They Saw a Triple Lutz: Bias and Its Perception in American and Russian Newspaper Coverage of the 2002 Olympic Figure Skating Scandal

ELENA V. STEPANOVA, MICHAEL J. STRUBE, AND JOHN J. HETTS
Washington University–Saint Louis

We explored bias and its perception in newspaper reports of the 2002 Olympics figure skating controversy. American and Russian articles were examined for their perceptions of the Canadian and Russian pairs’ performances, directionality of the Russian and American media and publics’ biases, and media awareness of those biases. Reporters’ accounts varied as a function of country of affiliation and indicated a one-sided acknowledgment of media and public bias. The American media acknowledged a pro-Canadian bias in their reporting; there was no self-bias acknowledgment in the Russian press. Country of affiliation produced one-sided coverage of this event, and even the American media’s awareness of self-biases did not ensure bias-free reporting. These findings are discussed amid respective countries’ cultural and political contexts.

During the 2002 Olympic Games in Salt Lake City, the news headlines across America almost screamed: “Russians rule ice again. Win comes amid much controversy” (Guregian, 2002), and “Canada cry: Judges ripped off pair’s gold” (Rapoport, 2002). Interestingly, the same event produced an almost equivalent outcry in the Russian mass media: “Judges are pressured. North American public decided to alter the outcome of the Olympics” (title translated from Russian, Ermolina, 2002), and “Canadians got ‘gold’ by whining again” (title translated from Russian, Zhuk, 2002). These disparate reports of the same event in American and Russian newspapers provide an applied opportunity to explore the magnitude and direction of reporting biases (cf. Hastorf & Cantril, 1954) and the media’s perception of those biases: social psychological phenomena of longstanding interest that have been largely confined to laboratory study.

1Parts of the data in this article were presented at the annual meeting of the Society for Personality and Social Psychology, New Orleans, LA, January 2005; and the 17th annual convention of the American Psychological Society, Los Angeles, CA, May 2005.

2Correspondence concerning this article should be addressed to Elena Stepanova, Department of Psychology, Campus Box 1125, One Brookings Drive, Washington University, Saint Louis, MO 63130. E-mail: evstepan@artsci.wustl.edu
Historical Context

Although the events in question happened a decade after the Soviet Union dissolved and the Cold War officially ended, the roots of the scandal can be traced to the middle of the last century. Indeed, Russian domination in pairs figure skating since 1964 was undoubtedly a major reason the 2002 Olympic pairs figure skating scandal was so hotly debated (e.g., Kelly, 2002; Powers, 2002). For the first time in many years, a competing pair of skaters—Canadians Jamie Salé and David Pelletier—was seen as capable of ending the Russian streak. On Monday, February 11, 2002, the pairs skated in the long program in a close competition with the gold medal on the line. The panel of judges from Poland, China, Ukraine, Russia, France, Canada, USA, Germany, and Japan awarded a gold medal to the Russians, leaving the Canadians with a silver medal. On Tuesday, February 12, 2002, the International Skating Union stated that it would investigate the event on the basis of allegations made by Marie-Reine Le Gougne, a French judge. On Thursday, February 14, 2002, the French judge was accused of vote trading—giving higher marks to the Russian skaters as a quid pro quo for high marks given to the French ice dancers. On Friday, February 15, the Canadians were awarded a second set of gold medals by the International Olympic Committee, while the Russians were allowed to keep their gold medals.

The key part of the controversy was the ambiguity of the performances. To many observers, the Russian pair had obvious technical mistakes, but delivered an artistic performance in a novel and difficult program, whereas the Canadian pair skated flawlessly in a less artistic, easy, and old program. The ambiguity of the event led to very intense coverage in the American and Russian media with the perceptions of the event being (seemingly) quite different. There was a perception of thievery by the American press and public. The Russian pair was booed when the results were announced. Russian press accounts, however, were quite different.

Media Bias Among “Objective” Observers

The media3 reactions surrounding the pairs figures skating outcome provide an opportunity to examine how a group of observers, whose role is the objective reporting of events, can be led astray by their political and social beliefs. Of course, claims of such biases are not new: Both scholarly sources (e.g., Dautrich & Hartley, 1999; Hachten, 1998; Stocking & Gross, 1989) and

3Although we use the term media throughout this paper, readers should note that the present study is limited to the investigation of newspaper reports, and generalization to other forms of media must be made cautiously. We will return to this issue in the Discussion.
public sentiment (Media Research Center, 2005) have suggested that the media are biased. The magnitude of such bias, however, has not been thoroughly documented, nor has the recognition of such bias in those who exhibit it. This last point is the key: To what extent do media observers recognize the extent to which their reports are biased?

The issues studied here are reminiscent of the classic “They Saw a Game” study (Hastorf & Cantril, 1954; also see Loy & Andrews, 1981) illustrating how pre-existing opinions and allegiances influence interpretations of the same event. Hastorf and Cantril noticed that the university newspapers at Princeton and Dartmouth provided very different descriptions of a particularly rough football game played on November 23, 1951, with quite different attributions for infractions. Hastorf and Cantril subsequently explored the observed bias in simulated “audiences”; that is, students attending the universities of Princeton and Dartmouth. The results showed strikingly different interpretations: Princeton and Dartmouth students essentially saw two quite different versions of the same game.

The media reports of the 2002 Olympic pairs figure skating event provide an opportunity to study a contemporary version of Hastorf and Cantril’s (1954) initial observations in an applied setting. Recall that Hastorf and Cantril reviewed the media reports of the Dartmouth–Princeton game and noticed biases consistent with the newspapers’ academic affiliations. They did not, however, quantify that phenomenon, instead producing a laboratory analog of the different perceptions of spectators having different allegiances. The current study examines the media bias itself.

There are some other important features that distinguish the Olympic figure skating scandal from its historical counterpart. First, the affiliations of the audience members were national, rather than regional, with long-standing biases rooted in international tensions of epic proportions. Second, those providing the accounts (i.e., reporters of major newspapers) were members of a profession trained to provide objective reporting of events. Finally, recognition of biased reporting by those exhibiting it was not mentioned by Hastorf and Cantril, and it has not been thoroughly investigated subsequently. To what extent are members of the media sensitive to biases in their accounts and cognizant of the magnitude of those biases? An answer to this question depends in part on what is meant by bias in reporting of events.

Note that in many cases, objectivity cannot be verified. We are aware of complexities surrounding the nature of reality and the ability of human observers to report on it accurately. We later discuss several levels of influence that can occur between any event and reporters’ accounts, and refer to objective reporting as the attempt to determine and reduce some of those influences.
Bias and Asymmetries in Perception

Researchers examining bias tend to focus on a failure to apply some normative standard for a particular problem (e.g., Nisbett & Ross, 1980). Some have argued that there are, in fact, some functional strategies that are labeled as biases and heuristics by the scientific community (e.g., Gigerenzer, 1996), while others use a more subjective definition. According to Wilson and Brekke (1994), “A judgment, emotion, or behavior is said to be contaminated if it is influenced in an ‘unwanted’ way (i.e., unwanted by the person whose judgment, emotion, or behavior it is)” (p. 120).

As discussed previously, Hastorf and Cantril’s (1954) study highlighted how prior beliefs and allegiances influence interpretation of subsequent evidence. Allport (1954) noted, too, that individuals often select evidence consistent with their beliefs and deliberately overlook evidence that is inconsistent. Bruner (1957) added that human perceivers tend to go beyond the information given to infer or perceive things that are not really there. Lord, Ross, and Lepper (1979) later showed that people examine information in a biased manner according to their prior theories, often accepting information at face value if it confirms prior beliefs but carefully evaluating and often rejecting disconfirming information.

There is also clear evidence that asymmetries exist in perception of self and others, especially in the context of disagreement and conflict (Pronin, Gilovich, & Ross, 2004; Pronin, Kruger, Savitsky, & Ross, 2001; Pronin, Lin, & Ross, 2002): People see others as more susceptible to motivational and cognitive biases than themselves (for a review, see Pronin, Puccio, & Ross, 2002). Furthermore, people tend to believe that a personal connection to any issue serves as a source of greater understanding for oneself, but an analogous personal connection in others predisposes them to biased judgments (Ehrlinger, Gilovich, & Ross, 2005). Thus, there is clear laboratory evidence for biased views of common events, biased recognition of those biased views, and rationalizations that seem to justify those perceptions. Do similar views and rationalizations exist outside the laboratory in media reports of important events?

Media Bias

Media bias is widely mentioned in mass communications and political science research, with frequent reference to liberal media bias, which is rooted in the prevalence of self-identified Democrats and liberals among reporters (e.g., Dautrich & Hartley, 1999; Niven, 1999) and exacerbated by political journalists (Hachten, 1998). Beyond a conservative-liberal bias, there are also
claims that the media overrepresent aggressive and deviant behaviors, certain geographical areas in the world and the United States, their news sources, and demographics (Shoemaker & Reese, 1996). More recently, there have been claims of media bias in the coverage of the Iraq war: Photos of U.S. casualties rarely make it to the pages of newspapers or to the evening news (e.g., Bedway, 2005; see Camera/Iraq, 2005).

Reference to media bias is also made in a much broader cognitive context and is not limited to biases favoring one particular group or the other, but instead refers to cognitive biases and errors representing particular “ways of thinking” (Stocking & Gross, 1989, p. 4). In this approach, journalists become susceptible to cognitive fallacies when processing information, from the moment they encounter a stimulus to the moment they integrate processed information into an account (Stocking & Gross, 1989). For example, a journalist’s attention might be directed toward a specific stimulus (i.e., event) in the environment based on various properties of that stimulus. Those properties might not necessarily signify a relatively important event (e.g., a pompous wedding of a celebrity receives more attention from journalists than an innovative educational initiative in an inter-city school). In this view, journalists are simply susceptible to the same cognitive fallacies involving selective attention, memory, and information processing that hamper everyone’s ability to render objective judgments. This view suggests that journalists are like everyone else: They are naïve realists (Gilbert, 1998; Ross & Ward, 1996) who believe that they perceive the world objectively, and that others who attend to the world to the same degree and share access to information equally will perceive the world similarly; that is, objectively.

Still others have noted that media bias involves different levels of misperception that can transpire between direct observation of an event and an audience’s exposure to a reporter’s account. Shoemaker and Reese (1996), for example, identified several potential levels of influence: (a) influences on content from individual media workers (e.g., arising from background/demographic characteristics, personal attitudes, preferences); (b) influences arising from media routines (e.g., standardized rules that media workers use to perform their jobs); (c) organizational influences (e.g., influences of corporate ownership, editorial practices); (d) influences outside of media organization (e.g., advertisers, government control, competitive marketplace); and (e) influences as a result of ideology (e.g., in the U.S., ideological influences reflect a belief in the value of free enterprise, a capitalist economy, and a free market).

Under these conditions, multiple levels of influence transpire between an actual event (i.e., objective reality) and final media reports, and it is impossible to exclude all of those factors from any given media report. The goal of objective reporting, then, is perhaps better described as the attempt to
identify and minimize some of those influences. Thus, any single media account cannot represent objective reality. Rather, media coverage can depart from objectivity more or less and perhaps recognize the possibility of bias in reports. Therefore, multiple media sources are often needed to approximate depiction of an event. However, we are aware that even extensive analysis based on many media sources covering any event can only hope to approach objective reality to a certain degree, which cannot be easily quantified.

Not surprisingly, most of the accounts of media bias are anecdotal (Goldberg, 2002), lacking analysis of mass-media reports using meaningful baselines (however, see Niven, 2001, 2004; also see Bystrom, Robertson, & Banwart, 2001, for media bias in depicting female candidates in political races). Current research on media bias has been confined almost exclusively to political issues (e.g., bipartisan system, depiction of ethnic minorities and women candidates), with no studies exploring media bias in specific sports events (except Hastorf & Cantril, 1954). Cross-cultural research on media bias is also rare, with no research on how various countries’ media present the same particular event; however, there have been studies dealing with broader aspects of cross-cultural media representations (e.g., Boyle & Hoeschen, 2001; Frith, Shaw, & Cheng, 2005).

One exception is an attempt to examine the perception of media bias that was conducted by Vallone, Ross, and Lepper (1985). In their study, pro-Israeli participants and pro-Arab participants watched identical television coverage of the Beirut massacre. Each side, depending on their affiliation, believed that Israel was judged too leniently or too harshly. More generally, this work suggests that two opposing sides can be expected to evaluate the fairness of media coverage differently and to have different perceptions and recollections about the content (also see Kressel, 1987; Matheson & Dursun, 2001). Of course, this study is limited in that it did not assess evaluations of bias by the reporting media sources themselves.

The Current Research

This cross-cultural study addresses media bias in newspaper sports reporting using one particular event: the 2002 Olympic skating scandal. More importantly, we explore, in particular, media self-awareness of bias. Current media bias research has not focused on how the media perceive their own bias or how the media from different countries perceive each other and each other’s biases. Consequently, an examination of how the media reported the 2002 Olympic pairs figure skating scandal offers an opportunity to fill several gaps in the literature and to contribute to applied social psychological research on the effects of media bias.
Different levels of bias can be defined in the skating scandal as well and help define the appropriate level of analysis for this study. First, the event was observed firsthand by an audience (including some reporters) and by judges. Second, the results of the competition were perceived and reported by Russian and American journalists, who may have been influenced by their direct reactions to the outcome and by their perceptions of sports-related injustices linked to their national affiliations. Third, the media can report about and reflect on the public’s biased reactions to the scandal. Fourth, the media can report about and reflect on their own biases, essentially allowing for bias in the investigation of bias.

This study does not address firsthand observational bias, but instead focuses on biases at the level of newspaper accounts and attempts to document biases in reporting of the key event, recognition of biased reactions by the public, and—perhaps most importantly—recognition of biases in the media accounts themselves. Because there is no objective marker against which to evaluate the skating performance, we do not try to identify which perception is biased, instead showing if different accounts exist for the same event and showing if those providing the accounts report awareness of the biases they might be exhibiting. We examine the following questions: (a) Did the American and Russian media portray the same event differently?; (b) Were the American and Russian media equally aware of their own bias, the bias of their counterpart, and its directionality?; and (c) Were the American and Russian media equally aware of bias and its directionality in their affiliated and non-affiliated audiences?

We predict that the Russian and American media will evaluate the performance of the pairs performance quite differently: The American media would contain more anti-Russian and more pro-Canadian arguments than the Russian media; while the Russian media would contain more anti-Canadian and more pro-Russian arguments than the American media. We also predict that the American media will be more aware of “pro-East” bias exhibited by the Russian media (or public) than the Russian media; and the Russian media will be more aware of “pro-West” bias exhibited by the American media (or public) than the American media.

The same pattern is expected for the specific topic of allegations of judges’ dishonesty/vote trading. It is expected that the American media will be pro-West, whereas the Russian media will be pro-East in their allegations of the judging scandal and vote trading. In other words, both American and Russian reporters are expected to provide different accounts of the skating event, to claim that their Eastern or Western counterparts were biased, but to be relatively unaware of any bias they exhibit in their own reporting.
Method

Materials

We used 425 articles (169 Russian, 256 American) covering the controversy in U.S. and Russian newspapers that were content-analyzed by two native English and two native Russian speakers, respectively. The coders were college students at a midwestern private university, self-identified as either American or Russian-born, and their first language was English or Russian, respectively. Mean age was 21.5 years for the Russian coders and 19.5 years for the American coders. The Russian coders had lived in the U.S. for at least 4 years, and were proficient in English. All coders were blind to our research hypotheses. The American media were not simply chosen for convenience. The event happened in the U.S. and was broadly covered in the American media. Although a sample of Canadian newspapers might also have been relevant, the longstanding East–West or North American–former Soviet animosity that fueled the biases described here existed between the two great superpowers—the United States and USSR/Russia—and not between Canada and Russia.

We used the LexisNexus Academic Universe Database for American articles and East View (Russian periodicals database) to obtain Russian articles. The date range for the search was February 10, 2002, to March 2, 2002. We could not find information on the circulation of all Russian newspapers used in the study, but were able to match approximately the top five for each country. The following U.S. newspapers were used, with their circulation position indicated in parentheses: USA Today (1), New York Times (3), Washington Post (5), Daily News (6), Chicago Sun-Times (13), Boston Globe (14), Denver Post (26), and Boston Herald (40).

The selection of Russian newspapers was somewhat wider, with more titles selected to achieve a roughly equivalent number of articles. The top five in circulation were Moskovskii Komsomolets (1), Komsomolskaia Pravda (2), Trud (4), Rossiiskaia Gazeta (5), and Argumenty i Fakty (6). The remaining Russian newspapers were as follows: Kommersant-Daily, Vremia MN, Moskovskiaia Pravda, Izvestiia, Novye Izvestia, SPB Vedomosti, Vremia Novostei, Vedomosti, Sovetskaia Rossiiia, Vecherniaia Moskva, Krasnaia Zvezda, Novaia Gazeta, Slovo, Nezavisimata Gazeta, Rossiiskie Vesti, Obschaia Gazeta, Itogi, Moskovskie Novosti, Expert, Vek, Ekho Planety, and Profil. A total of 27 Russian sources were used.

We used the following search strategy. For the first search, we used “pair” or “pairs” and “figure skating”; and for the second search, we used “Berezhnaya” or “Sikharulidzhe” or “Pelletier” or “Jamie Sale” and not “pair(s)” and “figure skating.” We used “Sale” as a term originally, but had to include
the skater’s first name because of the large number of references when “Sale” (in English) was used alone.

Coder Training and Codebook Development

A codebook with coding categories was developed after the initial media search and review. All coding materials were in English only, and were used by both Russian and American coders. Coders were trained to work with and to modify codebook categories during the initial coding of the first 30 articles. These 30 articles were later recoded using the final version of the codebook. During the initial coding, the categories were made more specific to accommodate the research questions (Carney, 1972). The original categories were designed to be exhaustive and mutually exclusive (Holsti, 1969; Krippendorf, 1980), but the initial coding phase identified statements representing new themes that were not captured by initial categories, prompting the development of additional categories. If during the initial coding a disagreement emerged, a researcher-moderated discussion occurred until coders could reach an agreement. Once the codebook was developed and initial training completed, all four coders independently proceeded with the coding.

The first group of variables that were coded was related to perceptions of the performance—essentially a replication of Hastorf and Cantril’s (1954) “they saw a game” phenomenon, but by reporters rather than by informal spectators: (a) which pair initially deserved the gold medal; (b) if the original performance of the two pairs was close; (c) the number of times an article mentioned arguments that either enhanced (pro) or detracted (anti) from the evaluation of the Canadians’ performance (e.g., “technically flawless long program of Canadians,” “old program of Canadians”); and (d) the number of times an article mentioned arguments that either enhanced (pro) or detracted (anti) from the evaluation of the Russians’ performance (e.g., more creative and artistic, new program, technical mistakes). The next group of variables dealt with the perception of bias in the media and included the following key variables: (a) general evaluations of “presence of bias in depiction”—that is, general references to media and audience bias, regardless of the source and directionality (i.e., if authors stated that media or audience were biased, unfair, partial); (b) statements that the Western or the Russian media and publics were exhibiting a bias, the source of that bias (i.e., the Western media/public or the Russian media/public), and the valence of the bias (e.g., mentioning the media making statements of “heroic efforts” of Salé to skate perfectly after she ran into Sikharulidze during warmups—a positive bias toward Canadians; mentioning the media making statements of blaming Salé for an episode where she ran into Sikharulidze—a negative bias against
Canadians); (c) references to past sports events representing pro-East and pro-West historical sports injustices; (d) references to contemporary sports events representing pro-East and pro-West sports injustices; and (e) allegations of judges’ dishonesty or vote trading made toward or disputed by Russia or the U.S. We also included geopolitical conflict as a separate key variable to see if any references would be made to a general West–East Cold War type of antagonism.5

The coders were instructed to look for specific themes, represented by the number of arguments (except for two categorical variables of deservingness and evaluation of bias that coders were required to evaluate and assign appropriate codes). It is important to note that the reference to Western media includes both Canadian and American media. Even though the Canadian media bias was barely mentioned, and very often “Western” refers to the American media only, we decided to keep Western media and public defined on the basis of the greater North American affiliation. Analogously, sometimes the former USSR and contemporary Russia are called “the East.”

Coding and Recoding Strategies

Initial examination of the data reveals that variability was very low in many of the count categories, producing data distributions that precluded planned analyses. In order to correct this problem, the data were recoded. Those categories that represented a number of arguments were recoded as a binary variable: If a coder believed there was any number of arguments representing a category in an article, that category received a rating of 1 for that particular article; if there were no arguments recorded, that category received a rating of 0. Those categories that originally represented categorical judgments were also recoded to simplify the data.

We used the following recoding for deservingness and directionality of evaluation of bias: For deservingness, the original codes were $0 = \text{No mention of deserve/merit}; 1 = \text{Russians deserved the gold medal initially}; 2 = \text{Canadians deserved the gold medal initially};$ and $3 = \text{Both deserved gold medal initially (too close to call).}$ These were recoded to $0 = \text{Both deserved/no mention}; 1 = \text{Russians deserved the gold medal initially};$ and $2 = \text{Canadians deserved the gold medal initially.}$

For the evaluation of bias, the original codes were as follows: $-2 = \text{Russians/East/former Soviet Union are very biased towards West}; -1 = \text{Russians/East/former Soviet Union are biased towards West}; 0 = \text{Both sides are biased against each other/sports and judging systems are inherently}$

5The complete codebook can be obtained from the authors upon request.
subjective; 1 = Westerners/Canadians/USA are biased towards Russians; and 2 = Westerners/Canadians/USA are very biased towards Russians. These were recoded as follows: 1 = Russians/East/former Soviet Union are biased against West; 2 = Both sides are biased against each other/sports and judging systems are inherently subjective; and 3 = Westerners/Canadians/USA are biased against Russians.

For each article, the ratings of two same-language coders (e.g., Russian coders) were compared. If their judgments for a category were the same, that judgment became the representation of the (e.g., Russian) coders’ judgment of that category in that article. If the judgments were different (e.g., one coder thought a category was present in the article, and another one thought it was not), the most conservative judgment was used, and the representation of that category in the article was coded as “absent” for that set of (e.g., Russian) coders. Using this strategy, we obtained two sets of coded categories: one for the American articles and another for the Russian articles.

Interrater Agreement

To estimate intercoder agreement (reliability), we calculated Cohen’s kappa, the maximum possible kappa, and the adjusted kappa (the original kappas divided by the maximum possible kappa). Not all the variables reached high interrater agreement. Accordingly, we report significant and marginally significant findings only for those variables that have moderate or higher levels of interrater agreements (adjusted $\kappa = .50$ or more; see Table 1). When original variables were transformed into more general composites, we report results on composites only (as described in the next section). Twice, we report significant findings for variables when adjusted kappa for one set of judges is over .50 and less than .50 for the other set of judges. Those results should be viewed with more caution.

Creation of Composites

Some of the original variables (e.g., “Western media negatively biased towards Russians,” “U.S. audience positively biased towards Canadians”) produced low interrater reliability after recoding. We collapsed the data across these variables and obtained several more general composites. For example, “Western media positively biased towards Canadians” and “Western media negatively biased against Russians” were combined to create “Western media pro-Canadian bias.” Similarly, we created the following variables: “Western audience pro-Canadian bias” (a composite of “Western audience positively biased towards Canadians” and “Western audience
negatively biased against Russians”), “pro-Western bias allegations” (a composite of “disputes allegations made towards the West” and “allegations made towards Russia”), and “pro-Eastern bias allegations” (a composite of “disputes allegations made towards the East” and “allegations made towards the U.S.”). Only the composites for which analyses produced significant results and acceptable interrater agreement are described and reported.6

Results

Hierarchical logistic regression analyses were performed on all variables. Country of media (Russian vs. American) was entered on the first step, time of publication (before 2/15/02 or after 2/15/02, the day Canadians were awarded a second set of gold medals) was entered on the second step, and the interaction of both predictors was entered on the third step.7 The time factor

6Data analysis produced significant results for the following composites, but sufficient interrater agreement was not achieved: “geopolitical conflict,” “presence of bias evaluation,” “Western audience pro-Canadian bias,” “sports pro-Russian bias,” and “sports pro-Eastern bias.”

7We included all the articles in the analysis, regardless of the sections in which they appeared (sections coded: front page, sports section, editorial, other, and unknown). The breakdown for sections for the American articles and the Russian articles is as follows: front page, 15 for American versus 20 for Russian (5.9% and 11.8%, respectively); sports, 169/54 (66.0%/32.0%); editorial, 12/1 (4.7%/0.6%); other, 60/26 (23.4%/15.4%); and unknown, 0/68 (0.0%/40.2%).
was included for exploratory purposes. For descriptive purposes, the regression-based logits were converted to probabilities. Sample sizes vary slightly across analyses as a result of missing ratings for some coders.

"They Saw a Game" Phenomenon

The results for the group of "they saw a game" variables were very close to the initial predictions. For closeness, there was a main effect for country, $\chi^2(1, N = 425) = 16.75, p < .001$; and a main effect for time, $\chi^2(1, N = 425) = 16.31, p < .001$. The probability that the competition was viewed as close was higher in the Russian articles ($p = .75$) than in the American articles ($p = .55$). The probability of a close view of the outcome was also higher ($p = .82$) before 2/15/02 than after 2/15/02 ($p = .57$).

For pro-Canadian performance arguments, there was a main effect for country, $\chi^2(1, N = 425) = 6.49, p = .01$; and a main effect for time, $\chi^2(1, N = 425) = 66.37, p < .001$. The probability of these arguments was higher in the American ($p = .22$) than in the Russian articles ($p = .12$), and was higher before 2/15/02 ($p = .57$) than after 2/15/02 ($p = .11$). There was a main effect for time for anti-Canadian performance arguments, $\chi^2(1, N = 425) = 24.02, p < .001$; with a higher probability of those arguments being published before ($p = .31$) than after 2/15/02 ($p = .10$). For pro-Russian performance arguments, there was a time by country interaction, $\chi^2(1, N = 425) = 4.28, p = .04$. The probability of those arguments for the Russian articles before 2/15/02 was substantially higher ($p = .62$) than after 2/15/02 ($p = .13$); but for the American articles, the probabilities for articles published before 2/15/02 ($p = .28$) and after 2/15/02 ($p = .10$) were less distinct. For anti-Russian performance arguments, there was a main effect for country, $\chi^2(1, N = 425) = 5.45, p = .02$; and a main effect for time, $\chi^2(1, N = 425) = 42.27, p < .001$. The probability of these arguments was higher in the American ($p = .19$) than in the Russian articles ($p = .11$), and higher before 2/15/02 ($p = .44$) than after 2/15/02 ($p = .11$).

Bias and Its Perception

The main effect for country reached statistical significance for Western media pro-Canadian bias, $\chi^2(1, N = 418) = 3.79, p = .05$. The probability of

Complete data were available for American coders only. As some cells had very low frequencies, we could not explore country by section moderation in our analysis. We are aware of in-group variability of the American and Russian media, depending on types of sources (e.g., various newspapers) and section characteristics (e.g., front page, sports section, editorial), but inadequate sample sizes precluded investigating biases at these levels. The focus of this paper is on the between-group (American vs. Russian) differences.
mentioning pro-Canadian bias in Western media was higher in the American articles ($p = .14$) than in the Russian articles ($p = .08$).

For allegation of judges’ dishonesty and vote-trading, there was a tendency toward interaction for pro-Western bias allegations, $\chi^2(1, N = 420) = 3.78$, $p = .05$. The probability for pro-Western bias allegations increased with time in the American articles, with lower probability before 2/15/02 ($p = .36$) than after 2/15/02 ($p = .44$); but it decreased in the Russian articles, with higher probability before 2/15/02 ($p = .14$) than after 2/15/02 ($p = .06$). There was a time main effect for pro-Eastern bias allegations, $\chi^2(1, N = 408) = 5.10$, $p = .02$. The probability for pro-Eastern bias allegations was lower before 2/15/02 ($p = .07$) than after 2/15/02 ($p = .17$).

Discussion

*They Saw a Triple Lutz*

As expected, this study conceptually replicated Hastorf and Cantril’s (1954) “they saw a game” phenomenon: The Russian and American media reported two different versions of the same skating event, as indicated by the results for performance arguments. Except for anti-Canadian performance arguments, the two media sources evaluated the performances differently, depending on the national affiliation of the performing pair. The American press was more likely than the Russian press to mention anti-Russian performance arguments. Similarly, the American media were more likely than the Russian media to mention pro-Canadian performance arguments. The results were a bit more complex for pro-Russian performance arguments. The Russian media were more likely than the American media to mention pro-Russian performance arguments, but this was especially pronounced in articles appearing before 2/15/02. Not surprisingly, the perception of performance closeness also differed in the Russian and American media. The Russian media viewed the performance as closer, with more “It was close, but we won,” rather than “The performance was not that close, and the Canadian pair clearly won” types of statements.

*Media Bias and Bias Perception in Historical and Cultural Context*

Neither American articles nor Russian articles mentioned the Russian media often. Instead, the Western media were the focus of media bias commentary. The American media were more likely than the Russian media to
acknowledge that the Western media exhibited strong pro-Canadian bias. The absence of the Russian media as a unit of reference could be attributed to the fact that the event took place on American soil, in front of a largely American audience, and in close proximity to the home of the Canadian pair. Moreover, the American media started the campaign to overrule the initial award of the gold to the Russians by arguing that the medal was awarded unjustly. In other words, the American media were a key player in the scandal.

However, the Russian media did not exhibit any self-reflection, with little mention that their own views could be colored by national affiliation. Perhaps, the intensity of the coverage in the American media overshadowed any such attempts. More importantly, the described differences in media accounts of the skating scandal can also be viewed in historical and cultural contexts. The American media, possibly because the event took place on their turf and against the backdrop of a historically free press, willingly admitted to and freely wrote about biases in their views that favored the Canadian pair. The Russian media, on the other hand, have a very different history, which can possibly explain their lack of acknowledgement that bias might have tainted their reporting of the skating scandal.

Until 1985, the Soviet press functioned in a post-totalitarian system, characterized by the slow degeneration of a totalitarian regime (Becker, 1999; Rosenkrans, 2001) where tight governmental control over mass media was exercised. When Gorbachev came to power in 1985, his new communication policy of glasnost allowed limited liberalization of the press; however, the real liberalization came later, after the collapse of the USSR in 1991. Financial struggles in the deteriorating economy, however, forced the Russian print media to seek monetary support from political patrons and newly emerged corporations ruled by oligarchs (i.e., tycoons; Belin, 2002; Rosenkrans, 2001). There is some evidence that more subtle and selective state control of mass media emerged in the late 1990s when newly made oligarchs formed allegiances with the ruling government (during the Yeltsin regime). For example, the elections of 1999–2000 are notorious because the Russian state television channel controlled by the Kremlin and Boris Berezovsky, a wealthy oligarch associated with the ruling circle of the Yeltsin family, disproportionately provided coverage to Putin and the governmental “Unity” party (White, Oates, & McAllister, 2005). Accordingly, although the Russian press of 2002 did not function under any universal government censorship (Rosenkrans, 2001), it is important to bear in mind that Russian and U.S. accounts of the event studied here occurred amid quite different historical, political, and economic pressures.
Time Factor

The time of the publication was an exploratory predictor in this study that did not produce uniform findings. Performance arguments, closeness, and pro-Eastern bias allegations were more likely to be mentioned before, rather than after 2/15/02—results that probably reflect the dispute about “Who won?” started by the American media. Once the second set of medals was awarded, those arguments became less frequent. As for other occasional interaction (e.g., pro-Western bias allegations), the causality is not clear, and any interpretations must be made with caution.

Limitations of the Present Study

Content analyses typically suffer from two problems: coder unreliability and biased content sampling. Reliability was clearly a challenge in this study, with reliability being unacceptably low for some variables after initial coding. Much of that problem can be traced to low base rates, leading to the decision to combine similar variables into composites. This tactic produced reliability in most cases above levels commonly viewed as acceptable (e.g., .70; Lombard, Snyder-Duch, & Bracken, 2002). We also used a conservative decision rule for category membership in the data that were analyzed, only counting a variable or category as present if both judges viewed it as so.

Another potential limitation of the study is the type of media studied (written media, newspapers) and the sample of the articles selected. The American sample comprised only eight newspapers, whereas the Russian sample was represented by 27 newspapers. This choice was necessary to achieve adequate numbers of articles from each country. Nonetheless, the smaller American sample of newspapers raises the possibility that the views presented in the American articles are not representative of American media overall. On the other hand, the samples were matched well at the upper tier of circulation, so biased sampling of overall media viewpoints seems less likely. We also studied only one type of media: written media in the form of newspapers. The generalizability of our findings to other types of media thus must be viewed with caution.

A third potential limitation in this study is that we used native-born coders for the American and Russian articles, respectively. This choice was partly driven by pragmatics: We did not have access to native-born coders who were equally fluent in Russian and English (i.e., we were not able to obtain native-born Americans fluent in Russian), negating the possibility of having all judges rate all articles.

Note that this methodology of nesting coders within their countries of origin or native languages is not unique to our study and has been employed
previously in cross-cultural research (e.g., Chen, Chiu, Roese, Tam, & Lau, 2006; Kim & Markus, 1999; Maddux & Yuki, 2006; Unemori, Omoregie, & Markus, 2004), largely because it is not always possible to obtain equally bicultural and bilingual coders. The choice was driven as well, however, by a desire to keep the coders unaware of the central hypotheses being tested. Had all coders been asked to code all articles, the disparity between American and Russian accounts would have been quite apparent and potentially influential. Nonetheless, the possibility that the differences reported here represent coder biases, rather than media biases cannot be ruled out completely, although we find it unlikely.

The American and Russian judges were relatively young, and thus probably free of the Cold War attitudes that might fuel coder biases. Both sets of coders were equally exposed to the American system of higher education. Spending several years in the U.S. likely diminished any pro-Russian biases or anti-American biases in Russian coders. The task given to the coders was also quite routine, amounting to counts of different content themes, with little opportunity for personal attitudes to emerge. Our focus on coding categories that were reliable also diminishes any impact of idiosyncratic attitudes. The fact that the coders were blind to the research hypotheses also likely reduces any potential judge bias concerns.

A final potential limitation concerns the generalization of our results beyond newspaper reports of a single sports event. Indeed, the event studied was somewhat unique: a sports event involving a national dispute. It remains for future research to explore bias in other forms of media coverage and, more importantly, awareness of bias in the reporting of other kinds of events. Nonetheless, this study does provide some evidence that coverage of sports events might be relatively skewed, especially when national affiliations are involved and the outcomes are ambiguous. The sports event in question was certainly marked by performance ambiguity and involved national affiliations. Moreover, the entire 2002 Salt Lake City Olympics was marked by reconstruction of the post-9/11 national identity in the case of the American public (Silk & Falcous, 2005). Therefore, it probably increased biased reporting as in-group favoritism increased.

There is longstanding evidence that even in groups that are created arbitrarily, individuals’ perceptions and behavior are susceptible to in-group and out-group biases (e.g., Allen & Wilder, 1975; Billig, 1973; Billig & Tajfel, 1973; Brewer, 1979; Rabbie & Horwitz, 1969). The fact that the groups we studied in this investigation are nations/countries with a longstanding history of hostile relationships potentially increased or exaggerated in-group and out-group biases even more. Furthermore, the rise of nationalistic feelings reflected in media reports caused by the September 11, 2001, attacks in the United States (e.g., Neier, 2004; Silk & Falcous, 2005), as well as the Putin government’s new
doctrine of state nationalism in Russia (e.g., Molchanov, 2000; Krasnoboka & Brants, 2002) could have contributed to in-group favoritism/out-group derogation affecting the depiction of the event in question.

Concluding Remarks

Even those whose professional responsibility is an objective presentation of facts are susceptible to the biased representation of those facts. Though we are aware that the sports event studied is somewhat unique and that American and Russian journalists functioned under different historical and cultural pressures, their representations of reality—the aspects of the performance that were highlighted or omitted—varied substantially as a function of the media’s country of affiliation. This does not bode well for objective reporting and analysis in the media, and the prospects for bias reduction do not seem optimistic.

Strategies for reduction of intergroup bias often stress diminishing category salience through viewing out-group members as distinct individuals with their own different opinions or through viewing members of in-group and out-group as members of a bigger, superordinate group (for a review, see Dovidio, Gaertner, Esses, & Brewer, 2003). However, these strategies are often drawn from laboratory studies of nominal groups. It seems doubtful that such tactics could be applied to the media bias problem. Indeed, any intervention would require a manipulation of the media that would surely be challenged by many of its constituents. Perhaps the best that can be expected is that awareness of media bias among the media will result in more objective reporting by revealing the disparity between professional values and actual behavior.

Al-Jazeera and CNN might never give us the same picture of the 2001 New York or 2005 London bombings, the Arab–Israeli conflict, or warfare in Afghanistan and Iraq. But the media are capable of knowing the biases they exhibit. As a key source of information about international affairs for much of the public, the media are thus capable of educating that public about biases that might prevent a fair and balanced view.

References


Ermolina, O. (2002, February 14). Давление на суд. Североамериканские болельщики решили исправить итоги Олимпиады [Judges are pressured:
North American public decided to alter the outcome of Olympics]. Время
новостей, p. 1.
cross-cultural analysis of women’s magazine advertising. Journal of
Communication, 55, 56–70.
Kahneman and Tversky. Psychological Review, 103, 592–596.
Goldberg, B. (2002). Bias: A CBS insider exposes how the media distorts the
Reading, MA: Addison-Wesley.
share top honors with Russians, judge will face probe. Denver Post,
p. A01.
Kim, H., & Markus, H. R. (1999). Deviance or uniqueness, harmony or
conformity? A cultural analysis. Journal of Personality and Social Psy-
chology, 77, 785–800.
politics? Paper presented at the workshop of European Consortium of
Political Research European Consortium of Political Research Confer-
ence (“Political Communication, the Mass Media, and the Consolidation
of Democracy”), Turin, Italy. Retrieved November 4, 2005, from
www.essex.ac.uk/ecpr/events/jointsessions/paperarchive/turin/
ws13/krasnoboka-brants.pdf
Kressel, N. J. (1987). Biased judgments of media bias: A case study of
the Arab–Israeli dispute. In N. J. Kressel (Ed.), Political psychology:
Classic and contemporary readings (pp. 211–227). New York: Paragon
House.
Lombard, M., Snyder-Duch, J., & Bracken, C. C. (2002). Content analysis in
mass communication: Assessment and reporting of intercoder reliability.
Human Communication Research, 28, 587–604.


