions.

3.1 Source Language Tokenization

Much research has shown the importance of
tokenization and orthographic normalization for
SMT and NMT, as they deal with data sparsity
(El Kholy and Habash, 2012; Habash and Sa-
dat, 2006; Zalmout and Habash, 2017). Tok-
enization schemes can either be morphology-based
or statistical/frequency-based (Pasha et al., 2014;
Sennrich et al., 2016). We investigate both in the
context of Arabic MT, both separately and in com-
bination, to observe their interaction. We normal-
ize Alif ‘ @ ’ and Ya ‘ ø
 ’ in all schemes, where
Hamza is removed from the variants of Hamzated
Alif (e.g.‘


@’,‘ @’) to become ‘ @’, the Alif Maqsura ‘

ø’ is replaced with Ya ‘ ø
 ’ and the diacritics are
removed.

Morphology-based This tokenization scheme
relies on the linguistic rules of the source lan-
guage. We explore three schemes under this cat-
egory (Habash and Sadat, 2006; Zalmout and
Habash, 2017): 1) Simple Tokenization (Raw) that
splits off punctuation and numbers; 2) Penn Ara-
bic Treebank (ATB) Tokenization, which splits all
clitics except definite articles; 3) Decliticization
(D3), which splits all clitics.

Frequency-based We use byte-pair encoding
(BPE) (Sennrich et al., 2016), which is an iterative
compression approach that replaces the most fre-
quent pair of characters in a sentence with a unique
sequence of characters. It allows for a fixed-size
vocabulary representation. Figure 1 shows an ex-
ample across Raw and Tok schemes with/without
BPE on top.

3.2 Training Data Size

We conduct a learning curve experiment to ex-
plore how much both Arabic-English SMT and
NMT can benefit from adding more training data
with each tokenization scheme. Habash and Sa-
dat (2006) have conducted a similar learning curve
study for SMT. Each tokenization scheme may re-
sult in a different number of tokens per sentence;
hence, a sentence-length filter will discard more
sentences from more verbose schemes. This would
lead to some schemes having access to more words
than others. Therefore, we adopt El Kholy and
Habash (2012)’s approach of filtering training par-
allel data based on the D3 scheme as a reference
scheme for selecting sentences of length up to 100
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Setting Sentence 

Original دارفلأا ىلع ماھملا عزونو مویلا حاترن انّنأ ةدیمح وبأ دمحأ لاق.  

Raw دارفلاا يلع ماھملا عزون و مویلا حاترن اننا ةدیمح وبا دمحا لاق . 
ATB 
D3 

. دارفلاا يلع ماھملا عزون +و مویلا حاترن ان+ نا ةدیمح وبا دمحا لاق  
  . دارفا +لا يلع ماھم +لا عزون +و موی +لا حاترن ان+ نا ةدیمح وبا دمحا لاق

Raw+BPE دارفلاا يلع ماھملا عز @@ونو مویلا حات @@رن اننا ةد @@يمح وبا دمح ا لاق .  
ATB+BPE 
D3+BPE 

. دارفلاا يلع ماھملا عز @@ون +و مویلا حات @@ر @@ن ان+ نا ةد @@يمح وبا دمحا لاق  
  . دارفا +لا يلع ماھم +لا عز @@ون +و موی +لا حا @@تر @@ن ان+ نا ةدیمح وبا دمحا لاق

Translation       Today we are resting and distributing the new posts, said Ahmad Abou Hamida. 

 
Figure 1: Tokenization schemes applied to an example.

tokens. Thus, the same sentences will be selected
across different tokenization schemes.

3.3 Target Language Resources

We design the training so that both systems will
have access to the same additional target language
resources besides the target side of the training par-
allel corpus. In SMT, target language resources
are used to build language models for fluency im-
provement. Whereas, many works have proven
pretrained word embeddings to be useful in neu-
ral network models (Qi et al., 2018), and there-
for, the same additional TLR are used to learn pre-
trained word embeddings that support the decoder
in NMT. Here, the tgt++ designation next to the
system name indicates the use of additional TLR.

3.4 Input Length and System Selection

Many have reported NMT performing worse with
long sentences (Cho et al., 2014a; Koehn and
Knowles, 2017), which was caught in our er-
ror analysis and thus we explored combining the
two MT systems via a system selection approach,
where the selection of either translation is based on
which is closer to the input length as a criterion.
Whereas the sentence BLEU score is the criterion
in the Oracle system selection.

4 Experimental Settings

4.1 Datasets

The training dataset contains 1.2M sentence pairs
in newswire (NW) domain from three Linguistic
Data Consortium (LDC) resources: LDC2004T18,
LDC2004T14, and LDC2007T08. For tuning,
we use LDC2010T12 (MT04), which consists of

1,075 sentence pairs in NW and government doc-
uments. As for the in-domain testing, we use
LDC2010T14 (MT05), which consists of 1,056
sentence pairs in NW, and has four English ref-
erence translations. We look into the perfor-
mance of the systems in out-of-domain data using
LDC2014T02 (MT12), which consists of 1,535
sentence pairs mostly web collection, and has four
English reference translations.

4.2 Preprocessing

MADAMIRA (Pasha et al., 2014) is utilized for
morphology-based tokenization of the source side.
Sennrich et al. (2016)’s BPE implementation is
used for learning and applying BPE models. We
set vocabulary size to 20K in BPE learning af-
ter exploring multiple vocabulary sizes, includ-
ing 10K, 20K and 30K, where the 20K setting
achieved comparable results to the 30K and out-
performed the 10K. Each BPE model is trained on
source side of training data of the respective ex-
periment. While Moses’ (Koehn et al., 2007) to-
kenizer and lowercaser are used for preparing the
target side.

4.3 SMT settings

We use Moses 3.0 (Koehn et al., 2007) to train
SMT models with maximum phrase length of 8 to-
kens. Two versions of the language model are ex-
amined: 1) trained solely on the target side of the
training dataset, and 2) trained on the target side
and the English Gigaword 5th edition.

4.4 NMT settings

We use the encoder-decoder with the general
global attention architecture as introduced by Lu-
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Figure 2: The performance on in-domain test (MT05) under different settings with different training data sizes.

#Vocab SMTtgt++ CI NMTscr/tgt++ CI P -value
Raw 331K 52.78 ± 0.98 52.76 ± 1.24 0.412
ATB 208K 55.42 ± 1.07 53.54 ± 1.20 0.002
D3 190K 54.66 ± 1.02 53.51 ± 1.20 0.027

Raw+BPE 20K 53.78 ± 1.10 52.41 ± 1.17 0.003
ATB+BPE 20K 55.64 ± 1.11 53.18 ± 1.15 0.001
D3+BPE 20K 54.59 ± 1.07 53.38 ± 1.16 0.018

Table 1: Comparing Raw, ATB and D3 Tokenized cases without/with BPE on in-domain test (MT05), in terms of BLEU
scores, where the Confidence Interval (CI) and P -value are reported. Bold font highlights best results by SMT and NMT.

ong et al. (2015). All the NMT models have been
trained using OpenNMT toolkit (Klein et al., 2017)
with no restriction on input’s vocabulary. We use
long short-term memory units (LSTM) (Hochre-
iter and Schmidhuber, 1997), with hidden units
of size 500 and two layers in both the encoder
and decoder. The word embedding vector size for
source/target is 300.

English pretrained word embeddings were
trained as skip-gram model (Mikolov et al., 2013)
via gensim tool (Rehurek and Sojka, 2010) with
settings: (size=300, window=8, min count=5) on
English Gigaword 5th edition (Graff and Cieri,
2003) dataset. Arabic embeddings were trained
on the Arabic Gigaword 5th edition (Parker et
al., 2011) via FastText (Bojanowski et al., 2017),
which showed better performance with morpho-
logically rich languages (Erdmann et al., 2018).
We give the designation of src/tgt++ to the system
that uses both embeddings.

4.5 Evaluation Metrics

The evaluation results are reported in case insensi-
tive BLEU scores (Papineni et al., 2002) with their
confidence intervals (CI) and p-values. Bootstrap
resampling is used to compute statistical signifi-
cance intervals (Koehn, 2004).

5 Results

5.1 Preprocessing and Learning Curve

We examine Raw, ATB and D3 with and without
BPE applied on top, across a learning curve where
smaller sets of our training data (1.2M) are consid-
ered at 25% (300K) and 6.25% (75K) tokens. Fig-
ure 2 illustrates the learning curve results for Raw
(baseline) and ATB (overall best), with and with-
out BPE. Figure 2 shows the importance of training
data availability, especially for NMT, and also that
BPE impact can be seen in both systems, which we
find interesting. Moreover, SMT is shown to be far
more sensitive to preprocessing than NMT.

Table 1 shows the best systems’ results when
100% of the training data is tokenized by Raw,
ATB and D3, with and without BPE on top of it, for
SMT and NMT. It shows ATB+BPE and ATB to
achieve the best results for SMT and NMT, respec-
tively, which we find interesting as BPE is usu-
ally associated with NMT. The p-value indicates
whether the difference between SMT and NMT re-
sults under the same tokenization scheme is sta-
tistically significant or not. The statistical signifi-
cance is illustrated with p-value < 0.05. SMTtgt++

and NMTscr/tgt++ have comparable results at the
baseline. As expected, using more data for LM
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Figure 3: The input size vs. output size in SMT and NMT, respectively, on MT05 with ATB tokenization. We notice that in
NMT parts of the input sentences are dropped and not translated at all, which motivates the length-based selection.

SMTtgt++ NMTscr/tgt++ System Selection Oracle
Setting BLEU Scheme BLEU BLEU BLEU

ATB+BPE 55.64 ATB 53.54 56.18 61.26

Table 2: BLEU score of the length-based system selection (using best models of SMT and NMT) when applied on in-domain
test (MT05).

SMTtgt++ NMTscr/tgt++ System Selection Oracle
Scheme BLEU Scheme BLEU BLEU BLEU

ATB+BPE 35.11 ATB 36.56 37.96 39.11

Table 3: BLEU score of the length-based system selection (using best models of SMT and NMT) when applied on out-of-
domain test (MT12).

produces better results as well as the increase in
training data size. Using pretrained word embed-
dings for both languages improve the NMT re-
sults significantly compared to only target ones
by two BLEU points. As shown in Table 3, the
best NMTscr/tgt++ model (using ATB) outperforms
SMTtgt++ model (using ATB+BPE) by 1.5 BLEU
against MT12 in the out-of-domain testing.

5.2 Error analysis
Error analysis has shown that NMT output is more
fluent than SMT’s, especially with short sentences
(< 50 tokens), in contrast to long sentences where
coverage and accuracy drop, which support related
work. Figure 3 shows dropping in NMT output
size as the input size increases, especially < 40
tokens, while SMT keeps more consistent output
to the input size. So we explore system selec-
tion based on the closeness to the input length as
well as Oracle results, where the selection is based
on the highest output BLEU score. Tables 2 and
3 show the results of length-based system selec-
tion on best models in SMT and NMT when ap-
plied to in-domain test (MT05) and out-of-domain
testing (MT12), respectively, which illustrate im-

provements over the original BLEU scores.
Figure 4 illustrates five examples, where either

SMT or NMT output is selected based on the out-
put length compared to the source input size. In
Example 1, the SMT output is selected over the
NMT one as the NMT system drops the phrase af-
ter the comma and only translates the part before,
however, fluently. Example 2, which represents
much longer sentence, SMT output is selected over
NMT, which translates the saying and drops the
rest of the sentence. On the other hand, in Exam-
ples 3 and 4, NMT output is selected over SMT’s
for being the closest to the source input in terms of
length. Furthermore, Example 5 represents a case
where the system selection approach fails to select
the better prediction (in terms of BLEU score) for
the final output based on the source-output length
comparison.

6 Discussion

We notice that morphology-based tokenization
schemes improve the performance of MT systems
regardless of the MT approach, but in different lev-
els. The difference in scheme choice is less im-
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Example 1 

Input  دكؤت  امك  ,  ةیرذ ةلبنق +ب  دوزتلا  يلا  يعست  لا  ناریا  نا +و  يملس  يناریلاا  يوونلا  جمانربلا  نا  لوقلا  ررك +و  
  .  ةدحتملا  تایلاولا

SMT* and repeated that iran ’ s nuclear program is peaceful and that iran is not seeking to acquire an atomic 
bomb , as the united states alleges . 

NMT he repeated that iran ’ s nuclear program was peaceful and iran was not seeking to acquire atomic 
bomb . 

Human he repeated that iran ’ s nuclear program is peaceful and that iran is not trying to acquire an atomic 
bomb as the united states claims . 

Example 2 

Input 
  يقارعلا  راوجلا  لود  عیمج  نا  يریقسلا  بجر  ةیندرلاا  ةیجراخلا  ةرازو  مسا +ب  يمسرلا  قطانلا  لاق - )  ب  فا  ( 3 - 1
  يتلا  ناریا  ءانثتسا +ب  ةیجراخلا  ءارزو  يوتسم  يلع  لبقملا  سیمخلا  نامع  يف  دقعی +س  يذلا  عامتجلاا  يف  كراشت +س
 .  ةینوناقلا +و  ةیلودلا  نووشلل  ةیجراخلا  ریزو  دعاسم ه+ ساری  دفو +ب  كراشت +س

SMT* 

oman 3 - 1 ( afp ) - the jordanian foreign ministry spokesman recep UNK that all iraqi neighboring 
countries will participate in the meeting , which will be held in amman next thursday at the level of 
foreign ministers , with the exception of iran , which would participate with a delegation led by 
assistant foreign minister UNK international and legal . 

NMT jordan will take part in a meeting of foreign ministers in amman on thursday , except for iran , a 
foreign ministry spokesman said . 

Human 

amman 1 - 3 ( afp ) - jordanian foreign ministry spokesperson rajab sukayri has said that all of iraq ’ s 
neighboring countries will be taking part in thursday ’ s meeting in amman at foreign minister level , 
with the exception of iran which will be represented by a delegation headed by the foreign minister ’ s 
assistant for legal and international affairs . 

Example 3 

Input نایبلا  ةحص  نم  ققحتلا  نستی  مل +و  . 

SMT he could not verify the authenticity of the statement . 

NMT* the authenticity of the statement could not be verified . 

Human the authenticity of the statement could not be verified . 

Example 4 

Input ةریزجلا  ھبش  يلع  ایملس  ةیوونلا  ةیضقلا  لح  يلا  يضاملا  ربمتبس  ذنم  تفقوت  يتلا  ةیسادسلا  ةیوونلا  تاثداحملا  فدھت +و  
 .  ةیروكلا

SMT and designed six-party nuclear talks which have been stalled since last september to peacefully solve 
the nuclear issue on the korean peninsula . 

NMT* the six-party nuclear talks , which have been stalled since last september , are aimed at resolving the 
nuclear issue peacefully on the korean peninsula . 

Human the six-party nuclear talks , which stopped last september , are aimed at a peaceful settlement of the 
nuclear issue on the korean peninsula . 

Example 5 

Input عیقوتلا  مسارم  يكیبم  وباث  يقیرفا  بونجلا +و  ریشبلا  رمع  ينادوسلا  ناسیئرلا  رضح +و 

SMT* the two presidents attended the omar al-beshir and south african president thabo mbeki the signing 
ceremony 

NMT sudanese president omar al-beshir and south african president thabo mbeki attended the signing 
ceremony 

Human the sudanese president umar bashir and the south african president thabo mbeki attended the signing 
ceremonies 

Figure 4: Examples from MT05, with SMT and NMT outputs when ATB is used as a scheme. The * designation next to the
system name indicates the decision of the system selection.
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pactful on NMT; compared with SMT. The im-
provement range for NMT is 1.13 BLEU, while for
SMT the range is 2.86 BLEU. While Raw results
are almost the same for SMT and NMT; ATB im-
proves both NMT and SMT; but the improvement
is higher for SMT. Adding BPE helps SMT, while
lowering vocabulary size. The effect of BPE on
NMT is insignificant, which is a surprising result
since BPE is often associated with NMT. Also, we
significantly improve on Almahairi et al. (2016)’s
results by more than three BLEU points.

Length-based system selection improves over
both NMT and SMT results in in-domain and out-
of-domain cases, significantly in the later, which
indicates a hybrid MT system may be promising.
Moreover, the huge jump in performance with Or-
acle selection shows that there is still room for po-
tential improvement in system designs, for better
accuracy and fluency. More TLR allow for bet-
ter results in MT systems. When both Arabic and
English pretrained word embeddings are used, the
performance improves by more than two BLEU
points compared to English only.

7 Conclusion and Future Work

In this paper, we study the impact of various pre-
processing techniques to Arabic-English MT un-
der SMT and NMT, where various prominent to-
kenization schemes are examined. We conduct a
learning curve analysis of the different preprocess-
ing settings with incremental training data size,
where ATB scheme performs consistently well
along the learning curve. Moreover, we imple-
mented a length-based system selection to deal
with NMT’s struggle with short sentences, and sig-
nificant improvements. The empirical results show
that the choice of tokenization scheme can be op-
timized based on the type of model to train and
the data available. We also gain significant im-
provements using length-based system selection
that combines the output from neural and statis-
tical MT. Our results significantly outperform the
ones reported in the prior work when applied to
in-domain test (MT05). As future work, we plan
to examine training data of general domain with
linguistically-motivated tokenization schemes to
study further their impact on NMT under different
neural models. Also, exploring sophisticated sys-
tem selection schemes for potential improvement.

Acknowledgments

The support and resources from the High Perfor-
mance Computing Center at New York University
Abu Dhabi are gratefully acknowledged.

References
Almahairi, Amjad, Kyunghyun Cho, Nizar Habash,

and Aaron Courville. 2016. First result on Ara-
bic neural machine translation. arXiv preprint
arXiv:1606.02680.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv e-prints,
abs/1409.0473.

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Cho, Kyunghyun, Bart Van, Dzmitry Bahdanau, and
Yoshua Bengio. 2014a. On the properties of neural
machine translation: Encoder-decoder approaches.
In Proceedings of SSST-8 Eighth Workshop on Syn-
tax Semantics and Structure in Statistical Transla-
tion, pages 103–111. Association for Computational
Linguistics.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734. Association for Computational Linguistics.

Dahlmann, Leonard, Evgeny Matusov, Pavel
Petrushkov, and Shahram Khadivi. 2017. Neural
machine translation leveraging phrase-based models
in a hybrid search. CoRR.

Devlin, Jacob and Spyros Matsoukas. 2012. Trait-
based hypothesis selection for machine translation.
In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL HLT 12, pages 528–532. Association for
Computational Linguistics.

Durrani, Nadir, Fahim Dalvi, Hassan Sajjad, and
Stephan Vogel. 2017. Qcri machine translation sys-
tems for iwslt 16. CoRR.

El Kholy, Ahmed and Nizar Habash. 2012. Ortho-
graphic and morphological processing for English–
Arabic statistical machine translation. Machine
Translation, 26(1-2):25–45.

Erdmann, Alexander, Nasser Zalmout, and Nizar
Habash. 2018. Addressing noise in multidialectal
word embeddings. In Proceedings of Conference of
the Association for Computational Linguistics, Mel-
bourne, Australia.

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 220



Escolano, Carlos, Marta Costa-jussa, and Jose Fonol-
losa. 2017. The talp-upc neural machine transla-
tion system for german/finnish-english using the in-
verse direction model in rescoring. In Proceedings
of the Second Conference on Machine Translation,
pages 283–287. Association for Computational Lin-
guistics.

Graff, David and Christopher Cieri. 2003. English gi-
gaword, ldc catalog no ldc2003t05. Linguistic Data
Consortium, University of Pennsylvania.

Habash, Nizar and Fatiha Sadat. 2006. Arabic prepro-
cessing schemes for statistical machine translation.
In HLT-NAACL.

Hochreiter, Sepp and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780, November.

Klein, Guillaume, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proceedings of ACL 2017 System Demonstrations,
pages 67–72. Association for Computational Lin-
guistics.

Koehn, Philipp and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39. Association for Computational
Linguistics.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Christo-
pher Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Christopher Dyer, Ondrej Bo-
jar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: open source toolkit for statistical machine
translation. In Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and
Poster Sessions, pages 177–180, Prague, Czech Re-
public.

Koehn, Philipp. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
EMNLP, Barcelona, Spain.

Luong, Thang, Hieu Pham, and Christopher Manning.
2015. Effective approaches to attention-based neu-
ral machine translation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1412–1421. Association for
Computational Linguistics".

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceed-
ings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 311–318,
Philadelphia, PA.

Parker, Robert, David Graff, Ke Chen, Junbo Kong, and
Kazuaki Maeda. 2011. Arabic Gigaword Fifth Edi-

tion. LDC catalog number No. LDC2011T11, ISBN
1-58563-595-2.

Pasha, Arfath, Mohamed Al-Badrashiny, Ahmed El
Kholy, Ramy Eskander, Mona Diab, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of ara-
bic. In In Proceedings of LREC.

Qi, Ye, Devendra Singh, Matthieu Felix, Sarguna
Janani, and Graham Neubig. 2018. When and why
are pre-trained word embeddings useful for neural
machine translation? CoRR.

Rehurek, Radim and Petr Sojka. 2010. Software
framework for topic modelling with large corpora.
In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA.

Salloum, Wael, Heba Elfardy, Linda Alamir-Salloum,
Nizar Habash, and Mona Diab. 2014. Sentence level
dialect identification for machine translation system
selection. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics,
pages 772–778.

Sennrich, Rico, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725.
Association for Computational Linguistics.

Unanue, Inigo, Lierni Arratibel, Ehsan Borzeshi, and
Massimo Piccardi. 2018. English-basque statis-
tical and neural machine translation. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Paris, France. European Language Resources Asso-
ciation (ELRA).

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, and Wolfgang Macherey.
2016. Googles neural machine translation system:
Bridging the gap between human and machine trans-
lation. CoRR, abs/1609.08144.

Zalmout, Nasser and Nizar Habash. 2017. Optimizing
Tokenization Choice for Machine Translation across
Multiple Target Languages. The Prague Bulletin of
Mathematical Linguistics, 108:257–270, June.

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 221



Lost in Translation:
Loss and Decay of Linguistic Richness in Machine Translation

Eva Vanmassenhove Dimitar Shterionov

ADAPT, School of Computing, Dublin City University, Dublin, Ireland
firstname.lastname@adaptcentre.ie

Andy Way

Abstract

This work presents an empirical approach
to quantifying the loss of lexical rich-
ness in Machine Translation (MT) systems
compared to Human Translation (HT). Our
experiments show how current MT sys-
tems indeed fail to render the lexical di-
versity of human generated or translated
text. The inability of MT systems to gen-
erate diverse outputs and its tendency to
exacerbate already frequent patterns while
ignoring less frequent ones, might be the
underlying cause for, among others, the
currently heavily debated issues related to
gender biased output. Can we indeed,
aside from biased data, talk about an algo-
rithm that exacerbates seen biases?

1 Introduction

Berman (2000) observed that the translation pro-
cess consists of deformation processes, one of
which he refers to as ‘quantitative impoverish-
ment’, a loss of lexical richness and diversity. Al-
though mitigated by a human translator, this loss
is to some extent inevitable as it is hard to re-
spect the multitude of signifiers and constructions
when translating one language into another. While
Berman (2000) studied the decrease of lexical rich-
ness of human translations (HTs) from a theoret-
ical point of view, Kruger (2012) demonstrated
using empirical methods that there is indeed a lex-
ical loss when comparing translations to original
texts. In the field of Machine Translation (MT),
Klebanov and Flor (2013) showed that Statistical

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

MT (SMT) suffers considerably more from lexical
loss than HTs in a study focused on lexical tight-
ness and text cohesion. We are not aware of any
other research in this direction.

As generating accurate translations has been the
main objective of current MT systems, maintaining
lexical richness and creating diverse outputs has
understandably not been a priority. Nevertheless,
the issue of lexical loss in MT might at the same
time be a symptom and a cause of a more serious
issue underlying the current systems. The differ-
ence between a one-to-many relationship such as
the one illustrated in Figure 1, is very different
from the one illustrated in Figure 2 or Figure 3
from a (human) translator point of view. How-
ever, from a statistical point of view, they are not
always clearly distinguishable. When presented
with an ambiguous sentence, like ‘I am intelli-
gent’ or ‘See?’ where there is little context to
decide on a particular target variant of the same
source word, it essentially boils down to the same
thing: picking the translation that maximizes the
probability over the entire sentence. As such, the
loss of richness and diversity and the exacerba-
tion of already frequent patterns might not sim-
ply be limited to the loss of (near) synonyms or
rare words, but could also be the underlying cause
of, for example, the inability of statistical MT sys-
tems to handle morphologically richer language
correctly (Vanmassenhove et al., 2016; Passban et
al., 2018), the already observed issues with gender
bias (Vanmassenhove et al., 2018) in MT output or
the difficulties of dealing with agglutinative lan-
guages (Unanue et al., 2018).

The inability of neural models to generate di-
verse output has already been observed for tasks
involving language generation, where creating in-
trinsically diverse outputs is more of a necessity.
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uncountable
indénombrable

incalculable
innombrable

Figure 1: One-to-many relation between an English source
word and some of its possible French translations

see

voir
vois

voyons
voyez

voient

Figure 2: One-to-many relation between English verb ‘see’
and its conjugations in French

smart

intelligente
intelligent

intelligentes
intelligents

Figure 3: One-to-many relation between English adjective
‘smart’ and its male and female counterparts in French

However, from a translation point of view, the abil-
ity of MT systems to be (1) consistent and (2) learn
and generalize well are –compared to previous MT
systems– the biggest asset of NMT. We however,
hypothesize that this type of generalization might
as well have serious drawbacks and that diversity,
although not deemed a priority, is of importance
for the field of MT as well. Overgeneralization
over a seen input and the exacerbation of domi-
nant forms might not only lead to a loss of lexical
choice, but could also be the underlying cause of
gender bias exacerbation. Although, in the con-
text of gender, some researchers have already al-
luded to the existence of so-called ‘algorithmic
bias’ (Zhao et al., 2017; Prates et al., 2019), no
empirical evidence has been provided so far.

With our empirical approach, comparing the
lexical diversity of different MT systems and fur-
ther analyzing the frequencies of words, we aim to
shed some light on the relation between the loss
of diversity and the exacerbation or loss of cer-
tain words. Thus, the first objective of our work
is to verify how NMT compares to SMT and HT
in terms of lexical richness or the loss thereof. The
second objective is to quantify to what extent the
different MT architectures favour translations that
are more frequently observed in the training data.

The structure of the paper is the following: re-
lated work is described in Section 2; Our hypothe-

ses are defined in details in Section 3; information
on the data and the MT systems used in our experi-
ments is provided in Section 4; Section 5 discusses
the results of our experiments and finally, we con-
clude and provide some ideas for future work in
Section 6.

2 Related Work

In the field of linguistics, Berman (2000) re-
searched the so-called deforming tendencies that
are inherent to the act of translation. Although
these tendencies can be mitigated by the (human)
translator, they are to a large extent inevitable.
Quantitative impoverishment (or lexical loss), is
one of the tendencies mentioned. Kruger (2012)
compared human-translated to comparable non-
translated English texts and found the translations
to be more simplified in terms of language use than
the original writings.

In the field of MT, the concept of lexical
loss/diversity and its importance is indirectly re-
lated to the research of Wong and Kit (2012) on
cohesion. They illustrated the relevance of the
under-use of linguistic devices (super-ordinates,
meronyms, synonyms and near-synonyms) for
SMT in terms of cohesion. More closely related to
our work is the work of Klebanov and Flor (2013)
who presented findings regarding the loss of as-
sociative texture by comparing original and back-
translated texts, references and system translations
and a set of different MT systems. Although the
destruction of the underlying networks of signi-
fication might be, to some extent, unavoidable in
any translation process, the work of Klebanov and
Flor (2013) shows that SMT specifically suffers
from lexical loss, more than HT.

Lexical diversity or the loss thereof has also
been used as a feature to estimate the quality of
MT systems. Bentivogli et al. (2016) used lexical
diversity, measured by using the type-token ratio
(TTR), as an indicator of the size of vocabulary
as well as the variety of subject matter in a text.
Their experiments compared SMT to NMT and the
results suggested that NMT is better able to cope
with lexical diversity than SMT.
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3 Hypothesis

Data-driven statistical MT paradigms1 are con-
cerned with (i) identifying the most probable tar-
get words, phrases, or sub-word units given a
source-language input sentence and the preceding
decoded information, via the translation model,
and (ii) chaining those words, phrases or sub-word
units in a way that maximizes the likelihood of the
generated sentence with respect to the grammatical
and stylistic properties of the target language, via
the language model. In NMT, where translation
and language modeling are co-occurring in the de-
coder, it boils down to finding the most likely word
at each time step.

Our hypothesis is that the inherent nature of
data-driven MT systems to generalise over the
training data has a quantitatively distinguishable
negative impact on the word choice, expressed
by favouring more frequent words and disregard-
ing less frequent ones. We hypothesize that the
most visible effect of such bias is to be found in
the word frequencies and the disappearance (or
‘non-appearance’) of scarce words. Apart from a
general effect on lexical diversity, such behaviour
might also lead to the disappearance or amplified
use of certain morphological variants of the same
word, accounting, for example, for the already ob-
served over-use of male forms in ambiguous sen-
tences, the preference for certain verb forms over
other less frequent ones (3rd person > 1st person),
or the difficulties of MT systems to appropriately
handle morphologically richer target languages in
general.

Because NMT handles translation and language
modelling (or alignment) jointly (Bahdanau et al.,
2015; Vaswani et al., 2017), which makes it harder
to optimize compared to SMT, we further hypoth-
esise that NMT is more susceptible to problems re-
lated to overgeneralisation.

We present our experiments and analyses in Sec-
tion 4 and Section 5.

4 Empirical evaluation

To test our hypothesis we built three types
of MT systems and analysed their output for
two language pairs on Europarl (Koehn, 2005)
data. The language pairs are English → French
(EN-FR) and English → Spanish (EN-ES). We
1Despite the fact that often phrase-based SMT is labeled as
‘statistical’ and contrasted to ‘neural’ MT or NMT, we ought
to stress that both approaches are in fact statistical.

Language pair Train Test Dev
EN–FR 1,467,489 499,487 7,723
EN–ES 1,472,203 459,633 5,734

Table 1: Number of parallel sentences in the train, test and
development splits for the language pairs we used.

trained attentional RNN (Bahdanau et al., 2015),
Transformer (Vaswani et al., 2017) and Moses
MT (Koehn et al., 2007) systems. To draw more
general conclusions on the effects of bias propaga-
tion and loss of lexical richness, we assessed out-
put from seen (during training) and unseen data.

Data We used +/- 2M sentence pairs from the
Europarl corpora for each of the language pairs.
We randomised the order of the sentence pairs and
split the data into train, test and development sets,
filtering out empty lines. Details on the different
datasets can be found in Table 1. We chose to in-
clude large quantities of data in our test sets – the
unseen data – in order to maximise the language
variability and explore general tendencies.

MT systems For each of the three MT archi-
tectures we first trained a standard MT system
(the forward or FF system) on the original data.
For the RNN and Transformer systems we used
OpenNMT-py. The systems were trained for 150K
steps, saving an intermediate model every 5000
steps. We scored the perplexity of each model on
the development set and chose the one with the
lowest perplexity as our best model, used later for
translation. The options we used for the neural sys-
tems are as follows:

• RNN: size: 512, RNN type: bidirectional
LSTM, number of layers of the encoder and
of the decoder: 4, attention type: mlp,
dropout: 0.2, batch size: 128, learning opti-
mizer: adam (Kingma and Ba, 2014) and learn-
ing rate: 0.0001.

• Transformer: number of layers: 6, size: 512,
transformer ff: 2048, number of heads: 8,
dropout: 0.1, batch size: 4096, batch type: to-
kens, learning optimizer adam with beta2 =
0.998, learning rate: 2.

All neural systems have the learning rate decay
enabled and their training is distributed over 4
nVidia 1080Ti GPUs. The selected settings for
the RNN systems are optimal according to (Britz
et al., 2017); for the Transformer we use the set-
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Language pair SRC TRG
EN–FR 113,132 131,104
EN–ES 113,692 168,195

Table 2: Training vocabularies for the English, French and
Spanish data used for our models.

tings suggested by the OpenNMT community2 as
the optimal ones that lead to quality on par with the
original Transformer work (Vaswani et al., 2017).

For the SMT systems we use Moses (Koehn et
al., 2007) with default settings and a 5-gram lan-
guage model with pruning of bigrams. Each sys-
tem is further tuned with MERT (Och and Ney,
2003) until convergence or for a maximum of 25
iterations.

For the neural systems, we opted not to use sub-
word units as is typically done for NMT. This is
because we focus on the word frequencies in the
translations and do not want any algorithm for
splitting into sub-word units to add extra variabil-
ity in our data. To construct the dictionaries we
use all words in our training data. Table 2 (first
two columns) shows the training vocabularies for
the source and target sides.

To assess how MT amplifies bias and loss of
lexical richness, along with the original-data sys-
tems, we trained MT with backtranslated (BT)
data, which is typically used to complement orig-
inal data for MT training when the quantity of
the original data is not sufficient for reaching high
translation quality (Sennrich et al., 2016; Poncelas
et al., 2018).

We first trained MT systems for the reverse lan-
guage directions, i.e. for FR–EN and ES–EN. We
used the same data sets, but reversed the associ-
ations of the source and the target with FR/ES
→ EN instead of EN → FR/ES. We then used
these reversed (REV or rev) systems to translate
the training set: the same set used for training the
FF systems and the REV systems. That is, we use
a system trained on (say) FR–EN data to translate
the same FR set into English (EN*). The aim is to
see what is the impact of the underlying algorithms
on the data in the most-favourable scenario; when
the data has already been seen. With the trans-
lated English target data, we trained new systems
for the EN*→FR and EN*→ES directions, where
the source data was the backtranslated set. We re-
fer to these systems with BACK and use the suffix
back to denote them. We end up with what can

2http://opennmt.net/OpenNMT-py/FAQ.html

Lang. EN* FR*/ES*
pair RNN SMT Trans. RNN SMT Trans.

EN–FR 28,742 106,441 40,321 36,991 123,770 42,309
EN–ES 27,349 118,362 40,629 39,805 138,193 44,545

Table 3: Vocabularies of the English translation from the
REV systems, used as source for the BACK systems and the
French/Spanish output from the BACK systems.

be seen as a combination of back-translation and
round-trip-translation. See Figure 4 for a visual-
ization of the pipeline of systems.

FR - EN

training data 1

FR⇒ EN*

MT system 1: REV

EN* - FR

training data 2

EN⇒ FR*
MT system 2: BACK

Figure 4: Back-translated data pipeline.

For the REV and BACK systems we used the
same settings as for the FF ones. However, at
this stage, the source side of the training data is
different and thus impacts the learnable vocabu-
lary. Table 3 presents the source-side vocabulary
sizes for the RNN, SMT and Transformer systems.
These are in practice the number of distinct words
of the translations produced by the REV systems.
Compared to Table 2, this table clearly shows how
source and target vocabularies are comparable in
the original datasets, but translating the same orig-
inal English dataset with the neural REV systems
(RNN and Transformer) results in a huge drop in
vocabulary size; with the SMT REV systems the
decrease is still significant, but not as profound as
in the former cases.

In Table 4 we present automatic evaluation
scores – BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) – for the 12 analysed
systems. For completeness we present BLEU and
TER for the REV systems in Table 5, although
we do not consider them in our analysis. For the
test set we performed a statistical significance test
using the multeval tool (Clark et al., 2011). For
p < 0.05 all results in Table 4 are statistically sig-
nificant.

In what follows we use the following de-
notations to indicate the system we refer to:
{src}-{trg}-{system}-{dir}, where
{src} indicates the source language ‘en’, that is
English, {trg} indicates the target languag – ‘fr’

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 225



System Dev set Test set
reference BLEU↑ TER↓ BLEU↑ TER↓

en-fr-rnn-ff 33.7 50.7 33.8 51.0
en-fr-smt-ff 35.9 50.4 35.7 50.7
en-fr-trans-ff 35.9 49.5 36.0 49.4
en-fr-rnn-back 32.8 52.1 33.0 52.1
en-fr-smt-back 35.2 51.0 35.0 51.3
en-fr-trans-back 36.3 49.8 36.3 49.9
en-es-rnn-ff 37.4 45.3 37.9 45.3
en-es-smt-ff 38.5 45.8 38.6 45.9
en-es-trans-ff 39.4 44.5 39.5 44.5
en-es-rnn-back 36.0 47.0 36.3 47.0
en-es-smt-back 38.0 46.5 38.0 46.5
en-es-trans-back 39.4 45.2 39.3 45.5

Table 4: Automatic evaluation scores (BLEU, TER) for all
MT systems.

for French and ‘es’ for Spanish – and the system
is one of ‘HT’ for human translation, ‘smt’ for
SMT, ‘rnn’ for the RNN models and ‘trans’ for
the Transformer models; {dir} is one of ‘ff’ to
indicate that the system is the forward, trained on
the original data, ‘back’ to indicate that the system
is trained with back-translated data or ‘rev’ to
denote that it is the reverse system, trained after
swapping source and target (the human translation
has no dir index).

System reference BLEU↑ TER↓
en-fr-rnn-rev 33.3 50.2
en-fr-smt-rev 36.5 47.1
en-fr-trans-rev 36.8 46.8
en-es-rnn-rev 37.8 45.0
en-es-smt-rev 39.2 44.0
en-es-trans-rev 40.4 42.7

Table 5: Automatic evaluation scores (BLEU and TER) for
the REV systems.

Evaluated output In total we trained 18 MT
systems. To assess the validity of our hypothesis
and to provide a quantitative analysis of the inves-
tigated phenomena, we use the outputs from the FF
and the BACK systems; the REV systems are used
just to generate the backtranslated data.

5 Analysis

In the analysis we compare word frequencies of
the original target data to the translation output of
the forward (FF) and backward (BACK) MT sys-
tems. We investigate two scenarios: (i) seen and
(ii) unseen data. For (i) we translate the original
source side of the training set (i.e. the English sen-
tences) with the FF and with the BACK systems.
The reason behind performing this kind of test is
that since the MT system has seen this data during

training, any loss of lexical richness and/or bias ex-
acerbation are due to the inherent workings of the
systems. That is, the observed differences between
lexical diversity on seen data can only be attributed
to the algorithm itself. For (ii) we are evaluating
the lexical diversity on the (unseen) test set. This
evaluation scenario is the one that gives us an indi-
cation of the overall lexical diversity of the transla-
tions produced by MT systems as compared to the
data they were trained on.

Language diversity score Lexical diversity
(LD) refers to the amount or range of different
words that are used in a text. The greater that
range, the higher the diversity. Although LD
has many applications (neuropathology, data min-
ing, language acquisition), coming up with a ro-
bust index to quantify it has proven to be a diffi-
cult task. A comparison between different mea-
sures of LD (McCarthy and Jarvis, 2010) con-
cluded by saying that, although there is no con-
sensus yet, LD can be assessed in different ways,
with each measurement having its own assets and
drawbacks. Therefore, we evaluated LD by using
four different widely used metrics: type/token ra-
tio (TTR) (Templin, 1975), Yule’s K (in practice,
we use the reverse Yule’s I) (Yule, 1944), and the
measure of textual lexical diversity (MTLD) (Mc-
Carthy, 2005).

The easiest lexical richness metric is TTR. TTR
is the ratio of the types, i.e. total number of differ-
ent words in a text to its tokens, i.e. the total num-
ber of words. A high/low TTR indicates a high/low
degree of lexical diversity. While TTR is one of
the most widely used metrics, it has some draw-
backs linked to the assumption of a linear relation
between the types and the tokens. Because of that,
TTR is only valid when comparing texts of a sim-
ilar size, as it decreases when texts become longer
due to repetitions of words (Brezina, 2018).

Yule’s characteristic constant, or Yule’s K, is a
probability model of the changes that take place in
the lexical frequency spectrum of a text as the text
becomes longer. Yule’s K and its reverse Yule’s
I are considered to be more immune to fluctua-
tions related to text length than TTR (Oakes and
Ji, 2013).

Another metric used to study lexical richness
and diversity is MTLD. The difference with the
two previous methods is that MTLD is evaluated
sequentially as the mean length of sequential word
strings in a text that maintain a given TTR value
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(McCarthy, 2005). A more recent study by Mc-
Carthy and Jarvis (2010) shows that MTLD is the
most robust with respect to text length.

Our metrics are presented in Table 6 and Ta-
ble 7. Higher/lower scores indicate higher/lower
lexical richness. Table 6 shows the metrics for the
human and the machine translations of the training
set, i.e. the seen data, and Table 7 shows the scores
for the human (HT) and the machine translations
of the test sets, i.e. the unseen data. Due to the
large number of output words, e.g. the rnn-ff trans-
lation of the EN–FR test set contains 14 561 653
words, and the low vocabulary size relative to the
total number of words, our TTR scores are quite
low. For readability and for ease of comparison we
present these scores multiplied by a factor of 1000.
We tested pairwise statistical significance through
bootstrap sampling following (Koehn, 2004). The
scores for all MT variants are significantly differ-
ent from the HT variant.

Translation Yules I TTR MTLD
* 1000

en-fr-HT 9.2793 2.9277 127.1766
en-fr-rnn-ff 0.7107 0.8656 109.4506
en-fr-smt-ff 6.7492 2.6442 118.1239
en-fr-trans-ff 1.1768 1.0925 120.5179
en-fr-rnn-back 0.7587 0.8776 116.8942
en-fr-smt-back 7.8738 2.7496 120.9909
en-fr-trans-back 1.0325 1.0172 121.5801
en-es-HT 12.3065 3.7037 99.0850
en-es-rnn-ff 0.6298 0.9394 89.3562
en-es-smt-ff 7.3249 3.1170 95.1146
en-es-trans-ff 1.0022 1.1581 96.2113
en-es-rnn-back 0.7355 0.9829 95.7198
en-es-smt-back 8.1325 3.2166 95.1479
en-es-trans-back 0.9162 1.1014 95.0886

Table 6: Lexical richness metrics (Train set).

Translation Yules I TTR MTLD
* 1000

en-fr-HT 33.6709 5.7022 124.1889
en-fr-rnn-ff 4.4766 2.1969 106.1370
en-fr-smt-ff 21.1230 4.8034 113.9262
en-fr-trans-ff 6.5352 2.5957 118.9642
en-fr-rnn-back 5.1490 2.3092 112.9991
en-fr-smt-back 25.7705 5.1254 117.6979
en-fr-trans-back 6.7921 2.6287 119.1729
en-es-HT 48.2366 7.6151 97.0591
en-es-rnn-ff 4.7988 2.6250 85.4589
en-es-smt-ff 24.6771 5.9171 92.6397
en-es-trans-ff 6.7967 3.0432 94.4709
en-es-rnn-back 6.0098 2.8357 92.4704
en-es-smt-back 28.0153 6.1887 92.3310
en-es-trans-back 7.3824 3.1483 92.8928

Table 7: Lexical richness metrics (Test set).

Word frequencies and bias In order to
prove/disprove our hypothesis, along with inves-
tigating lexical richness, we aim to investigate
to what extent MT systems propagate bias in
the output. This we assess by whether more/less
frequent words in the human translation have
higher/lower frequency in the MT output (see
Section 3). As soon as we started training the
BACK systems, the first thing we observed was
the reduced vocabularies from the FF systems.
The loss of certain words (in the case of unknown
words, the RNN and Transformer systems would
generate the <unk> token) already suggests
biased MT. Comparing Table 2 and Table 3, we
see that a lot of words are not accounted for in
all systems, but that the RNN and Transformer
models suffer the most. We believe this is due
to the fact that NMT systems’ advantage over
more traditional systems, namely its ability to
generalize and learn over the entire sentence, has
a negative affect on lexical diversity, particularly
for the least frequent words.

Due to the differences in vocabularies and sen-
tence lengths of the generated translations, in or-
der to conduct a realistic comparison of the fre-
quencies we applied 3 post-processing steps on the
collected data: (i) we accounted for sentence vari-
ability by normalizing the frequency of each word
(in the HT or the MT output) by the length of sen-
tences in which it appears, (ii) we normalized the
frequency of each word (in the HT or the MT out-
put) by the accumulated frequency, reducing each
frequency to a probability, and (iii) to account for
the missing words in the MT output we counted
words with zero frequencies separately. In addi-
tion, we need to make a distinction between fre-
quent and non-frequent words. While this is a hard
task in itself, here we commit to the average nor-
malized word frequency of the human translation.

Once we applied the aforementioned post-
processing we compactly represent our data in six
classes:

• Frequency increase of frequent words: for a
frequent word in the HT, its frequency in the
MT is higher. We denote this class using
‘+ +’ symbol combination. This class also
indicates positive bias exacerbation.

• Frequency decrease of frequent words: for a
frequent word in the HT, its frequency in the
MT is lower (but not zero). We denote this
class using ‘+ -’ symbol combination.
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• Frequency increase of non-frequent words:
for a non-frequent word in the HT, its fre-
quency in the MT is higher. We denote this
class using ‘- +’ symbol combination.

• Frequency decrease of non-frequent words:
for a non-frequent word in the HT, its fre-
quency in the MT is lower (but not zero). We
denote this class using ‘- -’ symbol combi-
nation. This class indicates negative bias ex-
acerbation.

• Zero frequency of frequent words: a frequent
word in the HT, does not appear in the MT.
We denote this class using ‘+ 0’ symbol
combination.

• Zero frequency of non-frequent words: a non-
frequent word in the HT, does not appear in
the MT. We denote this class using ‘- 0’
symbol combination. This class indicates
negative bias exacerbation.

For each of these classes we count the (normal-
ized) number of words, and we accumulate the ab-
solute value of the differences for each of these
cases. We present our results for the training data
in Table 8, Table 10 and for the test data – in Ta-
ble 9, Table 11. The numbers in Table 8 and Ta-
ble 9 can be interpreted as the amount of trans-
lated words with higher, lower or zero frequency
compared to the human translation.3 The numbers
in Table 10 and Table 11 quantify the differences
between frequencies; they indicate the amount of
increase or decrease in the frequencies presented
by an MT system as compared to the HT. To de-
rive information from these numbers, one should
compare the ’+ +’ to ‘+ -’ and ‘- +’ to ‘- -’
and ’+ 0’ to ‘- 0’.

System + + + - - + - - + 0 - 0
en-fr-rnn-ff 3710 3023 10157 18683 10 95519
en-fr-smt-ff 3362 3381 32577 46714 0 45068
en-fr-trans-ff 3839 2901 12398 24403 3 87558
en-fr-rnn-back 3356 3372 13009 17253 15 94097
en-fr-smt-back 3246 3496 34111 43472 1 46776
en-fr-trans-back 3482 3254 14610 20962 7 88787
en-es-rnn-ff 4667 3532 9929 19149 41 130875
en-es-smt-ff 4276 3963 39817 56169 1 63967
en-es-trans-ff 4626 3601 11379 25698 13 122876
en-es-rnn-back 4265 3951 13716 17872 24 128365
en-es-smt-back 4006 4233 39636 51831 1 68486
en-es-trans-back 4288 3929 14295 22032 23 123626

Table 8: Frequency exacerbation and decay count (Train set)

3Note that these numbers are normalized for fair comparison.

System + + + - - + - - + 0 - 0
en-fr-rnn-ff 2917 2335 10653 15400 11 57623
en-fr-smt-ff 2652 2610 20587 26949 1 36140
en-fr-trans-ff 2997 2264 12537 17430 2 53709
en-fr-rnn-back 2642 2610 13513 14963 11 55200
en-fr-smt-back 2577 2684 22604 26608 2 34464
en-fr-trans-back 2701 2554 14932 17101 8 51643
en-es-rnn-ff 3541 2669 10636 16425 27 75113
en-es-smt-ff 3252 2982 23389 29057 3 49728
en-es-trans-ff 3508 2716 12069 19046 13 71059
en-es-rnn-back 3241 2971 14394 15847 25 71933
en-es-smt-back 3163 3072 24547 28389 2 49238
en-es-trans-back 3256 2967 15160 18606 14 68408

Table 9: Frequency exacerbation and decay count (Test set)

System + + + - - + - - + 0 - 0
en-fr-rnn-ff 840.76 687.16 46.36 115.27 1.47 83.22
en-fr-smt-ff 664.86 555.60 31.17 119.64 0.00 20.79
en-fr-trans-ff 663.00 552.74 49.98 108.63 0.40 51.20
en-fr-rnn-back 770.72 680.73 83.68 96.68 2.19 74.81
en-fr-smt-back 620.67 525.26 40.36 112.35 0.13 23.29
en-fr-trans-back 639.69 568.68 75.88 90.25 1.05 55.58
en-es-rnn-ff 733.44 535.15 42.54 117.47 4.93 118.43
en-es-smt-ff 547.86 423.87 33.22 129.73 0.12 27.35
en-es-trans-ff 587.22 436.02 47.61 119.98 1.37 77.46
en-es-rnn-back 677.23 564.31 94.47 101.57 2.92 102.90
en-es-smt-back 561.03 438.09 44.31 133.35 0.12 33.78
en-es-trans-back 548.37 438.33 72.27 98.11 2.33 81.87

Table 10: Accumulated frequency differences (Train set)

Remarks on automatic evaluation The sum-
mary of our results allows us to draw the following
conclusions:

1. Lexical richness All metrics and results pre-
sented in Table 6 and Table 7 and for both
language pairs indicate that neither of the MT
systems reaches the lexical richness of the HT.
While SMT systems (for both language pairs)
retain more language richness according to two
out of the three metrics (Yule’s I and TTR) than
the neural methods, the MTLD scores indicate
that the Transformer systems lead to transla-
tions of higher lexical richness. This we may
account for the different numbers of distinct
words produced by SMT and neural systems,
which may be favoured by Yule’s I and TTR.
However, consistently, the worst systems are
the RNN ones.

2. Automatic quality evaluation vs. lexical rich-
ness: The results in Table 4 show that the Trans-
former systems perform best. The only lexical
richness metric that corroborates the BLEU and
TER scores is MTLD. This observation can act
as a future research direction for integrating or
improving quality evaluation metrics of MT to
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System + + + - - + - - + 0 - 0
en-fr-rnn-ff 827.07 655.81 68.84 133.21 2.48 104.41
en-fr-smt-ff 790.41 640.60 60.98 156.94 0.13 53.71
en-fr-trans-ff 662.76 533.83 73.15 123.07 0.31 78.70
en-fr-rnn-back 751.49 655.35 112.32 114.16 2.28 92.01
en-fr-smt-back 679.17 551.88 64.50 142.50 0.34 48.96
en-fr-trans-back 625.59 548.18 104.26 107.39 1.41 72.88
en-es-rnn-ff 726.16 509.28 67.76 134.45 4.16 146.04
en-es-smt-ff 679.08 503.57 70.86 169.33 0.38 76.67
en-es-trans-ff 592.32 414.37 73.00 134.59 1.84 114.52
en-es-rnn-back 653.89 533.03 128.86 119.04 4.22 126.46
en-es-smt-back 630.86 462.82 74.19 165.11 0.31 76.81
en-es-trans-back 538.03 415.49 103.32 118.89 2.40 104.57

Table 11: Accumulated frequency differences (Test set)

accommodate for lexical richness by possibly
adopting features from MTLD.

3. Bias To understand how the inherent proba-
bilistic nature of PB-SMT and NMT systems
exacerbates (or not) the bias, we rely on the
result in Table 8, Table 9, Table 10 and Ta-
ble 11. More precisely, we focus on the com-
parison between ‘[+ +]’ and ‘[+ -]’, and
the ‘[- +]’ and ‘[- -]’ classes as well as
the values in the ‘[+ 0]’ and ‘[- 0]’ classes.
One could simplify the analysis by joining the
latter two classes together with ‘[+ -]’ and
‘[- -]’. However, their independent analy-
sis carries more important information. Pre-
cisely, we see that all of the systems lose less
frequent words, indicated by the low numbers
for the ‘[+ 0]’ class for both the training and
the test set translations. Second, not all MT sys-
tems produce more words with higher frequen-
cies (for the Train set: en-fr-PB-SMT-ff with
3362 vs 3381, en-fr-PB-SMT-back with 3246
vs 3496 and en-es-PB-SMT-back with 4006 vs
4233; for the test set: en-fr-PB-SMT-back with
2577 vs 2684), but the accumulative normalized
frequency for such words is higher than that of
the HT. The accumulated frequency differences
indicate that MT systems are indeed biased to-
wards these more frequent words. This obser-
vation, together with the fact that all MT sys-
tems suffer from loss of less frequent words,
further supports our hypothesis that MT sys-
tems target learning the more frequent words
and disregard the less frequent ones.

4. Seen and unseen data We divided our exper-
iments over seen and unseen data. From the
perspective of lexical richness we see the same
trends in both cases, although a slight decrease

can be observed for the unseen test set (mea-
sured by the MTLD metric). With regards to the
word frequencies comparing ‘+ +’ and ‘+ -’
classes in Table 10 and Table 11 we see similar
trends. Furthermore, more words are lost alto-
gether when translating the unseen test set.

It should be stressed that in this work we looked
at the frequency of words, and as such the RNN
and Transformer models we trained are not op-
timized according to state-of-the-art settings. In
particular, no BPE is used to account for out-of-
vocabulary problems, and the vocabularies have
not been restricted prior to training (typically the
vocabulary of an NMT system consists of the K,
e.g. 50k most frequent words/tokens).

Another observation that we ought to note is that
the BACK systems score quite high not only based
on word frequencies and lexical richness metrics,
but also based on the evaluation metrics presented
in Table 4. We assume this is due to the fact that the
simplified source (translated by the REV systems)
changes the complexity of the learned association.
We plan to further investigate these systems.

Semi-manual evaluation To obtain a more con-
crete image of the observed bias exacerbation by
MT, we looked into the translations of 15 random
English words: ‘picture’, ‘create’, ‘states’, ‘hap-
pen’, ‘genuine’, ‘successful’, ‘also’, ‘reasons’,
‘membership’, ‘encourage’, ‘selling’, ‘site’, ‘vi-
brant’, ‘still’ and ‘event’. This evaluation does not
have the intention to be exhaustive, as the general
tendencies of the systems have already been dis-
cussed in the previous sections. However, looking
into some actual translations produced by the sys-
tems does further clarify the exacerbation effect of
the learning algorithm.

Let us first look at the Spanish translations of
the English word ‘picture’, presented in Figure 5.
The original data shows quite a lot of diversity as
‘picture’ can be translated into among others ‘ima-
gen’, ‘imágenes’, ‘visión’, ‘foto’,‘fotografı́as’ and
‘fotos’. However, when we look at the output of
the EN–ES MT systems, we see that all of them
use the most frequent translation –‘imagen’– even
more frequently than in the original data. This
comes at the expense of the other translation vari-
ants. Although the second most frequent transla-
tion (‘imágenes’) is still frequent, all others show
a decrease and the least frequent ones disappear
entirely.
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Similar, though slightly different patterns are
observed for the translations of the other words we
examine. Also presented in Figure 5 are the trans-
lations of the English verb ‘happen’ into the Span-
ish verbs ‘ocurrir’, ‘suceder’,‘pasar’, ‘acontecer’
and ‘pasarse’ and the English conector ‘also’ into
‘también’, ‘además’ and ‘igualmente’. Again, the
graphs show how the most frequent translation(s)
gain in relative frequency at the cost of less fre-
quent options.
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Figure 5: Relative frequencies of the Spanish translations of
the English words ‘picture’ and ‘happen’.

6 Conclusions and Future Work

This work investigates bias exacerbation and loss
of lexical richness through the process of MT. We
analyse the problem of loss of lexical richness us-
ing a number of LD metrics on the output of 12 dif-
ferent MT systems: SMT, RNN and Transformer

models for EN–FR and EN–ES with original and
back-translated data.

Via our experiments and their subsequent anal-
ysis, we observe that the process of MT causes
a general loss in terms of lexical diversity and
richness when compared to human-generated text.
This confirms our first hypothesis. Furthermore,
we investigate how this loss comes about and
whether it is indeed the case that the more fre-
quent words observed in the input occur even more
in the output, negatively affecting the frequency
of less seen events or words by causing them to
become even rarer events or causing them to dis-
appear altogether. Our analysis shows that MT
paradigms indeed increase/decrease the frequen-
cies of more/less frequent words to such extend
that a very large amount of words are completely
‘lost in translation’. We believe, this demon-
strates indeed that current systems overgeneralize
and thus, we deem it appropriate to speak of a form
of algorithmic bias.

Overall, the RNNs systems are among the worst
performing in terms of LD, although we do need to
take into account that, for the sake of comparison,
we did not use BPE, which might gave the neural
models a disadvantage compared to the SMT sys-
tems. While Transformer models are the best ones
according to the evaluation metrics, SMT seems
to retain the most lexical richness according to the
LD metrics we used (TTR, Yule’s I and MTLD).

As research on language generation has already
accounted for the lack of diverse outputs, in the
future, we aim to lock into potential solutions to
overgeneralization of current trnaslation models.
However, allowing for a certain degree of random-
ness while maintaining a strong learning (and thus
generalizing) ability is a very complex and poten-
tially contradictory task.
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Abstract

With the impressive fluency of modern ma-
chine translation output, systems may pro-
duce output that is fluent but not adequate
(fluently inadequate). We seek to identify
these errors and quantify their frequency
in MT output of varying quality. To that
end, we introduce a method for automat-
ically predicting whether translated seg-
ments are fluently inadequate by predicting
fluency using grammaticality scores and
predicting adequacy by augmenting sen-
tence BLEU with a novel Bag-of-Vectors
Sentence Similarity (BVSS). We then ap-
ply this technique to analyze the outputs of
statistical and neural systems for six lan-
guage pairs with different levels of trans-
lation quality. We find that neural mod-
els are consistently more prone to this type
of error than traditional statistical models.
However, improving the overall quality of
the MT system such as through domain
adaptation reduces these errors.

1 Introduction

Recent work has shown that well-trained, in-
domain neural machine translation (NMT) systems
can produce translations that, at the sentence level,
are rated on par with human reference transla-
tions (Hassan Awadalla et al., 2018). Part of this
success comes from the impressive improvements
in fluency of NMT output compared to previous
MT paradigms (Bentivogli et al., 2016; Toral and
Sánchez-Cartagena, 2017; Koehn and Knowles,

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

2017). However, NMT has also been shown to
sometimes produce output that is low adequacy
and even unrelated to the input–particularly when
not trained on sufficient in-domain data (Koehn
and Knowles, 2017). Because of NMT’s uncanny
ability to produce fluent output, these translations
may not just be inadequate but fluently inade-
quate. The fluency of fluently inadequate trans-
lations may mislead users into trusting the content
based on fluency alone–particularly in the context
of other fluent and adequate translations (Martin-
dale and Carpuat, 2018).

Mitigating the effects of fluently inadequate
translations first requires understanding the scale
of the problem and what situations are likely to
generate these errors. The general success and
high system level quality of NMT suggests that flu-
ently inadequate translations are rare, but we can-
not say how rare without a means of automatically
identifying potentially fluently inadequate transla-
tions in large collections of MT output.

In this work, we propose a method to automati-
cally detect fluently inadequate translations based
on the underlying characteristics of fluency and
adequacy. We view fluently inadequate transla-
tions as translations that are fluent, well-formed
sentences that could have been written by a hu-
man, and that do not preserve the meaning of the
reference. In practice, given a reference trans-
lation r and MT hypothesis h, we consider h
to be fluently inadequate if fluency(h) > τf
and adequacy(h, r) < τa, where τa and τf are
minimum fluency and adequacy thresholds respec-
tively. We define novel fluency and adequacy met-
rics for this purpose, building on prior work on
grammaticality detection and comparisons of mul-
tisets applied to word embeddings (Section 2).

We conduct two sets of experiments. First, we
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evaluate the fluency and adequacy metrics, estab-
lishing that they can be used for the task of detect-
ing fluently inadequate translations, and set thresh-
olds τa and τf empirically in Sections 3.1 and 3.2.
We then conduct an automatic analysis to assess
how frequent these errors are in neural and statisti-
cal machine translation (SMT) systems for a vari-
ety of languages and varying levels of model qual-
ity and train/test domain match. We find that flu-
ently inadequate translations are more common in
NMT overall, especially when there is less training
data and when there is a mismatch between train-
ing and test data.

2 Approach

2.1 Predicting Fluency
We propose to score fluency using metrics in-
troduced for the related task of detecting gram-
maticality, which scores the well-formedness of
a sentence. Lau et al (2016) take an unsuper-
vised, language modeling approach to predicting
grammaticality. Based on the intuition that well-
formedness errors will be caused by one or more
incorrect or out of place words, they introduce
scores based not only on sentence probability, but
also on scores that focus on lowest word probabili-
ties in a segment. Specifically, given a 5-gram lan-
guage model, the following scores are computed:

Mean LP =

∑
n=1:N log p5(wn|wn−1, ...)

N
(1)

Norm LP =

∑
n=1:N log p5(wn|wn−1, ...)∑

n=1:N log p1(wn)
(2)

Word LPminn = minn

{
− log p5(w)

log p1(w)

}
(3)

Word LPn% =

∑
w∈LPn%

− log p5(w)
log p1(w)

|LPn%|
(4)

Word LPmean =

∑
n=1:N − log p5(wn)

log p1(wn)

N
(5)

where logp5 is the 5-gram log probability, wn

is the nth word and N is the number of words in
the sentence. Mean LP is the sentence n-gram

log probability, normalized by length. NormLP is
the sentence n-gram log probability, normalized by
sentence unigram log probability. The other met-
rics are focused on probability of individual words
given the preceding words. Each word’s 5-gram
log probability is normalized by its unigram prob-
ability (logp1), Word LPminn is the nth lowest
normalized word probability, LPn% is the lowest
n% normalized word probabilities. Because there
may be outliers that score artificially low, we in-
troduce an additional variant, WordLPmid, which
uses LPmid, the middle 50% of the normalized
word probabilities:

Word LPmid =

∑
w∈LPmid

− log p5(w)
log p1(w)

|LPmid|
(6)

We expect that fluently inadequate output is be-
ing influenced by the training data more than the
input text, so we build our language model based
on the target side of the system training data rather
than a large generic language model.

2.2 Predicting Adequacy
BLEU (Papineni et al., 2002) is a widely accepted
baseline measure of MT quality at the system level
and, as such, is an obvious choice for a baseline
adequacy metric. However, it may not be well
suited for this task. Segments with high BLEU
scores more closely match the reference, indicat-
ing high adequacy, but translations that receive a
lower BLEU score may be inadequate or they may
be adequate with different word choice. For the
purpose of detecting fluently inadequate transla-
tions, we can be confident that a segment with
a high BLEU score is adequate, but low BLEU
scores do not necessarily imply low adequacy.

To account for cases where a translation may
be adequate but receive a low BLEU score, we
need an adequacy metric that will be less affected
by word choice. This suggests the need for com-
paring semantic representations rather than match-
ing strings. For our baseline vector-based met-
ric, we use the common, simple approach of com-
paring sentence embeddings generated by averag-
ing the word embeddings for each word in the
sentence. However, this approach does not di-
rectly compare any of the word vectors, only their
sum, and there are many unrelated sentences that
could produce the same sentence vector. We in-
troduce an alternative word embedding based mea-
sure of sentence similarity that overcomes this flaw
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to produce more a reliable adequacy metric, bag-
of-vectors sentence similarity (BVSS).

BVSS Metric BVSS is an application of Saga
(Similarity AGregation Application) introduced by
Knox (2015). The Saga approach frames a task as
an information similarity problem. Given a mea-
sure of information I for a multiset, the similarity
between two multisets, X and Y , is the proportion
of information from the union of X and Y that is
found in both X and Y :

S(X,Y ) =
I(X) + I(Y )− I(X ∪ Y )

I(X ∪ Y )
(7)

The information measure in Saga uses single-
linkage agglomerative clustering (Florek et al.,
1951). If the items in a multiset are clustered ac-
cording to similarity, more clusters indicate more
disparate items and, therefore, more information.
When we compare two multisets of items, X and
Y , we first cluster each multiset separately to get
I(X) and I(Y ). We then pool all of the items and
cluster again to get I(X∪Y ). If the items inX are
similar to the items in Y , those items will cluster
together yielding fewer clusters than if they were
different.

A nice feature of this approach is that in addition
to the undirected similarity, we can modify Equa-
tion 7 to a directed form. The directed similarity to
X of Y would be given by the proportion of infor-
mation in Y that also appears in X:

SX(Y ) =
I(X) + I(Y )− I(X ∪ Y )

I(Y )
(8)

To compare sentences with this approach, we
treat a sentence as a multiset of words and deter-
mine the similarity of words using the cosine sim-
ilarity of their embeddings. Replacing X and Y in
equation 7 with S for MT system output and R for
reference gives us the BVSS metric:

BV SS(S,R) =
I(S) + I(R)− I(S ∪R)

I(S ∪R) (9)

The directed form provides a way to measure
when information is lost (i.e., the reference has
more information than the MT output) or halluci-
nated (the MT output has more information than
the reference). We will use BVSS-reference and
BVSS-system to refer to these directed similarities.

BVSS-reference is the proportion of the informa-
tion in the reference that is also in the MT output
and BVSS-system is the proportion of the informa-
tion in the MT output that is also in the reference:

BV SSreference =
I(S) + I(R)− I(S ∪R)

I(R)
(10)

BV SSsystem =
I(R) + I(S)− I(R ∪ S)

I(S)
(11)

3 Detection Method Evaluation

Since there is no existing dataset with manual an-
notation of fluently inadequate translations, we
first evaluate our fluency and adequacy prediction
approaches comparing against direct assessment
scores from WMT16 (Bojar et al., 2016) as 2016
was the only year in which human fluency judg-
ments were collected. We then use our automated
fluency scores on reference translations and auto-
mated adequacy scores on synthetic low adequacy
"translations" to determine thresholds for high flu-
ency and dubious adequacy.

3.1 Fluency Experiments
Task For WMT16, fluency judgments were
collected for Czech-English (CS-EN), German-
English (DE-EN), Finnish-English (FI-EN),
Romanian-English (RO-EN), Russian-English
(RU-EN), and Turkish-English (TR-EN) in the
news shared task. Annotations were collected
with the goal of system-level reliability, so many
segments only have one judgment. To improve
reliability, we use only segments where there are
two or more judgments.

Model setup Fluency scores are based on a 5-
gram language model. We built a 5-gram KenLM
(Heafield, 2011; Heafield et al., 2013) language
model using the monolingual news training data
from WMT16.

Results For each of the metrics described in sec-
tion 2.1, we calculated the Pearson correlation with
the direct assessment scores for each of the lan-
guage pair data sets and for all the data combined.
Results are shown in Table 1. Although these cor-
relations are lower than we would like, we find
that for all language pairs and for the combined
data, WordLPmid yields the highest correlation,
so we will use this formula for our fluency predic-
tion metric.
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Fluency Metric CS-EN DE-EN FI-EN RO-EN RU-EN TR-EN All
MeanLP 0.32619 0.21290 0.27686 0.25831 0.22792 0.32402 0.26974
NormLP 0.41271 0.26721 0.25297 0.22797 0.27404 0.2496 0.28037
WordLPmin1 0.04490 0.01192 0.05817 0.02359 0.05289 0.04036 0.03745
WordLPmin2 0.28831 0.23004 0.21382 0.21216 0.24384 0.20712 0.23121
WordLP25% 0.40021 0.25993 0.23916 0.20506 0.28920 0.21564 0.26748
WordLP50% 0.32168 0.26854 0.22640 0.19729 0.25738 0.20799 0.24382
WordLPmean 0.38227 0.29371 0.26660 0.22748 0.30028 0.25658 0.28609
WordLPmid 0.42543 0.34306 0.34907 0.31295 0.34471 0.38615 0.35872

Table 1: Pearson correlation between each of the fluency prediction metrics and the human fluency
direct assessment scores for each language and across all languages.

CS-EN DE-EN FI-EN RO-EN RU-EN TR-EN All
Percent fluent 59.22% 59.70% 56.79% 58.04% 60.80% 48.81% 57.21%

Precision 65.35 63.36 59.62 62.06 66.22 52.37 61.42
Recall 90.97 87.29 91.56 92.20 87.67 87.77 89.38

F1 76.06 73.42 72.21 74.18 75.45 65.60 72.81

Table 2: Precision, recall, and F1 on fluent translations for WordLPmid on system outputs for each
language pair and on all system outputs. The percentage of outputs that were labeled fluent based on the
human fluency judgments is also provided for reference.

Setting the fluency threshold Because our goal
is to correctly label sentences as fluently inade-
quate rather than to provide an exact score, we
must select a fluency threshold τf to label a trans-
lation as “fluent". To determine this threshold,
we computed the WordLPmid scores for the ref-
erence translation sentences in the WMT16 news
training data. To cover most examples while allow-
ing for variance in human judgments, the threshold
is set at the point where 90% of reference segments
would be labeled as fluent. Precision, recall, and
F1 scores for WordLPmid, are shown in Table 2.
Across all data sets we see high recall but the preci-
sion is not as high. Although this suggests that this
metric might overestimate the fluency of transla-
tions, we are more concerned with comparing be-
tween systems than with the raw scores.

3.2 Adequacy Experiments

Task and Data We assess adequacy metrics us-
ing the direct assessment adequacy scores and sys-
tem outputs for all language pairs from WMT16
(Bojar et al., 2016). Adequacy judgments were
collected for all submitted systems in all language
pairs in the news shared task. These annotations
were used to determine the system rankings in
the news task and as gold standard quality judg-
ments for the metrics shared task. For the metrics

task, enough annotations were collected for each
system-produced segment to establish segment-
level reliability, while only enough judgments for
system-level reliability were collected for the re-
mainder of the segments for the news task. Be-
cause we need segment-level reliability, we use
only the metrics subset of the data as gold standard
human judgments, and we use the reference trans-
lations from the news subset in generating syn-
thetic inadequate examples.

We use the standardized human direct assess-
ment adequacy scores from WMT16 (Bojar et
al., 2016) as gold standard in determining how
well each adequacy metric correlates with hu-
man judgments. However, for binary question-
able/acceptable adequacy judgments, we must be
sure that the inadequate examples are clearly inad-
equate regardless of fluency and other MT quirks.
The high correlation between human judgments
of fluency and adequacy in Callison-Burch et al
(2007) and Graham et al (2017) may indicate that
human adequacy judgments are influenced by flu-
ency, lowering the adequacy scores of disfluent
translations. To ensure that our inadequate ex-
amples are truly inadequate, we rely on synthetic
examples. We generate synthetic low adequacy
translations by randomly selecting pairs of ref-
erence translations from the WMT16 news task
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Adequacy Metric CS-EN DE-EN FI-EN RO-EN RU-EN TR-EN All
BLEU 0.54275 0.41975 0.41460 0.48410 0.45093 0.50346 0.46242
Averaged Embeddings 0.43905 0.18998 0.31218 0.36303 0.23545 0.30257 0.29584
BVSS 0.61286 0.47068 0.51856 0.56164 0.55478 0.58858 0.54306
BVSS-Reference 0.62178 0.47877 0.49006 0.55619 0.51949 0.56264 0.53643
BVSS-System 0.53773 0.38887 0.45177 0.47698 0.50288 0.53687 0.46925

Table 3: Pearson correlation between each of the adequacy prediction metrics and the human adequacy
direct assessment scores for each language and across all languages.

Prec. Recall F1
BLEU 94.33 99.08 96.65
Averaged Embeddings 84.56 99.15 91.28
BVSS 99.39 99.04 99.22
BVSS-Reference 99.00 99.03 99.01
BVSS-System 99.17 99.03 99.10
BLEU+BVSS 99.61 99.81 99.71

Table 4: Precision, recall, and F1 on
BLEU, BVSS, BVSS-Reference, BVSS-System,
and BLEU with BVSS and BVSS-System on the
questionable adequacy test set with thresholds cal-
culated based on predicted adequacy scores for the
synthetic low adequacy dev data.

and treating one as synthetic MT output and the
other as reference. We split these synthetic ex-
amples into dev and test sets. The dev synthetic
examples are used in choosing the binary accept-
able/questionable adequacy threshold τa as de-
scribed below. The test synthetic examples are
used as the questionable adequacy items in our
adequacy precision/recall test set, with acceptable
adequacy items chosen from actual WMT16 sub-
missions. Because we are looking for extreme
inadequacy and the systems in WMT16 were of
competitively high quality, we use segments with
direct assessment scores in the top 90% as accept-
able adequacy in the test set.

Model setup Our vector-based metrics are based
on word embeddings. We use the pre-trained
aligned Wikipedia fastText word vectors (Joulin et
al., 2018; Bojanowski et al., 2017).

Results For each metric defined in Section 2.2,
we calculated the Pearson correlation with the di-
rect assessment scores for each of the WMT16
language pair data sets and for all the data sets
combined (Table 3). The averaged sentence em-
beddings had the lowest correlation across all lan-

guage pairs. BVSS-System performed similarly
well compared to BLEU, but BVSS and BVSS-
Reference both outperformed BLEU.

Setting the adequacy threshold As with flu-
ency, our goal for the adequacy metric is to cor-
rectly label a sentence as questionable adequacy
rather than to provide an exact score. We used
each candidate adequacy metric described in sec-
tion 2.2 to score the segments in the synthetic low
adequacy dev set, and set adequacy threshold τa
for each metric such that 99% of dev set examples
would be labeled inadequate. The precision, recall,
and F1 on the synthetic test set using this thresh-
old for each metric is shown in Table 4. We see
that as with correlation scores, the Averaged Em-
beddings have much lower precision than BLEU
or any of the BVSS metrics, and the BVSS metric
have higher precision than BLEU.

Because of the potentially complementary dif-
ferences in BLEU and BVSS, we also tested com-
binations of BLEU and the highest-performing
vector-based metric, BVSS. We combine the met-
rics by marking a translation as questionable ade-
quacy only if both metrics would label it as ques-
tionable. We see a slight improvement in F1 with
the combination, and we adopt this metric for la-
beling segments as questionable adequacy.

3.3 Selected Scoring Method

Based on the fluency and adequacy evaluations in
Sections 3.1 and 3.2, we select WordLPmid and
the BLEU+BVSS combination to label segment
translations as fluently inadequate.

The results on segment level fluency and ade-
quacy prediction tests show that neither metric is
perfect at the segment level. However, the impact
of segment-level errors is lessened when segment
level scores are aggregated to compare across sys-
tems.
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Data source Arabic Chinese Farsi German Korean Russian
Subtitles 30M 11M 6.2M 22M 1.4M 26M
UN v1 18M - - - - -
WMT17 - 25M - 5.8M - 25M
LDC 1.3M - - - - -
All General 49M 36M 6.2M 28M 1.4M 51M
TED 174K 169K 114K 152K 164K 180K
TED Test 1982 1982 1982 1982 1982 1982

Table 5: Number of segments in General Domain and TED training and test data for all languages

4 System-Level Analysis of Fluently
Inadequate Translations

Koehn and Knowles (2017) showed that in out-of-
domain and low-resource settings NMT produces
lower quality output than SMT and they include
examples where the NMT produced translations
that were fluent but unrelated to the input. We seek
to quantify this observation by estimating how of-
ten such fluently inadequate translations occur in
SMT and NMT systems in different domain mis-
match and training data settings. We score the out-
put of 36 MT systems according to the percent-
age of fluently inadequate translations using the
method described above.

4.1 MT Systems

We use a set of neural and phrase-based statistical
MT models built from the same general domain
data and adapted to translate a more specific do-
main, namely, transcripts of TED talks. We se-
lected six languages to cover a range of resource
availability scenarios and language families: Ara-
bic, Chinese, Farsi, German, Korean and Russian.

4.1.1 Data

The number of segments of training and test data
for each language is summarized in Table 5. The
same tokenization was performed for all systems
for a given language, and the tokenized data was
split into subwords for NMT training using byte
pair encoding (BPE) (Sennrich et al., 2016). The
BPE models were trained separately on the source
and target language with 30K BPE symbols.

All languages used data from the OpenSubti-
tles1 corpus (Tiedemann, 2009) in the General do-
main training and dev data sets. The Chinese, Ger-
man, and Russian models used additional parallel

1http://www.opensubtitles.org/

corpora from WMT172 (Bojar et al., 2017). For
the Arabic models, we added data from the Lin-
guistic Data Consortium (LDC)3 and the UN v1
corpus4 (Ziemski et al., 2016).

The domain for the In-Domain and Domain-
Adapted models was TED talks. Training, dev, and
test sets for the domain were from the Multi-target
TED Talks Task (MTTT) corpus (Duh, 2018). All
systems, regardless of training setting, were tested
on the TED domain test set.

Fluency scores for each system were generated
based on a language model built on the English
side of its primary training data. As noted in Sec-
tion 2.1, it is important that the language model
match the training data, and we expect this to be
particularly true when the test set is out-of-domain.
We therefore use only the General domain data
for both the General models and the adapted mod-
els, while the In-Domain models use the in-domain
training data. Thresholds were calculated in a sim-
ilar manner to the thresholds on the WMT16 data:
thresholds for WordLPmid were calculated based
on the General domain training data and thresholds
for sentence BLEU and BVSS based on synthetic
data built from the TED training data.

4.1.2 Statistical MT Systems
The statistical systems were built using the

Apache Joshua toolkit5 (Post et al., 2015). We
tested three SMT models for each language:
Joshua General, Joshua In-Domain, and Joshua
Domain-Adapted, which were trained respectively
on the General domain data, on the TED training
data and on both. Language models for all sys-
tems were built from the English side of the train-
ing data. The Domain-Adapted model was tuned

2http://www.statmt.org/wmt17/translation-task.html
3LDC2004T18, LDC2007T08, and LDC2012T09
4UN v1 is included in the Russian and Chinese WMT17 data
5http://cwiki.apache.org/confluence/display/JOSHUA/
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Arabic German Farsi Korean Russian Chinese
Joshua General 23.50 30.65 13.41 6.34 24.49 14.79
Joshua TED Only 24.49 28.72 16.56 9.81 21.85 13.32
Joshua Adapted 27.11 31.35 17.71 10.24 25.23 15.70
Sockeye General 29.6 34.59 22.22 11.56 28.6 15.92
Sockeye TED Only 27.42 32.25 21.31 14.4 22.9 16.18
Sockeye Adapted 35.37 39.9 27.92 17.22 28.6 20.37

Table 6: BLEU scores for all systems

on TED dev data.

4.1.3 Neural MT Systems
The neural systems were built using Sockeye6

(Hieber et al., 2017). The systems used two LSTM
layers in both encoder and decoder with hidden
size 512 and word embeddings dimension 512. We
used a batch size of 4096 and created a checkpoint
every 4000 mini-batches. Our systems employed
the Adam optimizer (Kingma and Ba, 2014) with
an initial learning rate of 0.0003. As with the
SMT, we built three models for each language:
Sockeye General, Sockeye In-Domain, and Sock-
eye Domain-Adapted. The Sockeye General and
In-Domain models were trained with the same data
as the corresponding SMT models. The Sock-
eye Domain-Adapted models were trained using
continued training on TED data starting from the
Sockeye General model as in Luong at al (2015)
and Freitag and Al-Onaizan (2016).

4.2 System Analyses

We compute the percentage of fluently inade-
quate translations in the system output of all MT
and SMT systems to determine the effect of MT
paradigm and training data on the occurrence of
fluently inadequate translations.

Although the language pair and system varies,
we can directly compare the output of the systems
because the test data for all systems is from the
Multi-target TED corpus. Note that in the corpus,
the source is English and the other languages are
translations while our task is translating into En-
glish. This means that if there are human trans-
lation errors or non-literal translations, the source
will be inconsistent across languages but the refer-
ence will be the same. Table 7 shows English refer-
ences for two different segments in Farsi and Chi-
nese that yielded fluently inadequate MT output,
along with their corresponding source and system
6http://github.com/awslabs/sockeye

outputs. For some segments the human transla-
tion (our source) may have slightly different mean-
ing from the original (our reference), but the flu-
ently inadequate examples we seek to identify are
much further in meaning from both the source and
reference. For instance, in the Chinese-English
example the Chinese adds information that must
be inferred from context in the original English.
The Chinese literally translates to "Crow parents
also teach their children these kinds of skills." The
Sockeye TED and Joshua outputs reflect this addi-
tional information, but the Sockeye General output
is fluent but completely unrelated to the reference.

Figure 1 shows the percent of segments labeled
as fluently inadequate for each system. Even
the highest percentage (Chinese-English Sockeye
General) is less than 2%. Based on the high re-
call and low precision scores for the fluency metric
in Section 3.1, we expect that we are overpredict-
ing fluently inadequate translations so the actual
percentage may be even lower. This confirms that
these errors are indeed rare.

We also see from Figure 1 that the NMT models
for Korean and Chinese, the languages most typo-
logically different from English, have the highest
levels of fluently inadequate translations on out-
of-domain models. Although they have similarly
high percentages of fluently misleading and sim-
ilar amounts of in-domain training data, the Chi-
nese domain-adapted model improves much more
than the Korean domain-adapted model.

We compare the percent fluently inadequate seg-
ments to system BLEU scores in Figure 2. Based
on the definition of our metric for fluently inade-
quate translations, translations with high sentence
BLEU cannot be labeled fluently inadequate, so
we expect a strong negative correlation between
system BLEU and the percent fluently inadequate.
We do see this negative correlation, but we can also
see a clear difference in the percent fluently inade-
quate for the SMT vs NMT systems.
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System FA-EN Example ZH-EN Example
Source تری زیرکانه های انگیزه

باشید داشته
乌鸦父母还教会自己的孩子这样的技巧
呢。

Reference get smarter incentives . parents seem to be teaching their young .
Joshua General terry زیرکانه have motives

.
parents also teach their children the skills like this
?

Joshua TED you have the انگیزه
زیرکانه needed

parents crow can also teach our kids that the skills
that .

Joshua Adapted terry motives inspired . the parents teach their children such skills .
Sockeye General have a more subtle motiva-

tor .
i ’m afraid i ’m not going to have to go to bed .

Sockeye TED there ’s a lot of gamers . and the crow parents taught their kids like this .
Sockeye Adapted have smarter motivations . and their parents also taught their children how to

do it .

Table 7: Reference translation and example translations from the Farsi-English and Chinese-English
systems. Fluently inadequate examples in bold.

Figure 1: Segments labeled as fluently inadequate
for General, TED, and Domain-Adapted Sockeye
and Joshua models for all languages.

The NMT systems with low BLEU scores have
much higher percentage of fluently inadequate
translations than the similarly low-scoring SMT
systems. This follows the suggestion in Koehn
and Knowles (2017) that NMT is more prone to
producing output that is disconnected from the
source text when trained with insufficient or out-
of-domain data. Indeed, we can see in Figure 1
that the NMT consistently has a higher percentage
of fluently inadequate translations than the SMT.

Because our fluency metric relies on language
models very similar to the language models used
in the SMT systems, we might suspect that the
fluency metric is biased towards the SMT models,
potentially making SMT output more likely to be

Figure 2: Segments labeled as fluently inadequate
vs BLEU score for all Sockeye and Joshua models
for all languages.

labeled as fluently inadequate. However, Figure
3 shows that the NMT systems still consistently
have more segments labeled as fluent compared
to SMT systems with similar BLEU score. This
agrees with prior work showing that NMT output
is more fluent than SMT and suggests that while
the fluency metric likely leads to overprediction of
fluently inadequate translations, it does not do so
in a way that favors one paradigm over the other.

We also measured the percentage of fluently in-
adequate translations on the development set dur-
ing training. Figure 4 shows that the percent flu-
ently inadequate levels off very quickly, flattening
after a few checkpoints on the in-domain model.
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Figure 3: Segments labeled as fluent vs BLEU
score for all Sockeye and Joshua models for all
languages.

Figure 4: Percent fluently inadequate at each
checkpoint during in-domain training

5 Related Work

MT quality metrics are judged based on their cor-
relation with human judgments, and recently that
has meant human adequacy judgments (Bojar et
al., 2017). This indicates that any of the common
MT metrics such as BLEU (Papineni et al., 2002)
or METEOR (Banerjee and Lavie, 2005) may also
serve as baseline adequacy scores. However, they
incorporate elements of fluency while we wish to
separate fluency and adequacy.

Adequacy is, essentially, semantic equivalence
and the goal of SemEval’s Semantic Textual Sim-
ilarity (STS) task is to measure the degree of se-
mantic equivalence between two sentences (Cer et
al., 2017). The cross-lingual version of the task is
similar enough to quality estimation that one of the
data sets for 2017 actually came from the WMT

quality estimation task. However, the STS systems
performed much worse on the MT data than when
tested on the Stanford Natural Language Inference
(SNLI) Corpus data for the same language pair,
with the top system achieving a correlation of only
34 compared to 83. These models are also com-
plex and for use in combination with fluency, we
prefer a simpler approach for this study.

Although grammaticality focuses on well-
formedness while fluency includes all aspects of
“sounding natural," the metrics used to predict
grammaticality may still prove to be good mea-
sures of fluency. Lau et al (2016) take an un-
supervised, language modeling approach to the
task of predicting grammaticality as described in
Section 2.1. They used two types of test data.
One was generated by round-tripping sentences
through Google Translate and the other was gener-
ated by extracting example sentences from a syn-
tax textbook. The MT-generated English data is
most similar to our problem, and the most effective
models for that data were the word-based scores
from the language model.

6 Conclusion

We have introduced an approach to automatically
detect fluently inadequate translations in machine
translation output based on automatic fluency and
adequacy metrics. Applying this technique to a
diverse set of statistical and neural MT systems,
we found that although fluently inadequate trans-
lations are rare, NMT does appear to be consis-
tently more prone to this type of error compared to
SMT. Improving the match between training and
test with continued training on in-domain data re-
duces these errors. These findings raise several
questions for future work: How often are fluently
inadequate translations actually misleading to hu-
man users? How can we detect fluently inadequate
translations without reference translations?
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Abstract

Neural machine translation (NMT) sys-
tems operate primarily on words (or sub-
words), ignoring lower-level patterns of
morphology. We present a character-
aware decoder designed to capture such
patterns when translating into morpho-
logically rich languages. We achieve
character-awareness by augmenting both
the softmax and embedding layers of
an attention-based encoder-decoder model
with convolutional neural networks that
operate on the spelling of a word. To in-
vestigate performance on a wide variety
of morphological phenomena, we translate
English into 14 typologically diverse tar-
get languages using the TED multi-target
dataset. In this low-resource setting, the
character-aware decoder provides consis-
tent improvements with BLEU score gains
of up to +3.05. In addition, we analyze
the relationship between the gains obtained
and properties of the target language and
find evidence that our model does indeed
exploit morphological patterns.

1 Introduction

Traditional attention-based encoder-decoder neu-
ral machine translation (NMT) models learn word-
level embeddings, with a continuous representa-
tion for each unique word type (Bahdanau et al.,
2015). However, this results in a long tail of rare
words for which we do not learn good representa-
tions. More recently, it has become standard prac-

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
∗Equal Contribution

tice to mitigate the vocabulary size problem with
Byte-Pair Encoding (BPE) (Gage, 1994; Sennrich
et al., 2016). BPE iteratively merges consecutive
characters into larger chunks based on their fre-
quency, which results in the breaking up of less
common words into “subword units.”

While BPE addresses the vocabulary size prob-
lem, the spellings of the subword units are still ig-
nored. On the other hand, purely character-level
NMT translates one character at a time and can im-
plicitly learn about morphological patterns within
words as well as generalize to unseen vocabulary.
Recently, Cherry et al. (2018) show that very deep
character-level models can outperform BPE, how-
ever, the smallest data size evaluated was 2 million
sentences, so it is unclear if the results hold for
low-resource settings and when translating into a
range of different morphologically rich languages.
Furthermore, tuning deep character-level models is
expensive, even for low-resource settings.1

A middle-ground alternative is character-aware
word-level modeling. Here, the NMT system op-
erates over words but uses word embeddings that
are sensitive to spellings and thereby has the abil-
ity to learn morphological patterns in the language.
Such character-aware approaches have been ap-
plied successfully in NMT to the source-side
word embedding layer (Costa-jussà and Fonollosa,
2016), but surprisingly, similar gains have not been
achieved on the target side (Belinkov et al., 2017).

While source-side character-aware models only
need to make the source embedding layer
character-aware, on the target-side we require both
the target embedding layer and the softmax layer 2

1The dropout rate was found to be critical in Cherry et al.
(2018), and each tuning run takes much longer due to longer
sequence lengths.
2Also referred to as generator, final output layer or final linear
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to be character-aware, which presents additional
challenges. We find that the trivial application of
methods from Costa-jussà and Fonollosa (2016) to
these target-side embeddings results in significant
drop in performance. Instead, we propose mixing
compositional and standard word embeddings via
a gating function. While simple, we find it is criti-
cal to successful target-side character awareness.

It is worth noting that unlike some purely
character-level methods our aim is not to gener-
ate novel words, though this method can function
on top of subword methods which do so (Shapiro
and Duh, 2018). Rather, the character-aware rep-
resentations decrease the sparsity of embeddings
for rare words or subwords, which are a problem
in low-resource morphologically rich settings. We
summarize our contribution as follows:

1. We propose a method for utilizing character-
aware embeddings in an NMT decoder that
can be used over word or subword sequences.

2. We explore how our method interacts with
BPE over a range of merge operations (in-
cluding word-level and purely character-
level) and highlight that there is no “typical
BPE” setting for low-resource NMT.

3. We evaluate our model on 14 target languages
and observe consistent improvements over
baselines. Furthermore, we analyze to what
extent the success of our method corresponds
to improved handling of target language mor-
phology.

2 Related Work

NMT has benefited from character-aware word
representations on the source side (Costa-jussà and
Fonollosa, 2016), which follows language model-
ing work by Kim et al. (2016) and generate source-
side input embeddings using a CNN over the char-
acter sequence of each word. Further analysis re-
vealed that hidden states of such character-aware
models have increased knowledge of morphology
(Belinkov et al., 2017). They additionally try using
character-aware representations in the target side
embedding layer, leaving the softmax matrix with
standard word representations, and found no im-
provements.

Our work is also aligned with the character-
aware models proposed in (Kim et al., 2016), but

projection.

we additionally employ a gating mechanism be-
tween character-aware representations and stan-
dard word representations similar to language
modeling work by (Miyamoto and Cho, 2016).
However, our gating is a learned type-specific vec-
tor rather than a fixed hyperparameter.

There is additionally a line of work on purely
character-level NMT, which generates words one
character at a time (Ling et al., 2015; Chung et
al., 2016; Passban et al., 2018). While initial re-
sults here were not strong, Cherry et al. (2018) re-
visit this with deeper architectures and sweeping
dropout parameters and find that they outperform
BPE across settings of the merge hyperparame-
ter. They examine different data sizes and observe
improvements in the smaller data size settings—
however, the smallest size is about 2 million sen-
tence pairs. In contrast, we look at a smaller order
of magnitude data size and present an alternate ap-
proach which doesn’t require substantial tuning of
parameters across different languages.

Finally, Byte-Pair Encoding (BPE) (Sennrich et
al., 2016) has become a standard preprocessing
step in NMT pipelines and provides an easy way
to generate sequences with a mixture of full words
and word fragments. Note that BPE splits are ag-
nostic to any morphological pattern present in the
language, for example the token politely in our
dataset is split into pol+itely, instead of the
linguistically plausible split polite+ly.3 Our
approach can be applied to word-level sequences
and sequences at any BPE merge hyperparameter
greater than 0. Increasing the hyperparameter re-
sults in more words and longer subwords that can
exhibit morphological patterns. Our goal is to ex-
ploit these morphological patterns and enrich the
word (or subword) representations with character-
awareness.

3 Encoder-Decoder NMT

An attention-based encoder-decoder network
(Bahdanau et al., 2015; Luong et al., 2015) models
the probability of a target sentence y of length J
given a source sentence x as:

p(y | x) =
J∏

j=1

p(yj | y0:j−1,x;θ) (1)

where θ represents all the parameters of the net-
work. At each time-step the j′th output token is
3We observe this split when merge parameter was 15k.
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generated by:

p(yj | y0:j−1,x) = softmax(Wosj) (2)

where sj ∈ RD×1 is the decoder hidden state at
time j and Wo ∈ R|V|×D is the weight matrix
of the softmax layer, which provides a continuous
representation for target words. sj is computed us-
ing the following recurrence:

sj = tanh(Wc [cj ; s̃j ]) (3)

s̃j = f([sj−1;ws
yj−1 ; s̃j−1]) (4)

where f is an LSTM cell.4 Ws ∈ R|V|×E is
the target-side embedding matrix, which provides
continuous representations for the previous tar-
get word when used as input to the RNN. Here,
ws

yj−1 ∈ R1×E is a row vector from the em-
bedding matrix Ws corresponding to the value of
yj−1. V is the target vocabulary set, D is the is the
RNN size and E is embedding size. Often these
matrices Wo and Ws are tied.

The context vector cj is obtained by taking a
weighted average over the concatenation of a bidi-
rectional RNN encoder’s hidden states.

cj =
I∑

i=1

αi,hi (5)

αi =
exp (̃s>j Wahi)∑
l exp (̃s

>
j Wahl)

(6)

The attention matrix Wa ∈ RD×H is learned
jointly with the model, multiplying with the pre-
vious decoder state and bidirectional encoder state
hi ∈ RH×1, normalized over encoder hidden
states via the softmax operation.

4 Character-Aware Extension

In this section we detail the incorporation of
character-awareness into the two decoder embed-
ding matrices Wo and Ws. To begin, we con-
sider an example target side word (or subword in
the case of preprocessing with BPE), cat. In both
Wo and Ws, there exist row vectors, wo

cat and
ws

cat that contain the continuous vector represen-
tation for the word cat. In a traditional NMT
system, these vectors are learned as the entire net-
work tries to maximize the objective in Equation 1.
The objective does not require the vectors wo

cat

4Note that our notation diverges from Luong et al. (2015) so
that sj refers to the state used to make the final predictions.

wv
std

v = cat

(a)

c ta

hi
gh

w
ay

1

hi
gh

w
ay

2

〈/s〉〈s〉
wv

comp

v = cat

(b)

Figure 1: Different approaches to generating embeddings. (a)
standard word embedding that treats words as a single sym-
bol. (b) CNN-based composition function. We use multiple
CNNs with different kernel sizes over the character embed-
dings. The resulting hidden states are combined into a single
word embedding via max pooling. Note that (b) shows only 2
convolution filters for clarity, in practice we use 4.

and ws
cat to model any aspect of the spelling

of the word. Figure 1a illustrates a simple non-
compositional word embedding.

At a high level, we can view our notion of
character-awareness as a composition function
comp(.;ω), parameterized by ω, that takes the
character sequence that makes up a word (i.e. its
spelling) as input and then produces a continuous
vector representation:

wcat
comp = comp(〈s〉,c,a,t, 〈/s〉;ω) (7)

ω is learned jointly with the overall objective. Spe-
cial characters 〈s〉 and 〈/s〉 denote the beginning
and end of sequence respectively.

Figure 1b illustrates our compositional approach
to generating embeddings (Kim et al., 2016). First,
a character-embedding layer converts the spelling
of a word into a sequence of character embeddings.
Next, we apply 4 convolution operations, with ker-
nel sizes 3, 4, 5 and 6, over the character sequence
and the resulting output matrix is max-pooled. We
set the output channel size of each convolution to
1
4 of the final desired embedding size. The max-
pooled vector from each convolution is concate-
nated to create the composed word representation.
Finally, we add highway layers to obtain the final
embeddings.

4.1 Composed & Standard Gating
The composition is applied to every type in the vo-
cabulary and thus generates a complete embedding
matrix (and softmax matrix). In doing so, we as-
sume that every word in the vocabulary has a vec-
tor representation that can be composed from its
spelling sequence. This is a strong assumption as
many words, in particular high frequency words,
are not normally compositional, e.g. the substring
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ing in thing is not compositional in the way
that it is in running. Thus, we mix the compo-
sitional and standard embedding vectors. We ex-
pect standard embeddings to better represent the
meaning of certain words, such has function words
and other high-frequency words. For each word
v in the vocabulary we also learn a gating vector
gv ∈ [0, 1]1×D.

gv = σ(wv
gate) (8)

Where, σ is a sigmoid operation and type-specific
parameters wv

gate are jointly learned along with all
the other parameters of the composition function.
These parameters are regularized to remain close
to 0 using dropout. 5 Our final mixed word repre-
sentation for each word v ∈ V is given by:

wv
mix = gv �wv

std + (1.− gv)�wv
comp (9)

Where wv
mix is the final word embedding, wv

std is
the standard word embedding, wv

comp is the em-
bedding by the composition function and gv is the
type-specific gating vector for the v’th word. The
weight matrix is obtained by stacking the word
vectors for each word v ∈ V . The same represen-
tation is used for the target embedding layer and
the softmax layer i.e. we set wo

cat = ws
cat =

wcat
mix , when v = cat. Thus, tying the compo-

sition function parameters for the softmax weight
matrix and the target-side embedding matrix.

Experiments comparing the standard embed-
ding model and the compositional embedding
model with and without gating are summarized
in Table 1. Row “C” shows the performance
of naively using the composition function (which
works in the source-side) on the target-side. We
observe a catastrophic drop in BLEU (−14.62)
compared to a standard NMT encoder-decoder.
The Character-aware gated model(CG), however,
outperforms the baseline by 0.91 BLEU points
suggesting that the CNN composition function and
standard embeddings work in a complementary
fashion.

4.2 Large Vocabulary Approximation
In Equation 2 of the general NMT framework, the
softmax operation generates a distribution over the
output vocabulary. Our character-aware model re-
quires a much larger computation graph as we ap-
ply convolutions (and highway layers) over the
5However, in practice we found that this regularization did not
affect performance noticeably in this setting.

Composition Method BLEU

Std. (no composition) 26.84
C (without gating) 12.22
CG (target embedding only) 26.61
CG (softmax embedding only) 27.16
CG (both) 27.75

Table 1: Experiments to determine the effectiveness of com-
position based embeddings and gated embeddings. We used
en-de language pair from the TED multi-target dataset. Std.
is our baseline with standard word embeddings, model C is
the composition only model and CG combines the character-
aware (composed) embedding and standard embedding via a
gating function.

spellings (character embeddings) of entire target
vocabulary, placing a limitation on the target vo-
cabulary size for our model. Which is problematic
for word-level modeling (without BPE).

To make our character-aware model accommo-
date large target vocabulary sizes, we incorporate
an approximation mechanism based on (Jean et al.,
2015). Instead of computing the softmax over the
entire vocabulary, we uniformly sample 20k vo-
cabulary types and the vocabulary types that are
present in the training batch.

During decoding, we compute the forward pass
Wosj in Equation 2 in several splits of the tar-
get vocabulary. As no backward pass is required
we clear the memory (i.e. delete the computation
graph) after each split is computed.

5 Experiments

We evaluate our character aware model on 14 dif-
ferent languages in a low-resource setting. Ad-
ditionally, we sweep over several BPE merge hy-
perparameter settings from character-level to fully
word-level for both our model and the baseline and
find consistent gains in the character-aware model
over the baseline. These gains are stable across
all BPE merge hyperparameters all the way up to
word-level where they are the highest.

5.1 Datasets

We use a collection of TED talk transcripts (Duh,
2018; Cettolo et al., 2012). This dataset has lan-
guages with a variety of morphological typologies,
which allows us to observe how the success of our
character-aware decoder relates to morphological
complexity. We keep the source language fixed as
English and translate into 14 different languages,
since our focus is on the decoder. The training
sets for each vary from 74k sentences pairs for
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Language BPE Sweep @ 30k BPE @ Word-level
Std(Best BPE) CG(Best BPE) ∆ Std CG ∆ Std CG ∆

cs 20.57 (7.5k) 21.41 (7.5k) +0.84 18.73 21.28 +2.55 18.44 21.49 +3.05
uk 15.79 (7.5k) 16.60 (30k) +0.81 14.27 16.60 +2.33 12.94 15.30 +2.36
pl 16.76 (15k) 18.00 (30k) +1.24 15.98 18.00 +2.02 15.49 17.20 +1.71
tr 15.11 (7.5k) 15.83 (30k) +0.72 13.82 15.83 +2.01 12.58 14.75 +2.17
hu 16.61 (3.2k) 17.23 (15k) +0.62 15.45 17.21 +1.76 14.18 16.52 +2.34
he 23.36 (3.2k) 23.86 (30k) +0.50 22.47 23.86 +1.39 21.26 23.01 +1.75
pt 37.85 (15k) 38.35 (30k) +0.50 37.05 38.35 +1.30 37.13 38.36 +1.23
ar 16.22 (7.5k) 16.28 (30k) +0.06 15.05 16.28 +1.23 14.45 16.05 +1.60
de 27.37 (7.5k) 28.12 (30k) +0.75 26.94 28.12 +1.21 26.84 27.75 +0.91
ro 24.02 (3.2k) 24.20 (15k) +0.18 22.88 24.00 +1.12 22.39 23.27 +0.88
bg 31.63 (7.5k) 32.20 (15k) +0.57 30.92 31.90 +0.98 30.18 31.43 +1.25
fr 35.97 (1.6k) 36.17 (7.5k) +0.20 35.31 35.92 +0.61 35.28 36.01 +0.73
fa 12.94 (30k) 13.52 (30k) +0.58 12.94 13.52 +0.58 12.85 12.79 -0.06
ru 19.28 (30k) 19.61 (30k) +0.33 19.28 19.61 +0.33 17.60 19.04 +1.44

Table 2: Best BLEU scores swept over 6 different BPE merge setting (1.6k, 3.2k, 7.5k, 15k, 30k, 60k), and at a standard
setting of 30k. We notice a consistent improvement across languages and settings of the merge operation parameter.

Ukrainian to around 174k sentences pairs for Rus-
sian (provided in Appendix A), but the validation
and test sets are “multi-way parallel”, meaning the
English sentences (the source side in our experi-
ments) are the same across all 14 languages, and
are about 2k sentences each. We filter out training
pairs where the source sentence was longer that 50
tokens (before applying BPE). For word-level re-
sults, we used a vocabulary size of 100k (keeping
the most frequent types) and replaced rare words
by an <UNK> token.

5.2 NMT Setup

We work with OpenNMT-py (Klein et al., 2017),
and modify the target-side embedding layer and
softmax layer to use our proposed character-aware
composition function. A 2 layer encoder and de-
coder, with 1000 recurrent units were used in all
experiments The embeddings sizes were made to
match the RNN recurrent size. We set the charac-
ter embedding size to 50 and use four CNNs with
kernel widths 3, 4, 5 and 6. The four CNN outputs
are concatenated into a compositional embeddings
and gated with a standard word embedding. The
same composition function (with shared parame-
ters) was used for the target embedding layer and
the softmax layer.

We optimize the NMT objective (Equation 1)
using SGD.6 An initial learning rate of 1.0 was
used for the first 8 epochs and then decayed with a
decay rate of 0.5 until the learning rate reached a
minimum threshold of 0.001. We use a batch size

6SGD outperformed both Adam and Adadelta. Others have
found similar trends, see Bahar et al. (2017) and Maruf and
Haffari (2018).

Lang Char-
Shallow

Char-
Deep

CG
(30k BPE) ∆

uk 4.77 13.34 16.60 +3.26
cs 11.16 18.45 21.28 +2.83
de 23.89 25.93 28.12 +2.19
bg 26.40 29.81 31.90 +2.09
tr 5.29 13.94 15.83 +1.89
pl 10.65 16.31 18.00 +1.69
ru 14.63 18.01 19.61 +1.60
ro 21.58 22.45 24.00 +1.55
pt 35.00 37.06 38.35 +1.29
hu 2.51 16.02 17.21 +1.19
fr 32.71 34.76 35.92 +1.16
fa 7.44 12.73 13.52 +0.79
ar 3.58 15.89 16.28 +0.39
he 22.28 23.87 23.86 -0.01

Table 3: BLEU scores (lowercased) comparing character-
level models against CG when used on 30k BPE sequences.
We show that without sweeping BPE, CG generally outper-
forms purely character-level methods, even when the purely
character-level networks are deepened as was shown to help
in Cherry et al. (2018).

of 80 for our main experiments. At the end of each
epoch we checkpoint and evaluate our model on a
validation datset and used validation accuracy as
our model selection criteria for test time. During
decoding, a beam size of 5 was chosen for all the
experiments.

5.3 Results

We provide case insensitive BLEU scores for our
main experiments, comparing our character-aware
model (CG) against a baseline model that uses only
standard word (and subword) embeddings. We di-
vide the results of our model’s performance into
three parts: (i) over a sweep of BPE merge oper-
ations, including a commonly used setting of 30k
merge operations (ii) with word-level source and
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target sequences and finally, (iii) against a purely
character-level model.

5.3.1 BPE Results
Part 1 of Table 2 compares the best BLEU score

obtained by the baseline model, after performing
a BPE sweep from 1.6k to 60k, to the best BLEU
obtained by CG after sweeping over the same BPE
range. While our study focuses on the target side,
BPE (with the same number of merge operations)
was applied to both source and target for our ex-
periments. We find that after this sweep, CG out-
performs the baseline in all 14 languages. The ex-
haustive table of results for these experiments is
presented in Appendix A.

No Typical BPE Setting
Additionally, we see that the BPE setting that

achieves best BLEU in the baseline model varies
considerably from 1.6k to 30k depending on the
target language, indicating that there is no “typ-
ical” BPE for low-resource settings. In the CG
model, however, performance was usually best at
30k. Part 2 of Table 2 compares the baseline and
CG at BPE of 30k where CG performs optimally.

We find that our CG model consistently out-
performs the baseline for almost all BPE merge
hyperparameters across all 14 languages. Fig-
ure 2 shows the gains observed by the CG model
as we sweep over BPE merge operations. While
the baseline model does slightly better than CG at
small BPE settings for a few languages (all points
below the 0 value), a majority of the points show
positive gains.

5.3.2 Word-Level Results
In Part 3 of Table 2 we show results with our

approximation for word level. While our best re-
sults are generally with BPE, we note that we get
the biggest relative gains using our method at the
word level, which we expect is due to always hav-
ing the whole word to learn character patterns over.
For the CG model, in 60k BPE and word-level set-
tings we used the large vocabulary approximation
discussed in Section 4.2.

5.3.3 Character-Level Results
Finally, in Table 3, we compare two character-

level models against our CG model at 30k BPE.
The shallow character-level model used 2 en-
coder and decoder layers with 1000 recurrent units,
while the deep model used 6 encoder and decoder

1.62k 3.2k 7.5k 15k 30k 60k∗ W∗

0

1

2

3

cs cs

cs

cs

cs

cs

cs

uk
uk

uk

uk

uk

uk

uk

hu

hu

hu

hu

hu

hu hu

pl pl
pl

pl

pl
pl

pl

he

he

he
he

he

he

he

tr

tr

tr

tr

tr

tr

tr

ar

ar ar

ar

ar

ar

ar

pt pt

pt

pt

pt

pt
pt

ro

ro

ro

ro

ro

ro
ro

bg bg
bg

bg
bg

bg
bg

ru ru
ru

ru
ru

ru

ru

de
de

de

de

de

de

de

fa

fa
fa fa

fa

fa
fafr fr

fr
fr

fr
fr fr

BPE Merge Operations

∆
B

L
E

U
(C

G
-S

td
.)

Figure 2: Plot of the difference between the BLEU scores
from CG model and baseline model at various BPE settings
for each of the 14 languages (shown in color, with language
identifier). The bold black line shows the average difference
across the languages for each BPE setting.

Features
Corpus-

dependent
Corpus-

independent
TT A H UT UTC

Correlation 0.04 0.59 0.67 0.80 0.49

Table 4: The Pearsons correlation between the features and
the relative gain in BLEU obtained by the CG model. See
Section 6 for details regarding features.

layers with 512 recurrent units .7 Furthermore, the
improved results from the deep model were only
attainable using the Fairseq toolkit with Noam op-
timization and 100 warmup steps (Gehring et al.,
2017). As Table 3 shows, our CG model with 30k
BPE compares favorably to even deep character-
level models for this low-resource setting.

6 Analysis

We are interested in understanding whether our
character-aware model is exploiting morphologi-
cal patterns in the target language. We investi-
gate this by inspecting the relationship between a
set of hand-picked features and improvements ob-
tained by our model over the baseline at word-
level inputs. These features fall into two cate-
gories, corpus-dependent and corpus-independent.
We following Bentz et al. (2016), and extract fea-
tures known to correlate with human judgments of
morphological complexity. The following corpus-
dependent features were used:

7Increasing the recurrent size for deep models resulted in sig-
nificant drop in BLEU scores. We set the dropout rate to 0.1.
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(i) Type-Token Ratio (TT): the ratio of the num-
ber of word types to the total number of word
tokens in the target side. We note that a large
corpus tends to have a smaller type-token ra-
tio compared to small corpus.

(ii) Word-Alignment Score (A): computed as
A = |many-to-one|−|one-to-many|

|all-alignments| . One-to-
one, one-to-many and many-to-one alignment
types are illustrated in Figure 3.8 We in-
tuit that a morphologically poor source lan-
guage (like English) paired with a richer tar-
get language should exhibit more many-to-
one alignments—a single word in the target
will contain more information (via morpho-
logical phenomena) that can only be trans-
lated using multiple words in the source.

(iii) Word-Level Entropy (H): computed as H =∑
v∈V p(v) log p(v) where v is a word type.

This metric reflects the average information
content of the words in a corpus. Languages
with more dependence on having a large num-
ber of word types rather than word order or
phrase structure will score higher.

s1s0 s2 s3 s4

t1t0 t2 t3

Figure 3: Example of one-to-many (s0 to t0, t1), one-to-one
(s1 to t2) and many-to-one (s2, s3, s4 to t3) alignments. For
this example A = (3− 2)/6.

For the corpus-independent features we used
a morphological annotation corpus called Uni-
Morph (Sylak-Glassman et al., 2015). The Uni-
Morph corpus contains a large list of inflected
words (in several languages) along with the word’s
lemma and a set of morphological tags. For
example, the French UniMorph corpus contains
the word marchai (walked), which is associated
with its lemma, marcher and a set of morpho-
logical tags {V,IND,PST,1,SG,PFV}. There
are 19 such tags in the French UniMorph corpus.
A morphologically richer language like Hungar-
ian, for example, has 36 distinct tags. We used
the number of distinct tags (UT) and the number
of different tag combinations (UTC) that appear in
the UniMorph corpus for each language. Note that
8We use FastAlign (Dyer et al., 2013) for word alignments
with the grow-diag-final-and heuristic from (Och and Ney,
2003) for symmetrization.

we do not filter out words (and its associated tags)
from the UniMorph corpus that are absent in our
parallel data. This ensures that the UT and UTC
features are completely corpus independent.

The Pearson’s correlation between these hand-
picked features and relative gain observed by our
model is shown in Table 4. For this analysis we
used the relative gain obtained from the word-
level experiments. Concretely, the relative gain
for Czech was computed as 21.49−18.44

18.44 We see a
strong correlation between the corpus-independent
feature (UT) and our model’s gain. Alignment
score and Word Entropy are also moderately corre-
lated. Surprisingly, we see no correlation to type-
token ratio.

As the correlation analysis only examines the re-
lation between BLEU gains and an individual fea-
ture, we further analyzed how the features jointly
relate to BLEU gains. We fitted a linear regression
model, setting the relative gains as the predicted
variable y and the feature values as the input vari-
ables x, with the goal of studying the linear re-
gression weights φ.9 We used feature-augmented
domain adaptation where we consider each lan-
guage as a domain (Daumé III, 2007), allowing
the model to find a set of “general” weights as
well language-specific weights that best fit the data
(Equation 11). The general feature weights can be
interpreted as being indicative of the overall trends
in the dataset across all the languages, while the
language-specific weights indicate language devi-
ation from the overall trend.

L(φ) =
∑

i∈I
| yi − ỹi |2 −λ | φ |2 (10)

ỹi = φ
T
ALLxi + φ

T
i xi (11)

Where, y is the true relative gain in BLEU, ỹ is the
predicted gain, x is a vector of input feature values,
φALL and φi are the general and language-specific
weights, and i indexes into the set of languages in
our analysis. We set λ to 0.05.

The matrix of learned weights φ is visualized
in Figure 4. The first row of weights correspond
to the “general” weights that are used for all the
languages, followed by language-specific weights
sorted by relative gain.

While the general weights align with the corre-
lation results (Table 4), this analysis also shows
that the UTC weight for Czech and Turkish are
9The input features were min-max normalized for the regres-
sion analysis.
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Figure 4: Feature weights of the feature-augmented language
adapted linear regression model. The first row represents the
“general” set of weights used for all of the languages. Each
row below are the language-adapted weights that only “fire”
for that specific language.

much larger than any of the other languages’ and
indeed we can verify that these languages have 194
and 300 different tag combinations while the aver-
age tag combinations is ≈ 110.

From the corpus-dependent features, word
alignment score strongly predicts the gain in
BLEU scores. For Czech, Ukrainian, Turkish,
Hungarian, and Polish we see additional weight
placed on this feature. A similar trend can be seen
for the word-entropy feature. While type-token ra-
tio does not exhibit a strong overall trend, we see
that Ukrainian and Farsi are outliers.

Our correlation and regression analysis strongly
suggest that CG character-aware modeling helps
the most when the target language has inherent
morphological complexity and that it does indeed
have the ability to handle morphological patterns
present in the target languages.

6.1 Qualitative Examples
We additionally look at specific examples of where
our model is outperforming the baseline in the case
of 30k BPE in En-Ar. We see a few trends, which
we show examples of in Table 5. The first trend,
corresponding to the first example, is that it gets
names better. This might be because Arabic is
not written in the Latin alphabet, and the spelling-
aware model may be able to transliterate better.

Another trend is that CG gets the endings of rare
words correct, in particular when the BPE seg-
mentation is not according to morpheme bound-
aries. The second example illustrates this, where
the word for “Mexican” appears in the training
data broken up by BPE with various morpholog-
ical endings, all of which are spelled beginning

Src here he is : leonardo da vinci .
Ref h*A hw – lywnArdw dA fyn$y .
Std hnA hw : lywnArdw dA dA .
CG hnA hw : lywnArdw dA fy+n$y .
Src i ’m the mexican in the family .
Ref AnA Almksyky fy AlEA}lp .
Std AnA mksy+Any fy AlEA}lp .
CG AnA Almksy+ky fy AlEA}lp .
Src there was going to be a national referendum .
Ref wtm AlAEdAd lAHrA’ AstftA’ $Eby .
Std sykwn hnAk f+tA’ wTny .
CG sykwn hnAk Ast+f+tA’ wTny .
Src there are ordinary heroes .
Ref fhnAk AbTAl TbyEywn .
Std hnAk ASdqA’ EAdy .
CG hnAk AbTAl EAdyyn .

Table 5: Examples from En-Ar, transliterated with the Buck-
walter schema. We show the version of our model and the
English using ‘+’ to denote where BPE splits words up, while
BPE has not been applied to the target reference.

with “ky” in the second subword. The morpheme
boundaries here would be “Al+mksyk+y.” Note
that CG also gets the definite article “Al” correct
while the baseline does not.

Finally, we see a pattern where our model does
better for words which are rare and appear both
with and without the definite article “Al.” Our
third example in Table 5 illustrates this with an in-
frequent word, the word for “referendum”, which
gets broken up into subwords. In particular, the
first subword sometimes has an “Al” attached in
the training data. Our model is able to translate
this subword, while the baseline skips the subword
altogether, outputting two subwords that alone are
not a valid word. Again, the word is not bro-
ken up along morpheme boundaries by BPE. Here
there would be no way to break this word up
into morphological segments—it consists of non-
concatenative derivational morphology. This oc-
curs again in the fourth example in the word for
“heroes,” where the baseline predicts the word for
“friends.” In this case the word was not split up
by BPE, but similarly it is rare but occurs with the
definite article attached in the training data as well.

7 Conclusion

We extend character-aware word-level modeling to
the decoder for translation into morphologically
rich languages. Our improvements were attained
by augmenting the softmax and the target embed-
ding layers with character-awareness. We also find
it critical to add a gating function to balance com-
positional embeddings with standard embeddings.
We evaluate our method on a low-resource dataset
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translating from English into 14 languages, and on
top of a spectrum of BPE merge operations. Fur-
thermore, for word-level and higher merge hyper-
parameter settings, we introduced an approxima-
tion to the softmax layer. We achieve consistent
performance gains across languages and subword
granularities, and perform an analysis indicating
that the gains for each language correspond to mor-
phological complexity.

For future work, we would like to explore how
our methods might be of use in higher-resource
settings. Furthermore, it would be interesting to
see how these methods might interact with multi-
lingual systems and if they might be able to im-
prove what information is shared between related
languages.
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A More Detailed Results

In Table 6, we provide the number of training sen-
tences for each language.

In Table 7, we provide the full experiments of
our sweep of BPE for both standard and our CG
embeddings. In our baseline, we see a divergence
in trends across languages while sweeping over
BPE merge hyperparameters—Czech (cs), Turk-
ish (tr), and Ukrainian (uk) for example, are highly
sensitive to the BPE merge hyperparameter. On the
other hand, for languages like French (fr) and Farsi
(fa), the performance is mostly consistent across
different BPE merge hyperparameters.
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Language Number of sentences

Czech (cs) 81k
Ukrainian (uk) 74k
Hungarian (hu) 108k
Polish (pl) 149k
Hebrew (he) 181k
Turkish (tr) 137k
Arabic (ar) 168k
Portuguese (pt) 147k
Romanian (ro) 155k
Bulgarian (bg) 159k
Russian (ru) 174k
German (de) 146k
Farsi (fa) 106k
French (fr) 149k

Table 6: Number of sentences in training data for each language

L M Char-
Shallow

Char-
Deep

BPE (Subwords) Word-
Level1.6k 3.2k 7.5k 15k 30k 60k

cs Std. 11.16 18.45 20.28 20.51 20.57 19.60 18.73 17.60 18.44
CG - - 20.71 21.04 21.41 21.14 21.28 20.97 21.49

uk Std. 4.77 - 13.35 15.51 15.79 15.36 14.27 12.50 12.94
CG - - 13.80 16.16 15.48 16.28 16.60 15.54 15.30

hu Std. 2.51 16.02 15.77 16.33 15.62 16.61 15.45 14.81 14.18
CG - - 16.58 16.61 16.88 17.23 17.21 17.05 16.52

pl Std. 10.65 16.31 16.14 16.40 16.34 16.76 15.98 15.47 15.49
CG - - 16.88 17.12 16.84 17.63 18.00 17.32 17.20

he Std. 22.28 23.87 23.07 23.36 23.32 22.76 22.47 21.84 21.26
CG - - 23.52 23.38 23.65 23.33 23.86 22.78 23.01

tr Std. 5.29 13.94 14.92 14.58 15.11 14.75 13.82 13.69 12.58
CG - - 14.42 15.25 15.51 15.54 15.83 15.05 14.75

ar Std. 3.58 15.89 15.66 15.67 16.22 15.70 15.05 14.86 14.45
CG - - 15.96 15.55 16.17 15.99 16.28 15.53 16.05

pt Std. 35.00 37.06 37.47 37.53 37.61 37.85 37.05 37.11 37.13
CG - - 37.94 37.98 37.77 38.28 38.35 38.11 38.36

ro Std. 21.58 22.45 23.48 24.02 23.72 23.78 22.88 22.73 22.39
CG - - 23.55 23.42 23.61 24.20 24.00 23.38 23.27

bg Std. 26.40 29.81 31.17 31.41 31.63 31.09 30.92 30.44 30.18
CG - - 31.43 31.71 31.81 32.20 31.90 31.58 31.43

ru Std. 14.63 - 18.17 18.71 19.05 18.80 19.28 18.28 17.60
CG - - 18.68 19.26 19.40 19.30 19.61 19.23 19.04

de Std. 23.89 25.93 26.98 27.34 27.37 27.23 26.94 27.21 26.84
CG - - 26.94 27.55 27.46 27.89 28.12 27.37 27.75

fa Std. 7.44 12.73 12.87 12.71 12.86 12.94 12.94 13.20 12.85
CG - - 12.35 12.98 13.38 13.36 13.52 13.31 12.79

fr Std. 32.71 34.76 35.97 35.75 35.82 35.90 35.31 35.33 35.28
CG - - 35.89 35.68 36.17 36.10 35.92 36.08 36.01

Table 7: BLEU scores (case insensitive) for a standard embedding encoder-decoder baseline (Std), and character-aware model,
composed embedding combined with standard embedding (CG) for 14 languages and various BPE merge hyperparameters. For
purely character-level we only train the standard model as CG would not have a sequence of characters to compose. For BPE
of 60k and word-level we use the softmax approximation described. We see that CG obtains the best result in all languages.
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Abstract

Two of the more predominant technologies
that professional translators have at their
disposal for improving productivity are
machine translation (MT) and computer-
aided translation (CAT) tools based on
translation memories (TM). When transla-
tors use MT, they can use automatic post-
editing (APE) systems to automate part
of the post-editing work and get further
productivity gains. When they use TM-
based CAT tools, productivity may im-
prove if they rely on fuzzy-match repair
(FMR) methods. In this paper we com-
bine FMR and APE: first a FMR proposal
is produced from the translation unit pro-
posed by the TM, then this proposal is fur-
ther improved by an APE system specially
tuned for this purpose. Experiments con-
ducted on the translation of English texts
into German show that, with the two com-
bined technologies, the quality of the trans-
lations improves up to 23% compared to a
pure MT system. The improvement over a
pure FMR system is of 16%, showing the
effectiveness of our joint solution.

1 Introduction

In recent times, research has shown that translators
can be more productive when applying state-of-
the-art post-editing techniques (Isabel, 2017). In
many cases, the state-of-the-art techniques are ap-
plied to improve translation proposals from a trans-
lation memory (TM) or directly produced by a ma-

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

chine translation (MT) system. Post-editing tech-
niques can be automated and seamlessly integrated
into the typical translation pipeline for productiv-
ity gains. Two such techniques: fuzzy-match re-
pair (FMR) (Ortega et al., 2016) and automatic
post-editing (APE) (Chatterjee et al., 2017) have
shown to be effective without the initial interven-
tion of the translator by offering a repaired trans-
lation proposal from a TM in the case of FMR, and
an improved MT output in the case of APE.

FMR is an automatic post-editing technique typ-
ically used with TM-based computer-aided trans-
lation (CAT) tools. In TM-based CAT, the trans-
lator is offered a translation proposal that comes
from a translation unit (a pair of parallel segments)
whose source segment is similar to the segment
to be translated. When the source segment in the
translation unit and the segment to be translated are
not identical, which happens very often, the trans-
lation proposal needs to be post-edited in order to
create the final translation. FMR aims to provide
repaired translation hypotheses to reduce the post-
editing effort of the original translation proposals
by using another source of bilingual information
such as an MT system. Some approaches to FMR,
like the one by Koehn and Senellart (2010), heav-
ily depend on the specific MT system type being
used for repairing. Others, such as the one by Or-
tega et al. (2016) use an agnostic, black-box, MT
system in such a way that the user would only
choose from several repaired hypothesis proposals.

APE aims to correct the errors present in a
machine-translated text before showing it to the
translator or post-editor. As motivated by Parton
et al. (2012), an APE system can help to improve
MT output by exploiting information that is not
available during translation, or by performing a
deeper text analysis, and by adapting the output of
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a general-purpose MT system to the lexicon/style
requested in a specific application domain. In do-
ing so, APE aims to provide professional transla-
tors with improved MT output quality to reduce
(human) post-editing effort.

In this paper, we show that APE could be used to
improve sentence-level proposals from FMR when
FMR is used as a device to create new translations
from a TM. As shown in Figure 1, FMR is first
used to produce a repaired translation proposal and
then APE is used as a tool to improve the quality
of the proposal. We demonstrate that the combina-
tion of these two techniques can significantly boost
translation quality. It outperforms both a competi-
tive neural MT system and FMR alone, and its per-
formance reaches nearly that of methods relying
on the reference (i.e. oracle) translations.

View

TM

FMR

APE

Post Edit

Figure 1: Seamless addition of fuzzy-match repair (FMR)
and automatic post-editing (APE) in a traditional computer-
aided translation (CAT) pipeline. The post editor is presented
with several hypotheses created from a translation memory
(TM) proposal through fuzzy-match repair (FMR) and auto-
matic post-editing (APE).

Our work provides an in-depth analysis of which
technique would work best under “typical” trans-
lation scenarios by testing several combinations of
the two post-editing techniques. Our analysis in-
cludes various checkpoints of evaluation including
industry standards and human-level reviews. In or-
der to better describe our process, we organize the
paper as follows. First, in Section 2 we review the
relevant work where both technologies (FMR and
APE) have been used. Second, in Section 3, we
dig deeper into the motivation and methodology
of our work and show how the two technologies
could be “glued” together to form a new system
that is added in a modular way to a traditional CAT
pipeline. Third, in Section 4 we describe our ex-

perimental settings in detail. Fourth, we present
our results in Section 5. We use BLEU and TER as
metrics to evaluate the quality of our translations.
We also perform error analysis and human reviews.
Then, we measure the systems quantitatively using
a word-measurement like word-error rate to show
performance. Finally, in Section 6 we give some
conclusions and plan on doing in the future.

2 Related work

In this section we describe approaches related to
both FMR and APE. It is worth noting that, to the
best of our knowledge, FMR and APE have not
previously been combined together.

2.1 Fuzzy-match repair

FMR aims to reduce the post-editing effort of
translation proposals retrieved from a TM. To do
so FMR techniques rely on a source of bilingual
information, usually MT, to automatically repair
a translation proposal by modifying those parts
of the proposal that otherwise should be post-
edited by the translator. The idea of FMR points
back to papers by Kranias and Samiotou (2004)
and Hewavitharana et al. (2005) whose approaches
were based on the location of anchor points via
alignment of words and relied heavily on the in-
ner workings of the MT system they used. Im-
provements over time led way to advances that
used phrase-based MT (Simard and Isabelle, 2009;
Koehn and Senellart, 2010). Work has gradually
advanced and various FMR methods have been
proposed that share one common theme: locating
and repairing sub-segments in the translation pro-
posal. Later works (Dandapat et al., 2011; Ortega
et al., 2016), on the other hand, can use any MT
system as a black-box.

Knowles et al. (2018) recently performed a com-
parison of the nature of MT systems for their use
in FMR. In particular, they contrast the quality of
FMR output using neural MT and phrase-based
MT. Most importantly, they show that neural MT
may not be appropriate if it is not trained on in-
domain data. Other novel works, like the work by
Bulté et al. (2018), include FMR as a primary part
of a system integrating MT and TM. Lastly, Ortega
et al. (2018) have found a statistical way to select
the best MT system to use in black-box FMR.
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2.2 Automatic post-editing

Automatic post-editing is the task of correcting
recurring errors from an MT system by learning
from human corrections. Starting from the semi-
nal work by (Simard et al., 2007), the problem has
been tackled as a “monolingual translation” task
in which the MT output must be translated into
an improved text in the target language. Under
this definition, the “parallel data” used for train-
ing an APE system consist of triplets of the form
(source, target, post-edited target) rather than the
(source, target) pairs normally used in MT. Fol-
lowing the translation-based approach, initial solu-
tions relied on the phrase-based paradigm (Simard
et al., 2007; Dugast et al., 2007; Terumasa, 2007;
Pilevar, 2011; Béchara et al., 2011; Chatterjee et
al., 2015; Chatterjee et al., 2016). However, in
the past couple of years, top results have been
achieved by neural architectures (Pal et al., 2016;
Junczys-Dowmunt and Grundkiewicz, 2016; Chat-
terjee et al., 2017; Junczys-Dowmunt and Grund-
kiewicz, 2017; Tebbifakhr et al., 2018).

Recent advancements made by participants in
the APE shared task organized within the Confer-
ence on Machine Translation (WMT) have shown
the capability of APE systems to significantly im-
prove the performance of a black-box MT system
gaining up to seven BLEU points (Bojar et al.,
2017; Chatterjee et al., 2018a).

The neural approaches proposed share common
traits such as using multi encoders (one for the
source and one for the MT segments) and leverag-
ing artificial data (round-trip translations) to max-
imize results. The APE system used in this paper
proposes a novel approach extending the original
technology implemented by the best performing
system at the WMT 2016 APE shared task (Chat-
terjee et al., 2017).

2.3 Combination of approaches

We briefly describe a few combinations of ap-
proaches and systems that are usually used in dif-
ferent scenarios, such as FMR and APE, and that
could be considered novel and related to our work.
The first, and probably the most relevant work, is
based on MT quality estimation (QE) and APE.
Chatterjee et al. (2018b) combine MT QE and APE
in three different ways: one in which sentence-
level MT QE is used to activate an APE system,
a second one in which word-level MT QE is used
to guide the APE system, and a third one that uses

MT QE to choose between the original MT output
and its post-edited version. Additionally, Tan et
al. (2017) attempts to correct a common problem
in APE known as “overcorrection” (i.e. systems’
tendency to completely re-translate the MT out-
put, also rephrasing parts that are already correct).
They do this by specifying two models (called neu-
ral post-editing models). Then, they use MT and
QE to help select one of the models for the trans-
lation. This by no means is related to fuzzy-match
repair; however, the idea of combining several sys-
tems around APE is similar to what we are doing.

Hokamp (2017) includes word-level MT QE
features as additional inputs to an APE system and
trains several neural models using different input
representations, but sharing the same output space.
These models are finally ensembled together and
tuned for APE and MT QE.

3 TM repairing through FMR and APE

Our system is a two-step process that can be added
to any TM-based CAT tool that has access to a
source of bilingual information (SBI), such as a
black-box MT system. The first step of our process
is to use the translation unit whose source segment
is most similar to the segment to be translated as
input to FMR that, in turn, uses the SBI for repair-
ing and proposing new translation hypotheses not
present in the TM. These proposals could then be
treated as input to a second APE step that is used
to output the best final possible hypotheses. In this
section, we first describe more formally how FMR
and APE are used. Then, we provide an example
(Table 1) in the last sub-section that illustrates how
APE can be used to improve an FMR translation
proposal.

3.1 Fuzzy-match repair

The FMR method devised by Ortega et al. (2016)
can generate a set of fuzzy-match repair hypothe-
ses from a translation unit (s, t) and the segment
to be translated s′ by using any available SBI. For
our experiments, we use MT1 as a black-box SBI.

Their method first identifies mismatched words
between s and s′, that is, the words they do not
have in common. This is done by using the align-
ment between the words in s and s′ obtained as a
by-product of the computation of the word-based
edit distance (Levenshtein, 1966) between s and

1Other SBIs that could be used are sub-segment translation
memories, bilingual dictionaries or phrase tables.
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s′: mismatched words are left unaligned. SBIs are
then used to translate into the target language sub-
segment pairs of s and s′ containing mismatched
words. The sub-segments pairs to be translated
are obtained by using the phrase-pair extraction
algorithm used in phrase-based statistical MT to
obtain bilingual phrase pairs (Koehn, 2010, sec-
tion 5.2.3). The translations obtained for the sub-
segments of s are used to identify the sub-segment
in t that needs to be modified, and the translation
of the sub-segments of s′ to identify the way they
should be modified. In this way, a set of patching
operators is built. Each patching operator consists
of a sub-segment σ of s, a sub-segment σ′ of s′

aligned with σ, a sub-segment τ of t to be repaired,
and a sub-segment τ ′, the translation of σ′, to be
used for repairing. By combining these patching
operators, a set of fuzzy-match repaired hypothe-
sis is generated. For a detailed description of their
method, we refer the reader to the work by Ortega
et al. (2016).

3.2 Automatic post-editing

The APE system used in this paper is a re-
implementation of the multi-source attention-
based encoder-decoder system (Chatterjee et al.,
2017) that achieved the best performance in the au-
tomatic evaluation at the APE shared task at WMT
2016.2 This system uses two different encoders to
independently process the source and the MT seg-
ments. Each encoder consists of a bi-directional
GRU and has its own attention layer that is used
to compute the weighted context. To obtain a sin-
gle context, the two context vectors are combined
via a feed-forward network. The obtained context
is used to compute the classical attention model
(Bahdanau et al., 2015). To regularize the multi-
source network and to avoid over-fitting, a shared
dropout is applied to the hidden state of both en-
coders and to the merged context. This architec-
ture has shown to be particularly effective in the
APE task, and its multi-source structure makes it
particularly suitable for the FMR post-editing task.

3.3 FMR with APE

The integration of FMR and APE does not re-
quire that the two ideas share any code behind the
scenes; so, both can be seen as black box mech-
anisms for improving translation proposals from
the TM. For this paper, FMR first creates several

2http://www.statmt.org/wmt16/

Source: article 18 , paragraph 1 , of the co2 act
TM: article 45 , paragraph 1 , of the co2 ordinance

FMR: artikel 18 absatz 1 der co2-verordnung
APE: artikel 18 absatz 1 des co2-gesetzes

Ref: artikel 18 , absatz 1 des co2-gesetzes

Table 1: An example of how fuzzy-match repair (FMR) and
automatic post-editing (APE) could work together to improve
a translation memory (TM) proposal.

new proposals based on the original TM propos-
als. Then, APE uses those proposals as the base to
produce even better proposals.

Table 1 shows an example of how a source sen-
tence from our TM is modified first by FMR and
then by APE. First, FMR repairs the TM pro-
posal by replacing two words (45 and ordinance);
notice that FMR incorrectly translates co2 act as
co2-verordnung. APE then takes the FMR pro-
posal and produces an improved translation, co2-
gesetzes, which is closer to the reference transla-
tion. The final result is a more adequate translation
that needs fewer post-edits by the final user.

4 Experimental Settings

We experiment with various combinations of FMR
and APE using a phrase-based MT system as a SBI
for FMR. In addition, we use APE on the output
of two MT systems, a phrase-based MT system
and a neural MT system, as a point of compari-
son. This section goes over the details of the data
and systems we used. One of our goals in this pa-
per is to show that by using freely-available data
found on the Internet, which is the case for small
businesses that do not have in-house data and can-
not afford more expensive data sets, our system
achieves good results despite results from previ-
ous work (Knowles et al., 2018; Chatterjee et al.,
2018b) that have shown that training MT systems
on in-domain data, especially in the case of a neu-
ral MT system, can be advantageous.

4.1 Data
Our entire dataset is based on 4,000 randomly se-
lected sentences from the DGT translation mem-
ory (DGT-TM-release 2018).3 The TM is avail-
able in several languages containing many transla-
tion units.4 In our evaluation, we use the English–
German (EN–DE) TM extracted with the formal
3ec.europa.eu/jrc/en/
language-technologies/
dgt-translation-memory
4For some statistics about this TM, please visit
wt-public.emm4u.eu/Resources/DGT-TM_
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DGT extraction methodology mentioned on their
website.

FMR is used to generate repaired translation hy-
potheses for these 4,000 sentences by using the
whole EN–DE DGT TM to look for translation
units to repair; it is worth noting that the whole
DGT TM is not used in any way by the APE sys-
tem. FMR hypotheses are generated for each of the
4,000 segments by looking in the whole DGT TM
for the translation unit (s, t) whose source segment
s is the most similar to the segment to be translated
s′. The similarity between s′ and s is computed as
the fuzzy match score, which in turn is based on
the word-based edit distance (Levenshtein, 1966)
between s and s′. If a translation unit with a fuzzy
match score above 60%5 is found, it is used for
FMR; otherwise, the Moses (Koehn et al., 2007)
MT system is used to translate s′.

Of the 4,000 sentences selected at random from
the DGT TM, 2,500 are randomly selected and
used to fine-tune the APE system (see Section 4.3),
500 are used for development, and 1,000 for test-
ing. Altogether, about 350 sentences are not suc-
cessfully repaired by FMR; in those cases, we used
the output of Moses.

4.2 Machine translation systems
We use the phrase-based statistical MT system
Moses (Koehn et al., 2007) as a SBI for FMR; it
has shown to perform well in previous experiments
and in the black-box setting (Knowles et al., 2018).
As a term of comparison we use Moses and the
neural MT system Nematus (Sennrich et al., 2016)
as baselines; we leave for future work the inclu-
sion of a neural MT system as a SBI for FMR. It is
worth noting that the phrase-based MT system per-
formed better on the APE module than the neural
MT system (see Table 2).

With Moses we use pre-trained models down-
loaded from www.statmt.org/moses/
RELEASE-3.0/models/. By using pre-
trained models, we try to replicate what most users
in a corporate setting would choose, at least as a
first iteration, in absence of advanced knowledge
to build the MT models by their own.

Nematus is trained on a collection of datasets
belonging to different domains. This is done to re-
semble a typical industrial scenario where a trans-
lation system is trained on a large collection of data

Statistics.pdf
5We use 60% fuzzy-match as a starting point threshold; in
future work, we plan on trying with higher thresholds.

that may or may not match the test domain. In
particular, we use domain-specific parallel corpora
from the European Central Bank, Gnome, JRC-
Acquis, KDE4, OpenOffice, PHP and Ubuntu,6

and generic training sets obtained from the Com-
monCrawl dataset7 and Europarl.8 The Europarl
corpus can be considered an in-domain dataset be-
cause it belongs to the same domain of the DGT
TM collection.

To train Nematus, the training corpus is first pro-
cessed using byte pair encoding (BPE) (Sennrich
et al., 2016), so that the less frequent words are
segmented into their sub-word units, resulting in
vocabularies of maximum size of 90k entries, or
90k BPE operations. The size of word embeddings
and hidden layers is set, respectively, to 500 and
1024. Source and target dropout are both set to
10%, whereas, encoder and decoder hidden states
and embedding dropout is set to 20%. The learn-
ing rate is set to 0.001. The cost is computed on
mini-batches of 100 sentence pairs with maximum
length of 50 tokens, extracted from the randomly
shuffled data after each epoch. The models are
optimized using Adagrad (Duchi et al., 2011) and
every 10,000 mini-batches they are evaluated with
BLEU on the 500-sentence-pairs development set.

4.3 APE settings

The APE system is trained on the eSCAPE cor-
pus (Negri et al., 2018), a collection of ∼7M
triplets (source, MT output and reference), where
the MT outputs have been created by a phrase-
based MT system. It consists of datasets belonging
to different domains and it is filtered by removing
duplicates and too short (3 words) or too long (60
words) segments.

To adapt the generic APE system to the FMR
task, the model is fine-tuned (Luong and Manning,
2015) on 2,500 triplets (see Section 4.1), where the
source input is paired with the repaired translation
proposal produced by FMR.

Similar to the neural MT system, the APE sys-
tem is trained on sub-word units by using BPE.
The APE vocabulary is created by selecting 50k
most frequent sub-words. Word embedding and
GRU hidden state size is set to 1024. Network pa-
rameters are optimized with Adagrad with a learn-
ing rate of 0.01. Source and target dropout is set to
6All available at opus.lingfil.uu.se.
7www.statmt.org/wmt13/
training-parallel-commoncrawl.tgz
8www.statmt.org/europarl/
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10%, whereas, encoder and decoder hidden states,
weighted source context, and embedding dropout
is set to 20%. After each epoch, the training data
is shuffled and the batches are created after sort-
ing 2,000 samples in order to speed-up the train-
ing. The batch size is set to 100 samples, with a
maximum sentence length of 60 sub-words. The
fine-tuning step is performed using the same pa-
rameters of the generic training.

4.4 Combined FMR and APE settings

Our FMR approach is identical to the FMR ap-
proach presented by Ortega et al. (2016). The
only things that change are the MT system used
as SBI, the language pair and the TM used. The
output produced for experimentation by FMR is
a list of translated segments that serve as input to
the APE system. In particular, we experiment with
two main FMR outputs for APE integration:

• an oracle experiment that chooses the best
possible repaired translation hypothesis for
each segment s′ by computing the word-
based edit distance between the repaired
translation and the reference translation;

• a randomized experiment that, for each seg-
ment s′, choses at random a repaired transla-
tion from the whole set of repaired translation
hypotheses. On average, there are nearly 5
hypotheses per source segment s′. We use a
random selection method because of its sim-
plicity and because the chance of choosing
the best hypothesis is around 20%.

4.5 Evaluation setting

For evaluating the combination of FMR and APE,
we use two major metrics: BLEU (Papineni et al.,
2002) and translation edit rate (TER) (Snover et
al., 2006). We report on BLEU because it is a cen-
terpiece of the development of MT systems, and
on TER because it is the primary evaluation metric
at the WMT APE shared task.

In addition to automatic evaluation metrics, we
introduce a human evaluator: a native German
speaker. This evaluator is not a translator; yet, does
have a background in natural language processing
and evaluation.9 We report the evaluator’s overall
evaluation on the best performing systems in our
results and offer it as an extra evaluation metric of
9For economic and timing reasons, we only present evaluation
from a single evaluator.

performance. The hope is to better understand the
target language and how well the various systems
perform under a native eye.

We provided a random set of 1,000 samples to
the evaluator, where each sample is made of a sen-
tence pair and its translations provided by each
system presented in Table 3. Each sentence pair
is rated by assigning quality scores on a 5-point
scale (1 being the worst and 5 the best). The evalu-
ator was told to rate the quality of translations and,
thus, was given the final translation from the four
systems but not the original human reference trans-
lation. Additionally, the evaluator was asked to
provide an explanation of why each system’s trans-
lation did not seem correct. Correctness was deter-
mined as a system’s translation being exactly what
was expected for the source sentence (a 5-star rat-
ing) or not at all (a 1-star rating).

5 Results

In this section we present results broken down into
two different sub-sections to highlight the perfor-
mance of the final combination system from the 1)
system level and 2) human perspective. In Sec-
tion 5.1 we report two major MT metrics: BLEU
and TER. Then, in Section 5.2, the evaluator’s
feedback is taken into account while analyzing
specific text anomalies that were found in the eval-
uation.

5.1 Metric-based analysis

Table 2 shows results that compare the use of
MT, FMR, and APE for translation. They con-
tain two main FMR configurations: FMR Rand
– selecting a translation hypothesis at random,
and FMR Oracle – using the hypothesis from
FMR that is the nearest to the reference transla-
tion in terms of word-error rate. We also pro-
vide three variants obtained by combining FMR
with APE (FMR-APE; see Section 4.4). The first
three rows of Table 2 represent baseline experi-
ments without the use of FMR or APE. We con-
sider them as our baseline experiments because
they are: the output of the phases-based MT sys-
tem Moses (PBMT), the neural MT system Nema-
tus (NMT), and the translation proposal as found
in the translation memory (TM). APE is then mea-
sured alone using the two MT systems (PBMT
and NMT) in the two rows Phrase-based MT-
APE and NMT-APE. FMR alone is evaluated af-
ter that in the FMR RAND and FMR Oracle
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System BLEU TER
PBMT 39.62 49.74

NMT 51.54 36.75

TM 64.95 25.42

Phrase-based MT-APE 60.02 31.60

NMT-APE 56.58 33.77

FMR Rand 58.38 32.17

FMR Oracle 68.36 23.03

FMR-APE Rand 66.56 26.20

FMR-APE Oracle 80.54 15.60

FMR-APE Oracle-Rand 74.44 20.26

Table 2: Performance of three baseline approaches (use of a
phrase-based MT system, use of a neural MT system, and use
of the TM proposal without repairing), of the use of APE to
better the MT outputs, the use of FMR alone when the trans-
lation hypothesis is selected at random or using an oracle, and
of different combinations of FMR and APE.

rows. Then, the combination of FMR and APE
with a random FMR hypothesis choice and an ora-
cle (FMR-APE Rand and FMR-APE Oracle) is
presented. Lastly, we present FMR-APE Oracle-
Rand, which is our best approximation of FMR
with APE that uses the randomly chosen hypoth-
esis from FMR for each source segment as addi-
tional training data to the APE system.

The TM baseline approach performs the best
when compared to the two MT systems (+∼25
BLEU points over the phrase-based MT and +∼13
over the neural MT). We attribute the performance
of the TM approach to the fact that the DGT-TM
is highly repetitive: it is quite likely that a match
with a high fuzzy match score is found. The TM
matches account for more than 70% of the 1,000
test segments; that is, for 70% of the segments
there is a translation unit for which the fuzzy match
score is above 60%. The TM baseline does quite
well when matched; and, when it is not matched,
Moses is used to translate the entire sentence.

FMR Rand is significantly below the TM ap-
proach, showing that there is a need for a bet-
ter strategy to choose the best FMR repaired hy-
pothesis in absence of a reference translation to
propose to a post-editor. Selecting from hypothe-
ses at random in FMR can generate low-quality
segments that could reduce a post-editor’s trust in
the method. With the oracle selection (FMR Ora-
cle), we notice a significant boost in performance
(+4 BLEU points over the TM and +10 over the
FMR Rand method). However, the oracle solution
should only be considered as an upper bound for

optimum FMR hypothesis selection purposes. We
leave a better selection method for FMR based on
quality estimation for future work.

When combining FMR with APE, in both cases
(FMR-APE Rand and Oracle) and by a large mar-
gin (+8 BLEU points for Rand and +12 for Ora-
cle), APE improves translation quality with respect
to FMR alone. The APE gain allows the FMR
Rand method to also outperform the TM approach.
At a closer look, APE seems to have a larger effect
on the FMR Oracle than on FMR Rand. We be-
lieve that the random selection of hypotheses pro-
duces segments with few common characteristics
that make it harder for APE to learn a strict correc-
tion pattern. For validation, we use the FMR-APE
Oracle model as a training mechanism for APE
because it contains hypotheses chosen by looking
at the reference (FMR-APE Oracle-Rand in Table
2).10 Results when using the FMR-APE Oracle as
training for the APE model are the best and out-
perform both TM and FMR-APE Rand (+10 and
+8 BLEU points). We consider this to be the best
adaptation of FMR.

APE gains can be classified into two main cate-
gories: (1) addition of missing parts and (2) lexical
substitution. In the former, since APE accepts the
source and the MT sentences, APE inserts parts
that are not present in the FMR output. In one ex-
ample, the source sentence “30 October 2015” is
translated by the FMR as “30 2015”, discarding
the word “October” that is re-inserted by the APE
system, thus matching the reference sentence “30
Oktober 2015”. The latter category (lexical substi-
tution) is mainly related to the identification of the
correct word and it is very important when deal-
ing with one or more TMs, where two suggestions
can only differ by one word. In another example,
the source sentence “Regulation 2015 / 7” is trans-
lated by the FMR as “Verordnung 2015 / 8”, intro-
ducing a wrong number for the month. Leveraging
the source, the APE is able to set the correct value
matching the reference “Verordnung 2015 / 7”.

We report also on word-error rate (WER) in Fig-
ure 2 to get a better idea of how many words were
actually modified by each system. Interestingly,
the WER by most of the systems does not beat the
TM score. We believe that this is due to the fact
that the TM score is actually a mix of the TM and
the phrase-based MT system; recall that Moses is
10Note that this strategy can be used in production because the
training data relies on parallel data where the reference/oracle
translation is available.
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Figure 2: Word error rate (WER) for all of the systems.
The best scoring system according to Table 2 (the FMR-
APE Oracle-Rand system) also performs best according to the
WER score of 20.61 on the top right.

Best System Human Rating
TM 2.84

Phrase-based MT-APE 2.82

FMR Oracle 2.90

FMR-APE Oracle-Rand 3.67

Table 3: Average human evaluation for the best system com-
bining FMR and APE. Translations were rated using a 5-point
scale, 1 being the worst and 5 the best.

used when a good-enough translation unit is not
found. Nonetheless, the best scoring systems are
the FMR-APE combination systems.

5.2 Human-based analysis
The three measurements (BLEU, TER, and WER)
show how well our best system performs and
would probably be enough to show that it is worth-
while to combine FMR with APE. However, we
passed the translations from our best perform-
ing systems to a native German evaluator (non-
professional) well-versed in machine translation
and natural language processing. Table 3 shows
a quick overview of how the best systems perform:
the human evaluation score is in line with the au-
tomatic metrics reported above.

We also asked the human evaluator to provide
general comments on each of the best-performing
systems. We did this to get a better idea of the
types of errors each system made. Below is an

overview of what the evaluator found.

TM. The most common error, accounting for
nearly 30% of the incorrect cases from the TM,
was “missing” or “wrong” data which describes
typical information in the parliamentary texts like
an article changing from 33 to 45. This is one of
the reasons that a translator would like to use a TM
because the translator would typically only have
to change the numbers in those situations. There
are also a few comments such as “wrong” part-of-
speech, e.g. an adjective or noun being wrong.

Phrase-based MT-APE. Unlike the TM, we see
some common phrase-based MT mistakes such as
“noun cases wrong” that account for more than
15% of the total incorrect words. Also, since
Moses marks untranslatable words as “UNK”, we
find that the evaluator noticed those anomalies
made up 20% of the word-based issues. In addi-
tion to the normal mistakes, the evaluator noticed
that on the order of 35% of the translations just
“did not make sense”, even more than the TM.
That could be coupled with another finding, “rep-
etition”, to form what seems to be somewhat com-
mon in phrase-based MT-backed APE systems.

FMR Oracle. The best FMR was not immune to
issues either. This could be due to the MT sys-
tems used. Many of the errors were similar to the
Phrase-based MT-APE system; however, other er-
rors were reported such as “punctuation is weird”
and “important” words are missing. However, in
more cases than others, it seems that the “FMR Or-
acle” system gets the underlying meaning correct.

FMR-APE Oracle-Rand. This system per-
formed the best in all cases. We consider this to
be the most important finding of this paper. While
there were comments concerning UNK symbols
(typical of the phrase-based MT translations), we
saw some issues of morphology such as problems
with inflection. For the most part, the evaluator
made few comments because the translations were
easier to understand than all other systems.

6 Conclusion

In this paper, we proposed a two-step process able
to generate improved translations. The approach
relies on the combination of two techniques: fuzzy
match repair (FMR) and automatic post-editing
(APE). Given a translation unit and the segment
to be translated, the FMR module creates a set of
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fuzzy-match repair hypotheses. The selected hy-
pothesis is then fed as input to the APE system
that fixes its errors. When compared against neu-
ral MT, a TM-based approach and FMR alone, the
combined solution outperforms all these methods
indicating the effectiveness of the proposed tech-
nique. We measure performance using common,
industry-wide MT performance metrics: BLEU
and TER. We also show how WERs for our exper-
iments nearly correlate with the BLEU and TER
scores. In addition to BLEU, TER, and WER,
we provide a human rating from a native German
speaker as insight into how the best-performing
systems fair to the average reader (not necessar-
ily a translator). By combining FMR and APE, we
provide easy, seamless access to FMR and APE for
translators and post-editors.

We believe that the combination of two orthogo-
nal technologies like FMR and APE could improve
most stand-alone post-editing systems. We have
been able to get decent gains by seamlessly jux-
taposing two post-editing techniques in a straight-
forward way. Clearly, other system combinations
(including using APE before FMR or even with the
TM) should be tried along with the introduction of
other language pairs as is done in the original FMR
work (Ortega et al., 2016).

Along this direction, in future we plan on going
the next step by combining yet another system with
FMR and APE: quality estimation. One can easily
imagine how quality estimation could be used both
as a precursor and a post-validator for FMR and
APE. Lastly, we will also use both MT systems
as SBIs for FMR to increase the coverage and the
chances to build successful patching operators, and
a quality-estimation inspired approach to select the
best hypothesis among the set of hypotheses pro-
duced by the FMR method used.
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Abstract

Neural machine translation (NMT) has set
new quality standards in automatic transla-
tion, yet its effect on post-editing produc-
tivity is still pending thorough investiga-
tion. We empirically test how the inclusion
of NMT, in addition to domain-specific
translation memories and termbases, im-
pacts speed and quality in professional
translation of financial texts. We find that
even with language pairs that have re-
ceived little attention in research settings
and small amounts of in-domain data for
system adaptation, NMT post-editing al-
lows for substantial time savings and leads
to equal or slightly better quality.

1 Introduction

The use of neural networks for sequence transduc-
tion (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014; Bahdanau et al., 2015) has led to as-
tounding progress in the field of machine trans-
lation (MT), establishing a new level of quality
in applications such as automatic news translation
(Sennrich et al., 2016b; Hassan et al., 2018). Nev-
ertheless, the creation of publication-grade trans-
lations still requires human involvement (Läubli
et al., 2018; Toral et al., 2018a), and previous work
has explored human–machine collaboration in the
form of post-editing, where human experts revise
machine translated text where necessary.

Empirical investigations of post-editing produc-
tivity with NMT are still scarce, especially for lan-
guage combinations that do not include English as

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

either the source or target language. In this paper,
we describe and discuss the results of a productiv-
ity test of domain-adapted NMT with the in-house
translation team of Migros Bank, a mid-sized fi-
nancial institution based in Zurich, Switzerland.
We evaluate the use of NMT under typical work-
ing conditions, focussing on two rarely explored
language pairs—German (DE) to French (FR) and
Italian (IT)—and texts from a specialised domain:
banking and finance. We show that using NMT in
combination with translation memories (TMs) and
terminology databases (TBs) enables professional
translators to work faster with no loss (or slight
gains) in quality, even with limited in-domain data
for system adaptation.

2 Background

Early assessments of post-editing productivity
were focussed on technical texts. While a study
by Krings (1994) with user manuals for techni-
cal appliances and rule-based MT found mixed re-
sults, interest in post-editing grew with the advent
of statistical MT (SMT), which enabled time sav-
ings of up to 40 % in film subtitling (Volk, 2008;
de Sousa et al., 2011) and software localisation
(Plitt and Masselot, 2010). Subsequent work con-
cluded that significant time savings can also be
achieved in more complex domains such as legal
(Federico et al., 2012) or marketing texts (Läubli
et al., 2013).

Many productivity tests explored either transla-
tion from or into English (e. g., Plitt and Mas-
selot, 2010), or translation between closely re-
lated languages such as Swedish and Danish (e. g.,
Volk, 2008). Green et al. (2013) conducted a
large-scale experiment from English into three tar-
get languages with different canonical word or-
der: Arabic (VSO), French (SVO), and German
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Text Topic Source Words Coverage FR Coverage IT
100 % 90 % 80 % R 100 % 90 % 80 % R

A Funding 1108 8.94 0.54 6.59 14.69 9.57 1.17 6.59 15.89
B Funding 1006 2.58 3.68 4.17 9.23 1.29 1.69 1.39 3.93
C Investing 1059 6.80 2.08 1.89 10.18 4.25 3.31 3.02 9.64
D Investing 1077 14.48 10.58 0.84 24.68 7.24 15.51 3.06 23.65

Table 1: Source texts (DE) and their TM coverage in the target languages (FR, IT). Fuzzy bands include 90.00–99.99 %
(referred to as 90 %) and 80.00–89.99 % (referred to as 80 %) matches. Coverage coefficients R indicate the percentage of
translated words available in the TM for each text, considering 80–100 % matches.

(SOV). While post-editing was significantly faster
than translation from scratch for all combinations,
it is unclear whether their findings would equally
apply to language pairs that do not include English,
particularly if less MT training material is avail-
able. We investigate two language pairs that have
received little attention in post-editing research:
DE–FR and DE–IT.

The effect of using NMT rather than SMT on
translation productivity has not yet been conclu-
sively assessed. One of the first studies contrast-
ing NMT and SMT quality found that NMT pro-
duces less morphological, lexical, and word order
errors, thus reducing post-editing effort by 26 %
in English to German subtitle translation (Ben-
tivogli et al., 2016). However, post-editing effort
was measured with HTER (Snover et al., 2006),
a distance-based metric. Castilho et al. (2017)
found that although more fluent, post-editing NMT
rather than SMT output did not save time in an
educational domain due to a higher number of
omissions, additions, and mistranslations. Con-
versely, time savings doubled with NMT (+36 %)
compared to SMT (+18 %) in literary translation
(Toral et al., 2018b). The number of studies on
NMT post-editing productivity is still limited, and
further studies are needed, not least because find-
ings obtained with different domains and language
combinations are difficult to compare. The present
study contributes data on NMT post-editing speed
and quality in the financial domain.

Previous productivity tests used different exper-
imental designs. In early work, Krings (1994)
found that post-editing of rule-based MT resulted
in a decrease in translation time by 7 % when
translators used pen and paper, but an increase by
20 % when they used a computer instead. Plitt
and Masselot (2010) and Green et al. (2013) com-
pared post-editing to translation from scratch, us-
ing purpose-built web interfaces that showed one
source sentence at a time, paired with a target text

box that was either populated with MT or empty.
Proponents of field tests have argued that while
improving control of extraneous variables, such
designs reduce experimental validity in that they
isolate translators from tools long indispensable
in professional workflows, namely software work-
benches that show multiple sentences at a time and
suggestions from TMs and TBs (Federico et al.,
2012; Läubli et al., 2013). We chose an in-situ de-
sign where translators had access to the tools and
resources known from their daily work.

3 Assessment of Translation Productivity

We conducted a productivity test of domain-
adapted NMT on the premises of Migros Bank.
Subjects translated texts under two experimental
conditions. In TM-ONLY, they used the trans-
lation workbench known from their their daily
work, including a domain-specific TM, a domain-
specific TB, and any online services (except ma-
chine translation) of choice. The same setup was
used in POST-EDIT, except that sentences with no
fuzzy match of at least 80 % in the TM were pop-
ulated with MT within the translation workbench.
We did not show MT where high fuzzy matches
were available because editing high fuzzy matches
is more efficient (Sánchez-Gijón et al., 2019).

Materials We used four German source texts
from Migros Bank. The texts had not been trans-
lated by any of the translators involved in the ex-
periment before, and had been excluded from the
MT training material (see below). The TMs con-
tained several exact and high fuzzy matches for
each text (Table 1).

To pretranslate sentences in POST-EDIT, we
trained WMT17-style bi-RNN systems (Sennrich
et al., 2017) using the marian toolkit (Junczys-
Dowmunt et al., 2016). The training material
consisted of 6 million out-of-domain segments
from publicly available OPUS corpora (Tiede-
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Subject Text Seq. MT Words/h Quality

FR-1 A 1 No 520.37 4.00
FR-1 B 2 No 630.82 5.50
FR-1 C 3 Yes 909.88 5.00
FR-1 D 4 Yes 602.56 5.00
FR-2 A 1 Yes 987.00 4.50
FR-2 B 2 Yes 1237.13 3.50
FR-2 C 3 No 682.64 4.00
FR-2 D 4 No 505.40 4.50

Average TM-ONLY No 584.81 4.50
Average POST-EDIT Yes 934.14 4.50
Difference (%) 59.74 0.00

(a) DE–FR

Subject Text Seq. MT Words/h Quality

IT-1 A 1 No 389.41 4.00
IT-1 B 2 No 398.71 4.00
IT-1 C 3 Yes 647.87 4.50
IT-1 D 4 Yes 393.14 4.00
IT-2 A 1 Yes 401.19 5.50
IT-2 B 2 Yes 536.09 5.50
IT-2 C 3 No 553.00 5.50
IT-2 D 4 No 469.56 5.50

Average TM-ONLY No 452.67 4.75
Average POST-EDIT Yes 494.57 4.88
Difference (%) 9.26 0.13

(b) DE–IT

Table 2: Experimental conditions and results: the number of target words produced per hour (Words/h) and averaged overall
impression scores (Quality) as assigned by two expert raters per translation.

mann, 2009), as well as 385’320 and 186’647
in-domain segments for FR and IT, respectively.
We filtered both in- and out-of-domain segments
through a set of mostly length-based heuristics
(Zwahlen et al., 2016), and oversampled the for-
mer as a simple means of domain adaptation.
While this has proven effective in other contexts
(e. g., Sennrich et al., 2016a), we note that trans-
lation quality could likely be improved by means
of more advanced techniques such as fine-tuning
(Luong and Manning, 2015) or multi-domain mod-
elling (Chu et al., 2017).

Subjects A total of four professional translators
took part in the productivity test, two each for the
target languages FR (FR-1, FR-2) and IT (IT-1,
IT-2). All were members of Migros Bank’s inter-
nal translation team. They were therefore familiar
both with the software used and with the language
and terminology of the documents to be trans-
lated. FR-1, who joined the organisation shortly
before the experiment, was less experienced than
the other participants. All subjects had been post-
editing outputs of the MT systems used in the ex-
periment (see above) for three months, and had re-
ceived four hours of post-editing training.

Procedure Each subject translated the four Ger-
man source texts in the same order. Conditions
were counterbalanced (Table 2). Subjects were
first briefed about the purpose and data collected
during the experiment. They were then given 60
minutes to work on each text, which we announced
would likely not be enough to translate all sen-
tences. There were 10-minute breaks between
working blocks, and a 30-minute break in the mid-

dle of the experiment. A post-experimental survey
concluded the experiment.

We encountered no problems with data collec-
tion, with the exception of a temporary failure of
IT-1’s screen in the last working block. The device
went into standby mode, which was not reported
immediately and resulted in a total interruption of
4 minutes, which we deducted from the respec-
tive session before calculating translation speed as
shown in Table 2.

3.1 Speed

We report translation speed as the number of tar-
get words produced per hour. To account for TM
matches, we derive a TM coverage coefficient R
for each text:

R = 1a+ 0.9b+ 0.8c, (1)

where a is the percentage of 100 %, b the percent-
age of 90 %, and c the percentage of 80 % TM
matches. We then adjust the number of words W
translated in each experimental block as

W ∗ = (1−R)W. (2)

This approximation assumes uniform distribution
of TM matches within texts.

Results are shown in Table 2. FR subjects pro-
duced 584.81 and 934.14 words per hour in TM-
ONLY and POST-EDIT, respectively, an increase
of 59.74 %. The difference was less marked in
IT, with 452.67 and 494.57 words per hour pro-
duced in TM-ONLY and POST-EDIT, respectively
(9.26 %).
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Criterion DE–FR DE–IT
TM-ONLY POST-EDIT TM-ONLY POST-EDIT

Coherence 4.75 5.25 5.00 5.00
Cohesion 4.75 4.50 5.25 5.00
Grammar 4.75 4.75 4.75 4.88
Style 4.50 5.00 5.00 5.00
Cultural adequacy 4.50 4.75 4.50 4.75

Overall Impression 4.50 4.50 4.75 4.88

Table 3: Detailed quality assessment results. Each cell is an average over eight scores: four translations scored by two expert
raters. Overall impression was graded separately; it is not an average over the other criteria.

While focussing on descriptive statistics due to
small sample size, we also fit linear-mixed effects
models for inferential analysis. Carter and Woj-
ton (2018) show that very small sample sizes can
attain sufficient power when a single fixed effect
factor is of interest, albeit at a greater risk of type I
errors. We use experimental condition (TM-ONLY

vs. POST-EDIT) as the fixed effect factor, and ran-
dom intercepts for subjects and texts. The models
show no deviation from homoscedasticity or nor-
mality in visual inspection of residual plots and
Shapiro-Wilk tests. Likelihood ratio tests show
a significant main effect of experimental condi-
tion in FR (χ2(1) = 9.74, p < .01), but not IT
(χ2(1) = 0.93, p = .33).

3.2 Quality

The translations produced in the experiment were
reviewed by university lecturers in professional
translation, who were remunerated at standard
hourly rates. Experts did not know which transla-
tions were produced using MT. The quality of each
translation was independently assessed by two ex-
perts, who assigned scores on a 6-point scale (1 =
worst, 6 = best) for coherence, cohesion, grammar,
style, cultural adequacy, and overall impression.

Results are shown in Table 3. Each cell is an
average over 8 scores: 4 texts evaluated by two ex-
perts. Note that experts assigned separate scores
for overall impression, which may therefore devi-
ate from the average over scores for the other crite-
ria. Average per-text scores for overall impression
are included in Table 2.

Considering overall impression, experts did not
find a difference in quality between texts produced
with and without MT in FR. In IT, texts translated
with MT received slightly higher scores (+0.13).
MT improved coherence (+0.50), style (+0.50),
and cultural adequacy (+0.25) in FR, as well as

grammar (+0.13) and cultural adequacy (+0.25)
in IT. Cohesion, on the other hand, was found to
be better in texts produced without MT in both FR
(−0.25) and IT (−0.25).

4 Discussion

While the minimum speed hardly differed between
TM-ONLY and POST-EDIT , the latter allowed
for higher average and maximum speed. In FR,
the highest speed measured in POST-EDIT was
1237.13 words per hour (FR-2, text B), as opposed
to 682.64 words per hour in TM-ONLY (FR-2, text
C). In IT, the maximum speed in POST-EDIT was
647.87 words (IT-1, text C), and 553.00 words per
hour in TM-ONLY (IT-2, text C).

Three out of four translators were faster in
POST-EDIT on average. IT-2 did not benefit from
MT: With an average speed of 511.28 words per
hour in TM-ONLY and 468.64 words per hour in
POST-EDIT, the subject was 8.34 % slower. Pre-
vious research has shown that not all translators
benefit equally from MT (e. g., Plitt and Masselot,
2010; Koehn and Germann, 2014), which calls
for large sample sizes in productivity tests (Green
et al., 2013). Although improving robustness, in-
volving a large number of translators is not always
possible in practice – in our case, the in-house
translation team had no more than four members,
and involving external translators would have in-
troduced other confounds (such as domain knowl-
edge) that are hard to control for. We also note that
IT-2 produced translations of above-average qual-
ity (Tables 2, 3), suggesting that MT may be less
beneficial when aiming for maximum quality.

Another observation that warrants discussion is
the difference in productivity between the two tar-
get languages. Again, one possible explanation
is the small number of participants and measure-
ments. A larger number of measurements would
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allow more accurate conclusions to be drawn as
to whether the maximum speed achieved in FR
(FR-2, text B) is to be treated as an outlier, or if
translators will repeatedly achieve a throughput of
more than 1,000 words per hour with MT. More-
over, the DE–IT engine was trained with less in-
domain material than the DE–FR engine. This
resulted in lower raw MT quality for IT, which
in turn may have resulted in lower productivity.1

Screen recordings also showed that IT translators
made more stylistic changes to MT outputs, but
apart from slightly higher quality scores overall
(Table 3), we cannot quantify this finding and leave
a more detailed analysis to future work.

With respect to quality, our results confirm pre-
vious findings that post-editing leads to similar
or better translations (e. g., Green et al., 2013).
An interesting nuance is that we find a slight,
but consistent decrease in textual coherence within
post-edited translations in both language pairs.
As the research community is increasingly fo-
cussing on document-level MT, translation work-
bench providers will need to ensure integrability
for future experimentation in real-life settings.

5 Conclusion

We have assessed the impact of NMT on trans-
lation speed and quality in the banking and fi-
nance domain. Despite working with language
pairs that have received limited attention in re-
search contexts and employing a simple means of
domain adaptation, the use of NMT enabled pro-
fessional translators to work faster: 59.74 % in
DE–FR and 9.26 % in DE–IT. Unlike a number of
previous studies, these improvements are not rela-
tive to translation from scratch, but to translation
with domain-specific TMs and TBs within a cus-
tomary translation workbench, which sets a higher
baseline in terms of translation speed.

NMT did not have a negative impact on quality.
To the contrary, scores assigned by expert raters
were slightly higher for post-edited DE–IT transla-
tions. Screen recordings showed that IT translators
devoted more time to stylistic changes of NMT
output, underpinning the importance of translator
training in cases where NMT is to be used to opti-
mise throughput rather than quality.

Another factor that likely contributed to the dif-

1However, Koehn and Germann (2014) find that between-
subjects variance is higher than between-systems variance in
post-editing.

ference between time savings in DE–FR and DE–
IT is that roughly half as much in-domain train-
ing data was available for the latter. While fur-
ther investigation will be needed to determine the
impact of in-domain data volume and more ad-
vanced domain adaptation techniques, our results
suggest that NMT has the potential of increas-
ing translation productivity even with complex text
types, little-researched language pairs, and limited
amounts of in-domain training data. The present
study contributes empirical evidence for DE–FR
and DE–IT translation of financial texts, and we
hope to encourage similar investigations with other
languages and domains.
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Abstract

Post-editing (PE) machine translation
(MT) is widely used for dissemination
because it leads to higher productivity than
human translation from scratch (HT). In
addition, PE translations are found to be of
equal or better quality than HTs. However,
most such studies measure quality solely
as the number of errors. We conduct a
set of computational analyses in which
we compare PE against HT on three dif-
ferent datasets that cover five translation
directions with measures that address
different translation universals and laws of
translation: simplification, normalisation
and interference. We find out that PEs are
simpler and more normalised and have
a higher degree of interference from the
source language than HTs.

1 Introduction

Machine translation (MT) is nowadays widely
used in industry for dissemination purposes by
means of post-editing (PE, also referred to as
PEMT in the literature), a machine-assisted ap-
proach to translation that results in notable in-
creases in translation productivity compared to un-
aided human translation (HT), as shown in nu-
merous research studies, e.g. Plitt and Mas-
selot (2010).

In theory, one would claim that HTs1 and PE
translations are clearly different, since, in the

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
1By HT we refer to translations produced by a human from
scratch, i.e. without the assistance of an MT system or any
other computer-assisted technology, e.g. translation memo-
ries.

translation workflow of the latter, the translator is
primed by the output of an MT system (Green et
al., 2013), resulting in a translation that should
then contain, to some extent, the footprint of that
MT system. Because of this, one would conclude
that HT should be preferred over PE, as the former
should be more natural and adhere more closely
to the norms of the target language. However,
many research studies have shown that the qual-
ity of PE is comparable to that of HT or even bet-
ter, e.g. Koponen (2016), and, according to one
study (Bowker and Buitrago Ciro, 2015), native
speakers do not have a clear preference for HT over
PE.

In this paper we conduct a set of computational
analyses on several datasets that contain HTs and
PEs, involving different language directions and
domains as well as PE performed according to dif-
ferent guidelines (e.g. full versus light). Our aim is
to find out whether HT and PE differ significantly
in terms of different phenomena. Since previous
research has proven the existence of translationese,
i.e. the fact that HT and original text exhibit dif-
ferent characteristics, our current research can be
framed as a quest to find out whether there is ev-
idence of post-editese, i.e. the fact that HT (or
translationese) and PE would be different.

The characteristics of translationese can be
grouped along the so-called universal features of
translation or translation universals (Baker, 1993),
namely simplification, normalisation (also referred
to as homogeneisation) and explicitation. In ad-
dition to these three, interference is recognised as
a fundamental law of translation (Toury, 2012):
“phenomena pertaining to the make-up of the
source text tend to be transferred to the target text”.
In a nutshell, compared to original texts, transla-
tions tend to be simpler, more standardised, and
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more explicit and they retain some characteristics
that pertain to the source language.

In this study then we study the existence of post-
editese by conducting a set of computational anal-
yses that fall into three2 out of these four cate-
gories. With these analyses we aim to answer a
number of research questions:

• RQ1. Does post-editese exist? I.e. is there
evidence that PE exhibits different character-
istics than HT?

• RQ2. If the answer to RQ1 is yes, then which
are the main characteristics of PE? I.e. how
does it differ from HT?

• RQ3. If the answer to RQ1 is yes, then, are
there different post-editeses? I.e. are there
any characteristics that distinguish the post-
editese produced by MT systems that fol-
low different paradigms (rule-based, statisti-
cal phrase-based and neural)?

The rest of this paper is organised as follows.
Section 2 provides an overview of the related work.
Section 3 covers the experimental setup and the ex-
periments conducted. Finally, Section 4 presents
our conclusions and suggests lines of future work.

2 Related Work

Many research studies carried out during the last
decade have compared the quality of HT and PE.
These have shown that the quality of PE is com-
parable to that of HT, e.g. Garcı́a (2010), or even
better, e.g. Guerberof (2009) and Plitt and Mas-
selot (2010). In these studies quality is typically
measured in terms of the number of mistakes in
each translation condition. However, they do not
take into account other relevant aspects that may
flag important differences between HTs and PEs,
such as the perspective of the end-user or the pres-
ence of different phenomena in both types of trans-
lations. A recent strand of work targets precisely
these, (i) by collecting the preference of end users
between HT and PE and (ii) by analysing the char-
acteristics of both types of translations. In the fol-
lowing subsections we report on recent work con-
ducted in both of these two research lines.

2.1 Preference between HT and PE
Fiederer and O’Brien (2009) compared HT and
PE for the English-to-German translation of text
2Explicitation is not addressed in our experiments.

from a software user manual. Participants ranked
both conditions equally for clarity, PE higher than
HT for accuracy and HT higher than PE for style.
When asked to choose their favourite translation,
HT obtained a higher percentage of preferences
than PE: 63% to 37%.

Bowker (2009) presented French- and English-
speaking minorities in Canada four translations
(HT, full PE, light PE and raw MT) of three short
governmental texts (approximately 325 words)
written in a relatively clear, neutral style with rea-
sonably short sentences. Preference took into ac-
count not only the quality of the translations but
also the time and cost required to produce them.
The results were rather different for each group. In
the French-speaking minority group 71% preferred
HT versus 29% PE (21% full and 8% light). How-
ever, half of the participants were language profes-
sionals, which skewed the results. In fact, when
they were removed the results changed drastically:
56% preferred HT versus 44% PE (29% full, 15%
light). As for the English minority, 8% preferred
HT versus 87% PE (38% full, 49% light) and 4%
raw MT.

Bowker and Buitrago Ciro (2015) presented
Spanish-speaking immigrants in Canada with four
translations (HT, full PE, light PE and raw MT)
of three short texts (301 to 380 words) containing
library-related information and asked them which
they prefered. PE and HT attained a similar num-
ber of preferences; 49% of respondents preferred
PE (24% full and 25% light, respectively) com-
pared to 42% who preferred HT. Raw MT lagged
considerably behind with the remaining 9% of the
preferences.

Green et al. (2013) assessed the quality of HT
versus PE for Wikipedia articles translated from
English into Arabic, French and German. Qual-
ity was measured by means of preference, done by
ranking on isolated sentences via crowdsourcing.
PE was found significantly better for all translation
directions.

2.2 Characteristics of HT and PE

Daems et al (2017) used HT and PE news trans-
lated from English into Dutch. They presented
them to translation students and colleagues, whose
task was to identify which translations were PE.
They also tried an automated approach, for which
they built a classifier with 55 features using surface
forms and linguistic information at lexical, syntac-
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Dataset Direction PE type MT systems # Sent. pairs Domain
Taraxü en→de Light3

2 SMT, 2 RBMT
272

Newsde→en 240
es→de4 101

IWSLT
en→de

Light
4 NMT, 4 SMT

600 Subtitles
en→fr 2 NMT, 3 SMT

MS zh→en Full 1 NMT5 1,0006 News

Table 1: Information about the datasets used in the experiments

tic and semantic levels. No proof of the existence
of post-editese was found, either perceived (stu-
dents) or measurable (classifier).

Čulo and Nitzke (2016) compared MT, PE and
HT in terms of terminology and found that the way
terminology is used in PE is closer to MT than to
HT and has less variation than in HT.

Farrell (2018) identified MT markers (i.e.
“translation solutions which occurred with a sta-
tistically significantly higher frequency in PEMT
than in HT”) in short texts from Wikipedia trans-
lated from English into Italian and found that MT
tends to choose a subset of all the possible trans-
lation solutions (the most frequent ones) and that
this is the case also, to some extent, in PEs. HTs
and PEs were also compared in terms of number
of errors, which were found to be comparable, cor-
roborating the findings of the literature covered at
the beginning of this section.

Our contribution falls into this research line, to
which we contribute a computational study whose
analyses are chosen to align to translation univer-
sals and laws of translation and that covers multi-
ple languages and domains.

3 Experiments

In this section we first describe the datasets used
(Section 3.1), and then report on each of the exper-
iments that we carried out in the subsequent sub-
sections: lexical variety (Section 3.2), lexical den-
sity (Section 3.3), length ratio (Section 3.4) and
3“Translators were asked to perform only the minimal post-
editing necessary to achieve an acceptable translation qual-
ity.” (Avramidis et al., 2014)
4This dataset contains an additional translation direction
(de→es) which is not used here due to its small size; 40 sen-
tence pairs.
5The MT systems used in the MT and in the PE condition are
not the same. The one in the MT condition is the best system
in Hassan et al. (2018) while the one in the PE condition is
Google Translate, again as provided in Hassan et al. (2018).
6The original dataset contains 2,001 sentences. We only use
the subset in which the source text is original instead of trans-
lationese (Toral et al., 2018).

part-of-speech sequences (Section 3.5).

3.1 Datasets

We make use of three datasets in all our ex-
periments: Taraxü (Avramidis et al., 2014),
IWSLT (Cettolo et al., 2015; Mauro et al., 2016)
and Microsoft “Human Parity” (Hassan et al.,
2018), henceforth referred to as MS. These
datasets cover five different translation directions
that involve five languages:7 English↔German,
English→French, Spanish→German and
Chinese→English. In addition, this choice of
datasets allows us to include a longitudinal aspect
into the analyses since there are state-of-the-art
MT systems from almost one decade ago (in
Taraxü), from three and four years ago (IWSLT)
and from just one year ago (MS). Table 1 shows
detailed information about each dataset, namely its
translation direction(s), type of PE done, paradigm
of the MT system(s) used, number of sentence
pairs and domain of its text.

We note the following two limitations in some
of the datasets:

• Mismatch of translator competence. Both PE
and HT are carried out by professional trans-
lators in two of the datasets (Taraxü and MS).
However, in the remaining one, IWSLT, pro-
fessional translators do PE, while the transla-
tors doing HT are not necessarily profession-
als8. Thus, if we find differences between PEs
and HTs, for this dataset this may not be (en-
tirely) due to the two translations procedures
leading to different translations but (also) to
the different translations being produced by
translators with different levels of proficiency.

7In the tables and experiments we will refer to languages with
their ISO-2 codes.
8“We accept all fluently bilingual volunteers as trans-
lators”, https://translations.ted.com/
TED_Translator_Resources:_Main_guide#
Translation
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Translation Dataset and translation direction
type Taraxü IWSLT MS

de→en en→de es→de en→de en→fr zh→en
HT 0.26 0.27 0.31 0.20 0.16 0.14
PE -2.05% -1.81% †-1.27% -3.86% -1.17% -4.76%
MT -2.94% -3.62% -5.91% -10.93% -6.04% -6.96%
PE-NMT -4.21% -1.88% -4.76%
PE-SMT -1.59% -1.31% †-1.03% -3.50% -0.70%
PE-RBMT -2.79% -2.04% -3.05%
NMT -12.22% -8.18% -7.33%
SMT -2.36% -2.36% -6.42% -9.63% -4.61%
RBMT -3.08% -4.26% -7.78%

Table 2: TTR scores for HT and relative differences for PE and MT. For directions with more than one MT system, the result
shown in rows PE and MT uses the average score of all the PEs or MT outputs, respectively. The best result (highest TTR) in
each group of rows is shown in bold. If a † is not shown then the TTR for HT is significantly higher than the TTRs for all the
translations in that cell (the 95% confidence interval of the TTR of HT, obtained with bootstrap resampling, is higher and there
is no overlap).

• Source language being translationese. In two
of the datasets (MS and IWSLT), the source
language and the language in which those
texts were originally written is the same. This
is not the case however for Taraxü, for which
the original language of the source texts is
Czech. We can still compare MT to PE al-
though we need to take into account that
these texts are easier for MT than original
texts (Toral et al., 2018). However the com-
parison between PE (or MT) and HT is prob-
lematic since the HT was not translated from
the source language but from another lan-
guage (Czech).

3.2 Lexical Variety
We assess the lexical variety of a translation (MT,
PE or HT) by calculating its type-token ratio
(TTR), as shown in equation 1.

TTR =
number of types

number of tokens
(1)

Farrell (2018) observed that MT tends to pro-
duce a subset of all the possible translations in the
target language (the ones used most frequently in
the training data). Therefore, we hypothesise the
TTR of MT, and by extension that of PE too, to be
lower than that of HT. If this is the case, then PE
would be, in terms of lexical variety, simpler than
HT.

Table 2 shows the results for each dataset and
language direction. In all cases the lexical variety
in PE is lower than in HT, and again in all cases,
that of MT is lower than that of PE. This could

be interpreted as follows: (i) lexical variety is low
in MT because these systems prefer the translation
solutions most frequently used in the training data;
(ii) a post-editor will add lexical variety to some
degree, but because MT primes him/her, the result-
ing translation will not achieve the level of lexical
diversity that is attained in HT.

We now look at the results of PE and MT for dif-
ferent MT paradigms. In the Taraxü dataset we can
compare rule-based and statistical MT systems.
Rule-based MT has a lower TTR in all three trans-
lation directions of this dataset and this is then re-
flected in a lower TTR again when a system of this
paradigm is used for post-editing. In the IWSLT
dataset we can confront statistical and neural MT
systems. In all cases the lexical variety of neural
MT is lower than that of statistical MT. Again, the
same trend shows when we look at their PEs. This
is perhaps a surprising result, since NMT systems
outperformed SMT in the IWSLT dataset, in terms
of HTER (Cettolo et al., 2015).

3.3 Lexical Density
Lexical density measures the amount of informa-
tion present in a text by calculating the ratio be-
tween the number of content words (adverbs, ad-
jectives, nouns and verbs) and its total number of
words, as shown in equation 2.

lex density =
number of content words

number of total words
(2)

Translationese has been found to have a lower
percentage of content words than original texts,
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Translation Dataset and translation direction
Type Taraxü IWSLT MS

de→en en→de es→de en→de en→fr zh→en
HT 0.55 0.53 0.53 0.48 0.46 0.59
PE -1.00% -2.48% -4.31% -3.46% -1.24% -0.46%
MT -0.81% -0.69% -4.53% -5.14% -0.94% -2.37%
PE-NMT -3.88% -1.47% -0.46%
PE-SMT -0.54% -2.87% -4.78% -3.04% -1.09%
PE-RBMT -1.46% -2.09% -3.84%
NMT -6.31% -3.14% -2.37%
SMT -0.80% 0.14% -3.45% -3.98% 0.53%
RBMT -0.83% -1.51% -5.61%

Table 3: Lexical density scores for HT and relative differences for PE and MT. For directions with more than one MT system,
the result shown in rows PE and MT uses the average score of all the PEs or MT outputs, respectively. The best result (highest
density) in each group of rows is shown in bold.

thus being, from this point of view, lexically sim-
pler (Scarpa, 2006). To identify and count content
words we tag the target sides of the datasets with
their parts-of-speech (PoS) using UDPipe (Straka
et al., 2016), a PoS tagger that uses the Universal
PoS tagset.9 Then we assess the lexical density of
each translation (HT, PE and MT) using this PoS-
tagged version10 of the datasets.

Table 3 shows the results. In both PE and MT
the lexical density is lower than in HT. However
between PE and MT, there is no systematic dis-
tinction. When inspecting PEs using different MT
paradigms, we do not find any clear trend between
SMT and RBMT, but one such trend shows up
when we inspect SMT and NMT: in the two com-
parisons we can establish in our dataset (the two
translation directions in the IWSLT dataset), PE-
NMT leads to a lower lexical density than PE-
SMT. Finally, looking at MT outputs produced by
different types of MT systems, we observe that
both RBMT and NMT lead to lower lexical den-
sities than SMT.

3.4 Length Ratio

Given a source text ST and a target text TT , i.e.
TT is a translation of the ST (HT, PE or MT), we
compute the absolute difference in length (mea-
sured in characters) between the two, normalised
by the length of the ST , as shown in equation 3.

9https://universaldependencies.org/u/pos/
10UDPipe’s PoS tagging F1-score is over 90% for all the
three target languages considered: de, en and fr (Straka and
Straková, 2017, Table 2)

length ratio =
|lengthST − lengthTT |

lengthST
(3)

Because (i) MT results in a translation of simi-
lar length to that of the ST,11 and PE is primed by
the MT output while (ii) a translator working from
scratch (HT) may translate more freely in terms of
length, we hypothesise that the difference in ab-
solute length is smaller for MT and PE than it is
for HT. If this is true, it would be a case of inter-
ference in PE, as the typical length of sentences
translated with this method would be similar to the
length used in the source text.

We compute this ratio at sentence level and av-
erage over all the sentences of the dataset. Table
4 shows the results for each dataset and language
direction. The results in datasets Taraxü and MS
match our hypothesis; in both datasets the length
ratio is lower for PE and MT than it is for HT. This
is also the case for MT in dataset IWSLT. How-
ever, in the results for PE in dataset IWSLT, the
ratio of PE is actually higher than that of HT for
en→fr, which seems to contradict our hypothesis.
This may be attributed to the difference in trans-
lation proficiency between the translators that did
HT and those that did PE that we commented upon
in Section 3.1. The latter are professional, while
the first could be non-professional. It is known

11This is necessary the case for RBMT and SMT as the num-
ber of TL tokens they can produce per each SL token is lim-
ited; e.g. the longest a translation with SMT can be is the
number of tokens in the ST multiplied by the longest phrase
in the phrase table, which is typically 7. NMT does not have
this limitation, so we do not argue in this direction for that
MT paradigm.
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Dataset Direct. Length ratio
HT PE MT

Taraxü
de→en 0.16 ‡-38.5% †-36.9%
en→de 0.22 ‡-33.4% ‡-38.5%
es→de 0.17 *-25.2% -21.0%

IWSLT
en→de 0.17 -3.4% †-18.8%
en→fr 0.18 6.7% -10.9%

MS zh→en 1.41 ‡-9.9% ‡-9.1%

Table 4: Length ratio scores for HT and relative differences
for PE and MT. For directions with more than one MT sys-
tem, the result shown in columns PE and MT uses the aver-
age length ratio of all the PEs or MT outputs, respectively.
* indicates that the score for HT is significantly higher with
α = 0.05 († with α = 0.01 and ‡ with α = 0.001) than the
scores of all the PEs/MTs represented in the cell, based on
one-tailed paired t-tests.
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Figure 1: Length ratio for HT and PEs in the Taraxü dataset.

that non-professional translators tend to produce
more literal translations, whose length should then
be similar to that of the source text.

We now look at the length ratio of PEs that
use different MT systems. Figure 1 shows the
length ratios of HTs and PEs that use different
MT paradigms (SMT and RBMT) in the Taraxü
dataset. While for one of the translation direc-
tion (en→de) the ratio of PE-SMT and PE-RBMT
are similar, the two PE-RBMT systems have lower
length ratios than the two PE-SMT systems in the
other two translation directions.

3.5 Part-of-Speech Sequences

We assess the interference of the source language
on a translation (HT, PE and MT) by measuring
how close the sequence of PoS tags in the transla-
tion is to the typical PoS sequences of the source
language and to the typical PoS sequences of the
target language. If the sequences of PoS tags used
in a translation A are more similar to the typical se-
quences of the source language than the sequences
of another translation B, that could be an indica-

tion that A has more interference from the source
language than B.

Given a PoS-tagged translation T , a language
model of a PoS-tagged corpus in the source lan-
guage LMSL and a language model of a PoS-
tagged corpus in the target language LMTL, we
calculate the difference of the perplexities of T
with respect to both language models, as shown
in equation 4.

PP diff = PP (T, LMSL)− PP (T, LMTL)
(4)

A high result for a translation T would indicate
that T is dissimilar to the source language (high
perplexity with respect to the source language)
and similar to the target language (low perplexity
with respect to the target language). Conversely,
a low result would indicate that T is similar to the
source language (low perplexity with respect to the
source language) and dissimilar to the target lan-
guage (high perplexity with respect to the target
language).

Because MT systems are known to perform
less reordering than human translators (Toral and
Sánchez-Cartagena, 2017), our hypothesis is that
MT outputs, and by extension PEs, are more sim-
ilar in terms of PoS sequences to the source lan-
guage than HTs are. This would mean that PEs
and MT outputs have more interference in terms
of PoS sequences than HTs.

For each language in our datasets (de, en, es, fr
and zh), we PoS tag a monolingual corpus12 with
UDPipe, the PoS tagger already introduced in Sec-
tion 3.3.13

We then build language models on these PoS
tagged data with SRILM (Stolcke, 2002), consid-
ering n-grams up to n = 6, using interpolation and
Witten-Bell smoothing.14 Because we use the Uni-
12The corpora used for the different languages belong to the
same domain, news. We use corpora of roughly the same size
(around 100MB of text). This leads to corpora of between
1,617,527 sentences (es) and 2,187,421 (de).
13While in Section 3.3 we PoS-tagged the target side of the
datasets, in this experiment we PoS-tag both the source and
target sides. UDPipe’s PoS tagging F1-score is over 90% for
four of the five languages involved (de, en, es and fr) and
83% for the remaining one: zh (Straka and Straková, 2017,
Table 2). Given the lower performance of PoS tagging for
zh, the results involving this language should be taken with
caution.
14The more advanced smoothing method Kneser-Ney did not
work because the count-of-count statistics in our datasets are
not suitable for this smoothing method, which may be due to
the very small size of our vocabulary: the Universal Depen-
dencies PoS tagset.
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Translation Dataset and translation direction
Type Taraxü IWSLT MS

de→en en→de es→de en→de en→fr zh→en
HT 5.12 5.09 9.41 5.01 2.47 17.23
PE -13.84% -11.29% -8.58% -6.26% -2.03% -3.26%
MT -33.65% -32.25% -20.71% -18.66% -11.07% -3.1%
PE-NMT -3.41% -1.40% -3.26%
PE-SMT -11.72% -13.37% -10.48% -9.10% -2.46%
PE-RBMT -15.95% -9.20% -6.68%
NMT -5.89% -2.58% -3.10%
SMT -30.07% -41.71% -26.30% -31.43% -7.95%
RBMT -37.24% -22.80% -15.13%

Table 5: Perplexity difference scores for HT and relative differences for PE and MT. For directions with more than one MT
system, the result shown in rows PE and MT uses the average score of all the PEs or MT outputs, respectively. The best result
(highest perplexity) in each group of rows is shown in bold.

versal PoS tagset, the set of PoS tags is the same
for all the languages, which means that all our lan-
guage models share the same vocabulary.

Table 5 shows the results. In terms of HT versus
PE and MT, we observe similar trends to those ob-
served earlier for lexical variety (Table 2), namely
MT obtains the lowest perplexity difference score
and HT the highest, with PE lying somewhere be-
tween the two. The only exception to this is seen in
the MS dataset, where the value for MT is slightly
higher than that for PE (-3.1% versus -3.26%). It
should be taken into account, as already explained
in Section 3.1, that the MT systems in the MT and
PE conditions are different in this dataset, with the
one in the MT condition being substantially bet-
ter (Hassan et al., 2018). Overall, we interpret
these results as MT being the translation type that
contains the most interference in terms of PoS se-
quences, followed by PE.

We now look at the PE and MT results under
different MT paradigms. Comparing SMT and
NMT, the results indicate that the latter has less
interference, both in PE and MT conditions. This
corroborates earlier research that compared SMT
and NMT in terms of reordering (Bentivogli et al.,
2016). We do not find clear trends when compar-
ing SMT and RBMT though.

4 Conclusions and Future Work

We have carried out a set of computational anal-
yses on three datasets that contain five translation
directions with the aim of finding out whether post-
edited translations (PEs) exhibit different phenom-
ena than human translations from scratch (HTs).
In other words, whether there is evidence of the

existence of post-editese. The analyses conducted
measure aspects related to translation universals
and laws of translation, namely simplification, nor-
malisation and interference. With these analysis,
we find evidence of post-editese (RQ1), whose
main characteristics (RQ2) we summarise as fol-
lows:

• PEs have lower lexical variety and lower lex-
ical density than HTs. We link these to
the simplification principle of translationese.
Thus, these results indicate that post-editese
is lexically simpler than translationese.

• Sentence length in PEs is more similar to the
sentence length of the source texts, than sen-
tence length in HTs. We link this finding to
interference and normalisation: (i) PEs have
interference from the source text in terms of
length, which leads to translations that follow
the typical sentence length of the source lan-
guage; (ii) this results in a target text whose
length tends to become normalised.

• Part-of-speech (PoS) sequences in PEs are
more similar to the typical PoS sequences of
the source language, than PoS sequences in
HTs. We link this to the interference prin-
ciple: the sequences of grammatical units in
PEs preserve to some extent the sequences
that are typical of the source language.

In the paper we have not considered only HTs
and PEs but also MT outputs, from the MT systems
that were the starting point to produce the PEs.
This to corroborate a claim in the literature (Green
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et al., 2013), namely that in PE the translator is
primed by the MT output. We expected then to
find similar trends to those found in PEs also in
MT outputs and this was indeed the case in all
four experiments. In two of the experiments, lex-
ical variety and PoS sequences, the results of PE
were somewhere in the middle between those of
HT and MT. Our interpretation is that a post-editor
improves the initial MT output in terms of variety
and PoS sequences, but due to being primed by the
MT output, the result cannot attain the level of HT,
and the footprint of the MT system remains in the
resulting PE.

We have also looked at different MT paradigms
(rule-based, statistical and neural), to find out
whether these lead to different characteristics in
the resulting PEs (RQ3). Neural MT diminishes
to some extent the interference in terms of PoS
sequences, probably because it is better at re-
ordering (Bentivogli et al., 2016). Statistical MT
has obtained better results than the other two MT
paradigms in terms of lexical variety, and also bet-
ter than neural MT, but on par with rule-based MT,
in lexical density.

In a nutshell, we have found that PEs tend to be
simpler and more normalised and to have a higher
degree of interference from the source text than
HTs. This seems to be caused because these char-
acteristics are already present in the MT outputs
that are the starting point of the PEs. We find thus
evidence of post-editese, which can be thought of
as an exacerbated translationese.

While PE is very useful in terms of productiv-
ity, which arguably is the main reason behind its
wide adoption in industry, the findings of this pa-
per flag a potential issue. Because PEs are sim-
pler and have a higher interference from the source
language than HTs, the extensive use of PE rather
than HT may have serious implications for the tar-
get language in the long term, for example that it
becomes impoverished (simplification) and overly
influenced by the source language (interference).
At the same time, we have shown that these issues
cannot be attributed to PE per se but that they orig-
inate in the MT systems used as the starting point
for PE. Identifying these issues might be then the
first step for further research on addressing these
problems in current state-of-the-art MT systems.

Throughout the paper, we have assumed that
lexical diversity and density correlate directly with
translation quality; i.e. the more diverse and dense

a translation the better. In this regard, we acknowl-
edge that in translation there is a tension between
diversity and consistency, especially in technical
translation. At the same time, none of our datasets
falls under the domain of technical texts.

We also acknowledge that our study is based on
rather superficial linguistic features, either at sur-
face or morphological level (PoS tags). For fu-
ture work, therefore, we plan to explore the use
of additional features, especially relying on deeper
linguistic analyses. In addition, we plan to study
the overlap between multiple HTs and PEs for the
same text, to assess whether it is higher between
PEs, which would indicate a higher degree of ho-
mogeneisation.

Another line we would like to pursue is that
of automatic discrimination between PE and HT.
While this has been shown to be possible with a
high degree of accuracy between original texts and
HTs, this is not the case for PE versus HT in the
attempts conducted to date (Daems et al., 2017).

Finally, we would like to point out that all our
code and data are publicly released,15 so we en-
courage interested parties to use these resources to
conduct further analyses.
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