A Stable Anionic Dithiolene Radical

Yuzhong Wang, Hunter P. Hickox, Yaoming Xie, Pingrong Wei, Soshawn A. Blair, Michael K. Johnson, Henry F. Schaefer III,* and Gregory H. Robinson*

Department of Chemistry and the Center for Computational Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States

Supporting Information

ABSTRACT: Sulfurization of anionic N-heterocyclic dicarbene,

\[\text{[C(N(2,6-Pr\text{II}_2C_6H_3)CH)]_2Cl} \] 2, with elemental sulfur (in a 1:2 ratio) in Et\textsubscript{2}O at low temperature gives \(3 \) by inserting two sulfur atoms into the Li−C (i.e., C\textsubscript{2} and C\textsubscript{4}) bonds in polymeric \(2 \). Further reaction of \(3 \) with 2 equiv of elemental sulfur in THF affords \(4 \) via unexpected C−H bond activation, which represents the first anionic dithiolene radical to be structurally characterized in the solid state. Alternatively, \(4 \) may also be synthesized directly by reaction of \(1 \) with sulfur (in a 1:4 ratio) in THF. Reaction of \(4 \) with GeCl\textsubscript{2}·dioxane gives an anionic germanium(IV)−bis(dithiolene) complex (5). The nature of the bonding in \(4 \) and 5 was probed by experimental and theoretical methods.

Metal−dithiolene complexes, extensively studied since the early 1960s,1−10 are intriguing not only due to their unique structural and bonding motifs but also for their remarkable capabilities in such disparate fields as materials science4,10 and biological systems.2,11 While both molybdenum and tungsten enzymes contain the dithiolene unit,2,5 transition metal−bis-dithiolenes, possessing unique optical, conductive, and magnetic properties, have shown promise in the development of optoelectronic devices.4,7,10 The fascinating redox chemistry demonstrated by metal−dithiolenes may largely be attributed to the non-innocent behavior of dithiolene ligands (Figure 1).3 Gray boldly proposed the likely presence of dithiolate radical anion moieties (L−) in transition metal−dithiolene complexes more than five decades ago.3,14 The electronic structures of transition metal−dithiolene complexes were recently probed by sulfur K-edge X-ray absorption spectroscopy (XAS), providing the strong support for the non-innocence of dithiolene ligands.4 While the radical character of the ligands in transition metal−dithiolene complexes has been extensively explored,4,13−24 free anionic dithiolene radicals are highly reactive and have only been studied computationally and by electron paramagnetic resonance (EPR).25−28 Indeed, the electronic absorption spectrum of the prototype dithiolene radical anion (C\textsubscript{2}H\textsubscript{2}S\textsubscript{−}) was recently observed in a low-temperature matrix.29 Consequently, the captivating chemistry of anionic dithiolene radicals remains highly relevant. Herein, we report the synthesis, structure, spectra, computations,30 and reactivity of the lithium salt of anionic dithiolene radical (\(4^\text{−} \)), an R\textsubscript{2}timdt-type ligand (R\textsubscript{2}timdt = disubstituted imidazolidine-2,4,5-trithione).31−36 Notably, \(4^\text{−} \) is uniquely synthesized via a carbene-based strategy and represents the first stable anionic dithiolene radical to be structurally characterized.

Reaction of N-heterocyclic carbene [NHC = :C(N(2,6-Pr\text{II}_2C_6H_3)CH)] with an excess of elemental sulfur gives thione (1) (Scheme 1).37 However, di- and tri-sulfurization of the imidazole ring may be achieved by sulfurization of C4-metalated N-heterocyclic carbene. The first anionic N-heterocyclic dicarbene (NHDC, 2) was synthesized by this laboratory in 2010 via C4-lithiation of a NHC ligand [L\textsubscript{1} = :C(N(2,6-Pr\text{II}_2C_6H_3)CH)]\textsubscript{2}].38 Reaction of 2 with two equivalents of elemental sulfur gives thione (1) (Scheme 1).37 However, di- and tri-sulfurization of the

Figure 1. Three oxidation levels of a dithiolene ligand.12

Scheme 1. Synthesis of 1, 3, and 4

Received: April 14, 2017
Published: May 8, 2017

DOI: 10.1021/jacs.7b03794

J. Am. Chem. Soc. 2017, 139, 6859−6862
subsequent workup in THF gives colorless disulfurized product 3 (in 73.5% yield) (Scheme 1, R = 2,6-dimethylphenyl). Compound 3 may be purified by recrystallization in THF/hexane mixed solvent at −40 °C. Further reaction of crystalline 3 with elemental sulfur (in a 1:2 ratio) in THF at room temperature gives 4* as a crystalline purple powder in quantitative yield, which can be employed for synthesis without further purification. Notably, 4* may also be synthesized by directly reacting 2 with elemental sulfur in a 1:4 ratio (Scheme 1). However, the purity of the product 4* from the 1:4 route is relative low. Radical 4* solid is stable indefinitely under an inert atmosphere of argon. Interestingly, the transformation of 3 to 4* involves unexpected C−H bond activation. The metal-catalyzed C−S bond formation via C−H bond functionalization has received substantial attention.39 In addition, the disulfide bridge in dinuclear Ru(III) complexes has been reported to be involved in C−S bond formation.40 Notably, elemental sulfur has been utilized in copper-mediated C−S bond forming reactions via C−H activation.41 While the mechanism of the transformation of 3 to 4* remains unclear, our study reveals that this reaction requires two equivalents of elemental sulfur (Scheme 1). The corresponding 1:1 reaction only affords a mixture containing 4* and unreacted 3.

Although the 1H NMR imidazole resonance of 3 (6.14 ppm) is similar to that of 2 (6.16 ppm),48 single crystal X-ray structural analysis reveals that the two carbene carbons of 3 are sulfurized (Figure 2). The C(1)−S(1) bond distance in 3 [1.678(4) Å], comparing well to that of 1 [1.670(3) Å],42 is ca. 0.04 Å shorter than that of the C(3)−S(2) single bond in 3 [1.716(4) Å]. While the S(1) atom is terminal, the S(2) atom is bridged between the C4 carbon [i.e., C(3)] and a THF-solvated lithium cation. In addition, the Li−S bond is nearly coplanar with the imidazole ring [Li(1)−S(2)−C(3)−C(2) torsion angle = 2.1°].

Figure 2. Molecular structure of 3. Thermal ellipsoids represent 30% probability. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): C(1)−S(1), 1.678(4); C(2)− C(3), 1.355(5); G(3)−S(2), 1.716(4); Li(1)−S(2), 2.369(8); S(1)− C(1)−N(1), 128.8(3); C(2)−C(3)−S(2), 134.7(3); Li(1)−S(2)− C(3), 108.4(2).

While the UV−vis absorption spectrum (Figure S1)30 of radical 4* (purple) in toluene shows two broad absorptions at 554 and 579 nm, the paramagnetic properties of radical 4* are characterized by EPR spectroscopy in THF at 298 K (Figure 3a). The EPR spectrum displays a $S = 1/2$ quintet ($g_{av} = 2.016$) due to weak hyperfine coupling with two equivalent I = 1 14N nuclei, $A_{av}(^{14N}) = 3.9$ MHz. Molecular orbital calculations of the simplified [4-Ph]* model suggest that the SOMO (Figure 3b) is primarily ligand-based, involving C−S π-antibonding and C−C π-bonding character. The total spin density (0.88) of the C4S2 unit in [4-Ph]* [$\rho(S_{2}) = \rho(S_{3}) = 0.31, \rho = 0.26$ for the olefinic carbons] indicates that the unpaired electron is largely localized on the C4S2 moieties.

X-ray structural analysis (Figure 4) shows that a THF-solvated four-coordinate lithium cation is bound to two sulfur atoms of the dithiolene moiety in 4*, giving a five-membered LiS2C2 ring. The LiS2C2 ring of [4-Ph]* model is almost planar,40 rather than having the lithium atom obviously puckered out of plane, as observed in 4* [bend angle (η) between the MS2 (M = Li) plane and the S2C2 plane = 14.2°]. This may be due to the steric bulk of the ligand and the packing effects.45 The Li−S bond distances in 4* [2.442(5) Å, av], similar to that of [4-Ph]* (2.455 Å, av), is approximately 0.07 Å longer than that in monothiolate 3 [2.369(8) Å]. The Wiberg bond indices (WBI)s of the Li−S bonds in [4-Ph]* (0.28, av), coupled with the +0.66 natural charges of [(THF)2Li]+, indicate both the ionic bonding essence of the Li−S bonds and the anionic character of the [S≡C(N(2,6-Pr2C6H4)−CS)2]+ fragment in 4*. While comparing well with the
Communication

Theoretical values for [4-Ph]* (d_{C=C} = 1.426 Å, d_{C-S} = 1.697 Å) and for cis-C_{4}H_{2}S_{2}* (d_{C-C} = 1.411 Å, d_{C-S} = 1.693 Å), the C(2)–C(3) bond distance [1.417(3) Å] and C–S bond distances [1.677(3) Å, av] in the C_{5}S_{2} moieties of 4* are in contrast to those in 3 [d_{C-C} = 1.355(5)Å, d_{C-S} = 1.716(4) Å] and in various dithiolates such as uncomplexed dithiolate ligand [i.e., (NMe_{2})_{2}(C_{5}S_{2})], d_{C-C} = 1.371(8) Å, d_{C-S} = 1.724(6) Å, av] and silver dithiolate complex [NBu_{4}]_{4}[Ag-(mnt)]_{4} (mnt = 1,2-maleonitrile-1,2-dithiolate) [d_{C-C} = 1.373(8) Å, d_{C-S} = 1.736(6) Å, av]. By comparison with those in dithiolates (L_{2}S_{2}, Figure 1), the elongation of the carbon–carbon bond and concomitant shortening of the carbon–sulfur bonds observed in 4* may be attributed to the SOMO (Figure 3b) of 4*, which has C–C π-bonding and C–S π-antibonding character. The WBI values of the C(2)–C(3) bond (1.22) and C–S bonds (1.34, av) in the C_{5}S_{2} moieties of 4* indicate that these bonds have a modest double bond character, which is consistent with the resonance structures of L* in Figure 1.

Although synthetic routes for dithiolene complexes have been reported, as a bidentate ligand with both anionic and radical character, provides a unique platform to access a variety of dithiolene compounds. To this end, we allowed 4* to react with GeCl_{2}/dioxane in THF (in a ratio of 2:1). The anionic chlorogermainium-bis(dithiolene) complex (5) was isolated as a dark-blue diamagnetic crystalline solid (83.3% yield) (Scheme 2).

Scheme 2. Synthesis of 5

X-ray structural analysis (Figure 5a) shows that the central five-coordinate germanium atom in 5 adopts an approximate square pyramidal geometry, having four coplanar basal sulfur atoms (d_{C-S} = 3.134–3.309 Å) and an apical chlorine atom. In contrast, the optimized structure (Figure 5b) of the simplified [5-H] model (in C_{3} symmetry) features a distorted trigonal bipyramidal geometry around the germanium atom (S_{a}-Ge_{a}-S_{a} angle = 167.25°; S_{a}-Ge_{a}-S_{eq} angle = 127.7°), which is comparable to that for anionic fluorogermainate ([C_{4}H_{2}S_{2}]_{2}GeF) (S_{a}-Ge-S_{ax} = 171.1°, S_{eq}-Ge-S_{eq} = 136.2°). The square pyramidal geometry around the germanium atom in 5 may well be a consequence of steric repulsion of the bulky ligands (see space-filling model of 5, Figure S2). The Ge–S bonds in 5 [2.3290(8)–2.3561(8) Å] are similar to the Ge–S_{eq} bonds (2.361 Å), but obviously shorter than the Ge–S_{ax} bonds (2.465 Å) in [5-H]−. It is noteworthy that, while comparing well to those of dithiolates (L*2, Figure 1), the olefinic C=C bonds [1.347(4) Å, av] in 5 are shorter than that in 4* [1.417(3) Å]. Meanwhile, the C–S bonds [1.719(3)–1.729(3) Å] in the C_{5}S_{2} moieties of 5 are concomitantly elongated compared to those in 4* [1.677(3) Å, av]. Thus, the germanium atom in 5 may be assigned an oxidation state of +4. In addition, the C_{5}S_{2}Ge rings in 5 (η = 37.3°, av) are more bent than those in [5-H]− (η = 29.6°) and the C_{5}S_{2}Li ring in 4* (η = 14.2°). The axial Ge(1)–Cl(1) bond in 5 [2.1902(9) Å] is only slightly shorter than that in [5-H]− (2.265 Å).

The anionic NHDC ligand (2) may be di- and trisulfurized to give 3 and 4*, respectively. Compound 3 may be further transformed into 4* via C–H bond activation. The effective transformation of 4* to 5 suggests that 4*, as a stable monomeric dithiolene radical, may serve as a new platform to access a variety of unexplored dithiolene chemistry. The reactivity of both 3 and 4* is being studied in this laboratory.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b03794.

Syntheses, computations, and X-ray crystal determination, including Figures S1 and S2 and Tables S1–S12 (PDF)
Crystallographic data for compounds 3, 4*, and 5 (CIF)
Crystallographic data for compound (CIF)

AUTHOR INFORMATION

Corresponding Author
* robinson@uga.edu

ORCID

Henry F. Schaefer III: 0000-0003-0252-2083
Gregory H. Robinson: 0000-0002-2260-3019

Notes

The authors declare no competing financial interest.
ACKNOWLEDGMENTS

We are grateful to the National Science Foundation for support: CHE-1565676 (G.H.R., Y.W.) and CHE-1361178 (H.F.S.). EPR studies were supported by a grant from the National Institutes of Health: R37-GM62524 (M.K.J.).

REFERENCES

(30) See the Supporting Information for synthetic, spectral, computational, and crystallographic details.