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Executive Summary 
1. Tropical dry forests are subject to some of the highest rates of deforestation and degradation around 

the world. These ecosystems are particularly at risk due to their fragility and the high demand for forest goods 

and services, which are required to support the livelihoods of large numbers of the world’s poorest people. The 

need for dry forest management has also required enhanced methods and approaches for monitoring forest 

change and assessment of deforestation and degradation. Satellite Earth Observation (EO) provides 

unprecedented views of the Earth and the data generated present an opportunity to address the existing 

limitations in forest monitoring capabilities at large scales.  

2. Most existing EO-based forest monitoring methods have been developed for moist tropical forest 

ecosystems, though these do not always work well in the less studied and more challenging tropical dry forest 

ecosystems. There are opportunities for improved monitoring techniques for dry forests in increasing volumes 

of open access data, cloud processing capabilities and the new satellite system’s performance capabilities 

(e.g. wider spectral range, long-wavelength radar, higher spatial resolution, increased frequency of data 

acquisition and pre-processed data products) for dry forest monitoring and management. By leveraging this 

new data, the SMFM project aims to improve methods for EO monitoring of dry forests. 

3. The Satellite EO Design report outlines the functionality and data requirements of the EO tools 

developed for the project. The tools are designed to support land use and forest monitoring and management. 

The report outlines the methodologies and technologies used to produce, including new or enhanced satellite 

EO methods to address the requirements and gaps in capabilities defined in Task 1. The plan for the 

application of new satellite EO data (e.g. Sentinel-2, Sentinel-1) for monitoring tropical dry forests and forest 

degradation assessment based on related products frameworks (e.g. GFOI Method and Guidance Document) 

is also described and the satellite data acquisition plan further considered. The report includes the next steps 

in tool development in relation to the work programme and contribution towards the project objectives. The 

information and analysis in this report is particularly relevant to the design and implementation of associated 

capacity building activities.  

4. The tools will include an approach to LU/LC mapping using a fusion of Sentinel-1 (S1) radar and 

Sentinel-2 (S2) optical data. This will explore the use of multi-temporal S1 and S2 images to produce LU/LC 

classification maps in dry forest ecosystems, and will provide a semi-automated processing chain for data pre-

processing and analysis based on a cloud-based platform. Using dense time-series of S1 and S2 data, the 

tools will aim to detect deforestation events and provide a near-real-time early warnings of deforestation 

events, and where feasible estimates of degradation. 

5. For forest biomass and degradation mapping, the SMFM project will produce a radar L-band based 

tool, which will be able to provide the crucial historical data on biomass stocks, degradation, and deforestation 

from the Advanced Land Observing Satellite (ALOS-1/ALOS-2). The methods used will be compatible with 

upcoming L-band missions, which will provide free data (e.g. NASA-ISRO Synthetic Aperture Radar (NISAR) 

and Satellites for Observation and Communications (SAOCOM)). The outputs and data produced from an L-

band approach will then be used as a forest biomass and degradation estimation baseline, and be compared 

to the equivalent results using S1/S2 data. 

6. Finally, a tool will be developed to identify the causes of forest change, based on properties of change 

events such as their size, shape and intensity. This tool will be calibrated with field data, and tested on outputs 

from S1/S2 and ALOS change detection methods. 
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1 Background 
1.1 Introduction  
7. In the SMFM Inception Report, the LTS Consortium and the World Bank agreed to the development 

of four Earth Observation (EO) methods (“tools”) to assist in the satellite monitoring of dry forests. The 

proposed tools were based on the immediate and future needs of selected partner countries, the requirements 

of the World Bank, and the available remote sensing technologies for the monitoring of dry forest.  

8. This report provides an overview of the EO methodologies and tools that are being developed under 

the SMFM project and contains a general review of the current EO methods for tropical dry forest monitoring, 

followed by an overview of the existing and upcoming cloud-based platforms for efficient data processing and 

storage, which assist in the processing and analysis of the large volume of satellite data now available. 

9. The second part of the document describes the methodological approach of the four EO tools under 

development as part of the SMFM project. The first tool is presented in two sections, one for Sentinel-2 data 

and the other one for Sentinel-1 data. The tools presented in this report are: 

• Tool 1a: Semi-automated pre-processing of Sentinel-2 data for LU/LC Classification 

• Tool 1b: Semi-automated pre-processing of Sentinel-1 data for LU/LC Classification 

• Tool 2: Annual forest biomass change and degradation mapping using the ALOS PALSAR mosaic 

• Tool 3: Continuous forest change monitoring with Sentinel-2 data 

• Tool 4: Identifying causes of forest change. 

 

In references to tools within the report, the table below (Table 1), indicates what these are referred to as well 

as their purpose.  

Table 1. SMFM tool references and description 
 

Tool No. Tool Name Purpose 

1a sen2mosaic 
Download, pre-processing and generation of cloud-free composite 

images and seamless mosaics for Setinel-2 images 

1b sen1mosaic 
Download, pre-processing and generation of cloud-free composite 

images and seamless mosaics for Setinel-1 images 

2 biota 

Downloading, pre-processing of ALOS data, mapping 

aboveground biomass and forest cover, and detection of forest 

changes 

3 deforest 
Dense time-series of Sentinel-1 and 2 data for near-real time 

forest change monitoring 

4 n/a 
Classification of forest change type and identification of drivers of 

deforestation events 

 

10. The analysis of in-country capacity and discussions with all stakeholders suggests that the best 

approach for developing the tools is to use free and open-sourced software. It appears that the technical 

capability to utilise the Linux command line and Python-based tools can be developed in both countries.  

11. The tools will be formed of Python scripts and command-line tools, which can be implemented locally 

for smaller data processing tasks or on a cloud-based platform where required. These will be appropriately 

documented, both in the code and in supporting documents, training exercises, examples, and ultimately 

through the development of working practices and good practice guidelines. 

12. For each tool the (i) objective, (ii) method design, (iii) user interface and usage, and (iv) documentation 

and distribution approach are presented. Whilst the methods for tools 1 and 2 are relatively far advanced, 

Tools 3 and 4 will involve further active research, so for these a research plan is presented.  
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1.2 Review of EO Methods for Dry Forest Monitoring 
13. There are three main types of EO data: optical, radar and Lidar. Each has different characteristics, 

and different strengths and weaknesses for use in forest monitoring. For more and detailed information, refer 

to the SMFM Inception Report, Section 3.3.  

1.2.1 Optical Remote Sensing 
14. Optical remote sensing data is the most widely available form of EO data, with over 300

1
 (and many 

more small to medium sized) satellites collecting data regularly. Optical data views the top of the forest canopy, 

and thus it can be used to assess canopy cover and potentially estimate the density and health of leaves. 

Optical data has been traditionally used to map deforestation and has been used for detection of forest 

degradation in wet tropical forests through a number of government programmes. 

15. Whilst optical remote sensing data is widely used and methods are advanced, optical data has three 

major shortcomings when it comes to dry forest mapping: 

• It cannot penetrate clouds, which cover much of the tropics most of the time, limiting observations. 

• It cannot penetrate the top of the forest canopy, meaning low-level sub-canopy degradation, not 

involving canopy trees, will be invisible – this is especially a problem in dense woodlands and forests. 

• Canopy leaves and grasses in the mixed tree-grass ecosystems that dominate the dry tropics are 

confused by optical sensors. Canopy and grass greenness varies dramatically over a year and 

between years, and limit the use of optical data to assess changes to just the woody component. 

 

16. A range of methods exist for use of optical data for forest change mapping. The most straightforward 

is to compare single timestamp classified layers, though this can lead to somewhat greater inaccuracies due 

to the combination of errors in each layer. Time series analysis is used to assess temporal change of a 

parameter related to forest cover (e.g. normalised difference vegetation index) by analysing its trend through 

time and by identifying break-points (as the result, for example, of deforestation / degradation) or long-term 

trend (e.g. forest regrowth). Seasonal effects, differences in sensor calibration, atmospheric conditions and 

random error are all affecting each pixel’s time series, therefore it is important that appropriate algorithms are 

developed to take those into account. Machine learning approaches have also been used to enhance the data 

analysis process, by using multiple data sets and/or metrics, and by using algorithms that are continually 

updated based on the best-available analytical approaches.  

17. There are a number of options for free optical satellite data. The most widely used source of optical 

data for forest monitoring is Landsat, a series of satellites active since 1972 which acquire images every 16 

days at 30 metres resolution. The NASA MODIS satellites offer greater temporal frequency of 1-2 days but at 

coarser resolution of 250 metres. The recently launched Sentinel-2 satellites, as part of the Copernicus 

Programme of ESA that guarantees data continuity through until 2030, offer unprecedented resolution (10 

metres) and revisit times (6 days) for freely available data. 

1.2.2 Radar Remote Sensing  
18. Synthetic Aperture Radar (SAR) satellites are active sensors that look obliquely at the Earth’s surface 

using microwave data (in the mm – cm wavelength range). Long-wavelength microwave data penetrates 

through the forest canopy to obtain information on forest structure, with the amount of radiation reflected back 

to the instrument (‘backscatter’) increasing as the number and/or size of trees present in an area increases. 

Radar satellites have been used to map aboveground biomass (AGB), and to map deforestation and 

degradation through AGB loss. Measurement of AGB with radar backscatter is limited by a saturation point, 

typically around 150 tonnes per hectare AGB for L-band (the longest, and therefore most sensitive, wavelength 

currently available), and ~50 tonnes per hectare for C-band (which is more widely available). 

19. L-band Synthetic Aperture Radar has a long track record of use in mapping biomass and biomass 

change (degradation, regrowth) in dry forest and savanna regions of the tropics. There is a well-established 

relationship between L-band radar backscatter and AGB in moderate density woodlands and forest (e.g. Ryan 

et al. 2012), as shown in Figure 1. Up to the saturation point of ~150 tonnes per hectare in denser forests, this 

relationship is reasonably consistent between forest types (Mitchard et al. 2011), a property which has been 

                                                   
1
 https://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-database#.WszUpS7waUl  
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used to map AGB in dry forest ecosystems over continental scales (Bouvet et al. 2018 & McNicol et al. in 
press). Dry forests can have biomass values up to 200 tonnes per hectare, but in the key countries for this 

project (Mozambique and Zambia) only a tiny proportion of forest is thought to be above the 150 tonnes per 

hectare saturation point for L-band radar (McNicol et al. in press), so this tool will only be applicable to the 

sparser woodlands and forests that are dominant across much of Mozambique and Zambia. Overall, there is 

a consensus in the scientific community that L-band cross-polarised radar represents the only space-borne 

technology proven to map forest AGB and AGB change in dry forest ecosystems (GFOI, 2014).  

 

Figure 1: Biomass-backscatter plot showing the relationship between HV backscatter from ALOS PALSAR and a series of 1 hectare 
(100 x 100 metre) permanent forest plots from Miombo woodlands in Tanzania. 

 

20. C-band radar data is more sensitive to differences in structure between vegetation types than L-band, 

more sensitive to grass biomass, and more sensitive to vegetation and soil moisture, therefore research has 

concentrated on L-band where data is available. There has however been success in using C-band to map 

forest type, for example the difference between natural forest, degraded forest and plantations (De Grandi et 

al 2015 & Dong et al 2015). Uptake of radar data in applications such as land cover mapping has been limited 

by a relatively complex pre-processing chain the limited availability of free data until recently. 

21. The Japanese ALOS PALSAR-2, launched in 2014, is the only L-band radar satellite currently 

operational, but two additional L-band radar satellite missions SAOCOM
2
 and NISAR

3
 are planned to be 

launched in 2018 and 2020 respectively. An annual mosaic is produced by the Japanese Aerospace 

Exploration Agency (JAXA) using ALOS PALSAR/PALSAR-2 data at 25 metres resolution for the years 2007-

2010 & 2015 onwards
4
. The ESA Sentinel-1 satellites from the Copernicus Programme provide, free of charge, 

C-band radar data at 10 metres resolutions from 2014 onwards.  

1.2.3 Lidar Remote Sensing  
22. Lidar EO satellites use laser light looking directly down to generate a profile of tree height and forest 

vertical structure. This enables a representation of a forest to be built up with structural parameters such as 

height, stem density and canopy cover to be estimated directly, and this data has been paired with optical data 

from MODIS to generate the first pan-tropical maps of aboveground biomass (Saatchi et al. 2011 & Baccini et 

al 2012). There are at present no operational satellite Lidar instruments. 

23. Much more detailed data can be collected with Lidar instruments using aircraft of UAVs, with data 

detailed enough to identify individual trees. Repeat surveys can therefore see the removal of individual trees, 

and thus it is the only remote sensing method that can guarantee to map degradation with high accuracy even 

if the magnitude or size of disturbance is low. Airborne or UAV Lidar data are therefore the gold-standard for 

measuring forest degradation. 

24. The high cost of collecting Lidar data from aircraft or UAVs and the absence of operational satellite 

instruments preclude the use of Lidar data for the mapping products of the SMFM project. There are however 

                                                   
2
 http://space.skyrocket.de/doc_sdat/saocom-1.htm;  

3
 https://www.jpl.nasa.gov/missions/nasa-isro-synthetic-aperture-radar-nisar/   

4
 http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm  



Satellite EO Design Report - Draft | 7 

 

two upcoming Lidar missions, ICESAT-2
5
 and GEDI

6
, which are planned to be launched in 2018 and 2019, 

respectively.  

1.3 Cloud Platforms 
25. Recent moves towards open access satellite data (e.g. Landsat, Sentinel-1/Sentinel-2) have hugely 

increased availability of data for forest monitoring, and provided opportunities to utilise dense time-series of 

satellite data to develop new methods to address the challenges associated with satellite monitoring of dry 

forest. Working with dense time series of satellite data at regional to national scales comes with computational 

challenges, particularly in locations where internet access is poor. Therefore, the SMFM project will make use 

of cloud platforms, where storage of large satellite archives is provided together with access to significant 

processing power on a remote server.  

26. An overview of the available cloud-based platforms for the storage and processing of satellite imagery 

data on the cloud is given below. Once the SMFM tools are fully operational and tested, a thorough assessment 

will be made to identify the most suited platform for the implementation of these tools on the cloud. This will 

be based on criteria of country preferences, appropriateness, user-friendliness, degree of customization, and 

platform storage as well as processing costs. ESA’s DIAS platform appears to have particular potential in 

regard to reaching a global audience, but other platforms will also be considered based on country partner 

needs. More details on the planning around this will be provided around June 2018. 

1.3.1 SEPAL7 
27. The System for Earth Observation Data Access, Processing and Analysis for Land Monitoring 

(SEPAL) is a collaboration between FAO and Norway. SEPAL is a cloud-based computing platform for 

geospatial big data processing and storage. SEPAL offers direct access to satellite data sources through a 

visual user interface, a set of open-source software tools, based on the Linux command line, and the capacity 

to run customized Python scripts and data processing chains on a virtual machine hosted by Amazon Web 

Services. SEPAL is not provided for free, but charges for both processing and storage.  

1.3.2 EO IPT Poland8 
28. The Earth Observation Innovative Platform Testbed Poland (EO ITP Poland) is a system from ESA 

being developed by the company CloudFerro. The service offers high performance computing with local 

access to large archive of the main EO datasets, including the Landsat and Sentinels satellites. Services are 

provided at a cost related to processing power as well as storage required.  

1.3.3 CEOS Data Cubes9 
29. The Committee on Earth Observation Satellites (CEOS) Data Cube Platform is a data processing 

platform for Earth science data, with a focus on remote-sensing data. The platform provides a data ingestion 

framework that includes support for automated ingestion of a wide variety of remote sensing data products. 

The data products are ingested into an N-dimensional data array. The Data Cube model aims to surpass the 

old data system model by providing standardised analysis ready data to users in a streamlined way, rather 

than unprocessed and uncorrected data that requires high network bandwidth, local processing infrastructure 

and local expertise. However, the goal is to have an operational CEOS platform by 2020, which is beyond the 

timescales of the SMFM project.  

1.3.4 F-TEP10 
30. Forestry Thematic Exploitation Platform (F-TEP) is an EO data processing and analysis platform under 

development by ESA. The aim is for a 'one-stop shop' of forestry remote sensing services for academic and 

commercial sectors. The service will offer large pre-processed satellite data archives, in addition to computing 

power and easy-to-use data processing tools and GIS software. The aim is to encourage the use of data from 

the Sentinel satellites support forest ecosystem monitoring and sustainable forest management. The project 

                                                   
5
 https://icesat-2.gsfc.nasa.gov/  

6
 https://eospso.nasa.gov/missions/global-ecosystem-dynamics-investigation-Lidar  

7
 https://sepal.io/  

8
 https://eocloud.cloudferro.com/knowledgebase.php?action=displayarticle&id=13  

9
 https://www.opendatacube.org/ceos  

10
 https://forestry-tep.eo.esa.int/  
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is in a pilot phase, focussing on forest management in Mexico and Finland, and it is not currently open to 

general use. 

1.3.5 DIAS11 
31. ESA’s Copernicus Data and Information Access Services (DIAS) platform will contain all the 

Copernicus EO satellite data and information and will offer free and open data download services to its users. 

However, infrastructure and operational costs are envisaged for could processing, and will be published before 

June 2018. DIAS integrates the principles of transparency of the services offer and the data offer, as well as 

an infrastructure for the development and execution of customisable scripts for data processing and analysis. 

The future self-sustainability of DIAS is of critical importance for ESA. More information is expected to be 

released by ESA, including details around functionalities and implementation procedures for using the platform, 

in preparation to the launch date in June 2018.  

1.3.6 CEMS12 
32. The Climate, Environment and Monitoring from Space (CEMS) platform was established in 2013 by 

the Satellite Application Catapult to provide affordable and reliable cloud-computing infrastructure for the 

Space community, to process large volumes of data while removing the need for download and storage. The 

infrastructure resources are charged for individually e.g. CPU, RAM, disk and bandwidth used, and generally 

on a monthly basis. Unlike most cloud providers, CEMS does not charge for data transit costs i.e. ingress and 

egress. The SMFM team is in communication with the CEMS providers, and can arrange 1-month free trial 

followed by a cost estimate should the need for testing the platform arise. 

1.3.7 Amazon Web Services13 
33. This platform has a dedicated section for EO datasets

14
. The bottleneck of this platform was noted as 

having the file format for Sentinel-2 data that is slightly different compared to the one provided by the Sentinel 

Hub platform. In this case, the relevant scripts should be adjusted accordingly to be compatible with the new 

file format.  

1.3.8 Google Earth Engine15 
34. Google Earth Engine is a cloud-based platform for planetary-scale environmental data analysis. It 

combines a petabyte-scale archive of publicly available remotely sensed imagery and other data with Google’s 

computational infrastructure optimized for parallel processing of geospatial data. This includes APIs for 

JavaScript and Python, and a web-based IDE for rapid prototyping and visualization of complex spatial 

analyses and the Landsat and Sentinel datasets. However, it is available free of charge only for research, 

education, and non-profit use, and accessing and processing data is not open-source, therefore not compatible 

with the SMFM project.  

1.3.9 Google Cloud Services 
35. All the Sentinel-2 data, processed at top-of-atmosphere reflectance data (Level-1C) are stored within 

Google Cloud Services
16

. Data processing for querying, visualising and analysing Sentinel-2 data can be done 

through Google Earth Engine, which is however not open-source. Google Cloud Services usage comes with 

a cost that covers data storage, network usage, operational usage, retrieval and early deletion fees.  

1.4 Data Acquisition Plan 
36. The four EO tools that are under-development as part of the SMFM project rely on a range of free and 

open-access data sources. Given the large scales over which the tools will operate and potentially poor access 

to internet, each will require a practical means of data access. The data required by the SMFM project and 

data access arrangements are summarised in  

                                                   
11

 https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Accessing_Copernicus_data_made_easier  

12
 https://sa.catapult.org.uk/facilities/cems/  

13
 https://aws.amazon.com/what-is-cloud-computing/  

14
 https://aws.amazon.com/earth/  

15
 https://explorer.earthengine.google.com/#index  

16
 https://cloud.google.com/storage/docs/public-datasets/sentinel-2  
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37. Table 2. 

38. Some of the necessary data can be practically downloaded at national scale through web-interfaces 

(e.g. ALOS mosaic, land cover products) and some data will require batch-processing scripts (e.g. Sentinel-

1/Sentinel-2 mosaicking). In the case of national-scale dense time-series analysis, the only practical approach 

may be a cloud platform where data are stored locally. In the coming sections we describe how the necessary 

data to operate each tool can be accessed. 

Table 2 Data acquisition plan for each of the data types to be used by the SMFM project. 
 

Data Type Acquisition Plan 

ALOS Mosaic Tiles 
Data can be downloaded through a web-interface at national scales, reasonably 

straightforwardly. An alternative method will be provided to automate the 

process of download and decompression through a command line tool. 

Ancillary Data (e.g. 

land cover products, soil 

moisture data) 

Some data products can be improved with ancillary data (e.g. identification of 

flooded areas for AGB mapping). This data will be low-volume, so can be 

acquired through relevant websites. 

Calibration and 
Validation Data 

As either degradation or the causes of forest change cannot be readily identified 

in high-resolution imagery, data for tool calibration and validation will require 

fieldwork measurements. Fieldwork will be conducted in Mozambique and 

Zambia, aiming to capture a range of forest types and causes of change. 

Sentinel-1 and 
Sentinel-2 Scenes 

Data can be accessed through a graphical interface (Copernicus Open Access 

Hub), though this is impractical with more than 50 scenes. A command line batch 

download tool will be provided to assist in medium to large scale applications 

(e.g. national-scale mosaics). For national-scale dense time series analysis, the 

only practical approach may be to use a cloud platform with local access to 

appropriate data. 
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2 Tool 1a: Semi-automated Pre-processing of 
Sentinel-2 Data for LU/LC Classification 

2.1 Objective 
39. Monitoring of land cover and land cover change over large scales is only feasible with large-scale 

remote sensing datasets. Moderate resolution optical remote sensing instruments have been the mainstay of 

national-scale monitoring (e.g. Landsat), but new data from Sentinel-2 offers an increased resolution, faster 

re-visit times and guarantees of data continuity that make it attractive for future land cover monitoring. The 

SMFM Sentinel-2 mosaicking tool ‘sen2mosaic’ will generate wall-to-wall mosaics at regional to national 

scales using composite images from multiple satellite overpasses to create season-specific cloud-free images 

suitable for land cover classification. 

2.2 Method Design 
40. The use of this tool, called sen2mosaic, includes the following steps:  

• Downloading of Sentinel-2 tiles; 

• Pre-processing of Sentinel-2 tiles (atmospheric correction, cloud masking); 

• Generation of cloud-free composite images for each tile; 

• Multi-tile mosaicking in the user-friendly GeoTiff format. 

 

2.2.1 Downloading of Sentinel-2 Tiles 
41. Image downloading is handled by a batch-processing script that accesses images from the Application 

Program Interface (API)
17

 within the Copernicus Open Access Hub
18

, which offers better performance than the 

web interface for large downloads. The script builds upon an existing open source Python library named 

sentinelsat
19

. The user is prompted to specify the tile name, date range and maximum cloud cover options to 

automate the selection of the most appropriate images. For the case where sen2mosaic is operated from a 

cloud server, where data is stored locally, this script may not be required.  

2.2.2 Pre-processing of Sentinel-2 Tiles 
42. Pre-processing of Sentinel-2 images is performed with the open source sen2cor toolset developed by 

ESA
20

. Sen2cor is a toolset to perform atmospheric correction and cloud masking of Sentinel-2 data. Sen2cor 

requires a level 1C (top of atmosphere reflectance) tile as input, and generates a level 2A file (atmospherically 

corrected, cloud masked) file as output. Sen2mosaic assists in batch processing by accepting multiple 

Sentinel-2 1C tiles as inputs, and automates large pre-processing tasks with parallel processing of multiple 

tiles simultaneously. 

The cloud masks produced by sen2cor are conservative (commonly leaving in light clouds in imagery), 
frequently confuse cloud shadows and dark features, and can leave artefacts around image borders. A range 

of logical corrections using buffers and reclassification were developed and implemented to obtain an improved 
mosaic quality ( 

43. Figure 2). These are based on a modification of the methods developed by GMV (2016), used in the 

development of 2016 cloud-free mosaics in Mozambique. The corrections applied to the cloud mask are: 

• Reclassification of ‘dark feature’ to ‘cloud shadow’; 

• Reclassification of ‘cloud shadow’ not within 1800 metres of ‘cloud’ to ‘water’ (not masked); 

                                                   
17

 https://scihub.copernicus.eu/twiki/do/view/SciHubWebPortal/APIHubDescription 

18
 https://scihub.copernicus.eu/  

19
 https://github.com/sentinelsat  

20
 http://step.esa.int/main/third-party-plugins-2/sen2cor/  
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• Dilation of ‘cloud shadow’, ‘medium probability cloud’ and ‘high probability cloud’ pixels by 180 metres 

to remove residual light clouds; 

• Erosion of the outer 300 metres of image tiles, which removes border artefacts whilst retaining image 

overlap. 

 

44. For the case where sen2mosaic is operated from a cloud server where level 2A Sentinel-2 data is 

stored locally, the user may opt to only run the mask correction elements of this script. 

 
Figure 2: Mosaic outputs without modifications to the sen2cor cloud mask (left), and after modifications (right). Without modification to 

the cloud masks, prominent artefacts are present around light clouds and at scene boundaries. 
 

2.2.3 Generation of Cloud-Free Composite Images  
45. Atmospherically corrected Sentinel-2 tiles contain gaps where clouds have been removed from the 

images, and tiles that are split across the satellite swath need to be combined to create a seamless image. 

Sen2three is an ESA toolset for creating composite images from Sentinel-2 data, combining multiple images 

from each to create a single gap-filled image using available clear pixels
21

. 

46. Image compositing is based on the ESA tool sen2three. Sen2three is a memory intensive program, 

hence a series of conditions that encourage the user to input only necessary images are implemented to 

minimise the processing memory required.  

2.2.4 Multi-tile Mosaicking in GeoTiff Format 
47. The final step generates a seamless mosaic with composite images re-projected to a single coordinate 

reference system, including the conversion to the user friendly and flexible GeoTiff format. The script also 

outputs VRT files, which are virtual raster file that can be used for straightforward visualisation in open source 

GIS software such as QGIS. This script uses the Geospatial Data Abstraction Library (GDAL)
22

, a widely used 

open source Python library for dealing with geospatial data.  

2.3 User Interface and Usage 
48. Sen2mosaic will be made available as a set of four scripts to perform the processes of downloading, 

pre-processing, compositing and mosaicking. These scripts will be usable from the Linux command line, or by 

a more advanced user by importing functions in Python. 

National-scale outputs from sen2mosaic are shown in Figure 3. 

                                                   
21

 http://step.esa.int/main/third-party-plugins-2/sen2three/  

22
 http://www.gdal.org/  
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Figure 3: A 10 metres resolution mosaic of Sentinel-2 data generated by sen2mosaic for the extent of Zambia, using images for the 
early dry season (May – June) 2017. 

 

2.4 Documentation and Distribution 
49. The SMFM sen2mosaic scripts are publicly available on bitbucket

23
. Users must also install ESA tools 

sen2cor and sen2three, as well as the open source sentinelsat tool from github
24

. 

Documentation and worked examples are available online
25

. 

 

 

 

 

 

 

 

  

                                                   
23

 https://bitbucket.org/sambowers/sen2mosaic  

24
 https://github.com/sentinelsat  

25
 http://sen2mosaic.readthedocs.io/en/latest/  
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3 Tool 1b: Semi-Automated Pre-processing 
of Sentinel-1 Data for LU/LC Classification 

3.1 Objective 
50. Land cover mapping most commonly makes use of optical data, which is widely available and 

comparatively easy to work with. Using additional data from radar instruments can provide useful and 

complementary inputs to land cover classifications, but uptake has been limited by the limited availability of 

free data and onerous pre-processing requirements. With the launch of the Sentinel-1 radar sensors with free 

and open-access data there is an opportunity to leverage new datasets to improve land cover classifications. 

The SMFM Sentinel-1 mosaicking tool ‘sen1mosaic’ will assist in the generation of large-scale Sentinel-1 

mosaic products suitable for use in land cover classification tasks. 

51. During the inception phase, it was agreed to test the utility of Sentinel-1 data for improving land cover 

classifications, and develop a fully functional tool if the outputs were judged to be useful (SMFM Inception 

Report, Section 6.2.1). In practice, it was found that the burden of testing on partner countries would be difficult 

to manage and that SMFM Tool 3 will likely require pre-processing of Sentinel-1 data anyway, therefore the 

complete tool to pre-process Sentinel-1 data (i.e. Tool 1b) has been developed in advance of a testing phase. 

3.2 Method Design 
52. Operation of this tool, named sen1mosaic, takes the following steps: 

• Downloading of Sentinel-1 images; 

• Pre-processing of Sentinel-1 images; 

• Creation of multi-image mosaics in the user-friendly GeoTiff format. 

 

3.2.1 Downloading Sentinel-1 Images 
53. Like sen2mosaic, sen1mosaic uses the sentinelsat library to download images. Sen1mosaic uses 

Ground Range Detected (GRD) images collected in the Interferometric Wide (IW) swath mode, the main 

acquisition mode of Sentinel-1 and the most applicable to land use studies. Data from Sentinel-1 are not 

provided in a standard tiling grid like Sentinel-2, and images are acquired from both ascending and descending 

paths. The tool requires the user to input a bounding box in latitude/longitude, and downloads all images that 

meet criteria of date ranges and specification of ascending or descending paths. For the case where 

sen1mosaic is operated from a cloud server, where data is stored locally, this script may not be required. 

3.2.2 Pre-processing of Sentinel-1 Images 
54. Image pre-processing is performed using the Sentinel Application Platform (SNAP) graph processing 

tool
26

. SNAP is an open source ESA program which has functions for pre-processing and analysis of satellite 

imagery, including a range of Sentinel-1 specific functions. 

55. Image pre-processing takes the following steps using SNAP functions: 

• Application of orbit file, which improves image geo-referencing through precise orbit state data. 

• Thermal noise removal applies corrections for thermal noise, which is particularly problematic in the 

cross-polarised (VH) channel (optional) 

• Calibration from digital numbers to pixel values directly related to radar backscatter in the scene. 

• Slice assembly stitches together consecutive satellite scenes to produce a continuous image for each 

satellite pass. 

• Multi-looking (optional) reduces noise and processing load by degrading image resolution. 

                                                   
26

 http://step.esa.int/main/toolboxes/snap/ 
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• Radiometric terrain flattening (optional) corrects for the tendency for slopes facing towards the 

sensor appearing brighter than those facing away.  

• Filtering (optional) further reduces image noise from speckle. We apply a Refined Lee filter, a radar-

specific speckle filter which aims to preserve edges between field boundaries in images. 

• Geometric terrain correction aligns pixels with their geographical location, and corrects for the 

tendency of topographic features to appear to lean towards the sensor (foreshortening). 

• Translation and mosaicking aligns multiple radar passes to a common Universal Transverse 

Mercator (UTM) geographical grid. We output processed images in units of Decibels. 

 

 
Figure 4: Example outputs from sen1mosaic (VV backscatter) showing processing options of (a) short processing chain, (b) full 

processing chain and (c) full processing chain with speckle filtering. This example shows Mount Meru in Northern Tanzania. 
 

56. A number of processing steps in sen1mosaic are optional. Speckle filtering can be activated or 

deactivated to accommodate multiple user’s needs, and the multi-looking step will be customisable to allow 

specification of output resolutions. As this processing chain is computationally intensive, a separate short 

processing chain (omitting thermal noise removal and radiometric terrain flattening) can be optionally run to 

generate test outputs rapidly. A range of outputs using different processing chains are shown in Figure 4. 

 

 
Figure 5: Sentinel-1 border artefacts from the (a) azimuth (along track) and (b) range (across track) directions, which are removed by 

sen1mosaic.  
 

Sentinel-1 data outputs processed in SNAP are prone to image artefacts that can interfere with image 
classification ( 

 
57. Figure 5). Image sub-setting is used to eliminate border noise and minimise along-track artefacts whilst 

retaining the overlap between satellite overpasses. 
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For an advanced user, the tool can also support the use of customised processing chains complied in SNAP. 

3.2.3 Multi-image Mosaicking in GeoTiff Format 
58. A mosaicking script very similar to that used by sen2mosaic (Section 2.2) is used. The main difference 

is that in place of the compositing and mosaicking steps of sen2mosaic, sen1mosaic generates outputs of the 

mean average, minimum, maximum, and standard deviation of each pixel in input images, which together 

describe the backscatter properties and its temporal variability of each pixel which can be used as inputs in 

land cover classifications. The output is provided in GeoTiff format, in the UTM zone and resolution specified. 

Two additional VRT files are provided for rapid visualisation of outputs in open source GIS software (e.g. Figure 

6). 

 

Figure 6: Highlight from a regional-scale mosaic of Sentinel-1 data for the period May-June 2017 for Zambezia Province of 
Mozambique, generated with SMFM sen1mosaic.  

 

3.3 User Interface and Usage 
59. Sen1mosaic will be made available as a set of three scripts to perform the processes of downloading, 

pre-processing, and mosaicking. These scripts will be usable from the Linux command line, or by a more 

advanced user by importing functions in Python. The scripts required to operate sen1mosaic will mirror 

sen2mosaic, and will therefore require similar user expertise to be executed.  
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3.4 Documentation and Distribution 
60. The SMFM sen1mosaic scripts are publicly available on bitbucket

27
, with documentation and worked 

examples are also available online
28

. 

                                                   
27

 https://bitbucket.org/sambowers/sen1mosaic  

28
 http://sen1mosaic.readthedocs.io/en/latest/  
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4 Tool 2: Annual Forest Biomass Change 
and Degradation Mapping Using the ALOS 
PALSAR Mosaic 

4.1 Objective 
61. Long wavelength radar data are a long-established method of generating maps of forest AGB in 

woodlands and dry forests (Le Toan et al. 1992, Le Toan et al. 2011, Ryan et al. 2012, McNicol et al. in press). 

Free data are now available from JAXA’s ALOS-1 and ALOS-2 L-band sensors (2007 – 2010, 2015 – onwards) 

(Shimada et al. 2010, Motohka et al, 2012), which offer a relatively straightforward means to generate maps 

of AGB in woodlands and forests with AGB of up to around 150 tonnes per hectare. The SMFM ‘BIOmass’ 
Tool for ALOS (biota) is a tool that generates maps of AGB, AGB changes between multiple years, and uses 

estimates of AGB change to classify locations of deforestation and degradation.  

4.2 Method Design 
62. Use of the Biomass tool has four elements: 

• Downloading ALOS mosaic tiles; 

• Pre-processing ALOS data; 

• Mapping aboveground biomass and forest cover; 

• Detection of forest changes. 

 

4.2.1 Downloading ALOS Mosaic Tiles 
63. Data from the ALOS mosaic can be accessed from JAXA through a graphical interface online after 

signing up
29

. The data is delivered in either 1x1 degree tiles or 5x5 degree collections of tiles. To obtain 

national-scale data using this interface is possible, but for large-scale applications a command-line interface 

to automate data download is considered preferable.  

64. The biota tool includes a script to download ALOS mosaic tiles directly from the JAXA FTP server. 

The user specifies either a 1x1 or 5x5 degree tile by its upper-left corner latitude and longitude and a year or 

set of years. The downloader handles access of both the older ALOS-1 filename structure and the ALOS-2 

filename structure. The script also optionally decompress images after download. 

4.2.2 Pre-processing ALOS Mosaic Data 
65. The ALOS mosaic is provided as a series of 1x1 tiles containing composites of multiple overpasses 

by ALOS-1 and ALOS-2. The format of the ALOS mosaic data is described in detail in its user manual
30

. 

Backscatter data is stored as 16-bit unsigned digital numbers for each of HH and HV polarisations, and require 

the application of a calibration equation to generate gamma nought (gamma0) backscatter values in units of 

decibels: 

!" = 10&'()"(+,-) − 83.0	45 

 

66. Biota is a Python module built to automate pre-processing tasks of large volume of data over large 

areas in a programming environment. The steps for calibration of ALOS mosaic data to a usable object in 

Python are: 

• Loading of data into memory, and extraction of metadata from filenames. 

                                                   
29

 http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm  

30
 http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/DatasetDescription_PALSAR2_Mosaic_FNF_revE.pdf  
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• Conversion and calibration to gamma0 backscatter. 

• Application of “bad data” mask, with additional optional masking of data from the wet season and 

around water bodies and flooded areas. 

• Optional filtering to reduce image noise with an Enhanced Lee Filter, a radar speckle filter that aims 

to preserve edges. 

• For more advanced users, the tool supports the output of gamma0 data to Geotiffs for customised 

onward processing chains. 

67. In the pre-processing of radar data, order of processing steps is important. The biota module enforces 

the use of pre-processing steps in an appropriate order, and through its structure discourages inappropriate 

use of functions. 

4.2.3 Mapping Aboveground Biomass and Forest Cover 
68. The module includes a generic equation to calibrate gamma0 backscatter to forest AGB (McNicol et 

al. in press). This equation was developed for southern African woodlands using forest plot data from 

Mozambique, Tanzania and Malawi, using ALOS-1 data. This model for southern Africa can be applied as a 

first estimate of AGB where appropriate forest plot data does not yet exist. 

69. For global applicability, the tool supports the calibration of country-specific backscatter-AGB 

relationships using available national forest plot data. Functionality will be provided to ingest shapefiles 

containing forest plot data and generate a linear or logarithmic calibration equation to relate radar backscatter 

to AGB. This is of particular importance under the SMFM project as one of the objectives is to provide generic 

and globally applicable methods and tools. 

70. The biota tool generates forest maps that match and can be tailored to nationally-determined 

parameters, through the following variables: 

• A forest AGB threshold (in tonnes per hectare) to separate forest from non-forest; 

• A minimum area threshold (in hectares) of contiguous forest. 

 

Maps of AGB and forest cover can be output as GeoTiffs for straightforward visualisation and generation of 

summary statistics (Figure 7 a/b). 
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Figure 7: Maps of (a) aboveground biomass (AGB) (brown = low, yellow = moderate, green = high), (b) forest cover (yellow = non-forest, 
green = forest), (c) AGB change (red = loss, blue = gain) and (d) change classification (red = deforestation, orange = degradation, blue 
= growth), generated by the biota tool. Maps show a location in Kilwa District of south eastern Tanzania, which underwent rapid land-

use change from the expansion of smallholder agriculture between the years 2007 to 2010. These maps are based on data from ALOS-
1, a generic southern African biomass-backscatter relationship and an arbitrary definition of forest. 

 

4.2.4 Change Detection 
71. “False positives” in the detection of forest change are a common problem to using data from ALOS 

because of the noise inherent to radar images. This issue is compounded in use of data from the ALOS mosaic, 

which may not come from the dry season and cannot be averaged out over multiple images. Thus, a naive 

classification of a difference image based on AGB change thresholds alone will tend to overestimate rates of 

forest change. The following strategies are employed to suppress noise in radar imagery and to reduce its 

impact on change predictions were implemented: 

• Filtering: The Enhanced Lee filter suppresses noise. Applied to the gamma0 images in the pre-

processing steps.	
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• Minimum change area specification: In addition to matching a national forest definition, minimum 

areas of change can be employed to remove isolated pixels of apparent change.	

• Minimum change intensity thresholds: Spurious changes may be recorded where changes of small 

magnitude cross the threshold of forest/non-forest. A minimum intensity of change (e.g. 20% loss of 

AGB) can be used (optional) to filter out some of the changes that likely result from noise in data.	

• Masking of water: In addition to AGB, L-band radar backscatter is sensitive to soil moisture. Areas 

with seasonal/inter-annual soil moisture changes may therefore be interpreted as changes to AGB. A 

buffer of user-defined size around rivers and lakes was applied to remove all changes that occur near 

rivers and water bodies. Ancillary land cover maps can be used to identify areas of frequent flooding 

to also be masked.	

• Soil moisture correction: Inter-annual variation in backscatter resulting from varying soil moisture 

may also be corrected using soil moisture estimates from other remote sensing products. We will 

investigate the utility of these corrections further for the SMFM biota tool. 

72. Biota identifies areas of forest change by identifying locations that change between two years of 

measurement (e.g. 2007-2010). By default, the tool identifies six classes of change (Table 3), which can be 

modified to suit national definitions of forest over and forest cover change. In addition to the area of change, 

the biota tool outputs the magnitude of AGB that can be attributed to each change event. Example outputs are 

shown in Figure 7. 

Table 3: Default definitions of forest change in biota. Changes are classified based on a forest AGB threshold (forest as opposed to non-
forest), an intensity threshold (minimum proportional change of AGB) and a minimum area threshold (minimum size for a change event). 
Source: modified after McNicol et al (2018) 
 

Forest Change 
Type 

Definition 

Deforestation AGB above forest threshold in image 1 and below forest threshold in image 2, with a 

loss of AGB greater than intensity threshold over an area greater than minimum area 

threshold. 

Degradation AGB above forest threshold in image 1 and image 2, with a loss of AGB greater than 

intensity threshold over an area greater than minimum area threshold. 

Minor loss Any loss of AGB that doesn’t meet conditions of deforestation or degradation*. 

Minor gain Any increase of AGB that doesn’t meet conditions of growth or afforestation*. 

Growth AGB above forest threshold in image 1 and image 2, with an increase of AGB greater 

than intensity threshold over an area greater than minimum area threshold. 

Afforestation AGB below forest threshold in image 1 and above forest threshold in image 2, with an 

increase of AGB greater than intensity threshold over an area greater than minimum 

area threshold. 

Non-forest AGB below forest threshold in image 1 and image 2 

*This is required for carbon balance but may not be important for forest mapping and monitoring purposes. 
 

4.3 User Interface and Usage 
73. The biota tool is provided as a Python module containing a range of functions to load, calibrate, 

produce maps of AGB and classify forest change, and generate summary statistics using ALOS mosaic tiles.  

74. The Python scripts required to use this tool should be straightforward to implement even by users with 

limited programming experience. Although the module is still under development, an indicative script for 

producing two biomass maps and a change map for a 1x1 degree tile is shown in Figure 8. 
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4.4 Documentation and Distribution 
75. The (under development) biota module is available online

31
, with documentation, which will include a 

number of worked examples for common processing tasks, in progress
32

.  

                                                   
31

 https://bitbucket.org/sambowers/biota 

32
 http://biota.readthedocs.io/en/latest/ 

import biota 
 

# Load data for 2007/2010 
tile_2007 = biota.LoadTile(‘~/DATA/’, -18, 33, 2007, lee_filter = True, forest_threshold = 15, 
area_threshold = 2.5) 
tile_2010 = biota.LoadTile(‘~/DATA/’, -18, 33, 2010, lee_filter = True, forest_threshold = 15, 
area_threshold = 2.5) 
 

# Generate AGB maps and output GeoTiff files 
AGB_t1 = tile_2007.getAGB(output = True) 
AGB_t2 = tile_2010.getAGB(output = True) 
 
# Generate a forest cover maps for 2007 
forestcover_2007 = tile_2007.getForestCover(output = True) 
 

# Add buffer around riverine areas to reduce false positives from soil moisture 
tile_2010.updateMask(‘rivers.shp’, buffer_size = 750) 
 
# Load a change object 
tile_change = biota.LoadChange(tile_2007, tile_2010, change_intensity_threshold = 0.25, 
change_area_threshold = 2.5) 
 

# Generate a deforestation/degradation map and output to GeoTiff 
tile_change.CalculateChange(output = True) 
 

Figure 8: Example of Python script for generating a maps of AGB (2007 and 2010), a forest cover map (2007) and a forest change map 
(2007 to 2010) for the ALOS tile with latitude -18 and longitude 33. An arbitrary threshold of 15 tonnes of carbon per hectare over an 
area of at least 2.5 hectare is used to distinguish forest, and changes must change AGB by at least 25% and over an area of at least 

2.5 hectare. 
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5 Tool 3: Continuous Forest Change 
Monitoring with Sentinel-2 Data 

5.1 Objective 
76. The reliable measurement of deforestation in tropical forests is an ongoing challenge, and remote 

sensing of forest degradation is still in a research phase. These challenges are particularly great in tropical dry 

forests, which have strong seasonal cycles, are highly heterogeneous and show large inter-annual variations. 

New data from the Sentinel-1 and Sentinel-2 platforms offer unprecedented resolution and frequency for freely 

available data, and may be capable of reducing uncertainty in rates of deforestation and degradation in tropical 

dry forests.  

77. The SMFM DEnse FORESt Time series tool ‘deforest’ will aim to use data from Sentinel-1 and 

Sentinel-2 to overcome some of the monitoring issues of tropical dry forests through analysis of dense time 

series of data. The tool will aim to be both useful for accounting of historical forest changes along with near 

real-time monitoring of forest change for management purposes. 

5.1.1 Research Plan 
78. Approaches for extracting information on forest change from dense time series are still experimental, 

with a range of methods that have been proposed. Three major challenges exist in classification of dense time-

series of imagery from dry forests and woodlands:  

• Cloud cover is a problem in optical data, especially during the wet season;	
• Inter and intra annual variability in rainfall, tree-leaf display and grass growth leads to significant 

variations in land surface phenology, as does the occurrence of fire. Such changes can often create 

false positives in change detection algorithms	
• Dry forests are characterised by landscape heterogeneity, which means that the signal associated 

with deforestation and degradation is likely to differ across a landscape.	
	
79. A recent paper by Reiche et al. (2018) offers some potential solutions to these challenges through 

multi-sensor integration and image normalisation. Reiche et al. (2018) used a multi-sensor dense time series 

of data (Landsat, Sentinel-1 and ALOS PALSAR) to generate near real-time estimates of deforestation in 

Bolivia. This method uses a Bayesian framework to flag forest changes to generate early warnings of forest 

change, and confirms them over time as more data becomes available. This method offers an elegant means 

of combining long term monitoring with shorter term alerts that can be actioned by forest managers. 

80. For the purposes of SMFM project, this method has a number of advantages. Foremost is that there 

is no requirement for long time series of data to calibrate the model, a desirable property where using data 

from recently launched satellite sensors. Limitations of cloud cover are addressed through integration of 

multiple sensors, and the method includes an approach for removing the effects of seasonality from imagery 

(‘de-seasonalisation’) which is not reliant on prior knowledge of the seasonal cycle. Finally, the data processing 

and memory requirements are greatly reduced relative to time-series approaches such as BFAST, requiring 

each image to be loaded into memory only once, rather than building a profile of each pixel through time. 

81. Firstly, the development of the tool will focus on the reliable detection of deforestation events, which, 

being of greater magnitude is a comparatively straightforward problem to solve. Secondly, following the 

collection of field data identifying locations of degradation (fieldwork planned for May-July 2018), the tool will 

be adapted to classify degradation events. Even if the higher risk goal of detecting forest degradation does not 

prove reliable, the tool will still provide novel utility that will be useful to the tropical dry forest monitoring 

community. 

5.2 Method Design 
82. The prototype deforest tool has three steps: 

• Data download and pre-processing; 
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• Image classification; 

• Bayesian detection of change events. 

 

5.2.1 Data Download and Pre-processing 
83. The download and pre-processing steps for the deforest tool will use the SMFM sen2mosaic and 

sen1mosaic tools (section 2 and section 3, respectively). The cloud masking and artefact removal algorithms 

within these tools are particularly important as extreme pixel values may be interpreted as deforestation event. 

In terms of data processing and storage this is the most computationally intensive processing step, with the 

volumes of data required by the deforest tool necessarily large (approximately 1 terabytes for 100 x 100 km 

over 3 years). 

5.2.2 Image Classification 
84. The Bayesian change detection algorithm requires that all input images are converted into maps of 

the probability of forest (or degraded forest) being present. This transformation of images from multiple sensors 

into the same units allows them to be compared, and for progressive certainty for the detection of forest 

changes.  

85. Classifiers of forest cover will vary widely, and in the same way that different countries will be unlikely 

to use the same classifier for land cover mapping, solutions will likely differ for forest probability estimation. 

Therefore, the scripts for calibration were separated from those for change detection, which will be usable 

independently of the classification method. Here is described the classification approach for converting input 

images into probabilistic maps of forest. 

86. Feature Selection - Optical sensors have multiple inputs bands which contain information about land 

cover. For example, in optical data (e.g. Sentinel-2) the red and near-infrared spectral bands contain 

information on the green vegetation components. Spectral bands can be combined into spectral indices that 

highlight the property of interest (e.g. NDVI), in this case the presence or condition of vegetation cover. As well 

as highlighting vegetation, spectral indices have the property of mitigating against differences in scene 

illumination or topography.  

87. Radar sensors do not have an equivalent of spectral bands, but many are equipped to transmit and 

measure radiation with different polarisation (orientation). For radar imagery (e.g. Sentinel-1) the tool uses 

input features of backscatter in each available polarisation and ratios between them. 

88. Image normalisation - The SMFM deforest tool applies an image normalisation technique called ‘de-

seasonalisation’ (Hamunyela et al. 2016) to input images, which aims to normalise for seasonal effects in 

imagery. In its original form this involves running a moving window over the image and taking the 95
th
 percentile 

of an index (e.g. NDVI), and dividing by this value. The rationale is that this value should always represent a 

forest area (given a large enough window), and therefore is indicative of the phenological state of forests at 

that location. Reiche et al. (2018) used a simplified version of this method where, instead of a moving window, 

the 95th percentile of a baseline map of forest for each input image was taken, and subtracted this value from 

other pixels in the image.  

89. De-seasonalisation is potentially powerful as it can be applied to images at any time of year without a 

long calibration period, it is robust to drought years, and with a moving window it should take into account 

landscape heterogeneity. Both the moving window approach of Hamunyela et al. (2016) and the forest baseline 

method of Reiche et al. (2018) will be implemented in the deforest tool, allowing their outputs to be tested and 

compared. 

90. Logistic Regression - Logistic regression is used in the deforest tool to convert input features into a 

probability of forest cover. Logistic regression is an appropriate classifier as it returns well-calibrated probability 

estimates
33

, and where input features are correlated the model can be made robust to overfitting through 

regularisation (which prioritises a ‘simple’ model to a more complex one). A separate model must be fit for 

each input sensor (Sentinel-1 and Sentinel-2), and different models for each acquisition mode (e.g. Sentinel-

1 single polarisation, Sentinel-1 dual polarisation).  

                                                   
33

 http://scikit-learn.org/stable/modules/calibration.html  
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91. Each model will be calibrated with data from training regions representing forest and non-forest areas 

(or degraded and non-degraded) locations, with model predictions tested using a cross-validation process. 

The resultant model parameters are used to classify all input images, outputting an ordered series of GeoTiff 

files showing the probability of forest at each location in each image. 

5.2.3 Bayesian Detection of Change Events 
92. The Bayesian change detection approach of Reiche et al. (2018) is used by the deforest tool. The 

method takes a time-series of forest probabilities, combining new information on forest state with previous 

observations to generate updated probability estimates of forest being present in a pixel at each point in the 

time series (Pforest). Where an observation with < 50% probability of being a forest is encountered, a potential 

deforestation event is flagged. Pforest is updated by future observations, leading to the eventual acceptance of 

the event where Pforest passes a user-specified threshold (depending on the degree of confidence required), or 

rejection of the change as a false positive where Pforest falls back below 50%. Observations are subject to a 

‘block-weighting function’, which limits the probability of forest in an individual observation to the range 10% to 

90%, preventing extreme observations from resulting in false detections of forest change.  

93. The original module (available on github
34

) is written in R, but by its design as an experimental system 

is computationally inefficient. The deforest tool improves the efficiency of the original script significantly by 

processing entire arrays simultaneously in place of the original pixel-by-pixel approach. 

Outputs of the Bayesian change detection algorithm from the prototype scripts for monitoring and 
early-warning are shown in Figure 9 and  

94. Figure 10. 

 

Figure 9: Outputs from the prototype deforest tool, showing ‘confirmed’ deforestation events in blue for the year 2017 in the vicinity of 
Moribane forest reserve in Central Mozambique, one of the locations selected to perform fieldwork. 

 

                                                   
34

 https://github.com/jreiche/bayts  
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Figure 10: Outputs from the prototype deforest tool, showing ‘early warning’ deforestation events in red for the year 2017. Many of these 

events will later be rejected as false positives, but this near real-time view is useful as a management tool. 
 

5.3 User Interface and Usage 
95. The deforest tool is provided as a Python module with a command-line interface. The command line 

tools can be operated in a similar fashion to those of the SMFM sen2mosaic and sen1mosaic tools. 

96. Like image classification for land cover mapping, users will require a country-specific classification 

algorithm, which cannot be generalised. Therefore, some knowledge and guidance is required to calibrate the 

tool for an individual location, whereas ongoing monitoring should be more straightforward once tools are 

calibrated. 

5.4 Documentation and Distribution 
97. The scripts for the deforest tool (under development) are available on bitbucket

35
, and will include 

related documentation (not yet provided)
36

. 

 

                                                   
35

 https://bitbucket.org/sambowers/deforest  

36
 http://deforest.readthedocs.io/en/latest/ 
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6 Tool 4: Identifying Causes of Forest 
Change 

6.1 Objective 
98. In addition to identification of the locations of land cover change, managers of dry forests may also be 

interested in identification of the causes and drivers of land cover change. Attributes such as the size, shape 

and intensity of disturbance events may provide clues about the type of change, which may be used to classify 

change events by their cause. The aim of this tool is to identify the cause to individual forest cover change 

events detected by remote sensing analysis. 

99. Classification of forest change type is experimental and has not yet been attempted in tropical dry 

forests. Here, a novel method to identify the cause of forest change events in remote sensing data products is 

outlined. It is noted that the novel and innovative nature of this research comes with some risk and uncertainty, 

with very little similar existing work available the SMFM team. 

This tool will be developed after field data collection has been conducted. 

6.2 Method Design 
100. This tool will have three components: 

• Fieldwork data collection; 

• Training a classifier and validation; 

• Prediction of change events. 

 

6.2.1 Fieldwork Data Collection 
101. This tool will require data from the field to calibrate and validate its predictions. It is common to use 

data from Google Earth to calibrate and validate land cover / land cover change maps (e.g. Collect Earth tool), 

but as it is not possible to determine the cause of forest changes or to reliably identify degradation even using 

high-resolution imagery, the tool will always require local field data to be calibrated. 

102. Given the effort and cost associated with field data collection, the field data collected should be usable 

for multiple purposes. The objectives of field data collection (May-July 2018) will therefore be (in order of 

importance): 

• Objective 1: Obtain reference data that identifies locations of woody loss (deforestation and degradation), 

and their causes (e.g. logging, charcoal, agriculture etc.) to provide training data; 

• Objective 2: Collect validation data to test the Producer’s accuracy of the deforestation/degradation 

predictions of tool 2 and tool 3 (i.e. the probability of an event on the ground being detected by the remote 

sensing product); 

• Objective 3: Collect validation data to test the User’s accuracy of the deforestation/degradation predictions 

of tool 2 and tool 3 (i.e. the probability of an event identified by the remote sensing product being present 

on the ground). 

 

103. The plan will involve stratifying the landscape into representative land cover types (e.g. tropical dry 

forest and woodlands), sampling to test and compare the tool’s performance in both land cover types. The 

main field activity will be searching for areas of recent (2017 or later) woody cover change. Upon identifying a 

change event, its extent will be recorded on a GPS unit, pictures will be taken, its cause will be identified and 

documented through consultation of local experts, and the time at which it occurred will be estimated. A number 

of change event measurements will be necessary for each type of change (n = 30), aiming to include as many 

different causes as possible. For some causes this will be relatively straightforward (e.g. smallholder 

agriculture), and others likely much harder (e.g. logging). This data will be used for objectives 1 and 2. 

Objective 3 is more problematic, as it should only be performed once the tools are finalised. Additionally it is 
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much harder to travel to a specific event than to find one of many examples of forest change. For objective 3, 

methods will be trialled with the aim of informing future fieldwork efforts. 

6.2.2 Training a Classifier and Validation 
104. GPS tracks will be used to match change events in remote sensing datasets to their cause. The tool 

will extract a range of features from each change events (e.g. size, shape, intensity etc.), which will be used 

to train a classifier to identify the cause of change events in satellite data (Figure 11). A range of classification 

approaches will be tested, including machine learning techniques, with the eventual choice of classifier will 

depend on the field data and through quality assessment of the classifier. The algorithm will be validated as a 

cross-validation, where a proportion of the field data are held back for validation purposes. 

 

Figure 11: Examples of individual change events identified using ALOS PALSAR data in Mozambique (Ryan et al. 2014), which will be 
used to classify change types in remote sensing imagery. 

 

6.2.3 Prediction of Change Events  
105. The tool will use functions within Python to extract individual change events based on criteria of 

minimum extent and intensity. Functions will extract key features from each change (e.g. size, shape etc.), 

which will be input into the classification algorithm to identify its cause. The tool will output GeoTiff files for 

visualisation in addition to reports of the area attributable to each change. The classifier will be applied to the 

outputs of tool 2 and tool 3, but should be equally applicable to other commonly used remote sensing datasets 

(e.g. Hansen et al. 2013). 

6.3 User Interface and Usage 
106. The tool will be provided as a series of Python scripts operated from the Linux command line. For 

more advanced users there will be a Python interface, and detailed methodological documentation to assist in 

further development of the method in other programming languages (e.g. R). 

6.4 Documentation and Distribution 
107. Documentation will follow finalisation of the tool.
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7 Tool Development Plan 
There are key planned steps within the project program at which the tools will have advanced to a point where they can be tested, and associated training activities 
implemented. Thereafter, the tools will be useable and considered completed, but, with the nature of developing open-sourced tools and products, the tools will be 
developed and adjusted throughout the duration of the project. This approach will allow changes to be made based on user feedback (‘interactive development’), and 
adjustments to be made to approaches with availability of field validation data. There is some uncertainty as to the timing of implementation, given developments to 
the DIAS platform on which the tools will be hosted, as the functionality and release date of this platform is uncertain. The current development plan, outlining key 
dates and steps in relation to the SMFM tools can be seen below in Table 4. 

SMFM Satellite EO Method Design                                 
    Year           2018           2019   

Tool 
No. Description 

Month J F M A M J J A S O N D J F   
No. 14 15 16 17 18 19 20 21 22 23 24 25 26 27   

  SATELLITE EO METHOD DESIGN                                

1a 

Semi-automated pre-processing of Sentinel-2 data for LU/LC Classification                               
Testing of outputs                                 
Documentation                                 
Implementation and interactive development                               

1b 

Semi-automated pre-processing of Sentinel-1 data for LU/LC Classification                               
Testing of outputs                                 
Documentation                                 
Implementation and interactive development                               

2 

Annual Forest Biomass Change and Degradation Mapping Using the ALOS PALSAR Mosaic                              
Calibration and testing of outputs                                
Documentation                                
Implementation and interactive development                              
Validation against available field data                              

3 

Continuous Forest Change Monitoring with Sentinel-2 data                              
Research and development                                
Calibration and testing of outputs                                
Documentation                                
Implementation and interactive development                              
Validation against available field data                              

4 

Identifying Causes of Forest Change                              
Research and development                                
Calibration and testing of outputs                                
Documentation                                
Implementation and interactive development                              
Validation against available field data                              

 

Table 4. Tool Development Plan for SMFM Project 
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